4,851 research outputs found

    Towards architecture-level middleware-enabled exception handling of component-based systems

    Full text link
    Exception handling is a practical and important way to improve the availability and reliability of a component-based system. The classical code-level exception handling approach is usually applied to the inside of a component, while some exceptions can only or properly be handled outside of the components. In this paper, we propose a middleware-enabled approach for exception handling at architecture level. Developers specify what exceptions should be handled and how to handle them with the support of middleware in an exception handling model, which is complementary to software architecture of the target system. This model will be interpreted at runtime by a middleware-enabled exception handling framework, which is responsible for catching and handling the specified exceptions mainly based on the common mechanisms provided by the middleware. The approach is demonstrated in JEE application servers and benchmarks. ? 2011 ACM.EI

    Resilient Critical Infrastructure Management using Service Oriented Architecture

    No full text
    Abstract—The SERSCIS project aims to support the use of interconnected systems of services in Critical Infrastructure (CI) applications. The problem of system interconnectedness is aptly demonstrated by ‘Airport Collaborative Decision Making’ (ACDM). Failure or underperformance of any of the interlinked ICT systems may compromise the ability of airports to plan their use of resources to sustain high levels of air traffic, or to provide accurate aircraft movement forecasts to the wider European air traffic management systems. The proposed solution is to introduce further SERSCIS ICT components to manage dependability and interdependency. These use semantic models of the critical infrastructure, including its ICT services, to identify faults and potential risks and to increase human awareness of them. Semantics allows information and services to be described in such a way that makes them understandable to computers. Thus when a failure (or a threat of failure) is detected, SERSCIS components can take action to manage the consequences, including changing the interdependency relationships between services. In some cases, the components will be able to take action autonomously — e.g. to manage ‘local’ issues such as the allocation of CPU time to maintain service performance, or the selection of services where there are redundant sources available. In other cases the components will alert human operators so they can take action instead. The goal of this paper is to describe a Service Oriented Architecture (SOA) that can be used to address the management of ICT components and interdependencies in critical infrastructure systems. Index Terms—resilience; QoS; SOA; critical infrastructure, SLA

    A Taxonomy of Workflow Management Systems for Grid Computing

    Full text link
    With the advent of Grid and application technologies, scientists and engineers are building more and more complex applications to manage and process large data sets, and execute scientific experiments on distributed resources. Such application scenarios require means for composing and executing complex workflows. Therefore, many efforts have been made towards the development of workflow management systems for Grid computing. In this paper, we propose a taxonomy that characterizes and classifies various approaches for building and executing workflows on Grids. We also survey several representative Grid workflow systems developed by various projects world-wide to demonstrate the comprehensiveness of the taxonomy. The taxonomy not only highlights the design and engineering similarities and differences of state-of-the-art in Grid workflow systems, but also identifies the areas that need further research.Comment: 29 pages, 15 figure

    Forum Session at the First International Conference on Service Oriented Computing (ICSOC03)

    Get PDF
    The First International Conference on Service Oriented Computing (ICSOC) was held in Trento, December 15-18, 2003. The focus of the conference ---Service Oriented Computing (SOC)--- is the new emerging paradigm for distributed computing and e-business processing that has evolved from object-oriented and component computing to enable building agile networks of collaborating business applications distributed within and across organizational boundaries. Of the 181 papers submitted to the ICSOC conference, 10 were selected for the forum session which took place on December the 16th, 2003. The papers were chosen based on their technical quality, originality, relevance to SOC and for their nature of being best suited for a poster presentation or a demonstration. This technical report contains the 10 papers presented during the forum session at the ICSOC conference. In particular, the last two papers in the report ere submitted as industrial papers

    Proof-of-Concept Application - Annual Report Year 1

    Get PDF
    In this document the Cat-COVITE Application for use in the CATNETS Project is introduced and motivated. Furthermore an introduction to the catallactic middleware and Web Services Agreement (WS-Agreement) concepts is given as a basis for the future work. Requirements for the application of Cat-COVITE with in catallactic systems are analysed. Finally the integration of the Cat-COVITE application and the catallactic middleware is described. --Grid Computing

    Fault-Tolerant Adaptive Parallel and Distributed Simulation

    Full text link
    Discrete Event Simulation is a widely used technique that is used to model and analyze complex systems in many fields of science and engineering. The increasingly large size of simulation models poses a serious computational challenge, since the time needed to run a simulation can be prohibitively large. For this reason, Parallel and Distributes Simulation techniques have been proposed to take advantage of multiple execution units which are found in multicore processors, cluster of workstations or HPC systems. The current generation of HPC systems includes hundreds of thousands of computing nodes and a vast amount of ancillary components. Despite improvements in manufacturing processes, failures of some components are frequent, and the situation will get worse as larger systems are built. In this paper we describe FT-GAIA, a software-based fault-tolerant extension of the GAIA/ART\`IS parallel simulation middleware. FT-GAIA transparently replicates simulation entities and distributes them on multiple execution nodes. This allows the simulation to tolerate crash-failures of computing nodes; furthermore, FT-GAIA offers some protection against byzantine failures since synchronization messages are replicated as well, so that the receiving entity can identify and discard corrupted messages. We provide an experimental evaluation of FT-GAIA on a running prototype. Results show that a high degree of fault tolerance can be achieved, at the cost of a moderate increase in the computational load of the execution units.Comment: Proceedings of the IEEE/ACM International Symposium on Distributed Simulation and Real Time Applications (DS-RT 2016

    RAFDA: A Policy-Aware Middleware Supporting the Flexible Separation of Application Logic from Distribution

    Get PDF
    Middleware technologies often limit the way in which object classes may be used in distributed applications due to the fixed distribution policies that they impose. These policies permeate applications developed using existing middleware systems and force an unnatural encoding of application level semantics. For example, the application programmer has no direct control over inter-address-space parameter passing semantics. Semantics are fixed by the distribution topology of the application, which is dictated early in the design cycle. This creates applications that are brittle with respect to changes in distribution. This paper explores technology that provides control over the extent to which inter-address-space communication is exposed to programmers, in order to aid the creation, maintenance and evolution of distributed applications. The described system permits arbitrary objects in an application to be dynamically exposed for remote access, allowing applications to be written without concern for distribution. Programmers can conceal or expose the distributed nature of applications as required, permitting object placement and distribution boundaries to be decided late in the design cycle and even dynamically. Inter-address-space parameter passing semantics may also be decided independently of object implementation and at varying times in the design cycle, again possibly as late as run-time. Furthermore, transmission policy may be defined on a per-class, per-method or per-parameter basis, maximizing plasticity. This flexibility is of utility in the development of new distributed applications, and the creation of management and monitoring infrastructures for existing applications.Comment: Submitted to EuroSys 200
    corecore