9,769 research outputs found

    A framework for the design, prototyping and evaluation of mobile interfaces for domestic environments

    Get PDF
    The idea of the smart home has been discussed for over three decades, but it has yet to achieve mass-market adoption. This thesis asks the question Why is my home not smart? It highlights four main areas that are barriers to adoption, and concentrates on a single one of these issues: usability. It presents an investigation that focuses on design, prototyping and evaluation of mobile interfaces for domestic environments resulting in the development of a novel framework. A smart home is the physical realisation of a ubiquitous computing system for domestic living. The research area offers numerous benefits to end-users such as convenience, assistive living, energy saving and improved security and safety. However, these benefits have yet to become accessible due to a lack of usable smart home control interfaces. This issue is considered a key reason for lack of adoption and is the focus for this thesis. Within this thesis, a framework is introduced as a novel approach for the design, prototyping and evaluation of mobile interfaces for domestic environments. Included within this framework are three components. Firstly, the Reconfigurable Multimedia Environment (RME), a physical evaluation and observation space for conducting user centred research. Secondly, Simulated Interactive Devices (SID), a video-based development and control tool for simulating interactive devices commonly found within a smart home. Thirdly, iProto, a tool that facilitates the production and rapid deployment of high fidelity prototypes for mobile touch screen devices. This framework is evaluated as a round-tripping toolchain for prototyping smart home control and found to be an efficient process for facilitating the design and evaluation of such interfaces

    Quality assessment technique for ubiquitous software and middleware

    Get PDF
    The new paradigm of computing or information systems is ubiquitous computing systems. The technology-oriented issues of ubiquitous computing systems have made researchers pay much attention to the feasibility study of the technologies rather than building quality assurance indices or guidelines. In this context, measuring quality is the key to developing high-quality ubiquitous computing products. For this reason, various quality models have been defined, adopted and enhanced over the years, for example, the need for one recognised standard quality model (ISO/IEC 9126) is the result of a consensus for a software quality model on three levels: characteristics, sub-characteristics, and metrics. However, it is very much unlikely that this scheme will be directly applicable to ubiquitous computing environments which are considerably different to conventional software, trailing a big concern which is being given to reformulate existing methods, and especially to elaborate new assessment techniques for ubiquitous computing environments. This paper selects appropriate quality characteristics for the ubiquitous computing environment, which can be used as the quality target for both ubiquitous computing product evaluation processes ad development processes. Further, each of the quality characteristics has been expanded with evaluation questions and metrics, in some cases with measures. In addition, this quality model has been applied to the industrial setting of the ubiquitous computing environment. These have revealed that while the approach was sound, there are some parts to be more developed in the future

    User-centered design of a dynamic-autonomy remote interaction concept for manipulation-capable robots to assist elderly people in the home

    Get PDF
    In this article, we describe the development of a human-robot interaction concept for service robots to assist elderly people in the home with physical tasks. Our approach is based on the insight that robots are not yet able to handle all tasks autonomously with sufficient reliability in the complex and heterogeneous environments of private homes. We therefore employ remote human operators to assist on tasks a robot cannot handle completely autonomously. Our development methodology was user-centric and iterative, with six user studies carried out at various stages involving a total of 241 participants. The concept is under implementation on the Care-O-bot 3 robotic platform. The main contributions of this article are (1) the results of a survey in form of a ranking of the demands of elderly people and informal caregivers for a range of 25 robot services, (2) the results of an ethnography investigating the suitability of emergency teleassistance and telemedical centers for incorporating robotic teleassistance, and (3) a user-validated human-robot interaction concept with three user roles and corresponding three user interfaces designed as a solution to the problem of engineering reliable service robots for home environments

    When Things Matter: A Data-Centric View of the Internet of Things

    Full text link
    With the recent advances in radio-frequency identification (RFID), low-cost wireless sensor devices, and Web technologies, the Internet of Things (IoT) approach has gained momentum in connecting everyday objects to the Internet and facilitating machine-to-human and machine-to-machine communication with the physical world. While IoT offers the capability to connect and integrate both digital and physical entities, enabling a whole new class of applications and services, several significant challenges need to be addressed before these applications and services can be fully realized. A fundamental challenge centers around managing IoT data, typically produced in dynamic and volatile environments, which is not only extremely large in scale and volume, but also noisy, and continuous. This article surveys the main techniques and state-of-the-art research efforts in IoT from data-centric perspectives, including data stream processing, data storage models, complex event processing, and searching in IoT. Open research issues for IoT data management are also discussed

    FSEA 2014 – Proceedings of the AVI 2014 Workshop on Fostering Smart Energy Applications through Advanced Visual Interfaces

    Get PDF
    It is with great pleasure that we welcome you to FSEA 2014, the AVI 2014 workshop on Fostering Smart Energy Applications through Advanced Visual Interfaces. This workshop focuses on advanced interaction, interface, and visualization techniques for energy-related applications, tools, and services. It brings together researchers and practitioners from a diverse range of background, including interaction design, human-computer interaction, visualization, computer games, and other fields concerned with the development of advanced visual interfaces for smart energy applications. FSEA 2014 is the result of the efforts of many people involved in its organization, including our programme committee, and others who have assisted us in putting this workshop together

    Interacting with Smart Environments: Users, Interfaces, and Devices

    Get PDF
    A Smart Environment is an environment enriched with disappearing devices, acting together to form an “intelligent entity”. In such environments, the computing power pervades the space where the user lives, so it becomes particularly important to investigate the user’s perspective in interacting with her surrounding. Interaction, in fact, occurs when a human performs some kind of activity using any computing technology: in this case, the computing technology has an intelligence of its own and can potentially be everywhere. There is no well-defined interaction situation or context, and interaction can happen casually or accidentally. The objective of this dissertation is to improve the interaction between such complex and different entities: the human and the Smart Environment. To reach this goal, this thesis presents four different and innovative approaches to address some of the identified key challenges. Such approaches, then, are validated with four corresponding software solutions, integrated with a Smart Environment, that I have developed and tested with end-users. Taken together, the proposed solutions enable a better interaction between diverse users and their intelligent environments, provide a solid set of requirements, and can serve as a baseline for further investigation on this emerging topic

    Emerging technologies for learning (volume 1)

    Get PDF
    Collection of 5 articles on emerging technologies and trend
    • 

    corecore