111 research outputs found

    New Perspectives for Vehicle-to-Vehicle (V2V) Power Transfer

    Get PDF
    This paper presents a comparison between different possibilities for the vehicle-to-vehicle (V2V) power transfer between two electric vehicles (EVs). The traditional V2V operation mode is performed through a common energy aggregator, such as the electrical power grid, consisting of a combination of the vehicle-to-grid (V2G) and grid-to-vehicle (G2V) operation modes. The traditional V2V power transfer is based on four power conversions, since each on-board EV battery charger is comprised by two power converters (dc-dc and dc-ac). In this context, this paper proposes new perspectives for the V2V power transfer, both in ac and dc, focusing in the V2V power transfer using dc power (dcV2V). The proposed methods discard the need for an energy aggregator connection, being possible to directly connect two EVs, charging one EV from the other. Furthermore, the proposed dcV2V method allows the reduction of four power conversions to a single one, allowing to increase the overall efficiency of the power transfer between EVs, An efficiency-based evaluation of the different V2V methods is performed, supporting the benefits of dcV2V.This work has been supported by COMPETE: POCI-01-0145–FEDER–007043 and FCT –Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2013. This work is financed by the ERDF – European Regional Development Fund through the Operational Programme for Competitiveness and Internationalisation –COMPETE 2020 Programme, and by National Funds through the Portuguese funding agency, FCT –Fundação para a Ciência e a Tecnologia, within project SAICTPAC/0004/2015 –POCI –01–0145–FEDER–016434.Mr. Tiago Sousa is supported by the doctoral scholarship SFRH/BD/134353/2017 granted by the Portuguese FCT agency

    Vehicle electrification: technologies, challenges and a global perspective for smart grids

    Get PDF
    Nowadays, due to economic and climate concerns, the private transportation sector is shifting for the vehicle electrification, mainly supported by electric and hybrid plug-in vehicles. For this new reality, new challenges about operation modes are emerging, demanding a cooperative and dynamic operation with the electrical power grid, guaranteeing a stable integration without omitting the power quality for the grid-side and for the vehicle-side. Besides the operation modes, new attractive and complementary technologies are offered by the vehicle electrification in the context of smart grids, which are valid for both on-board and off-board systems. In this perspective, this book chapter presents a global perspective and deals with challenges for the vehicle electrification, covering the key technologies toward a sustainable future. Among others, the flowing topics are covered: (1) Overview of power electronics structures for battery charging systems, including on-board and off-board systems; (2) State-of-the-art of communication technologies for application in the context of vehicular electrification, smart grids and smart homes; (3) Challenges and opportunities concerning wireless power transfer with bidirectional interface to the electrical grid; (4) Future perspectives about bidirectional power transfer between electric vehicles (vehicle-to-vehicle operation mode); (5) Unified technologies, allowing to combine functionalities of a bidirectional interface with the electrical grid and motor driver based on a single system; and (6) Smart grids and smart homes scenarios and accessible opportunities about operation modes.Fundação para a Ciência e Tecnologia (FCT

    Electric vehicle as a service (EVaaS):applications, challenges and enablers

    Get PDF
    Under the vehicle-to-grid (V2G) concept, electric vehicles (EVs) can be deployed as loads to absorb excess production or as distributed energy resources to supply part of their stored energy back to the grid. This paper overviews the technologies, technical components and system requirements needed for EV deployment. Electric vehicle as a service (EVaaS) exploits V2G technology to develop a system where suitable EVs within the distribution network are chosen individually or in aggregate to exchange energy with the grid, individual customers or both. The EVaaS framework is introduced, and interactions among EVaaS subsystems such as EV batteries, charging stations, loads and advanced metering infrastructure are studied. The communication infrastructure and processing facilities that enable data and information exchange between EVs and the grid are reviewed. Different strategies for EV charging/discharging and their impact on the distribution grid are reviewed. Several market designs that incentivize energy trading in V2G environments are discussed. The benefits of V2G are studied from the perspectives of ancillary services, supporting of renewables and the environment. The challenges to V2G are studied with respect to battery degradation, energy conversion losses and effects on distribution system

    Technical investigation on V2G, S2V, and V2I for next generation smart city planning

    Get PDF
    The paper investigates a few of the major areas of the next generation technological advancement, “smart city planning concept”. The areas that the paper focuses are vehicle to grid (V2G), sun to vehicle (S2V), and vehicle to infrastructure (V2I). For the bi-directional crowd energy single entity concept, V2G and building to grid (B2G) are the primary parts of distributed renewable generation (DRG) under smart living. This research includes an in-depth overview of this three major areas. Next, the research conducts a case analysis of V2G, S2V, and V2I along with their possible limitations in order to find out the novel solutions for future development both for academia and industry levels. Lastly, few possible solutions have been proposed to minimize the limitations and to develop the existing system for future expansion

    A Study of Vehicle-to-Vehicle Power Transfer Operation in V2G-Equipped Microgrid

    Get PDF
    Bidirectional vehicle-to-grid (V2G) system utilizes the batteries of parked electric-drive-vehicles to provide energy storage and backup services in a power system. Such services in a V2G-equipped microgrid system can be used as an enabler of enhancing the renewable energy source (RES) penetration by storing the energy during the surplus of RES supply and supplying the energy during the lack of RES supply. In this research, we aim at enhancing the storage capacity of V2G system by introducing a novel vehicle-to-vehicle power transfer operation that runs on the top of V2G services. The vehicle-to-vehicle (V2V) operation transfers the energy from the source vehicles (which are parked for relatively longer times) to the destination vehicles (which are parked for relatively shorter times). The depleted energy of the source vehicles is fulfilled by the surplus RES supply in the future. In this way, the destination vehicles are effectively charged by RES supply, thereby enhancing the storage capacity of the V2G system. We can also say that the V2V operation would become beneficial only when there is a sufficient amount of surplus RES supply in the future. We propose a decision rule to distinguish if a vehicle should be a source vehicle or a destination vehicle during the V2V operation. The decision rule is designed based on the two factors, namely the state-of-charge of vehicle’s battery, and the remaining time of vehicle to depart. In this research, we conduct a comprehensive study to analyze the impacts of state-of-charge and mobility pattern of vehicles on different performance metrics via simulation. The results shows that in order to achieve better performance of V2V operation, the state-of-charge of vehicle’s battery should be given more priority over the remaining time of vehicle to depart. The vehicle mobility pattern with unexpected departure greatly reduced the overall performance of the V2G system

    Novel Design and Energy Management Approaches for Seamless Integration and Adoption of Plug-In Electric Vehicles

    Get PDF
    Electric vehicles (EVs) are witnessing increased utilization throughout the world as an alternative to fossil-fueled vehicles. However, the adoption of EVs and their integration into the power grid is yet to be fully materialized due to several issues, of which two are the most salient. First, the extensive deployment of EVs can bring challenges to the grid if not properly managed. Second, access to a variety of EV supply equipment (EVSE) in different areas is still lacking. To that end, the research in this thesis aims to address these issues through the development of adaptive approaches that enhance the management of EV energy and the development of a charging strategy and a design approach that help to expand the proliferation of EV charging infrastructure. Three approaches that are adaptive to their operator/user preferences are developed to enhance energy management in EVs. The first approach allows adaptive utilization of EV batteries' distributed energy resources in an EV fleet system for concurrent services to the transportation sector and ancillary services market. The second approach is a decentralized quality of service (QoS)-based scheme for peer-peer (P2P) energy trading among EV energy providers and consumers. The proposed mechanism is designed to match energy traders based on consumers' and providers' QoS requirements and offers, respectively. The third approach is a bidirectional smart charging algorithm for EVs considering P2P energy trade, provision of ancillary services to the grid, and utilization of low electricity prices for battery charging. The algorithm incorporates user preferences into the scheduling process enabling it to adapt to various conditions. Further, to expand the proliferation of EV charging infrastructure, this thesis introduces (i) a charging control strategy that does not require a communication network, which in turn reduces additional grid upgrades, and (ii) a design approach for EV parking lots that helps private investors to participate in the growth of charging facilities. The findings of this thesis highlight the efficacy of the proposed approaches in achieving their objectives. This would provide implementable and cost-effective solutions to facilitate EVs deployment and address imminent and timely concerns that limit the wide adoption of EVs into electric distribution infrastructure

    Novel Design and Energy Management Approaches for Seamless Integration and Adoption of Plug-In Electric Vehicles

    Get PDF
    Electric vehicles (EVs) are witnessing increased utilization throughout the world as an alternative to fossil-fueled vehicles. However, the adoption of EVs and their integration into the power grid is yet to be fully materialized due to several issues, of which two are the most salient. First, the extensive deployment of EVs can bring challenges to the grid if not properly managed. Second, access to a variety of EV supply equipment (EVSE) in different areas is still lacking. To that end, the research in this thesis aims to address these issues through the development of adaptive approaches that enhance the management of EV energy and the development of a charging strategy and a design approach that help to expand the proliferation of EV charging infrastructure. Three approaches that are adaptive to their operator/user preferences are developed to enhance energy management in EVs. The first approach allows adaptive utilization of EV batteries' distributed energy resources in an EV fleet system for concurrent services to the transportation sector and ancillary services market. The second approach is a decentralized quality of service (QoS)-based scheme for peer-peer (P2P) energy trading among EV energy providers and consumers. The proposed mechanism is designed to match energy traders based on consumers' and providers' QoS requirements and offers, respectively. The third approach is a bidirectional smart charging algorithm for EVs considering P2P energy trade, provision of ancillary services to the grid, and utilization of low electricity prices for battery charging. The algorithm incorporates user preferences into the scheduling process enabling it to adapt to various conditions. Further, to expand the proliferation of EV charging infrastructure, this thesis introduces (i) a charging control strategy that does not require a communication network, which in turn reduces additional grid upgrades, and (ii) a design approach for EV parking lots that helps private investors to participate in the growth of charging facilities. The findings of this thesis highlight the efficacy of the proposed approaches in achieving their objectives. This would provide implementable and cost-effective solutions to facilitate EVs deployment and address imminent and timely concerns that limit the wide adoption of EVs into electric distribution infrastructure

    Spatial-temporal domain charging optimization and charging scenario iteration for EV

    Get PDF
    Environmental problems have become increasingly serious around the world. With lower carbon emissions, Electric Vehicles (EVs) have been utilized on a large scale over the past few years. However, EVs are limited by battery capacity and require frequent charging. Currently, EVs suffer from long charging time and charging congestion. Therefore, EV charging optimization is vital to ensure drivers’ mobility. This study first presents a literature analysis of the current charging modes taxonomy to elucidate the advantages and disadvantages of different charging modes. In specific optimization, under plug-in charging mode, an Urgency First Charging (UFC) scheduling policy is proposed with collaborative optimization of the spatialtemporal domain. The UFC policy allows those EVs with charging urgency to get preempted charging services. As conventional plug-in charging mode is limited by the deployment of Charging Stations (CSs), this study further introduces and optimizes Vehicle-to-Vehicle (V2V) charging. This is aim to maximize the utilization of charging infrastructures and to balance the grid load. This proposed reservation-based V2V charging scheme optimizes pair matching of EVs based on minimized distance. Meanwhile, this V2V scheme allows more EVs get fully charged via minimized waiting time based parking lot allocation. Constrained by shortcomings (rigid location of CSs and slow charging power under V2V converters), a single charging mode can hardly meet a large number of parallel charging requests. Thus, this study further proposes a hybrid charging mode. This mode is to utilize the advantages of plug-in and V2V modes to alleviate the pressure on the grid. Finally, this study addresses the potential problems of EV charging with a view to further optimizing EV charging in subsequent studies

    Advanced Communication and Control Methods for Future Smartgrids

    Get PDF
    Proliferation of distributed generation and the increased ability to monitor different parts of the electrical grid offer unprecedented opportunities for consumers and grid operators. Energy can be generated near the consumption points, which decreases transmission burdens and novel control schemes can be utilized to operate the grid closer to its limits. In other words, the same infrastructure can be used at higher capacities thanks to increased efficiency. Also, new players are integrated into this grid such as smart meters with local control capabilities, electric vehicles that can act as mobile storage devices, and smart inverters that can provide auxiliary support. To achieve stable and safe operation, it is necessary to observe and coordinate all of these components in the smartgrid
    • …
    corecore