
RAFDA: A Policy-Aware Middleware Supporting the 
Flexible Separation of Application Logic from 

Distribution 
Scott M. Walker, Alan Dearle, Stuart J. Norcross, Graham N. C. Kirby & Andrew J. McCarthy 

School of Computer Science, University of St Andrews, St Andrews, Fife, Scotland. 

{scott, al, stuart, graham, ajm}@cs.st-and.ac.uk 

 
ABSTRACT 

Middleware technologies often limit the way in which 

object classes may be used in distributed applications due 

to the fixed distribution policies that they impose. These 

policies permeate applications developed using existing 

middleware systems and force an unnatural encoding of 

application level semantics. For example, the application 

programmer has no direct control over inter-address-

space parameter passing semantics. Semantics are fixed 

by the distribution topology of the application, which is 

dictated early in the design cycle. This creates 

applications that are brittle with respect to changes in 

distribution. 

This paper explores technology that provides control over 

the extent to which inter-address-space communication is 

exposed to programmers, in order to aid the creation, 

maintenance and evolution of distributed applications. 

The described system permits arbitrary objects in an 

application to be dynamically exposed for remote access, 

allowing applications to be written without concern for 

distribution. Programmers can conceal or expose the 

distributed nature of applications as required, permitting 

object placement and distribution boundaries to be 

decided late in the design cycle and even dynamically. 

Inter-address-space parameter passing semantics may 

also be decided independently of object implementation 

and at varying times in the design cycle, again possibly 

as late as run-time. Furthermore, transmission policy may 

be defined on a per-class, per-method or per-parameter 

basis, maximizing plasticity. This flexibility is of utility 

in the development of new distributed applications, and 

the creation of management and monitoring 

infrastructures for existing applications. 

Keywords 

Middleware, Java, Distributed Systems, POJO. 

1. INTRODUCTION 
Existing middleware systems suffer from several 

limitations which restrict the kinds of application that can 

be created using them and hamper their flexibility with 

respect to distribution and adaptability. In this paper we 

focus on four of these limitations, namely,  

1. They force decisions to be made early in the design 

process about which classes of object may 

participate in inter-address-space communication. 

2. They are brittle with respect to changes in the way in 

which the applications are distributed. 

3. It is difficult to understand and maintain distributed 

applications since the use of middleware systems 

may force an unnatural encoding of application level 

semantics. 

4. It is difficult to control the policy used to determine 

how objects are transmitted among the available 

address-spaces in a distributed application. 

Early Design Decisions – Existing middleware systems 

all require the programmer to decide at application design 

time which classes will support remote access and to 

follow similar steps in order to create the remotely 

accessible classes. The programmer must decide the 

interfaces between distribution boundaries statically then 

determine which classes will implement these interfaces 

and thus be remotely accessible. These classes, known as 

remote classes, are hard-coded at the source level to 

support remote accessibility and only instances of these 

classes can be accessed from another address-space. 

Therefore, the programmer must know how the 

application objects will be distributed at run-time before 

creating any classes. 

Some middleware systems require the manual creation of 

ancillary code such as skeletons, proxies and stub 

implementation classes, which must extend special 

classes, implement special interfaces or handle 

distribution related error conditions, based on 

programmer-defined interfaces. All require the creation 

of server applications that configure the middleware 

infrastructure then instantiate and register objects for 

remote access. 

Brittleness with Respect to Change - A distributed 

application created using an existing middleware system 

is brittle with respect to change because the distribution 

of the application must be known early in the design 

process. The possible partitions of a distributed 

application are dependent on which classes within the 

application support remote access, restricting the classes 

of object that can be referenced across address-space 

boundaries.  

Distorted Application Level Semantics - Existing 

middleware systems force remotely accessible classes to 

extend special classes, implement special interfaces or 

handle network related errors explicitly. It is not possible 

to make application classes remotely accessible unless 

their super-classes also meet the necessary requirements. 

At best, this forces an unnatural or inappropriate 

encoding of the application semantics because classes are 

forced to be remotely accessible for the benefit of their 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by St Andrews Research Repository

https://core.ac.uk/display/9821362?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


sub-classes and, at worst, application classes that extend 

library classes cannot be remotely accessible at all. 

Inflexible Parameter Passing Semantics - Existing 

middleware systems decide the parameter passing 

semantics applied during remote method call statically 

based on the remote accessibility of the application 

classes. The parameter passing semantics is tightly bound 

to the distribution of the application so changes to the 

distribution of an application have the side effect that 

application semantics may be altered. All objects of the 

same class must be transmitted in the same way, whether 

this is appropriate or not, and the programmer does not 

have the freedom to choose different parameter passing 

semantics for classes on a per-application or per-call 

basis. 

2. RELATED WORK 
The creation of remotely accessible objects using 

industry standard middleware systems such as Java RMI 

[1] and Microsoft .NET Remoting [2] requires the 

programmer to take the following steps: 

 The programmer is forced to decide statically the 

interfaces between distribution boundaries. 

 The programmer is forced to decide statically which 

classes of component will implement these interfaces 

and thus be remotely accessible. 

 These remotely accessible classes must extend a 

special base class that provides the functionality 

necessary for remote accessibility. This has two 

effects: to force the static identification of accessible 

classes, as above, and, in languages without multiple 

inheritance, to prevent the creation of accessible 

subclasses of existing non-accessible classes. 

 Once a remotely accessible class is instantiated, the 

instance is associated with a naming service that 

allows remote callers to obtain a remote reference to 

it. 

Only instances of classes that support remote access may 

be separated into different address-spaces from their 

reference holders, constraining the ways in which 

applications can be distributed. To change an 

application’s distribution, programmers may be forced to 

introduce support for distribution into classes without it. 

Conversely, programmers must determine whether the 

additional application complexity inherent in 

unnecessarily supporting remote access outweighs the 

cost of removing it in terms of programmer effort. 

Without the ability to expose objects to remote access 

dynamically, application distribution is inflexible. Yet, it 

is not possible to introduce support for remote access into 

every application class using existing systems because of 

the semantic restrictions placed on remote classes. For 

instance, application classes cannot pass remote 

references to instances of pre-defined library classes that 

do not support remote access.  

Thus, the requirement to follow the above steps leads to 

the problems of inflexibility exhibited by industry 

standard middleware systems with respect both to static 

design-level changes and to dynamic run-time changes in 

application partition. Programmers can attempt to 

overcome these problems by explicitly creating 

distributed objects that can access objects for which static 

type information was not available at compilation time. 

The tie approach and Dynamic Skeleton Interface (DSI) 

provided by CORBA [3] illustrate the manner in which 

this can be achieved. 

Using the CORBA DSI, specially constructed remotely 

accessible objects can extract operation names and any 

associated arguments from incoming remote method call 

requests, then perform the requisite calls. CORBA does 

not serialize objects in a self-describing manner and so 

programmers must write code to extract type information 

from the requests and deserialize the arguments. 

Consequently, it is possible to construct applications in 

which methods are invoked with inappropriate arguments 

[4]. This leads to unexpected application semantics and 

may cause run-time problems in strongly typed 

languages. 

CORBA DSI and similar ad-hoc approaches to increased 

flexibility can be adopted only at the cost of increased 

complexity. Programmers lose the abstraction over the 

inter-address-space communication afforded when using 

proxies and objects created from IDL. Middleware level 

functionality must be implemented at the application 

level, obviating the primary benefits that middleware 

systems offer. 

Several research-based systems have been developed in 

order to overcome the limitations of industry standard 

systems. However, these systems only partially tackle the 

limitations of industry standard systems. 

2.1.1 Early design decisions 
Some research based systems, such as JavaParty [5] and 

Do! [6], employ custom compilers to generate 

distribution-related code based on source code that has 

been annotated by the programmer. Consequently, 

programmers are still forced to make early design 

decisions. These systems simplify the process of creating 

distributed applications through automated code 

generation but it is the programmers that must determine 

which classes will support remote access. 

Tools such as J-Orchestra [7] and Pangaea [8] are 

designed to transform a single non-distributed application 

into an isomorphic version that distributes itself across 

the distributed system at run-time. These systems 

perform static code analysis to help programmers choose 

suitable distributions. The distributed version of an 

application is generated automatically and in this respect 

these systems allow separation of application logic from 

distribution. However, both transform only local 

applications and are unsuitable tools for the creation of 

general distributed applications since programmers 

cannot include multiple entry points. Programmers define 

initial application partitions using the provided tools and 

though both systems support changes to application 

distribution using migration, it is not possible to migrate 

arbitrary application objects. If fundamental changes are 



made to application distributions then the applications 

must be re-transformed, limiting the effectiveness of 

these systems in dynamically changing systems. 

ProActive [9] and JavaSymphony [10] allow 

programmers to expose objects to remote access 

dynamically. However, both adopt the active object [11] 

model which associates a thread with each remotely 

accessible application object. The conversion of existing 

application objects into active objects alters the threading 

semantics of the application. Further, active objects may 

not have shared access to any non-active objects. 

Programmers may need to alter the structure of the 

application to ensure that this strict separation of active 

object closures is preserved. 

The JBoss Enterprise Middleware System [12] provides 

AOP Remoting, which uses aspect-oriented programming 

techniques to instrument instances of existing classes for 

remote access. AOP Remoting allows the exposure of 

application objects to remote access as services using 

SOAP [13] or Java RMI. AOP Remoting places semantic 

restrictions on the classes of object that can be exposed. 

All classes must provide default constructors and all 

method arguments and return values must be 

Serializable. AOP Remoting adopts a service-oriented 

model, rather than a complete Distributed Object Model, 

in which methods of the underlying objects are provided 

to remote clients, providing the objects meet the above 

semantic requirements. 

2.1.2 Brittleness with respect to change 
In addition to forcing decisions early in the design 

process, which results in static inflexibility to change, 

distributed applications created using existing 

middleware systems also exhibit brittleness with respect 

to dynamic change. Brittleness and inflexibility to change 

occurs in middleware systems that do not allow dynamic 

re-partitioning of applications, hindering the adaptability 

of those applications to changing execution 

environments. For example, objects on heavily loaded 

machines cannot migrate to other machines. It also has 

implications for long running systems as applications 

cannot be re-distributed as machines join and leave the 

distributed system. Several of the research based systems 

support object mobility, including JavaParty [5], J-

Orchestra [7], ProActive [9], JavaSymphony [14] and 

Pangaea [8].  

2.1.3 Distorted application level semantics 
Application semantics are affected by the restrictions 

placed on application classes that support distribution. 

Inheritance relationships between classes are affected and 

it is difficult to make application classes remotely 

accessible if their super-classes do not meet the necessary 

requirements. This causes an unnatural or inappropriate 

encoding of application semantics because classes are 

forced to support remote access for the benefit of their 

sub-classes, entangling application logic and distribution. 

This is particularly a problem for application classes that 

need to extend pre-compiled classes without support for 

remote access. 

Industry standard middleware systems decide statically 

which parameter passing semantics should be applied 

when remote methods are called. In Java RMI [15], only 

classes that implement the java.rmi.Remote interface and 

handle network related errors explicitly in application 

logic can be exposed to remote access or passed by-

reference. All other objects that are passed as arguments 

or return values to remote methods must be instances of 

classes that implement the Serializable interface. 

Parameter passing semantics are affected by static design 

level decisions and are tightly coupled with application 

distribution. 

Microsoft .NET remoting [16] adopts semantics that are 

similar to Java RMI. Instances of classes that extend the 

MarshalByRefObject class are passed by-reference and 

all other objects that are passed to remote methods must 

be instances of Serializable classes. The .NET remoting 

framework incrementally improves on Java RMI by 

applying these semantics consistently to objects. 

However, parameter passing semantics are still fixed 

statically and are dependent on the distribution of the 

application. 

In CORBA and COM, arguments are marked in IDL with 

the passing semantics to be applied. Further, CORBA 

component classes are defined statically as either pass-

by-reference or pass-by-value. CORBA and COM allow 

only components and data structures that have been 

explicitly described to be passed across address-space 

boundaries. 

The research-based middleware systems strive to 

preserve local Java method calling semantics and so fix 

parameter passing semantics statically. Consequently, 

programmers cannot employ the most advantageous 

parameter passing semantics for the circumstances of 

each application. Programmers cannot take control over 

application semantics, hindering the reuse of library 

classes in distributed contexts since the parameter 

passing semantics cannot be specified independently of 

class implementation.  

In general, reusability and application semantics are 

restricted for the following reasons: 

Some systems allow no programmer control over 

parameter passing semantics at all - These systems 

lack flexibility as programmers cannot employ the most 

suitable parameter passing mechanisms on a per-

application basis. With control over passing semantics, 

programmers can manage the trade-offs between 

different parameter passing mechanisms to reduce 

network traffic, introduce resiliency or permit caching. 

When programmers can decide parameter passing 

semantics, they cannot do so dynamically - Application 

programmers have limited dynamic control over inter-

address-space parameter passing semantics. Within a 

single application, it may be required that objects are 

transmitted by-value or by-reference depending on the 

circumstances; in most existing middleware systems this 

would require that different classes be created. 



Complexity is introduced into applications due to the 

limitations of the middleware system.  

The parameter passing semantics and application 

distribution are tightly bound - The parameter passing 

semantics and application distribution are tightly 

coupled. Reuse of large-grained components, composed 

of instances of multiple classes, is hindered because 

concrete class implementations must be developed in the 

context of some planned deployment environment. 

Various physical considerations dictate the nature of the 

implementation, such as the available computational 

resources, network connectivity, latency or bandwidth. 

These considerations influence the implementation of 

classes, limiting reuse [17]. For example, in a poorly 

connected environment, it may be appropriate that pass-

by-value semantics are adopted in order that the called 

methods can continue to perform computation over 

arguments, even if the network connection to the caller is 

lost transiently. Conversely, in a well-connected 

environment, it may be appropriate to adopt pass-by-

reference semantics to allow shared access to arguments 

and ensure coherency. 

3. THE RAFDA SYSTEM 
This paper introduces RAFDA [18, 19] a Java 

middleware system that provides control over the extent 

to which inter-address-space communication is exposed 

to programmers, in order to aid the creation, maintenance 

and evolution of distributed applications. The described 

technology adopts a plain old Java object (POJO) 

approach and permits arbitrary application objects to be 

exposed for remote access dynamically. Object instances 

are exposed as Web Services [20] through which remote 

method invocations may be made. RAFDA has four 

notable features that differentiate it from other 

middleware technologies. 

1. The programmer does not need to decide statically 

which application classes support remote access. 

Any object instance from any application, including 

compiled classes and library classes, can be exposed 

as a Web Service without the need to access or alter 

the application’s source code. 

2. The system integrates the notions of Web Services 

and Distributed Object Models by providing a 

remote reference scheme, synergistic with standard 

Web Services infrastructure, extending the pass-by-

value semantics provided by Web Services with 

pass-by-reference semantics. Specific object 

instances rather than classes are exposed as Web 

Services, further integrating the Web Service and 

Distributed Object Models. This contrasts with 

systems such as Apache Axis [21] in which only 

classes are exposed as Web Services. 

3. Parameter passing mechanisms are flexible and may 

be dynamically controlled through policies. An 

exposed component can be called using either pass-

by-reference or pass-by-value semantics on a per-

call basis. 

4. The system automatically exposes referenced objects 

on demand. Thus an object b that is returned by 

method m of exposed object a is automatically 

exposed before method m returns. 

The process of implementing the application logic is thus 

separated from the process of distributing the application. 

Since any object can be made remotely accessible, 

changes to distribution boundaries do not require re-

engineering of the application, making it easier to change 

the application’s distribution topology. This separation of 

concerns simplifies the software engineering process to 

the programmer’s advantage, both when creating a 

distributed application and introducing distribution into 

an existing application. This simplifies the creation of 

tools such as monitoring and management components 

that need to access and modify object state from outwith 

those objects’ local address space. Using traditional 

middleware systems, it is difficult to attach such tools to 

existing objects without access to source code and 

extensive engineering effort. 

This functionality is provided by the RAFDA Run-Time 

(RRT), a middleware system for Java development that 

tackles the problems inherent in existing middleware 

systems. The RRT simplifies the kinds of tasks that are 

common to the creation of distributed application such as 

dynamically exposing objects for remote access, 

obtaining remote references to remotely accessible 

objects, and remote method invocation.  

The RRT conceals the complexity of distribution where 

appropriate, allowing distribution to be introduced into 

applications quickly. This reduces the software 

engineering effort required to create distributed 

applications, leading to quick application prototyping. 

However, the RRT also permits programmers to expose 

aspects of application distribution as required, allowing 

the creation of applications that can exploit their 

distributed nature and are flexible with respect to change. 

The RRT has advantages over traditional middleware 

approaches as it adapts its behaviour to suit the 

requirements of a given distributed application, rather 

than forcing the programmer to adapt the application to 

the requirements of the middleware system. 

Applications access the functionality provided by the 

RAFDA system by calling methods on infrastructure 

objects called RRTs. There is an RRT in each address-

space in the distributed system, analogous to a CORBA 

ORB. Each RRT provides two interfaces to application 

programmers. The first, called IRafdaRunTime, provides 

server-side operations to application objects collocated 

with the RRT, allowing programmers to expose objects 

or access frameworks that control transmission policy 

and distribution policy. The second, called 

IRafdaRunTime-Remote, provides client-side 

functionality to application objects that are remote with 

respect to the RRT, allowing programmers to obtain 

remote references to existing objects or to perform object 

migration.  

Figure 1 shows the RRT instances present in two 

address-spaces. The large circles represent objects in the 

distributed application. Each RRT instance is represented 

by a shaded box with the IRafdaRunTime and 



IRafdaRunTimeRemote interfaces shown. Each RRT is 

accessible locally via the IRafdaRunTime interface and 

remotely via the IRafdaRunTimeRemote interface. 

In addition to the functionality examined in this paper, 

the RRT provides remote object instantiation, object 

migration and a distribution policy framework that is 

used to automate object placement. A complete 

description of the RRT and its implementation, including 

the features described in this paper, can be obtained in 

Walker [22]. Although the RRT is written in Java and is 

designed to support Java, it does not employ any 

language-specific features unique to Java. The techniques 

described here are applicable in other languages. 

Address Space 1 Address Space 2

RRTIRafdaRunTime

IRafdaRun-

TimeRemote

RRT IRafdaRunTime

IRafdaRun-

TimeRemote

 

Figure 1: RRT instances exposing different interfaces 

to local and remote objects. 

4. EXPOSING ARBITRARY OBJECTS 

FOR REMOTE ACCESS 
The RRT permits arbitrary application objects to be 

exposed for remote access. Specific application objects, 

rather than application classes, are exposed via Web 

Services. In order to make an object remotely accessible 

it is first registered with the RRT. Registration of an 

application object creates a Web Service running within 

the RRT that uses the exposed object as the underlying 

service object on which incoming Web Service requests 

are performed. In effect, the RRT maps Web Service 

requests to method calls on object instances and performs 

appropriate encoding of the results. Exposed objects may 

be referenced by other local objects; neither the reference 

holders nor the exposed objects are aware that 

registration has taken place. 

Each RRT implements the IRafdaRunTime interface 

shown in Figure 2. Only a subset of the functionality 

provided by this interface is shown. The omitted methods 

are used to control object migration and to automate 

object placement using programmer-defined policies. 

public interface IRafdaRunTime { 

  void expose(Object objectToExpose, 

    Class remoteType, String serviceName); 

  TransmissionPolicyManager 

    getTransmissionPolicyManager(); 

  void associateClassWithRemoteType( 

    Class applicationClass,  

    Class remoteType); 

  /* Other methods omitted */ 

} 

Figure 2: A subset of the IRafdaRunTime interface. 

This interface provides the expose() method, used to 

expose an object to remote access, the 

getTransmissionPolicy-Manager() method, used to 

control the transmission policy defining parameter 

passing semantics, and the 

associateClassWithRemoteType() method, used to control 

automatic exposure. The latter two methods are examined 

in Sections 6.1 and 7.4 respectively. 

The expose() method takes three parameters to specify 

the object to be exposed, a remote type (that is, the 

interface that the exposed object should provide to 

remote clients) and a logical name for accessing the 

object. A number of issues arise from this simple method. 

Firstly, the objectToExpose may be any ‘Plain Old Java 

Object’ (POJO), so need not implement any special 

interfaces or extend any particular classes, maximizing 

flexibility. Secondly, the objectToExpose need not 

implement the interface specified in the remote type 

parameter although it must be structurally compliant with 

that interface. This again maximizes flexibility and 

permits classes to be exposed to remote access even if 

they were not envisioned to be so at design time. The 

remote type parameter can be a class or an interface; in 

either case, the method signatures are extracted to form 

the Web Service interface for the exposed object. The 

remote type parameter is optional. If omitted, the object 

is exposed with an interface matching its concrete type.  

The remote type is the distributed equivalent of an 

interface in a non-distributed application class and is used 

to control method visibility. It is supplied on a per-object, 

not a per-class, basis. Any method can be made remotely 

accessible, irrespective of its local protection modifier. 

By default, RAFDA will preserve local protection 

semantics in the distributed application when the RRT is 

used both client and server-side, but allows only public 

methods to be invoked when using standard Web 

Services technology in order to preserve code 

encapsulation. 

Remote types provide multiple views over exposed 

objects to remote clients. From the perspective of clients, 

exposed objects are instances of their associated remote 

types. Different instances of a single class can be exposed 

with different remote types and a single object can be 

exposed multiple times with different remote types. This 

allows the programmer to expose a single object with 

different logical names and different interfaces. Exposure 

can fail, resulting in a runtime exception, if the remote 

type contains methods that do not exist in the class of the 

object being exposed. 

The serviceName parameter permits the exposed object 

to be addressed using a logical name which must, of 

course, be unique within the local address space.  

An object of any class can be exposed, including 

precompiled classes and those with native members. 

There are two caveats. Firstly, the Web Services model 

provides no facility to allow field access, only method 

call. Thus the fields of an exposed object cannot be 

directly accessed and if the object does not provide get() 



and set() accessor methods then the fields cannot be 

accessed at all. This is a problem for all Java middleware 

systems since field access cannot be intercepted. 

Secondly, the current RRT implementation does not 

permit remote types to be final classes or to contain final 

methods. Exposure will fail if attempted using such a 

remote type. Note that no restrictions are placed on the 

classes of object that can be exposed, only on the remote 

types that may be applied to those objects. The RRT 

provides a class loader that can be used to change 

application classes and methods such that they are non-

final to overcome this limitation. However, the class 

loader cannot transform system classes dynamically, 

meaning that system classes that are final or contain final 

methods cannot be used as remote types.  

To illustrate the use of expose(), we use a small Peer-to-

Peer (P2P) application as an example. A programmer has 

implemented a class called P2PNode which represents a 

node in a P2P routing network. This class is shown in 

Figure 3. This class has not been written with concern for 

distribution and does not implement any special 

interfaces or extend any base classes. 

public class P2PNode { 

  private final Key key; 

  public P2PNode(Key key){…} 

  public void addPeer(P2PNode peer){…} 

  public void route(Key key, Message 

msg){…} 

  public String getLog(){…} 

  public void stop(){…} 

  public void start(){…} 

  public Key getKey(); 

} 

Figure 3: The P2PNode implementation. 

The programmer obtains a reference to the 

IRafdaRunTime interface provided by the local RRT 

using the static method RRT.get(). Figure 4 shows how 

another programmer could expose an instance of this 

class as part of some P2P application. The programmer 

wishes to expose the functionality of the node using three 

different interfaces — a management interface for 

controlling the node remotely, a monitoring interface and 

an interface exposing the P2P functionality. These 

interfaces are named IManage, IMonitor and IP2PNode 

respectively. Each of these interfaces is associated with 

the names Manage, Monitor and P2P respectively. It is 

assumed that these are well known names that are used 

by client programmers to access the services.  

public interface IManage { 

  void stop(); 

  void start(); 

} 

public interface IMonitor { 

  String getLog(); 

} 

public interface IP2PNode { 

  public void addPeer(P2PNode peer); 

  public void route(Key key, Message msg); 

  public Key getKey(); 

} 

public class ExposeP2PNode { 

  public static void main(String[] args) { 

    P2PNode p2pNode = new P2PNode( 

      new Key()); 

    IRafdaRunTime rrt = RRT.get(); 

    rrt.expose(p2pNode, IManage.class, 

      "Manage"); 

    rrt.expose(p2pNode, IMonitor.class, 

      "Monitor"); 

    rrt.expose(p2pNode, IP2PNode.class, 

      "P2P"); 

  } 

} 

Figure 4: Exposing an instance of class P2PNode. 

5. CLIENT-SIDE DISTRIBUTED OBJECT 

PROGRAMMING USING THE RRT 
Exposed objects may be accessed either using their 

service names or Globally Unique Identifiers (GUIDs) 

allocated to the associated services at exposure time. 

Both of these may be discovered dynamically by clients. 

Typically, an application will expose a small collection 

of objects with well known names thus avoiding the need 

for dynamic GUID discovery. Exposed objects may be 

addressed using URLs of the following form: 

http://<host>:<port>/<serviceName|GUID> 

e.g. http://host.rafda.org:5001/P2P 

As stated previously, the RRT implements an interface 

called IRafdaRunTimeRemote. A subset of this interface, 

through which client-side programmers access remotely 

accessible objects, is shown in Figure 5. The omitted 

methods are used to perform remote instantiation of 

objects, to migrate objects between address-spaces and to 

control automated object distribution based on 

programmer-defined policies. 

public interface IRafdaRunTimeRemote { 

  Object getRemoteReference( 

    String serviceName); 

  /* Other methods omitted */ 

} 

Figure 5: A subset of the  

IRafdaRunTimeRemote interface. 

The IRafdaRunTimeRemote interface provided by an 

RRT contains a method called getRemoteReference() that 

permits a handle to be obtained to any object exposed by 

that RRT. As will be shown later, the handle returned 

may be a reference to a proxy for a remote object, a local 

copy of the object or a hybrid of the two (a smart proxy). 

The getRemoteReference() method takes an argument 

that identifies the service name with which the requisite 

object was exposed. The name can be either the 

programmer-defined service name or the automatically 

generated object GUID. 

The object returned by getRemoteReference() can be cast 

to the remote type of the exposed object. Figure 6 shows 

the client-side code necessary to use the P2PNode 

exposed in Figure 4. The object returned by 

getRemoteReference() is cast to type IP2PNode which 

was the interface used as its remote type.  

Programmers can obtain a remote reference to the 

IRafdaRunTimeRemote interface provided by a remote 



RRT based on the socket address to which that RRT is 

bound using the static RRT.getRemote() method. 

public class P2PClient { 

  InetSocketAddress isa = new  

  InetSocketAddress("host.rafda.org", 

5001); 

  IRafdaRunTimeRemote remoteRRT =  

  RRT.getRemote(isa); 

 

  public void deliver(Key dest, Message 

msg)  

  throws Exception { 

    IP2PNode node = (IP2PNode)  

    remoteRRT.getRemoteReference("P2P"); 

    node.route(dest, msg); 

  } 

} 

Figure 6: Client side code accessing a remote 

P2PNode. 

5.1 Browsing Exposed Objects 
As described, distributed applications are bootstrapped 

by accessing objects based on their service names. The 

RRT provides a web interface that can be accessed using 

a conventional web browser to obtain human-readable 

information about exposed objects. Each exposed service 

is listed, showing the remote type, the URL, the real class 

of the exposed object and a string representation of the 

service object. 

 

Figure 7. Browsing an RRT. 

The links in the URL column refer to service-specific 

pages that provide: 

 A list of the methods provided by the remote 

type. 

 A list of the methods and fields provided by the 

exposed object’s class. 

 The current state of these fields in the exposed 

object. 

By default, RRT instances show information only about 

the remote types. The information about the underlying 

exposed object is not available unless this functionality is 

explicitly enabled in the RRT configuration. 

5.2 Failure 
Distributing an application introduces new failure modes. 

The RRT treats network failure differently from 

application failure. Application exceptions are always 

thrown back to clients as they are not the concern of the 

RRT. Distribution-related exceptions are either handled 

directly by the RRT or propagated back to clients 

according to the RRT configuration. 

Distribution-related exceptions are wrapped in unchecked 

exceptions. In Java, methods do not need to declare 

statically that they throw unchecked exceptions and 

callers are not forced to define handlers. Thus, there are 

three approaches to handling distribution-related errors 

that are open to developers: 

1. Configure the RRT to handle all distribution-related 

exceptions internally. If failure occurs, default values 

(null, zero, etc.) are returned. No application level 

distribution-related exception handlers need to be 

defined in this case. 

2. Configure the RRT to propagate all distribution-

related exceptions to the clients but do not define 

application level exception handlers. If failure 

occurs, the uncaught exception causes the RRT 

instance to terminate immediately. 

3. Configure the RRT to propagate all distribution-

related exceptions to the clients and define 

application level exception handlers statically at any 

points in the application where failure can occur. If a 

distribution-related exception occurs, it is handled in 

a programmer-defined manner. 

Systems such as Java RMI require programmers to 

handle any potential distribution-related errors explicitly 

at any points where remote calls are performed. In 

contrast, by providing a multiplicity of approaches to 

handling failure, the RRT simplifies application 

prototyping as programmers can ignore the possibility of 

distribution-related exceptions during initial 

development. The RRT offers programmers the 

flexibility to introduce error handling code into 

applications only where it is deemed necessary.  

6. CONTROLLING OBJECT 

TRANSMISSION POLICY 
As described in the introduction, using traditional 

middleware, the distribution topology of an application 

determines the object transmission semantics that are 

employed during remote method calls. For example, in 

Java RMI [1], only classes that implement the 

java.rmi.Remote interface and meet certain other criteria 

may be exposed for remote access. Such objects are 

always passed by-reference if they are accessed across an 

address space boundary. All other objects that traverse 

address-space boundaries must be instances of classes 

that implement the java.io.Serializable interface and 

these objects are always passed by-value. Similar 

problems can also be observed in Microsoft .NET 

Remoting [2], CORBA [3] and Web Services [20]. 

Within a single application, it may be required that 

instances of some class are transmitted by-value or by-

reference depending on the circumstances. In most 

existing middleware systems this would require that 



different classes be created. Further, hybridisation is 

sometimes desirable, whereby some object state is cached 

at a client whilst other state is remotely accessed. Using 

the RRT’s transmission policy framework, the 

application programmer can employ the most 

advantageous object transmission policy for the 

circumstances. 

In addition to providing the programmer with the 

flexibility to control the application semantics, the 

dynamic specification of policy independently of class 

implementation allows the roles of library class 

programmer and application programmer to be separated. 

The library class programmer is concerned only with the 

functional requirements. Thus, library classes make fewer 

assumptions about the environment in which they are to 

be exposed. The application programmer has the freedom 

to apply any parameter passing policy to instances of any 

class, increasing the likelihood that any given class will 

be reusable in another context. 

6.1 Defining Transmission Policy 
By default the RRT passes objects by-reference when 

interacting with other RRTs and by-value when 

interacting with standard Web Service clients. However, 

the transmission policy framework described here 

provides a mechanism to allow the programmer to 

specify dynamically how objects should be transmitted 

during inter-RRT remote method calls. This is achieved 

using the local RRT’s transmission policy manager, the 

interface to which is shown in Figure 8. This 

TransmissionPolicyManager interface provides methods 

through which the six different types of supported policy 

rule can be set. Methods to evaluate the currently active 

transmission policy are omitted. Programmers obtain a 

reference to the TransmissionPolicyManager interface 

using the getTransmissionPolicyManager() method 

provided by IRafdaRunTime. 

public interface TransmissionPolicyManager 

{ 

  /* Setting transmission policies */ 

  void setMethodPolicy( 

    Method methodIdentifier, 

    PassingMechanism passingMechanism,  

    int depth, int priority); 

  void setReturnPolicy( 

    Method methodIdentifier, 

    PassingMechanism passingMechanism,  

    int depth, int priority); 

  void setArgumentPolicy( 

    Method methodIdentifier, 

    int argumentNumber,  

    PassingMechanism passingMechanism,  

    int depth, int priority); 

  void setClassPolicy( 

    Class classIdentifier,  

    PassingMechanism passingMechanism,  

    int priority); 

 

  /* Caching */ 

  void setFieldToCache( 

    Field fieldIdentifier,  

    Method getMethodIdentifier, 

    Method setMethodIdentifier); 

  void setMethodToCache( 

    Method methodIdentifier); 

 

  /* Other methods omitted */ 

} 

Figure 8: The TransmissionPolicyManager interface. 

The six types of rule supported by the transmission 

policy framework are as follows: 

 Method policy rules are associated with methods as a 

whole and are set using the setMethodPolicy() 

method. This method specifies how method 

arguments should be transmitted. For example, a 

method policy rule might specify that during a call to 

a particular method, the arguments should all be 

passed by-reference. The parameters to 

setMethodPolicy() include the identity of the method 

to which the policy applies, the policy to be applied 

(using constant values of the enumeration type 

PassingMechanism, which is not shown here), the 

depth to which the closure of the parameters should 

be traversed in the case of pass-by-value, and a rule 

priority (discussed below). 

 Return policy rules, set using the setReturnPolicy() 

method, are also associated with methods but control 

how the return values from methods should be 

transmitted. For example, a return policy rule might 

specify that the return value from a particular 

method should be passed by-value. The method 

policy rule and return policy rule associated with a 

single method are independent of each other and 

need not specify the same behaviour. The 

setReturnPolicy() method takes the same arguments 

as the setMethodPolicy() method which apply to the 

return value rather than the parameters.  

 Argument policy rules, set using the 

setArgumentPolicy() method, are associated with 

individual method arguments and indicate how 

particular arguments within a method signature 

should be transmitted. They allow the programmer 

fine-grained control over the policy that is applied to 

each of the arguments of a method. The parameters 

to this method are similar to the setMethodPolicy() 

method but an extra parameter is required to specify 

the parameter to which the policy applies. 

 Class policy rules, set using the setClassPolicy() 

method, are associated with classes rather than 

methods and indicate how instances of particular 

classes should be transmitted. For example, a class 

policy rule might specify that all instances of a 

particular class should be passed by-value. Class 

policy rules are applied based on the actual classes of 

the transmitted objects, rather than the classes 

specified in the method signature, which may be 

super-classes of the arguments. Class policy rules do 

not take a depth parameter since the object classes 

they reference may have a class policy associated 

with them. 

 The setFieldToCache() method is used to indicate 

that a particular field in a particular class should be 

cached in remote references to instances of that 



class. The parameters to this method comprise the 

identity of the field to cache and the identities of the 

accessor methods of that field, which are also 

cached. Calls to these accessor methods are not 

propagated across the network but instead access the 

locally stored copy of the field.  

 The setMethodToCache() method is used to indicate 

that a particular method in a particular class should 

be cached in remote references to instances of that 

class. Any calls to cached methods will be performed 

locally with respect to the caller. 

An application programmer may specify or change policy 

rules at run-time, thus allowing for dynamic adaptation of 

the application. To specify policy rules statically, a 

library class programmer can specify the policy rules in 

the class initialization code. The policy manager can also 

be configured to read and write policy rules stored in 

XML files, allowing the programmer to specify policies 

completely independently of the application source, as 

well as library class source. 

Clearly, there is scope for contention between policy 

rules. For example, if an instance of class X is passed as a 

parameter to method m() then a class policy rule may 

indicate that instances of X are passed-by-value while a 

method policy rule simultaneously indicates that 

parameters to method m() are passed-by-reference. As 

shown in Figure 8, each rule has a particular priority. 

When contention occurs, the highest priority rule that 

applies is chosen over all others. An order of precedence 

is also imposed on policy rules based on their types to 

allow the framework to choose between rules of different 

types with the same priority. This approach to rule 

priority and precedence ensures that the temporal order in 

which rules are specified is not relevant, which is 

important given that policy rules may be defined 

dynamically in arbitrary application classes at any time 

during execution. 

6.2 Revisiting the Example 
In our peer-to-peer example introduced earlier, a 

Message might be transmitted by-value to an end-point 

using the route method on a P2PNode. However, if some 

of these objects are very large, the client programmer 

may wish to transmit them by-reference. Figure 9 shows 

how the deliver() method from Figure 6 may be modified 

to use the transmission policy manager to send those 

Message objects which exceed some maximum size by-

reference, and smaller Message objects by-value. 

public void deliver(Key dest,  

  Message msg) throws Exception { 

  IP2PNode node = (IP2PNode)  

    remoteRRT.getRemoteReference("P2P"); 

  TransmissionPolicyManager tpm =  

    

localRRT.getTransmissionPolicyManager(); 

  if (message.getSize() > MAX) { 

    tpm.setClassPolicy(Message.class,  

      BY_REF, 0); 

  } else { 

    tpm.setClassPolicy(Message.class,  

      BY_VALUE, 0); 

  } 

  node.route(destination, message); 

} 

Figure 9: The modified deliver() method. 

In the P2P application, instances of the Key class are 

immutable. Figure 10 illustrates the code necessary to 

instruct the transmission policy manager to make proxies 

to instances of class P2PNode cache the field key. This 

code fragment also specifies a class policy rule indicating 

that instances of class Key should be passed by-value. On 

the client-side, the call to getRemoteReference() will 

yield a proxy of the remote P2PNode object which can be 

cast to the remote type IP2PNode. A client holding such 

a proxy can access the key value of the remote P2PNode 

without incurring the cost of a remote call. 

Method getKeyMethod = P2PNode.class. 

  getDeclaredMethod("getKey", null); 

Field keyField = P2PNode.class. 

  getDeclaredField("key"); 

tpm.setFieldToCache(keyField,  

  getKeyMethod, null); 

tpm.setClassPolicy(Key.class, BY_VALUE, 

0); 

Figure 10: Defining a smart proxy for P2PNode 

objects. 

7. IMPLEMENTATION ISSUES 
The exposure of an object requires several steps. Firstly a 

service adaptor of the appropriate class is created. A 

service adaptor is the boundary between the application 

object and the Web Services infrastructure. There is one 

service adaptor class associated with each application 

class and one instance of a service adaptor class is 

created and associated with each exposed object. Thus 

there is a one-to-one correspondence between service 

adaptors and services. A service map maps from names 

and GUIDs to the service adaptors associated with the 

particular services. The RRT provides a generic service 

adaptor implementation that employs reflective 

techniques to invoke methods on exposed objects. 

Alternately, the RRT can automatically generate 

customized service adaptor classes which allow the RRT 

to perform method calls on them without using reflection. 

Service adaptor generation incurs a one time cost and 

obviates the need for reflection during normal execution. 

Generated code is cached in the RRT for the duration of 

the JVM lifetime but the RRT can be configured to cache 

generated code across multiple runs of the distributed 

application. 

7.1 Serialisation 
During the object marshalling phase of a remote method 

call, the RRT will determine which object transmission 

semantics to employ. If pass-by-value semantics have 

been chosen, the RRT will serialize the closures of the 

arguments. A generic serializer that can handle both 

primitive SOAP types, such as ints and strings, and 

complex types is provided. The RRT can be configured 

to automatically generate per-class serializers that are 

tuned to serialize instances of a particular application 

class. 



Support for the transmission of arbitrary types is 

provided through an extension to Web Services 

semantics, which is incompatible with standard Web 

Services. The RRT employs the extended semantics 

when both client and server are RRT-based to allow full 

support for the transmission of sub-types. When the RRT 

is used in conjunction with conventional Web Services 

technology, standard Web Services semantics are 

adopted. The RRT determines whether to employ 

extended semantics on a per-call basis.  

7.2 Implementing Remote References 
The RRT implements remote references using remote 

identifiers, called RAFDA Interoperable Object 

References (RafdaIORs), and proxy objects. A RafdaIOR 

uniquely identifies an exposed service in the distributed 

system and consists of: 

 The socket address of the RRT instance exposing the 

object. When remote method calls are performed on 

the object, this address determines the RRT instance 

to which the remote method call requests are sent. 

 A string representation of a 160-bit Universally 

Unique Identifier (UUID) that identifies the Web 

Service associated with the exposed object.  

 An instance of java.lang.Class capturing the remote 

type associated with the object, which was specified 

at exposure time. This remote type is used client-side 

during proxy generation and indicates which 

methods provided by the object’s class will be 

remotely accessible. 

 An instance of java.lang.Class representing the class 

of the exposed object. This is identified as the real 

class to differentiate it from the object’s remote type. 

This class is used during proxy generation. 

 A list of the fields to be cached in any proxy objects 

associated with the exposed object, which is used 

during proxy generation. 

 A list of the methods to be cached in any proxy 

objects associated with the exposed object, which is 

also used during proxy generation. 

 The current values of any cached fields. 

To pass objects by-reference, the RRT serializes the 

associated RafdaIORs by-value. On deserialization, the 

client-side RRT uses the RafdaIORs to create and 

initialize appropriate proxy objects. Proxies, like service 

adaptors and serializers, are automatically generated as 

required by the RRT. From the client’s perspective, the 

proxy class is the same type as the remote type specified 

in the RafdaIOR. For every method in the remote type, 

the proxy implements an associated method with the 

same signature, which calls into the RRT to make a 

remote call to the exposed object on behalf of the client. 

Application objects cannot make use of RafdaIORs 

directly; they can only use references to other application 

objects or correctly typed proxy objects that have been 

initialized with the RafdaIORs. Therefore, when 

RafdaIORs are received by RRTs during remote method 

calls, the RRTs convert them into references that the 

application can use.  

Initially, the RRT determines whether the referenced 

object exists in the local address space and if it does then 

a direct reference to the object is passed to the 

application. If not, the RRT determines whether a proxy 

to the referenced object has already been instantiated in 

the local address-space and, if the proxy exists then a 

reference to it is passed into the application. If a proxy 

does not already exist, then an instance of the associated 

proxy class is instantiated, automatically generating the 

class if necessary. This approach avoids the unnecessary 

use of remote references that loop-back into the same 

address spaces or the instantiation of more proxies than 

necessary. 

7.3 Smart Proxies 
All RRT proxy objects are smart proxies, meaning that 

they are capable of caching some of the exposed objects’ 

fields or code. RafdaIORs contain smart proxy 

information indicating which fields and methods should 

be cached in the proxy and from this, an appropriate 

proxy class can be generated. The proxy class inherits the 

cached fields and methods from the remote type and the 

cached fields’ get() and set() methods are modified to 

access the fields locally rather than invoke the equivalent 

methods on the exposed object. Non-cached methods are 

overridden with proxy versions while cached methods are 

not overridden, leaving the original functionality in place. 

A new proxy class is generated for each combination of 

cached fields and methods in use within the distributed 

application. 

Immediately before a RafdaIOR is serialized, the RRT 

records the current values of the cached fields in it and 

they are serialized as part of the RafdaIOR. On 

deserialization, the cached fields in the proxy object are 

initialized automatically. 

The RRT does not provide any form of automatic 

coherency control and so the programmer has 

responsibility for ensuring that application semantics 

remain as expected. Caching is particularly useful when 

object fields are known to be immutable. 

7.4 Automatic Exposure 
The RRT can export references to objects that have not 

been exposed to remote access, for example, as return 

values or in the closure of returned objects. The RRT 

performs automatic exposure of any such referenced 

objects on demand. By default, the RRT exposes objects 

using their own classes as remote types, with 

automatically generated service names. However, the 

concept of remote types stems from the fact that it is not 

always desirable to expose all methods of a given object 

to remote access. Programmers can therefore associate 

particular remote types with particular application classes 

using the associateClassWithRemoteType() method 

provided by the IRafdaRunTime interface. 



7.5 Remote Method Call Cost 
The cost of remote method calls in the RRT prototype 

was compared with the equivalent calls using other 

middleware systems. A test application was created then 

distributed using multiple different middleware 

technologies. 

Tests were run on a two machine network. The first 

machine, designated the “server”, was used to execute 

the server-side applications that exposed objects to 

remote access. It contained a 2.7GHz Pentium 4 with 

512MB RAM. The second machine, designated the 

“client”, was used to execute the client-side applications 

that performed the remote calls. It contained a 1.2GHz 

Pentium 3 with 256MB RAM. The machines were 

connected using an isolated 100Mb/s Ethernet. Since the 

.NET framework executes only under the Windows 

operating system, all tests on both machines were run 

under Windows XP Service Pack 2, fully patched, with 

only default services running. 

The first test evaluates the cost of a remote method call to 

a method that takes no arguments, performs no 

computation and returns no results. This test determines 

the lower bound of call cost, since there are no arguments 

or return values to pass, meaning no marshalling is 

performed. The clock resolution provided by the test 

machines is 10ms, which is considerably greater than the 

average method call time. Therefore the test application 

performs 100 batches of 4000 method calls using each 

middleware system, resulting in a total run-time of 

between two and twenty minutes wall clock time. The 

system clock is used to measure the time taken to 

perform each of the 100 batches of method calls. Apache 

Axis received special treatment as it runs around an order 

of magnitude slower than all other systems. Each batch 

performs only 400 method calls, rather than 4000, in 

order to achieve reasonable total test execution time.  

The second test was run under the same conditions as the 

first test but introduces arguments that require 

serialization. The method called by this test application 

takes ten arguments, all of which are passed by-value. 

The arguments are all instances of the same complex 

type, which contains a 10 character string, a 25 character 

string and an integer. In all tests the arguments are 

initialized identically. Table 1 shows the average time in 

milliseconds for a remote method call in each test. 

Table 1: Time in milliseconds for a remote method 

call. 

Middleware 

Without 

Serialization 

With 

Serialization 

Java RMI 

(J2SE 1.5) 
0.26 0.43 

Microsoft .NET 

(C# using 

TCP channel) 

0.44 0.86 

CORBA 

(J2SE 1.5 ORB) 
0.87 1.41 

RRT 2.10 2.63 

Microsoft .NET 2.94 5.07 

(C# using  

SOAP channel) 

Apache Axis  

(1.2 final) 
12.60 20.88 

 

A clear difference can be seen between the middleware 

systems that use XML-based SOAP as their transport 

protocol (the RRT, Apache Axis and the .NET 

framework employing SOAP channels) and those that 

use binary protocols (Java RMI, CORBA and the .NET 

framework employing TCP channels). The RRT 

outperforms both its SOAP-based counterparts; the 

application employing the RRT ran in around 75% of the 

time taken by the equivalent .NET application and 

around 15% of the time taken by the application 

employing Apache Axis. When serializing a large 

number of arguments, the RRT is again the quickest of 

the SOAP-based systems. During this test, the RRT used 

cached per-class serializers in order to optimize the 

serialization process, giving it a large advantage over the 

other systems, which do not generate such serializers. 

The applications using Java RMI, CORBA and TCP-

based .NET all executed two to five times as quickly as 

the RRT. It should be noted that there are many 

implementations of the CORBA specification and that 

the one tested is that supplied with the J2SDK 5.0. It is 

reasonable to suggest that commercial ORBs may be 

better tuned for performance than this implementation 

and that the call time could be reduced more in line with 

the other systems that employ binary protocols. While the 

middleware systems that employ binary protocols 

outperform the RRT, the binary approach has 

disadvantages in that it does not provide the meta-data 

and opportunities for validation that XML does. SOAP 

can be considered the safer approach as the data is self-

describing and less prone to problems with type safety 

[4].  

SOAP-based systems offer a high degree of 

interoperability and a transport protocol with multiple 

advantages over binary approaches, as discussed above. 

Of the SOAP systems tested, the RRT prototype 

performed best, indicating that the advantages provided 

by the RRT’s approach to application creation need not 

come at the cost of degraded performance. 

7.6 Implementation of the Transmission 

Policy Framework  
The policy framework is implemented using six 

associative stores, one for each rule type. Each 

associative store records argument policy rules and maps 

from keys to prioritized lists of policy rules. The keys are 

deterministically generated from the identity of the class 

and method being called and the argument numbers 

(where appropriate). To determine if an argument policy 

exists, the policy manager looks up the associative stores 

in order and if a mapping from the specified key exists, 

then the dominant argument policy rule is used. This 

approach is both simple and efficient. 



The policy framework must be queried and the policy 

rules evaluated each time objects are marshalled, 

affecting remote method call cost. This cost is heavily 

dependent on the particular policy rules that are 

associated with the object to be marshalled. The 

transmission policy framework is an integral part of the 

RRT and so cannot be switched off under normal 

circumstances. To determine the cost of transmission 

policy evaluation, a special build of the RRT that 

employed only pass-by-reference semantics was created. 

A test application that performed multiple calls to a 

remote method was created. This method took one 

argument and returned one return value, both by-

reference. The test application was run using the 

specially built RRT with the transmission policy 

framework removed and again using the full RRT. In the 

former case, the special RRT was hard-coded to pass 

objects by-reference, and in the latter case, the 

transmission policy consisted of a method policy rule and 

a return policy rule stating that pass-by-reference 

semantics should be employed. The parameter passing 

semantics were therefore the same for each run of the 

application. 

The cost of a remote call when the policy evaluation 

phase was performed was around 2% to 3% greater than 

the cost of a remote call without the evaluation phase. 

The introduction of additional arguments has no effect on 

the proportionate cost of the policy evaluation phase as 

there is a one-to-one correspondence between the number 

of objects marshalled and the number of transmission 

policy evaluations performed. The cost of dynamically 

evaluating policy is subsumed by the cost of marshalling 

and serialising the objects for remote method call. It is 

believed that the benefits gained outweigh the expense. 

8. CONCLUSIONS 
The RAFDA Run-Time (RRT) is a middleware designed 

to improve the software engineering process for 

implementers of new distributed systems and 

monitoring/management infrastructures aimed at existing 

applications. The work described in this paper has 

identified a number of key limitations exhibited by 

standard middleware systems and had shown how the 

mechanisms provided by the RRT addresses each of 

these limitations.  

Middleware systems typically require the programmer to 

decide at application design time which classes will 

support remote access and to follow a number of steps in 

order to create the remotely accessible classes. The 

programmer must decide the interfaces between 

distribution boundaries statically then determine which 

classes will implement these interfaces and thus be 

remotely accessible. This hard-coding of the distribution 

boundaries requires that the application programmer 

know if instances of a class will be remotely accessed 

before implementing that class. 

Using the RRT, programmers can adopt a new 

methodology when developing and deploying distributed 

Java applications [23]. Application logic can be designed 

and implemented completely independently of 

distribution concerns, easing the development task and 

giving considerable flexibility to alter distribution 

decisions late in the development cycle. 

The RRT permits instances of arbitrary classes within an 

application to be exposed for remote access. This is 

achieved through the dynamic exposure of a standard 

Web Service for the exposed object and the 

implementation of a mapping from remote calls on the 

Web Service to method calls on the exposed object. The 

RRT introduces pass-by-reference semantics to standard 

Web Services allowing methods on exposed objects to be 

called remotely.  

In contrast to conventional middleware systems, in order 

to expose an instance of a class using the RRT, it is not 

necessary that the class implement any special interfaces 

or extend any special classes. Objects can be exposed to 

remote access using any interface with which they are 

structurally compliant. Thus the application programmer 

can implement the classes providing core application 

functionality without regard for the remote accessibility 

of the instances of those classes. Decisions about the 

remote accessibility of a particular object can be delayed 

until much later in the design cycle, even until run-time. 

Monitoring and management infrastructure that views 

and controls application state from another address space 

can be created without modification, or even access, to 

the application’s original source code. 

Another limitation of existing middleware systems is that 

the parameter passing semantics is tightly bound to the 

distribution of the application and thus changes to the 

distribution of an application may potentially alter the 

application semantics. The RRT addresses this limitation 

by providing a framework for the static and dynamic 

specification of object transmission policy. Using this 

framework the application programmer can employ the 

most advantageous object transmission policy for the 

particular circumstances. This increases flexibility and 

allows the programmer to control the application 

semantics. By specifying object transmission policy 

independently of class implementation, the roles of 

library class programmer and application programmer are 

separated. Library implementers need make fewer 

assumptions about the ways in which their classes will be 

used while application programmers can use class 

instances in the most appropriate way, as dictated by the 

particular situation. Before making a method call the 

application programmer can configure the transmission 

policy for the individual method parameters. 

The transmission policy framework also supports the 

specification of smart proxies which increase the 

flexibility of exposed object without imposing 

implementation constraints on the programmer. This 

mechanism allows arbitrary field values of an object to 

be cached in the same address space as a remote 

reference (proxy) to that object. Thus a call to an 

accessor method on the proxy yields the cached field 

value without the execution of a network call. 



The RRT employs dynamic code generation and 

compilation techniques to create the ancillary code 

necessary to allow dynamic object exposure. It is capable 

of marshalling instances of any class either by-reference 

or by-value and complete control over this is given to the 

programmer in order to separate parameter passing 

semantics completely from application distribution. 

The RRT provides significant advantages to 

programmers of distributed applications, when compared 

to industry standard middleware systems, simplifying the 

software engineering process, decreasing the opportunity 

for errors in distribution code and increasing code reuse 

through better flexibility. 

The RRT has been used in the construction of a P2P 

routing network in which the application code can be run 

in both a fully distributed environment and in a 

centralised simulation environment without modification. 

The RAFDA system can be downloaded from 

http://rafda.cs.st-and.ac.uk/. 

9. REFERENCES 
[1] Microsystems, Sun, Java™ Remote Method 

Invocation Specification. 1996-1999. 

[2] Corporation, Microsoft, .Net Framework. 2004. 

[3] OMG, Common Object Request Broker 

Architecture: Core Specification. Vol. 3.0.3. 

2004. 

[4] Lievens, D, An Investigation into the 

Mechanisms Provided by CORBA to Preserve 

Strong Typing. 2001, University of Glasgow. 

[5] Philippsen, M. and Zenger, M., JavaParty - 

Transparent Remote Objects in Java. 

Concurrency: Practice and Experience, 1997. 

9(11): p. 1225-1242. 

[6] Launay, P. and Pazat, J-L., A Framework for 

Parallel Programming in Java. 1997, IRISA. 

[7] Tilevich, E. and Smaragdakis, Y. J-Orchestra: 

Automatic Java Application Partitioning. in 

European Conference on Object-Oriented 

Programming (ECOOP). 2002. Malaga. 

[8] Spiegel, A., Automatic Distribution of Object-

Oriented Programs, in FU Berlin, FB 

Mathematik und Informatik. 2002. 

[9] Caromel, D. , Klauser, W. and Vayssiere, J., 

Towards Seamless Computing and 

Metacomputing in Java. Concurrency Practice 

and Experience, 1998. 10(11-13): p. 1043-1061. 

[10] Fahringer, T. and Jugravu, A., JavaSymphony: A 

new programming paradigm to control and to 

synchronize locality, parallelism, and load 

balancing for parallel and distributed 

computing. Concurrency and Computation: 

Practice and Experience, 2002. 17(7-8): p. 1005 

-1025. 

[11] Lavender, R. G. and Schmidt, D., Active Object 

- An Object Behavioral Pattern for Concurrent 

Programming, in Pattern Languages of 

Program  

Design 2, J. Vlissides, J. Coplien, and N. Kerth, 

Editors. 1996, Addison-Wesley. 

[12] JBoss Inc., JBoss Enterprise Middleware System 

(JEMS). 2005. 

[13] W3C, SOAP Version 1.2 Part 0: Primer. 2003. 

[14] Fahringer, T. JavaSymphony: A System for 

Development of Locality-Oriented Distributed 

and Parallel Java Applications. in IEEE 

International Conference on Cluster Computing, 

CLUSTER 2000. 2000. Chemnitz, Germany. 

[15] Sun Microsystems, Java™ Remote Method 

Invocation Specification. 1996-2005. 

[16] Obermeyer, P. and Hawkins, J., Microsoft .NET 

Remoting: A Technical Overview. 2001, 

Microsoft Corporation. 

[17] Spiegel, A. Objects by value: Evaluating the 

trade-off. in PDCN '98. 1998. Brisbane, 

Australia: ACTA Press. 

[18] Dearle, A, Kirby, G N C, Rebón Portillo, A J 

and Walker, S, Reflective Architecture for 

Distributed Applications (RAFDA). 2003. 

http://rafda.cs.st-and.ac.uk/ 

[19] Rebón Portillo, Á J, Walker, S, Kirby, G N C 

and Dearle, A. A Reflective Approach to 

Providing Flexibility in Application 

Distribution. in 2nd International Workshop on 

Reflective and Adaptive Middleware, 

ACM/IFIP/USENIX  International Middleware 

Conference (Middleware 2003). 2003. Rio de 

Janeiro, Brazil: Pontifícia Universidade Católica 

do Rio de Janeiro. 

[20] W3C, Web Services Architecture. 2004. 

[21] Apache Software Foundation, Apache Axis. 

2004. http://ws.apache.org/axis/ 

[22] Walker, S, A Flexible, Policy-Aware 

Middleware System. PhD Thesis Submission, 

School of Computer Science. University of St 

Andrews. 2005. 

 [23] Kirby, G N C., Walker, S. M., Norcross, S. and 

Dearle, A. A Methodology for Developing and 

Deploying Distributed Applications. in 3rd 

International Working Conference on 

Component Deployment (CD 2005). 2005. 

Grenoble, France. 

 

http://www-systems.dcs.st-and.ac.uk/rafda/
http://ws.apache.org/axis/

