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Abstract

Bidirectional vehicle-to-grid (V2G) system utilizes the batteries of parked electric-drive-

vehicles to provide energy storage and backup services in a power system. Such services in

a V2G-equipped microgrid system can be used as an enabler of enhancing the renewable

energy source (RES) penetration by storing the energy during the surplus of RES supply

and supplying the energy during the lack of RES supply. In this research, we aim at

enhancing the storage capacity of V2G system by introducing a novel vehicle-to-vehicle

power transfer operation that runs on the top of V2G services. The vehicle-to-vehicle (V2V)

operation transfers the energy from the source vehicles (which are parked for relatively

longer times) to the destination vehicles (which are parked for relatively shorter times).

The depleted energy of the source vehicles is fulfilled by the surplus RES supply in the

future. In this way, the destination vehicles are effectively charged by RES supply, thereby

enhancing the storage capacity of the V2G system. We can also say that the V2V operation

would become beneficial only when there is a sufficient amount of surplus RES supply in

the future. We propose a decision rule to distinguish if a vehicle should be a source

vehicle or a destination vehicle during the V2V operation. The decision rule is designed

based on the two factors, namely the state-of-charge of vehicles battery, and the remaining

time of vehicle to depart. In this research, we conduct a comprehensive study to analyze

the impacts of state-of-charge and mobility pattern of vehicles on different performance

metrics via simulation. The results shows that in order to achieve better performance of

V2V operation, the state-of-charge of vehicles battery should be given more priority over

the remaining time of vehicle to depart. The vehicle mobility pattern with unexpected

departure greatly reduced the overall performance of the V2G system.
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Chapter 1

Introduction

1.1 Microgrid and Vehicle-to-Grid System

Microgrid is a small-sized electric power system which provides electricity to a limited ge-

ographical area such as university, commercial building, hospital, industry etc. Microgrid

is a self-sustained power system that can operate independently during the failure of the

main grid. Hence, microgrid can be operated both in isolated mode and grid-connected

mode [2] [6]. In order to be self-sustained, microgrid must contain at least one local en-

ergy resource, also known as Distributed Energy Resource (DER) [7]. DER delivers electric

power through small-sized generators which reside closer to the loads. DER can be broadly

classified into renewable (solar energy, wind energy) and non-renewable (diesel generator)

energy resources. Renewable Energy Sources (RESs) such as solar energy and wind en-

ergy are non-dispatchable energy resources because of its uncontrollable and intermittent

output. Unlike in case of diesel generator, a power system cannot control the power out-

put of the non-dispatchable RES, according to the instantaneous changes in customers’
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demand [8]. This can cause a power system failure due to the mismatch between power

supply and demand. Hence, the non-dispatchable DER has a direct adverse effect on power

system’s quality, stability, and security. In order to minimize such adverse effects, several

solutions such as spinning reserve, energy storage system (ESS), and demand side man-

agement are commonly deployed [7].

ESS can be composed of many technologies such as battery array, fly wheel, electrochemical

capacitor etc. ESS can act as a storage or a supplier of energy when there is a surplus or

a lack of energy in a power system (with non-dispatchable DERs) respectively. ESS plays

a major role in integrating the RES into the microgrid by changing the non-dispatchable

RES to a dispatchable energy resource.

Vehicle-to-grid (V2G) concept is an emerging concept which implements the battery tech-

nology for an ESS purpose. Recently, there have been many research works dedicated to

this new technology [1] [9] [10] [11]. V2G system uses the batteries of electric vehicles to

store and supply the electric power while the vehicles are parked. Some statistics shows

that the vehicles are parked up to 96% of the time and are readily available for the V2G

services [9]. This is an extremely motivating statistics towards the implementation of the

V2G concept. The V2G services are storage service (storing surplus power of the grid) and

backup service (supplying power back to the grid during lack of the power). A power system

is typically in a need of services such as base-load power (round-the-clock service), peak

power, spinning reserves (fast responding additional generation capacity) and regulation

(stabilizing voltage and frequency of system during supply and demand mismatch). The

V2G system can be a potentially feasible solution for both the peak load shaving service

and the ancillary services (spinning reserves and regulation) [1] [9]. The peak load shav-
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Figure 1.1: Schematic diagram to demonstrate V2G concept [1].

ing services involves a significant amount of energy transaction. In contrast, the ancillary

services provide a transient capacity of supplying and absorbing the power and involves

very less average amount of energy transaction. The peak load shaving service lasts for few

hours while the regulation services usually last up to few minutes. Figure 1.1 demonstrates

the concept of the V2G system. As shown in the figure, the electric vehicles (EV) may be

plugged in a home or in a parking lot, and are equipped with an infrastructure facilitating

the bidirectional energy flow with the utility grid. In order to co-ordination the power

transaction, a bi-directional communication can be established with the grid operator via

cellular network or power line communication.

As discussed above, in order to integrate the RES into microgrid there is a need of a re-

source that can act both as a generator and a storage to balance the fluctuating supply and

demand. A V2G system can act as a backup, supplying power during insufficient supply

of RES, or a storage, to absorb the surplus supply of RES [9]. Hence, V2G as an ESS can

be viewed as a possible solution to facilitate the integration of the non-dispatchable RES

3



into the microgrid.

1.2 Motivation and Contribution

Literature discuss many energy storage technologies such as pumped hydro [12], flywheel

[13] [14], battery [7] [14] or a combination of two or more technologies [7] [14]. The main ob-

jective of the energy storage system is to enhance the RES penetration into the microgrid,

while maintaining the system stability. RES penetration can be defined as the ratio of the

total energy supplied by the RES to the total energy supplied into the microgrid. Energy

storage system helps an intermittent RES to become a dispatchable energy resource by

smoothing out the RES’s intermittent power output. ESS, thus, is an indispensable com-

ponent of the microgrid, which adds flexibility and enhances the reliability of the microgrid

system (by providing voltage and frequency stability of the microgrid system) [3] [8]. ESS

can also provide an economic gain by storing the energy during low energy price and selling

it back to the grid during high energy price. However, ESS needs higher investment [15]

which increases linearly with the size of the ESS [3] [8]. As an example, ESS implemented

using lead-acid batteries with size of 246 kW (power rating) and 2196 kWh (energy rating)

demands initial investment cost of around $834,000 [15], and the investment cost amount

is a huge. Literature also discuss the optimal sizing, which maintains the trade-off between

economic and stability aspects, of the ESS in the microgrid [3] [8].

The V2G system can be a possible solution to reduce the initial investment cost on ESS.

However, the V2G system provides a fluctuating size (power and energy rating) of ESS

because the total number of vehicles in a parking lot keeps on changing over a period of
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time. This shows that the size of the V2G-system-based ESS directly depends upon the

mobility pattern of the vehicles. As an illustration, there will be more vehicles in residential

area during a night-time while more vehicles will be in commercial area during a day-time.

Finally, one of the key challenges in V2G system implementation is to dispatch the energy

with the temporal variation of the ESS size.

Recently, there have been a number of works that discuss the integration of V2G system

into the microgrid [10] [11]. Different schemes have been proposed that determine the op-

timal power transactions among microgrid load, microgrid supply (including RES), plug-in

electric vehicles (PEV), thereby maximizing the RES penetration into the microgrid. The

main challenges on designing such schemes are the uncertainty in RES generation and the

dynamic size of V2G-system based ESS. In [10], three different coordinated wind-PEV

energy dispatching algorithms, in the V2G context, have been proposed. The algorithms

have been designed in a stochastic framework considering the uncertainties of wind power

supply and the statistical PEV driving patterns. The uncertainty of wind power supply has

been modeled by assuming that the wind speed follows Gaussian distribution. The arrival

and departure times of PEVs are modeled by log-normal distribution. The authors of [11]

proposed an optimization framework for the optimal power transaction that maximizes

the RES penetration into the microgrid. The wind power generation has been modeled via

scenarios with Monte Carlo simulation and scenario reduction techniques. The mobility

patterns of PEVs are assumed to be deterministic.

As discussed above, the literature consider only the power transaction between PEV and

grid to maximize the RES penetration. The power transaction between vehicle to vehicle

has not been explored. The objective of this research is to propose a scheme that imple-
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ments a novel vehicle-to-vehicle power transaction, on top of the V2G system, to enhance

the RES penetration into the microgrid. The scheme also analyzes the impact of the un-

expected departures of PEVs over the typical PEV mobility pattern. Figure 1.2 illustrates

Power transfer

RES

Microgrid

Utility

V2G System

Maximize

Minimize

Vehicle-to-vehicle
power transfer operation

Grid

Load

Figure 1.2: Conceptual level illustration of the vehicle-to-vehicle power transfer operation.

the concept and the role of the vehicle-to-vehicle power transaction to enhance the RES

penetration. As shown in the figure, the microgrid is equipped with the V2G system and is

supplied by the RES and the utility grid. The vehicle-to-vehicle power transfer operation

enables the power transaction among the vehicles in addition to a typical V2G power trans-

fer. The vehicle-to-vehicle power transactions charge the batteries of a set of destination

PEVs from a set of source PEVs for a given time, thereby minimizing the total energy

import form the utility grid. A source PEV is the one that departs relatively sooner and

is in a need of charge in its battery, whereas a destination PEV is the one that departs

relatively late and has a sufficient amount of charge in its battery. The source PEVs that

supplied the energy during the vehicle-to-vehicle power transactions seek to compensate

their depleted energy from the surplus RES in the future. Hence, the vehicle-to-vehicle
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power transfer paradigm minimizes the total energy import from the utility grid to charge

PEVs, thereby maximizing the utilization of RES (given that there is a sufficient surplus

RES energy in the future). In conclusion, the RES penetration into the microgrid is fur-

ther enhanced by the vehicle-to-vehicle power transaction operation in contrast to a typical

V2G system.

In this thesis, we propose a scheme that determines the conditions to invoke the vehicle-to-

vehicle power transfer operation in addition to the vehicle-to-grid power transfer operation.

The simulation results demonstrate that the vehicle-to-vehicle power transfer operation re-

duces the total amount of energy import from the utility grid. It is also shown that the

unexpected departure of PEVs reduces the number of vehicle-to-vehicle power transfer

operation.

1.3 Outline

The reminder of the report is organized as follows. Chapter 2 provides a literature review

on vehicle-to-grid (V2G) system implemented for the microgrid. Chapter 3 presents the

system model of our research work. We also discuss the necessary and sufficient conditions

that need to be satisfied to invoke the vehicle-to-vehicle power transfer operation, and the

complete problem formulation. The performance evaluation of the scheme is presented in

Chapter 4. We analyze the impact of the priority given to the state-of-charge of PEV

battery and unexpected departure of PEVs on the performance of the vehicle-to-vehicle

energy transaction. Finally, Chapter 5 outlines the conclusion and the future work of our

work.
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Chapter 2

Literature Review

In this chapter, we elaborate the concepts of the microgrid system, the energy storage

system and the vehicle-to-grid (V2G) system. We also discuss the related work on the

V2G system and its integration into the microgrid system.

2.1 Microgrid Power System

2.1.1 Smart Grid and Distributed Energy Resources

Smart grid concept is characterized by the notion of bi-directional flow of both electricity

and information in an electric power system. The bidirectional flow of the information

provides a basis for delivery of real-time information among all the components of power

system (from power plants to end customers), thereby enabling the instantaneous balance of

power supply and demand. Smart grid is expected to move from the traditional centralized

generation approach to the distributed generation approach [16]. Distributed generation

(DG) is directly implemented in the distribution system (a part of electric power system
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to deliver electric energy to consumers) [17]. DG was not originally designed to connect a

power generating station in traditional electric power system. The addition of DG units

in the distribution system impacts the traditional electric power system into many ways.

DG units help to reduce the transmission and distribution energy losses by decreasing the

amount of energy drawn from the utility grid. It also enhances the system reliability by

using it as a backup energy source. However, the addition of DG units can cause problems

such as voltage flickering, introduction of harmonics into the system, which in turn degrades

the power quality [17]. In this context, microgrid concept provides a systematic approach

toward a successful integration of DG units into the distribution system, thereby acting as

a key enabler for moving towards realizing the smart grid paradigm [16].

2.1.2 Microgrid Concept

Microgrid power system integrates the DG units, storage units, loads, and their control

into a single subsystem as a single controllable unit. Microgrid can be operated both in

a grid connected or in an isolated mode. It helps in realizing a low-emission and energy

efficient system [6]. Figure 2.1 illustrates a typical architecture of a microgrid. The mi-

crogrid shown in the figure consists of three feeders (A, B, and C) with a radial feeder

line configuration to transfer the power from the source to the load. The microgrid com-

prises of a diverse set of microsources and/or energy storage devices interconnected by a

microsource controller at the right place in feeder A and B (having critical loads) to reduce

line losses, support voltage, use waste heat etc. The microsources usually are low emission,

low voltage sources such as renewable energy sources, fuel cells, CHP units that provide
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Figure 2.1: Typical microgrid architecture [2].

both heat and electricity in the vicinity. The main microgrid separation device, as shown

in Figure 2.1, connects the microgrid to the utility grid. The separation device also islands

the microgrid during a disturbance in either the utility grid or the microgrid itself which

is helpful in maintaining the system stability. The microsource controller, which connects

the microsource to the microgrid, is responsible for controlling the power and the voltage

of microsource within a span of miliseconds in response to load change and disturbance.

The energy manager computes the optimal energy flow within the microgrid, and between

microgrid and utility grid to reduce the various costs incurred in the entire microgrid sys-

tem. The power flow controllers in feeders regulate the power flow as prescribed by the

energy manager. The feeder C consists of a non-critical load which can be curtailed. The

protection coordinator controls the circuit breaker which isolates the faulted area within

the microgrid. Hence, a microgrid consists of three different critical functions, namely

microsource control, system optimization and system protection [2] [18].
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The renewable energy resources generations such as solar and wind generation are inter-

mittent in nature, hence, the output power is random and cannot be varied as required.

Such renewable energy resources are considered as non-dispatchable generators. The sys-

tem stability cannot be achieved with only non-dispatchable generators. Achieving high

penetration of such intermittent renewable energy resources in presences of random de-

mands from consumers is challenging in a microgrid system. The planning and operation

of microgrids with consideration of such randomness are important and challenging.

2.1.3 Microgrid Planning

In microgrid planning, a decision on mixture of different kinds of distributed energy re-

sources (such as renewable energy resources, diesel generator, battery array) and their

sizing (energy and power rating) is made. The microgrid planing decision should be based

on economic, environmental, and reliability aspects of the system over a span of years [19].

The key environmental aspect is the reduction of greenhouse gas emission with the use of

renewable energy resources. Similarly, the economic aspect of the microgrid addresses the

various costs such as fuel cost for diesel generator, electricity cost of utility grid, cost of

load curtailment etc. We can find different forms of microgrid such as a utility microgrid

which needs to facilitate utility grid (supply during a lack of power), a remotely located

microgrid which is bound to operate in an isolated manner, and an industrial microgrid

which serves critical loads [20]. Each form of microgrid adopts a different combination of

distributed energy resources. As an illustration, a remotely located microgrid is impossible

to be operated only with renewable energy sources because the renewable energy sources
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cannot be varied according to the constantly varying microgrid load. Hence, it also needs

a dispatchable energy sources such as diesel generator. This gives a combination of diesel

generator and renewable energy sources for a remotely located microgrid.

The performance of microgrid planning can be assessed via various performance metrics

such as system average interruption frequency index (SAIFI), system average interruption

duration index (SAIDI), customer average interruption frequency index (CAIFI), expected

energy not supplied (EENS), and loss of load expectation (LOLE). Hence, the microgrid

planning aims at sizing a different combination of distributed energy resources to fulfill a

required performance level of environmental, economic and reliability aspects.

2.1.4 Microgrid Operation

Microgrid operation determines the optimal schedule and coordination between distributed

energy resources and load to minimize the overall environmental, economic and reliabil-

ity cost. The intermittent renewable energy generation, random demand from customers,

and random outages of components such as generation units, distribution lines introduce

randomness into the microgrid. It is very challenging to obtain economic, environmental

and power quality and reliability benefits in presence of such randomness. Hence, we can

consider a microgrid operation as a time process in presence of uncertainties.

Literature discuss various techniques and models to deal with such randomness such as

model predictive control [21], modeling randomly generated demand and renewable gen-

eration with its forecasted profile as mean and distribution of uncertainties as i.i.d. and

Gaussian [22], modeling random outages of component by two-state Markov-chain with
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failure and repair rate [23], Monte Carlo simulation with classification based on scenario

reduction techniques and with scenario tree model [22] etc.

Hence, the microgrid operation satisfies the supply and demand balance with economic

gain over a time horizon (such as a day) under the constraints such as security (voltage

limit, line limit), reliability, and system component’s physical constraints.

2.2 Energy Storage System

Energy storage system (ESS) stores the electrical energy using different storage technologies

and deliver the electrical power when required. Energy are stored when the energy price

goes down or when there is a surplus power supply. The ESS delivers back the power to

loads when the price is high or when there is a lack of power supply. In addition, ESS

supports the mechanisms such as load following, peak load management, and voltage and

frequency stability. In microgrid, ESS mainly smooths out the intermittent output of a

renewable energy source, thereby changing the renewable energy source into a dispatchable

energy resource. Similarly, ESS also provides an economic gain with the energy arbitrage

where the cost of energy is minimized by supplying the loads and/or selling the energy

back to the utility grid during a high electricity price. Hence, ESS adds a flexibility to the

power system and enhances reliability and economic gains [3] [8] of the microgrid.

2.2.1 Energy Storage Technologies

There are many storage technologies such as i) battery, which stores energy based on

electrochemical reaction, ii) pumped hydro, which pumps water in a high altitude reservoir
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Figure 2.2: Energy storage technologies comparison [3].

using surplus power and use those pumped water again to rotate turbine and generate

electricity, iii) fuel cell, which is also based on electrochemical reaction using hydrogen

as the main fuel, iv) flywheel, which converts the rotational energy into the electrical

energy, v) ultra-capacitor, which stores energy in an electric field and provides a surge of

energy. Figure 2.2 shows a comparison of different energy storage technologies based on

power rating and discharge rating [3]. The comparison assists us to select the right storage

technology to satisfy our requirements. As an illustration, if we need an ESS with power

rating of around 1 MW and low discharging rate, in the range of seconds, we should select

ultra-capacitor storage technology. Similarly, if we need an ESS with same power rating

of around 1 MW but with high discharge rating, in the range of hours, then we need to

select the battery storage technology.

2.2.2 Cost of Energy Storage System in Microgrid

In microgrid, the storage technologies such as battery array, fuel cell, flywheels are widely

used. Lead-acid batteries, NiCad batteries and Lithium-ion batteries are commonly used
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Figure 2.3: An illustration of comparison between different battery technoloies based on
capital cost and runtime [4].

battery array technologies. As shown in Figure 2.3, the investment cost on battery tech-

nologies is very high in the range of $300/kW to $3000/kW. The authors in [15] illustrates

the computation of an investment cost of around $834000 for ESS with power rating of

246 kW and energy rating of 2196 kWh, which is a huge investment cost. ESS with such

power and energy ratings is commonly required for a microgrid. Hence, there exists a

trade-off between ESS investment cost and system reliability in the microgrid. There are

works [8] [24] on the optimal sizing of ESS for finding the right trade-off between ESS

investment cost and microgrid reliability.

Recently, there is an emerging technology called the vehicle-to-grid (V2G) system in a

smart grid environment [1] [9]. The V2G system uses the vehicles that are driven by the

electric energy known as the electric vehicles (EV) [25]. EVs commonly use battery (e.g.,

lead-acid battery) to store the electrical energy that is used in transportation. EV may

be charged by the energy supplied either by utility grid and/or by RES in the micro-

grid. The V2G system provides a basis for energy transaction between EVs and utility
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grid/microgrid. Uni-directional V2G system allows the power transfer from grid to EV,

whereas bi-directional V2G system also allows the power transfer from EV to grid or vice

versa. Hence, the V2G system can act as an ESS for both the utility grid and the micro-

grid. The main advantage of using V2G system as an ESS is that it greatly reduces the

initial investment cost of ESS.

2.3 Vehicle-to-Grid System

Bidirectional vehicle-to-grid (V2G) system allows the EVs to feed the energy back to the

grid while they are parked in a parking lot. The power transfer from grid to vehicle is also

regarded as V2G service, to be precise uni-directional V2G [26]. V2G system mainly pro-

vides two services, namely, storage service (storing the surplus energy) and backup service

(supplying energy back to the grid) [1]. In [1] different types of EVs are recognized, namely

fuel cell (produce electricity on board), battery (storing energy in an electrochemical cell)

and plug-in hybrid (having grid connection, allowing recharge both from grid and fuel).

In this work, we consider plug-in hybrid electric vehicle (PHEV) which is relevant for the

V2G system.

Based on the control method, the response time, and the duration of power dispatch, a

power market can be categorized into four different types, namely baseload power, peak

power, spinning reserve, and regulation. Baseload power refers to the round-the-clock ser-

vice which has low per kWh price. The V2G system is not suitable for such markets. Peak

power market refers to supplying power only during a high level of power consumption

in a day, which normally runs few hundred hours per year and has high per kWh price.
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Spinning reserves refers to an additional generating capacity which must have a fast re-

sponse (in minutes) upon request. Regulation refers to stabilizing the system voltage and

frequency by matching the supply and demand with response time of a minute or less.

The V2G system is feasible for load shaving services (peak load) and ancillary services

(spinning reserve and regulation) [1] [9].

In order to realize a V2G system, the two main elements are the charging infrastructure

and the communication-and-control infrastructure. Based on voltage and current rating

there are three levels of charging infrastructures. Level 1 (1.5 kVA) and level 2 (32 kVA)

are slow, low power and on-board charging infrastructures. Level 3 (70 kVA) are fast,

high power and off-board charging infrastructures [25]. The communication-and-control

infrastructure exchanges the technical data (such as state-of-charge of battery), statisti-

cal data (such as EV’s availability) and economic data (current electricity price) between

the vehicles and the grid via wireless/wireline connection. Based on such information, an

efficient power transaction between EVs and the grid is performed. Moreover, literature

discuss the concept of an aggregator [26] [27] that integrates the capacity of many EVs to

provide the V2G service. The aggreagtor provides an interface between a set of EVs and

the grid such that the grid controller only needs to communicate with a single entity i.e.,

aggregator instead of communicating with each individual EV.

Literature provides a statistics that the vehicles (especially personal vehicles) are parked

up to 96% of the time and can be available for the V2G services [1] [9] [25]. In addition,

the capacity of an EV’s battery has also increased over the years (recent Tesla Model S

provides capacity of 85 kWh). These statistics provide a basis for the implementation of

the V2G system.
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2.3.1 Vehicle-to-Grid as Energy Storage System

The capacity of an ESS realized by the V2G system varies over the short duration (hours)

of time. The variation in the ESS capacity is incurred due to the constantly changing total

number of EVs parked in a parking lot. The authors in [28] model the V2G energy man-

agement as store-carry-and-deliver mechanism in contrast to store-and-deliver mechanism

for traditional stationary battery management. Hence, the mobility of EVs has a direct

impact on the capacity of the ESS. Similarly, an EV requires a certain amount of energy

to be reserved in its battery for a commute purpose. This represents an energy demand

from the EV itself. In [29] [30], the amount of energy reservation is determined based on

the average commute energy demand of an EV. Moreover, it is also desirable to maintain

the optimum level of state-of-charge in ESS such that the overall benefit of storage and

backup service can be maximized. Hence, the information such as EV mobility, minimum

energy demand by EV, state-of-charge of EV battery are vital in efficiently providing the

V2G services. As an example, EV demand and supply in the V2G system can be modeled

by an M/M/c queue [31].

The arrival and departure time of an EV has been modeled by log-normal distribution

with a certain mean and variance based on the statistical data [10]. In addition, a vehicle

driver may take an unexpected journey and depart earlier than an expected time which

adds the uncertainty in EV mobility pattern [32]. Such unexpected departure of EV makes

the V2G service estimation more challenging, thereby making the V2G based energy dis-

patching more difficult.

Hence, the capacity of the ESS realized by V2G system is unpredictable and has highly
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dynamic temporal variations. The mobility pattern of EVs greatly impacts the capacity

of the ESS. The unexpected early departure should be taken into account in addition to

the regular mobility pattern in order to estimate the V2G-based ESS capacity.

2.4 Related Work

V2G system can be implemented both in a large scale (e.g., utility grid) [1] [9] [26] [30] or

in a small scale (e.g., microgrid) [10] [11]. There are many works which aim at developing

a V2G algorithm that determines the charging and discharging rate of each EV to achieve

an objective function. The objective function can be the minimization of total energy cost

and/or minimization of EV owner cost [26] [27] [28] [33] [34], providing the peak shaving

and ancillary services to the utility grid [30] [35], enhancing the penetration level of renew-

able energy resource [10] [11] [36] [37] [38] etc.

An algorithm to be used by an aggregator for the unidirectional (grid to vehicle) regulation

service has been discussed in [26]. The smart charging algorithms determine a point-of-

operation about which the rate of charging varies, thereby providing the regulation service.

Finally, an aggregator profit maximization algorithm is formulated by considering the sys-

tem load impact and the customer costs. The work provides the first logical step towards

the V2G system due to the ease in implementation and has more customer acceptance.

Similarly, a bidirectional V2G system is discussed in [30] addressing the benefits to both

EV owners and utilities. It presents an aggregator profit maximization algorithm that pro-

vides a peak load shaving service to the utility and a low cost EVs charging. Unplanned

EV departure and corresponding compensation have also been taken into consideration.
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An aggregator which aggregates the distributed power of EVs to provide V2G frequency

regulation services is discussed in [35]. An optimization problem formulated to minimize

the overall cost arising from the battery charging after the revenue obtained by the reg-

ulation service. Finally, a dynamic programming algorithm is applied to compute the

optimal charging control for each vehicle. In [28], a dynamic programming formulation

is presented for minimizing the daily energy cost of vehicle owners under the time-of-use

electricity pricing. Here, an exponentially weighted moving average (EWMA) algorithm

is used to estimate the statistics of PHEV mobility and the non-stationary energy de-

mand. The optimization problem for the optimal energy delivery from viewpoints of both

aggregator and EV owner is formulated in [27]. The formulation presents a load shaving

service taking account the randomness in vehicle mobility, time-of-use electricity pricing,

and realistic battery modeling (battery degradation cost, charging and discharging con-

straints, self-discharging effect etc.). The non-stationary vehicle mobility is modeled by a

time-dependent Markov chain. The aggregator model considers the aggregated charging

and discharging power constraints of the power system.

The literature discussed above mainly aim at minimizing the EV charging cost and total

energy cost, maximizing profit for an aggregator, providing services such as peak shaving

to the utility grid etc. A battery system coupled with wind generators connected to a

medium voltage grid is discussed in [37]. An optimal management strategy is developed to

exploit the energy price arbitrage by shifting the generation along the optimization time

horizon. The strategy enhances the wind generation performance by adopting it to the

load demand with generation shifting policy. This promotes the integration of renewable

generation into the grid. Moreover, a discrete-time model of the storage device has been
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developed to address the battery dynamics such as state-of-charge, temperature, current

etc. In [36], the authors explain that the renewable energy generation are intermittent and

are rarely coincident with the utility load patterns. Vehicles which are typically parked

more than 90% of the time can be used to store the renewable energy, and supply the

stored energy during lack of supplies, thereby enhancing the utilization of renewable en-

ergy resources. The authors also discuss charge-control algorithms, overview of possible

communication infrastructures such as power line communication, Zigbee, cellular network

etc. V2G system which is based on a parking lot adopted in the microgrid is considered

in [38]. The work proposes a coordination control strategy and also a structure in which

bidirectional AC/DC and bidirectional DC/DC converters share one common DC bus. The

strategy is shown to be meaningful in voltage regulation and renewable energy support.

The work also presents a general microgrid model and V2G model. Similarly, a parking lot

scenario for V2G system is also considered, in which an appropriate charge and discharge

times throughout the day are determined such that profits to vehicle owners are maximized

while satisfying the system and vehicle owners’ constraints. These early works demonstrate

that the research interests has sprung towards the implementation of V2G system, based

on a parking lot, in a microgrid setting. The main objective in such scenarios is to enhance

the utilization of renewable energy resources in microgrid satisfying the system and EV

owner constraints.

In [11], the authors proposed a practical model to implement the V2G system in support-

ing the energy management in microgrid which includes renewable energy resources. The

energy management problem is posed as a robust linear optimization problem consider-

ing the uncertainties related to renewable power sources and gridable vehicles. The work
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assumes that the mobility pattern of EVs is deterministic and is already known. Wind

power generation is considered as a renewable energy resource and modeled via scenario

reduction technique. Finally, the robust optimization problem is constructed, based on

the different wind power generation scenario, with an objective of resolving the power out-

put/input of EVs (in garages), power output from the utility grid and the dispatchable

generation units such that the total operating cost is minimized. The work focused on

building a practical methodology towards the actual implementation of the V2G system

and considers the uncertainty only from renewable energy resources. It is assumed that

the EVs follow a deterministic mobility pattern and do not depart unexpectedly. Simi-

larly, authors in [10] proposed a coordinated wind-PEV energy dispatching in the V2G

context. Authors address the issues in a stochastic framework in which the uncertainties

of wind power generation and PEV mobility pattern are discussed. The existing model of

wind power generation is adopted in which the volatile nature of wind power generation

is assumed to be a random variable following Gaussian distribution with time dependent

mean and variance. Regarding the EV mobility, the arrival and departure time of EVs are

modeled by Gaussian distribution with a certain mean time and corresponding variance.

Finally, the solution aims at properly controlling the charging and discharging process of

PEVs in order to improve the matching performance between power generation and con-

sumption in the microgrid.

In conclusion, it can be said that the V2G system can contribute significantly in matching

the power generation and consumption in the microgrid. Nevertheless, the scenario where

curtailment of renewable energy resources is incurred can still exist. Hence, we consider a

novel power transaction from vehicle to vehicle which is invoked on the top of V2G sys-
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tem. By adopting the vehicle-to-vehicle (V2V) power transaction, EVs which are about

to depart from the parking lot get charged from other EVs (instead of the utility grid),

in addition to the charge from surplus renewable energy resources. The charge depleted,

from discharging EVs, during the V2V power transfer operation will be satisfied by the

surplus renewable energy resource in the future. In this way, the possible renewable en-

ergy resources curtailment incurred when only V2G system are being implemented can be

minimized. Hence, the V2V power transfer operation should lead to the better utilization

of renewable energy resources in the microgrid, thereby enhancing the penetration of re-

newable energy resources in microgrid (given that there is a sufficient surplus RES in the

future).
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Chapter 3

System Model and Problem

Formulation

3.1 System Model

A microgrid system can operate in both grid-connected and islanded modes. We assume

that the microgrid under consideration operates only in the grid-connected mode. The

microgrid is also served by renewable energy sources (RES) such as solar generation and

wind generation [39]. A vehicle-to-grid (V2G) system is considered as an energy storage

system (ESS) for the microgrid [1]. The V2G system under consideration is bidirectional

in nature. This implies that the V2G system can act both as an energy storage and as

an energy supply. The architecture of microgrid system is illustrated in Figure 3.1. The

microgrid is connected to the utility grid via a point of common coupling. There are a

microgrid central controller (MGCC) that controls the operation of microgrid [39], and an

aggregator for energy transfer with vehicles in a parking lot. The MGCC is responsible for
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an optimal operation of the microgrid such that the utilization of locally generated energy

(e.g., from solar and wind) is maximized. The MGCC communicates with the aggregator,

the microsource controller (MC) and the load controller (LC) via a wireless (e.g., cellu-

lar)/wireline (e.g., optical fibre) communication infrastructure. The aggregator provides

an interface between the set of plug-in hybrid electric vehicles (PHEVs), parked in a park-

ing lot, and rest of the microgrid [1]. The aggregator provides the interface possibly via

transformers and/or power electronics converters. The aggregator helps in energy trans-

action between PHEVs and the rest of the microgrid [27]. Based on the information from

the aggregator, the microsource and load controllers, the MGCC determines the optimal

operation point of every energy source and load, and sends corresponding control signals to

the respective controllers. The controllers (MC, LC, aggregator) are assumed to have the

functionality of power flow control and communication. The power flow controller in MC

controls the flow of power from RES to the microgrid system. Similarly, MGCC performs

the functionality of load curtailment via LC. The aggregator controls the bidirectional

power flows between PHEVs and the microgrid, and among the PHEVs. The microgrid

system operates over a time horizon, T . We divide the time horizon T into a number of

time-slots, where each time-slot has the duration of ∆ = T/N , where N is the total number

of time-slots. Let n denote the index of an arbitrary time-slot, n ∈ {1, 2, ..., N}.

3.1.1 System Supply and Demand Balance

A power system has a stringent constraint of instantaneous power supply and demand

balance during its operation. The microgrid, as a power system, must maintain the said
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Figure 3.1: The system architecture of the microgrid.

instantaneous system supply-demand balance [10] [11]. In this research, we consider that

a typical microgrid load demand is satisfied by energy supplies from the utility grid, RES

and V2G service as illustrated in Figure 3.2. Here, the typical microgrid load refers to the

total microgrid load demand without the charging demand from PHEVs. It also illustrates

the possible load curtailment (loadshedding) or RES generation curtailment when the total

supply and the total demand cannot be balanced. A supply provided by the V2G service is

bidirectional in nature. The V2G service acts as a storage (backup) service when there is

surplus (insufficient) RES supply, after supplied to typical microgrid loads [1]. In addition

to typical microgrid loads (for example a residential load), there is a demand from the

V2G system itself. A PHEV owner usually requires to have a certain amount of charge

in the PHEV battery before the vehicle leaves the parking lot. The requirement imposed
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Figure 3.2: System power supply and demand balance.

by PHEV owners increases the microgrid demand, in addition to the typical microgrid

loads. Such non-typical microgrid load demands will be explained in detail in the following

sections.

Let G[n] (G[n] > 0) denote the amount of power imported from the grid and GL[n] the

power supplied to typical microgrid load L[n], at time-slot n. Let Gmax be the maximum

allowable power imported from utility grid at any time-slot. Hence, G[n] is constrained

as 0 ≤ G[n] ≤ Gmax. Similarly, the total power supplied by both solar and wind RES

at time-slot n is denoted as R[n], which can be forecast but is inherently uncertain in

nature. The uncertainty is modeled by a probability distribution function as discussed

in Subsection 3.1.2. The load L[n] can also be forecast with an acceptable degree of

accuracy, is a typical load profile [10] [19] [40]. Let Rc[n] denote the amount of RES

curtailed at time-slot n (Rc[n] ≤ R[n]), and Lc[n] the amount of load curtailed at time-

slot n (Lc[n] ≤ L[n]), as illustrated in Figure 3.2. The curtailment of RES and load is
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performed when the system supply and demand balance is not satisfied. Similarly, the

V2G service power supplied at time-slot n is denoted as S[n], which is bidirectional as

discussed earlier. When S[n] > 0, the V2G service acts as a backup service and provides

power to the microgrid load; otherwise the V2G service acts as a storage service and stores

the surplus RES supply. However, when S[n] < 0, a set of PHEVs in the parking lot may

act as load (the set of PHEVs demands more power in addition to the power supplied by

RES). Such additional demand comes from the requirement to have sufficient charge level

in PHEV battery before a vehicle leaves the parking lot. In summary, the system supply

and demand balance equation can be written as

G[n] + (R[n]−Rc[n]) + S[n] = (L[n]− Lc[n]). (3.1)

PHEV as a system load

The microgrid system needs to serve a typical microgrid load, L[n]. In addition to L[n],

a PHEV charging represents a load to the microgrid system. PHEV owners usually have

a requirement of a certain range of SOC in the PHEV batteries before the vehicles leave

the parking lot. Such a PHEV requirement may not be fulfilled only by the supply of RES

only and additional power needs to be drawn from the utility grid. In such a situation, a

PHEV acts as a system load. That is, when a PHEV charging is performed by the utility

grid, the V2G system contributes to the microgrid load.

Define net microgrid load as LN [n] = L[n] − R[n], which is the microgrid load remaining

to be served after RES supply. When LN [n] > 0 and S[n] > 0, the V2G system acts as

a backup and provides the power to the microgrid by discharging a set of PHEVs in the
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parking lot. If G[n] = 0, the V2G service is able to satisfy the net microgrid load LN [n];

If G[n] > 0, both V2G service and utility grid need to supply the net load, LN [n].

When LN [n] < 0 and S[n] < 0, the V2G system acts as a storage and stores the energy by

charging a set of PHEVs in the parking lot. This situation arises when there is a surplus

power supply from RES, after serving the microgrid load L[n]. The situation can further

be divided into two different cases: Case 1, V2G service acts only as a storage service when

LN [n] < 0 and G[n] = 0; Case 2, V2G service acts both as a storage and a load when

LN [n] < 0 and G[n] > 0.

3.1.2 RES Model

The wind generation and the solar generation are two renewable energy sources for the

microgrid system, with total power generation R[n] at time-slot n. Denote the power from

the solar generation and the wind generation as Ppv[n] and Pwt[n] respectively. Hence,

R[n] = Ps[n] + Pw[n]. (3.2)

Solar generation: The output of solar energy from a photo-voltaic (PV) system, Ppv(t),

depends upon PV system efficiency ε(t), radiation intensity G(t) and temperature of solar

cell [41],

Ppv(t) = ε(t)G(t) (3.3)
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where ε(t) is a function of the solar radiation intensity (neglecting PV cell temperature)

given by

ε(t) =


ηc
Kc

G(t), 0 < G(t) < Kc

ηc, G(t) ≥ Kc.

(3.4)

In (3.4), Kc is the threshold of radiation intensity beyond which solar intensity is ap-

proximately constant equal to ηc. The intensity G(t) is a function of time with both the

deterministic and stochastic components which are related to geographic and atmospheric

effects respectively, denoted by G(t) = Gd(t)+Gs(t) [42]. The deterministic part Gd(t) de-

pends upon the time of day, season of year, latitude of location; The stochastic part Gs(t)

depends upon the cloud covering and weather effects, and can be modeled as a random

variable at any t with a Gaussian distribution [41] [42]. Hence, the solar power generation

Ppv[n] can be modeled as a Gaussian random variable with time dependent mean and vari-

ance.

Wind generation: The output of wind turbines varies in accordance with the speed of

wind at the location under consideration. Since wind speed is intermittent in nature, the

output of a wind energy source at a time is a random variable. Every wind turbine has

a power curve that depicts the relation between the wind turbine output and wind speed,

with an example shown in Figure 3.3 [42] [5]. The output power of a wind turbine, Pwt(t),

depends upon the wind speed, v. There are three parameters associated with the wind

speed: 1) Vr, rated wind speed; 2) Vci, cut-in wind speed; 3) Vco, cut-off wind speed. For

Vci ≤ v ≤ Vr, the output power is a quadratic function of v; For v < Vci or v > Vco, there is
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Figure 3.3: Power curve for VESTAS 600-kW wind turbine [5].

no output power [10]. The wind speed, (v), is modeled as a random variable that follows

Weibull distribution [42] [43], whose probability density function (PDF) is given by

f(v) =
k

c

(v
c

)k−1

e−(v/c)k .

where k and c are two parameters of Weibull distribution known as shape parameter and

scale parameter respectively. The parameters are calculated from average, vavg, and its

standard deviation of wind speed, vavg and σ as

k =

(
σ

vavg

)−1.086

c =
vavg

Γ(1 + 1/k)
.

The values of k and c vary according to the time of day and season of the year. Another

model for the wind speed, v, is Gaussian distribution [10]. The wind generation Pwt[n] can

be computed by using the power curve for wind turbine, where the input for the power
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curve is the wind speed follwing a Weibull distribution or a Gaussian distribution.

3.1.3 PHEV Battery Model

It is assumed, for simplicity, that all the PHEV batteries in the system have the same

capacity and the same chemical characteristics. Denote the PHEV battery capacity by e

(e ≥ 0). We adopt the concept of state-of-charge (SOC) to resolve the amount of charge

in the battery for a given time. The SOC is the available energy content in the battery

normalized to its rated energy capacity. We consider a parking lot in which there are

I parking spots. A parking spot is denoted by its index i, i ∈ {1, 2, ..., I}. Let xi[n]

(xi[n] ≥ 0) denote the amount of charge available in PHEV i at the end of the time-slot

n. We use terms “PHEV parked at parking spot i” and “PHEV i” interchangeably. Then,

xi[n] = e · SOCi[n], where SOCi[n] (SOCi[n] > 0) is the SOC of PHEV i at the end

of time-slot n. The amount of the storage available in PHEV i at time-slot n (i.e., the

maximum storage capacity of PHEV i at time-slot n) is given by (e− xi[n]).

A certain amount of energy is lost during the charging/discharging process of a PHEV bat-

tery due to the energy conversion loss [44]. The energy conversion loss can be addressed

by incorporating the charging/discharging efficiency of the battery into the model. Let

ηc (0 ≤ ηc ≤ 1) and ηd (0 ≤ ηd ≤ 1) denote the charging and discharging efficiency of a

PHEV battery respectively [33]. A PHEV battery can be charged (discharged) with a vari-

able charging (discharging) rate, denoted by ci[n] (di[n]) for charging (discharging) during

time-slot n of PHEV i battery. An illustration of the charging and discharging process of

PHEV i battery during a microgrid operation is shown in Figure 3.4. It demonstrates how
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the SOC in the PHEV battery is updated for each charging/discharging process. During a

charging (discharging) process PHEV i’s battery, the energy level is increased (decreased)

by an amount of ci[n]ηc∆ (di[n](1/ηd)∆) with charging (discharging) rate of ci[n] (di[n])

in time-slot n. The charging and discharging process in a battery cannot occur simul-

taneously at a given time [45]. In other words, we have ci[n].di[n] = 0. Similarly, the

charging/discharging rate cannot have negative values, i.e., ci[n] ≥ 0 ; di[n] ≥ 0. when

ci[n] = 0, di[n] = 0, it refers to either parking spot i is empty or a PHEV plugged in at

parking spot i is not charging or discharging.

The lifetime of a battery deteriorates in every charging/discharging cycle. This causes the

capacity of battery (e) to decrease over each charging/discharging cycle. However, the

deterioration rate of the battery is almost imperceptible over the daily cycle [46]. Hence,

for the time horizon T under consideration in the system model, we do not consider the

deterioration effect of the battery lifetime.

A battery exhibits an effect called “self-discharge effect”. This effect causes the energy

stored in a battery to be decreased over time [27]. Let β (0 ≤ β ≤ 1) denote the remaining

fraction of the battery energy level over a time-slot or during a period of ∆ due to the

self-discharging effect. This implies that the maximum amount of energy available at the

end of time-slot n is βxi[n− 1], such that xi[n] = βxi[n− 1] when ci[n− 1] = di[n− 1] = 0.

Similarly, in order to prolong the lifetime of a battery, the energy level of the battery should

always be maintained above a minimum threshold given by a minimum SOC, denoted by

SOCmin [35]. Hence, SOCi[n] ≥ SOCmin.

Due to the chemical characteristics of a battery, there is a limitation over the maximum

allowable charging (discharging) rate of a battery, denoted by Cmax (Dmax) for PHEV
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Figure 3.4: An illustration of a PHEV battery charging/discharging process at time-slot
n.

i battery [27]. The charging and discharging rates are constrained as ci[n] ≤ Cmax and

di[n] ≤ Dmax respectively. Moreover, the amount of energy contained in a battery also im-

poses the maximum possible charging/discharging rate. The discharging rate is constrained

as ( 1
ηd

)di[n]∆ ≤ xi[n] and the charging rate is constrained as ηcci[n]∆ ≤ (e− xi[n]).

3.1.4 PHEV Mobility

The driving pattern of a PHEV owner is stochastic in nature. A deterministic model [11],

a statistical model [10], and a stochastic model (Markov chain model) [27] are commonly

adopted in literature for PHEV mobility. Figure 3.5a illustrates an instance of the parking

lot in which a PHEV owner starts the trip from point A and ends the trip by parking the

vehicle at parking spot i. The distance traveled during the trip is denoted by yi (in km),

which can be modeled by a logarithmic normal distribution, yi ∼ LN(µ, σ2) [10]. For sim-

plicity, we consider yi to be uniformly distributed. Moreover, it is assumed that a PHEV
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has a fully charged battery, i.e., SOC = 100% before it begins the trip. For example, point

A can be home and PHEV battery can be fully charged over the night before it leaves

home in the morning.

A PHEV consumes some energy of its battery during the trip and arrives at the parking

spot i with SOC < 100%. Now, PHEV i has an initial SOC, SOCi, when it arrives at

parking spot i.

For a given time instance, the parking lot may have empty or occupied parking spots. Fig-

ure 3.5a illustrates that spot 2 and i+ 1 are empty, while spots 1, i+ 1 and I are occupied.

Let W be the energy consumed per kilometer of the battery when a PHEV makes a trip.

Then SOCi = (1 − W.yi
e

)100% [10]. Hence, the initial amount of energy content in the

battery of PHEV i is evaluated as xi = xi[ai] = e · SOCi, where ai is arrival time-slot of

PHEV i as shown in Figure 3.5b.

We assume that an arrival process or a departure process of a PHEV occurs only at the

beginning of a time-slot. The arrival process and departure process cannot occur simul-

taneously at the same time-slot. An arrival/departure process of a PHEV in parking

spot i is illustrated in Figure 3.5b. As shown in Figure 3.5b, PHEV i arrives at the

beginning of time-slot ai with an initial SOC of SOCi and departs at the beginning of

time-slot (ai + τi[ai]) or equivalently departs at the end of time-slot (ai + τi[ai]− 1), where

0 < τi[ai] < N . We assume, for simplicity, arrival time, ai, and departure time, ai + τi[ai],

of PHEV i are uniformly distributed within a corresponding given range of time. PHEV

i stays in the parking spot i for a duration of length τi[ai] after its arrival at time-slot ai.

Moreover, τi[n] denotes the remaining number of time-slots at time-slot n for PHEV i be-

fore it leaves parking spot i. Now, let us define PHEV i occupancy, Mi ∈ [ai, ai + τi[ai]) to
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(a) PHEV arrival process in parking lot.
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(b) PHEV arrival and departure process at parking spot i during the time horizon T .

Figure 3.5: Illustration of PHEV mobility.
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be the range of time slots that PHEV i will be plugged-in where, [.) is used to represent an

integer range. We assume that, for simplicity, only one PHEV can arrive and depart from

parking spot i over the time horizon T . For example, it can be a scenario of a privately

owned parking spot by an employee in an office. Hence, there will be maximally only one

PHEV i occupancy (Mi), during the time horizon T .

We consider that a PHEV can depart earlier than an expected time. This implies a possi-

bility that PHEV i can depart from the parking lot earlier than time-slot ai+τi[ai]. In order

to account for such an uncertain departure of PHEV i, let Pth denote the probability that

PHEV i takes an unexpected early departure. Moreover, let Zi[n] = 0 denote that PHEV

i takes an unexpected early departure at time-slot n, and Zi[n] = 1 denote that PHEV i

do not take any unexpected early departure at time-slot n. We consider Zi[n];∀i, ∀n, to

be independent and identically distributed random variables, all Bernoulli distributed with

success probability of (1− Pth), then the probability mass function of Zi[n] is given as

fZi[n](zi[n]) =


1− Pth, zi[n] = 1

Pth, zi[n] = 0.

(3.5)

Similarly, the remaining number of time-slots, τi[n], is given by

τi[n] =



τi[ai], n = ai

max((τi[n− 1]− 1)Zi[n], 0), n ∈Mi and n 6= ai

0, n 6∈Mi.

(3.6)
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PHEV batteries are not guaranteed to be fully charged before it departs. However, the

PHEV i is charged as much as possible over occupancy Mi. Moreover, if a PHEV i departs

only at its expected time, ai + τi[ai], the energy content will not be less than its initial

energy content, xi, i.e.,

xi[ai + τi[ai]] ≥ xi. (3.7)

Finally, the energy content of PHEV i battery is updated according to the follwing rela-

tionship

xi[n] = max ( (βxi[n− 1] + ci[n]ηc∆− di[n](1/ηd)∆), 0 ). (3.8)

3.1.5 The Aggregator

The aggregator controls the charging/discharging rate of each PHEV battery in the park-

ing lot. The control of a such charging/discharging process results in an aggregated charg-

ing/discharging rate of the aggregator as shown in Figure 3.6 [27]. The dynamics of the

charging/discharging rate control of each PHEV results in either an amount of energy is

drawn from (backup service) or absorbed by (storage service) the aggregator. Finally,

the aggregator provides backup/storage service to support RES supply into the microgrid

based on the aggregated charging/discharging process [1]. Denote Cagg[n] as aggregated

charging rate of the aggregator and Dagg[n] as aggregated discharging rate of the aggrega-

tor, at time-slot n.
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Figure 3.6: An illustration of the aggregated charging/discharging process.

The aggregator controls the energy transaction between the microgrid generation, load and

a set of PHEVs parked in the parking lot. In addition, we consider a novel approach in

which the aggregator performs the energy transaction among the PHEVs within the park-

ing lot, irrespective of the other generations and load in the microgrid. Finally, charging

rate ci[n] and discharging rate di[n] of PHEV i are divided into different components as

demonstrated in Figure 3.7. The PHEV charging rate consists of three different parts: i) a

charging rate from the other PHEVs, cv,i[n], ii) a charging rate from the surplus RES gener-

ation (storage V2G service), cV 2G,i[n], and iii) a charging rate from the utility grid, cG,i[n].

Similarly, a PHEV discharging rate consists of two different parts: i) a discharging rate to

other PHEVs, dv,i[n], and ii) a discharging rate to support lack of RES generation (backup

V2G service), dV 2G,i[n]. Hence, the total charging rate ci[n] = cv,i[n] + cV 2G,i[n] + cG,i[n]

and total discharging rate di[n] = dv,i[n] + dV 2G,i[n].
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Figure 3.7: Different parts of the charging/discharing rate of a PHEV.

For a demonstration purpose, an example of the energy transaction process among the

PHEVs, at time-slot n, is shown in Figure 3.8 where a set of PHEVs are in the charging

mode and another set of PHEVs is in discharging mode. PHEV i (a representative of the

set of discharging PHEVs) has two components of discharging rates dv,i[n] and dV 2G,i[n].

Similarly, PHEV j (a representative of the set of charging PHEVs) has three components

of charging rates cv,j[n], cG,j[n] and cV 2G,j[n]. It should be noted that the rates cv,i[n] and

dv,i[n] do not contribute to the aggregated charge and discharge rates out of the aggregator.

In conclusion, the following relations can be listed.

• Dagg[n] =
∑I

i=1 dV 2G,i[n];

• Cagg[n] =
∑I

i=1(cV 2G,i[n] + cG,i[n]);

• S[n] = Dagg[n]−Cagg[n], which is referred as the net power output of the aggregator;

• The sum of charging rate cv,i[n] from all parking spots must be equal to the sum of

discharging rate dv,i[n] from all the parking spots at a given time-slot:∑I
i=1 cv,i[n] =

∑I
i=1 dv,i[n].

Note that such further division of ci[n] and di[n] into different parts is a logical

approach to capture the charging and discharging of a PHEV.
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Figure 3.8: An illustration of a charging/discharging process within and to outside of the
aggregator.

When Dagg[n] > Cagg[n], S[n] is greater than 0 and the aggregator provides power to the

microgrid (backup service). When Dagg[n] < Cagg[n], S[n] is less than 0 and the aggregator

absorbs power from the microgrid (storage service). When S[n] = 0, the aggregator does

not provide any kind of service to the microgrid.

The aggregated charging and discharging rate are mainly subjected to two kinds of con-

straints. Firstly, the aggregator is constrained by a maximum possible current that can be

transmitted through the aggregator [29]. Secondly, a situation of undervoltage may arise

due to the the excessive loading from the aggregator in the distribution system, and vice

cersa [47]. Such a situation imposes a constraint over the maximum aggregated charging
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and discharging rate. Let Cagg
max be the maximum allowable aggregated charging rate of

PHEVs, and Dagg
max be the maximum allowable aggregated discharging rate of PHEVs. The

aggregated charging/discharging rate is constrained by the corresponding maximum rate

and can be written as 0 ≤ Cagg[n] ≤ Cagg
max and 0 ≤ Dagg[n] ≤ Dagg

max.

3.2 Research Problem

As discussed in Subsection 3.1.5, an energy transaction from one vehicle to an other vehicle

is considered into the system model. Let vehicle-to-vehicle (V2V) operation define an

energy transaction among the PHEVs within the aggregator. In this research, we focus

on research problems that associate only with the V2V operation. The V2V operation

transfers the energy from the source vehicles (which are parked for relatively longer times)

to the destination vehicles (which are parked for relatively shorter times). The depleted

energy of the source vehicles is fulfilled by the surplus RES supply in the future which

shows that the V2V operation becomes beneficial only when there is a surplus RES supply

in the future. On the other hand, the V2V operation also enables the V2G system to

absorb an additional amount of surplus RES energy (in contrast to the case when the V2V

operation is not adopted) in the future, thereby enhancing the storage capability of the

V2G system. Moreover, it is also true that the energy imported from the utility grid (when

a set of PHEVs demands for the charging) is also minimized, thereby enhancing the RES

penetration.
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Microgrid Operation Scenarios

We divide the microgrid operation into nine different scenarios based on the values of net

microgrid load, LN [n], and net power supplied by the aggregator, S[n]. The LN [n] can

be at three different states (LN [n] > 0, LN [n] < 0, and LN [n] = 0). For each state of

LN [n], S[n] can have three different states (S[n] > 0, S[n] < 0, and S[n] = 0). Overall, the

combinations of LN [n] and SN [n] yield the nine different scenarios. Each scenario restricts

the state (positive, negative, N/A, or zero) of variables cV 2G,i[n], dV 2G,i[n], cv,i[n], dv,i[n],

and cG,i[n]. The possible nine scenarios of the microgrid operation with the corresponding

state of the variables are shown in Table 3.1, where i ∈ {1, 2, ..., I} and n ∈ {1, 2, ..., N}.

The table also shows that a V2V operation is possible only in the scenario when LN [n] < 0

and S[n] < 0 i.e., only when the V2G system is providing the storage service. This

shows that the V2V operation is executed on the top of the V2G system. When the rates

dv,i[n] > 0 or cv,i[n] > 0 then there exist a V2V operation at time-slot n. Recall that

dv,i[n]cv,i[n] = 0. When there is a V2V operation,
∑I

i=1 cv,i[n] =
∑I

i=1 dv,i[n] must be true.

This implies that the power discharged by a set of PHEVs, for the purpose of the V2V

operation, must be consumed by a set of PHEVs within the aggregator. Such discharging

(dv,i[n]) and charging (cv,i[n]) components have no effect in the computation of S[n].

Research Problem

The V2V operation can be possible only when the overall charging demand from PHEVs

within the aggregator is greater than the total supply provided by the excess RES (LN [n] <

0). In this research, we focus on making decisions such as whether or not a V2V operation
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Table 3.1: Scenarios of the microgrid operation.

Net Load

Aggregator’s

net power

supply

cV 2G,i[n] dV 2G,i[n] cv,i[n] dv,i[n] cG,i[n] Remarks

LN [n] > 0 S[n] = 0 = 0 = 0
(Backup S[n] > 0* = 0a > 0 = 0c ≥ 0 ∑I

i=1 dV 2G,i[n] >
∑I

i=1 cG,i[n]; ∀n

Service) S[n] < 0 ≥ 0 > 0d
∑I

i=1 dV 2G,i[n] <
∑I

i=1 cG,i[n],∀n

LN [n] < 0 S[n] = 0 = 0 = 0c = 0
(Storage S[n] > 0 N/A = 0b N/A N/A
Service) S[n] < 0** ≥ 0 ≥ 0 ≥ 0 ≥ 0d

∑I
i=1 cv,i[n] =

∑I
i=1 dv,i[n]; ∀n #

S[n] = 0 = 0c = 0
LN [n] = 0 S[n] > 0 = 0a = 0b N/A N/A

S[n] < 0 = 0c ≥ 0d

*
Provides Backup service

**
Provides Storage service

a
No charging from V2G operation i.e., No RES charging of PHEVs

b
No discharging to V2G Operation i.e., Microgrid Load is not served with V2G operation

c
V2V operation is not considered. i.e., No power transaction among the PHEVs

d
a group of PHEVs acting as a load

#
the only scenario where V2V operation is considered.

should be invoked, and if there is a V2V operation then how a PHEV should participate

in the V2V operation. The decisions are made on per-PHEV basis.

Consider a V2V operation at time-slot n (LN [n] < 0, S[n] < 0 and |S[n]| > |LN [n]|). For

a certain additional demand of battery charging from a set of PHEVs (|S[n]| − |LN [n]|) in

the parking lot, we want to find the answers to the following two questions:

Question 1: Should PHEV i discharge in a given V2V operation for a given time-slot n

or not?, and

Question 2: If PHEV i should discharge in the V2V operation, what is the maximum

power that PHEV i is allowed to discharge for the V2V operation?
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3.3 Problem Formulation

3.3.1 Research Question 1

To determine whether or not PHEV i should discharge in a given V2V operation for a

given time-slot n, we take a threshold based approach. We define a certain threshold, Ω,

and compute a metric, ωi[n], for PHEV i at time-slot n. If ωi[n] > Ω, PHEV i should

discharge its battery otherwise PHEV i should not discharge, but should charge, in the

V2V operation. A PHEV should discharge its battery only when it has enough charge

in its battery and is going to stay in the parking lot for a longer time. In such case, the

PHEV battery can be charged again in following time-slots when there is a surplus RES

supply. This should enhance the aggregated storage capacity in later time-slots, thereby

utilizing RES more. Hence, the metric, ωi[n], should depend on the values of SOCi[n] and

τi[n]. Define two thresholds:

• SOCΩ−SOC threshold for PHEV i such that, if SOCi[n] is below the threshold, the

metric, ωi[n] is equal to ωmin; and

• τΩ− time threshold for PHEV i such that, if SOCi[n] is below the threshold, the

metric, ωi[n] is equal to ωmin,

where,

ωmin = αsocSOCΩ + ατ
τΩ

τmax
, (3.9)
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αsoc and ατ are weights given to SOC and τ of PHEV respectively. Note that αsoc+ατ = 1.

The ωi[n] is computed as

ωi[n] =


ωmin, SOCi[n− 1] ≤ SOCΩ or τi[n] ≤ τΩ

αsocSOCi[n− 1] + ατ .
τi[n]

τmax
, otherwise,

(3.10)

where, τmax is the maximum possible time that a PHEV is plugged-in and ωi[n] ∈ [ωmin, 1].

Finally, PHEV i should discharge in a V2V operation when ωi[n] ≥ Ω, where, Ω ∈ [ωmin, 1].

The number of PHEVs which are discharging in a V2V operation directly depends upon

the value of threshold Ω, and increases with a decrease in the Ω value. This implies that,

when Ω = ωmin, then there will be the maximum possible number of PHEVs that are

discharging in a V2V operation. Similarly, when Ω = 1, then there will be no PHEVs that

are discharging in a V2V operation at all.

In this research, we aim at resolving the optimum value of αsoc (thereby the optimal value

of ατ ) that maximizes the total amount of energy discharged in a V2V operation. It will

also satisfy that no PHEV battery is depleted below its initial SOC when it leaves the

parking lot at an expected time. Similarly, the value of SOCΩ and τΩ should not be chosen

too low such that a PHEV battery may be depleted below its initial SOC when it leaves

the parking lot at an expected time. In this research, we arbitrary choose the values of

SOCΩ and τΩ.

In summary, a PHEV i should discharge in a V2V operation only when ωi[n] ≥ Ω, where,

Ω ∈ [ωmin, 1], ωi[n] ∈ [ωmin, 1].
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3.3.2 Research Question 2

To determine the maximum energy that PHEV i should discharge for the V2V operation;

we study how it should depend on the current metric, ωi[n], and the maximum amount of

energy that PHEV i can discharge for the V2V operation. Let dv,i[n] denote the maximum

energy that can be discharged from PHEV i for the V2V operation at time-slot n. The

maximum amount of energy, in PHEV i, available for discharging in the V2V operation

is the excess amount of energy above the threshold SOCΩ. It is computed based on the

threshold SOCΩ and SOC of PHEV i battery at previous time-slot, SOCi[n−1], the amount

of energy in the battery at the beginning of time-slot n is given by e(SOCi[n−1]−SOCΩ).

The maximum energy that can be discharged from PHEV i at time-slot n is the fraction

of the maximum amount of energy available for discharge as given by the metric, ωi[n].

Hence,

dv,i[n] = e · (SOCi[n− 1]− SOCΩ) · ηd · ωi[n]. (3.11)

However, dv,i[n] ≤ min(Dmax − dV 2G,i[n], dv,i[n]) = min(Dmax, dv,i[n]) because LN [n] < 0

i.e., the V2G system is in the storage service mode, thereby dV 2G,i[n] = 0. Recall that

Dmax is the maximum allowable discharging rate of a PHEV battery.

3.3.3 Necessary and Sufficient Conditions for V2V Operation

In order to invoke a V2V operation, both the necessary and the sufficient conditions need

to be satisfied. As discussed in Section 3.2, we consider a V2V operation only during a

V2G storage service (LN [n] < 0). The main objective of the V2V operation is to minimize
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the power import from the utility grid for charging a set of PHEVs during a V2G storage

service.

The Necessary condition

As discussed in Section 3.1, it is desired that the MGCC charge all the PHEV batteries fully

or as much as possible before they depart from the parking lot. On the other hand, MGCC

should guarantee that a PHEV is not discharged below its initial energy level xi before it

departs (given that PHEV i stays in parking spot i for entire occupancy Mi). Hence, at

each time-slot n, PHEV i demands a minimum charging rate, denoted as δi,min[n], given

by

δi,min[n] =
e− xi[n− 1]

τi[n]
. (3.12)

In time-slot n, if the total minimum demand of all PHEVs,
∑I

i=1 δi,min[n], is greater than

the surplus RES supply, LN [n], an extra amount of power (
∑I

i=1 δi,min[n]−LN [n]) has to be

imported from the utility grid. The V2V operation will be invoked in such a condition to

minimize the power imported from the grid. The necessary condition for a V2V operation

is summarized as follows

I∑
i=1

δi,min[n] > LN [n]. (3.13)
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The Sufficient Condition

In order to determine a sufficient condition, first we divide the PHEVs into two groups,

namely, a set of charging PHEVs (Ψc,n) and a set of discharging PHEVs (Ψd,n). The total

minimum charging demand by PHEV set Ψc,n is sumcv,n =
∑

i∈Ψc,n
δi,min[n]. If the total

minimum charging demand sumcv,n is not satisfied by the excess RES supply (|LN [n]|), and

there is a number of PHEVs ready to discharge in the V2V operation, then V2V operation

will be invoked.

In order to determine sets Ψc,n and Ψd,n at time-slot n, first we compute the metric ωi[n].

If ωi[n] ≥ Ω, PHEV i is assigned to set Ψd,n, otherwise, PHEV i is assigned to set Ψc,n.

Hence, the sufficient condition to initiate a V2V operation is

∑
i∈Ψc,n

δi,min[n] > LN [n] and Ψd,n 6= ∅. (3.14)

3.3.4 V2V Operation Revenue and Cost

The V2V operation helps in reducing the total amount of energy imported from the utility

grid, thereby enhancing the RES penetration into the microgrid. The equivalent reduction

in the energy import from the utility is regarded as the revenue of the V2V operation. Sim-

ilarly, the V2V operation causes some unwanted energy conversion loss during the energy

transaction within the parking lot which is regarded as the cost of the V2V operation. We

measure the V2V operation operation cost and revenue in terms of an amount of energy.

In this subsection we explain the V2V operation cost and revenue in details.

Revenue
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As discussed earlier, the V2V operation helps in reducing the energy import from the util-

ity grid. In other words, the V2V operation enhances the storage-capacity of the V2G

system. The amount of discharge energy in the V2V operation in a given time-slot pro-

vides the equivalent amount of enhanced storage-capacity of the V2G system in the future

time-slots. Hence, when there exists a surplus RES supply in the future the enhanced

storage-capacity of the V2G system is utilized by storing the surplus RES energy supply.

In this way the amount equivalent to the enhanced storage-capacity of the V2G system is

reduced in importing from the utility grid. We consider such equivalent amount of energy

to be the benefit due to the V2V operation. This shows that the revenue of the V2V

operation is equal to the total amount of energy that is successfully transferred to charging

PHEVs via V2V operation. Denote R as the total amount of revenue due to V2V operation

over time horizon T . R is computed as the total amount of energy charged due to cv,i[n]

for all PHEVs over the time horizon T , is given by

Rv =
N∑
i=1

I∑
i=1

cv,i[n]∆. (3.15)

The total amount of energy transferred to the charging PHEVs via V2V operation is equiv-

alent to the total amount of energy deducted from the utility grid.

Cost

When a PHEV demands for the extra energy over the energy supplied by the RES, the

demand can be fulfilled either by importing the power form the grid or by the V2V op-

eration. When a PHEV is charged by the grid, the process suffers from only one energy

conversion loss (during charging of the PHEV battery). However, when a PHEV is charged
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by the V2V operation, the process incurs two energy conversion losses (discharging a source

PHEV and then charging a destination PHEV). This clearly explains that charging a des-

tination PHEV by the V2V operation causes an extra energy conversion loss (due to the

discharging of a source PHEV). We consider the additional energy conversion loss to be

the cost of the V2V operation.

The cost incurred when PHEV i discharges at time-slot n is the difference of the energy

before and after a discharge of the discharging PHEV in the V2V operation which is given

as, z−dv,i[n]∆ = (
dv,i[n]

ηd
−dv,i[n])∆ = dv,i[n](1−ηd

ηd
)∆, where, z is the corresponding amount

of energy in a discharging-PHEV’s battery before the discharge. The corresponding dis-

charged amount is dv,i[n] at time-slot n.

Finally, the total cost of the V2V operation over time horizon T , denoted by U , is the sum

of the cost incurred due to all PHEVs in the parking lot given by

U =

(
1− ηd
ηd

) N∑
n=1

I∑
i=1

dv,i[n]∆. (3.16)

Moreover, when there is not a sufficient surplus RES supply in the future, the total amount

of the energy depleted from the discharging PHEVs is compensated by the utility grid

instead of the surplus RES supply. In this situation the V2V operation appears to be

ineffective. A PHEV, which is expected to stay a long time in a parking lot, agrees to

discharge in the V2V operation with an expectation to charge its battery from RES in the

future. Hence, the discharged power is expected to be fulfilled by the RES supply. If RES

supply in the future cannot be provided then energy that had been transferred out for the

V2V operation need to be compensated by the utility grid. In conclusion, we can say that
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the V2V operation, over time horizon T , becomes ineffective when the total amount of

energy transaction in the V2V operations exceeds the total amount of energy delivered by

the surplus RES supply. More formally, when
∑N

n=1

∑I
i=1 dv,i[n]∆ >

∑N
n=1

∑I
i=1 cV 2G,i[n]∆

the V2V operation is not beneficial.

3.3.5 Research Issues and Objectives

This research is dedicated to study the novel V2V operation which enhances the storage

capacity of the V2G system, thereby enhancing the RES penetration for sufficient surplus

RES supplies. Subsection 3.3.3 explains the necessary and sufficient conditions to invoke

a V2V operation. As explained in the subsection, once the necessary condition for a V2V

operation at time-slot n is satisfied, the values of threshold Ω and metric ωi[n] determine

whether or not PHEV i, at time-slot n, should discharge for a V2V operation. The research

issues are related to the methods of resolving the values of Ω and ωi[n] for the V2V

operation.

In a V2V operation, there are two sets of PHEVs, namely the set of charging PHEVs, Ψc,

and the set of discharging PHEVs, Ψd. It is desirable that the total number of PHEVs, in

the parking lot, be divided into sets Ψc and Ψd in such a way that the energy transaction in

the V2V operation is maximized. It will also satisfy the condition that the final SOC (the

SOC of a PHEV before it leaves the parking lot at an expected time) of any PHEV do not

go below the initial SOC. The division of total number of PHEVs into Ψc and Ψd depends

upon the values of Ω and ωi[n], such division procedure needs to be carefully designed.

This leads to the research issues which are related to the procedures of resolving the values
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of Ω and ωi[n] to maximize the V2V energy transaction while satisfying the PHEVs’ SOC

constraint.

When the value of Ω ∈ {ωmin, 1} is equal to ωmin, the size of set Ψd is likely to grow

relative to the size of set Ψc. This scenario may reduce the V2V energy transaction from

the maximum possible value because of the relatively less charging demand with small

size of set Ψc. Similarly, when Ω = 1, set Ψd becomes a null set and there will be no

V2V operation. Hence, there is a research issue to determine the optimal value of Ω that

leads to the maximum energy transaction in the V2V operation. However, in this work we

arbitrarily select a value of Ω ∈ {ωmin, 1} and keep the value constant in order to limit the

scope of the research.

The value of ωi[n] determines the amount of energy transaction during the V2V operation

at time-slot n. In (3.10), it is shown that the value of ωi[n] for a given SOCi[n − 1] and

τi[n] can be controlled by varying the values of αsoc and ατ . Hence, it is also a research

issue to determine an optimal value of αsoc (recall that ατ = αsoc − 1) to maximize the

V2V energy transaction while satisfying the PHEVs’ SOC constraints for a given Ω over

time horizon T . In this research, we only focus on resolving the value of weight αsoc, for a

given Ω, that controls the value of ωi[n].

Finally, the objective of this research is to analyze the impact of αsoc on the performance

of the V2V operation. The performance of the V2V operation is measured on the basis of

energy based metrics, namely V2V operation cost, U , and revenue, R. In order to analyze

the impact, we run the simulation for different values of αsoc and observe the relationships

between αsoc and R, and between αsoc and U . Moreover, we also observe the impact of

unexpected PHEV departures on R and U by varying the value of the unexpected early
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departure probability Pth.

3.4 Summary

In summary, we can say that the proposed novel V2V operation runs on the top of the

V2G system. The V2V operation transfers the energy from the source vehicles to the des-

tination vehicles, where the destination vehicles departs earlier than the source vehicles.

The source vehicles stays longer and look to charge their batteries from the surplus RES

supplies in the future. This shows that the V2V operation becomes ineffective if there

are not sufficient surplus RES supplies in the future. Hence, the V2V operation enhances

the storage-capacity of the V2G system, thereby creating an opportunity of enhancing the

RES utilization.

It is always desirable that the V2V energy transaction is maximized satisfying the PHEVs’

SOC constraint in which the final SOC of any PHEV should not go below correspond-

ing initial SOC. The main parameters which control the V2V energy transaction are the

threshold Ω, and the weight αsoc. In this research, we arbitrarily select the value of Ω and

keep it constant while only the value of the weight αsoc is varied to analyze the impact of

αsoc on the performance of the V2V operation. In addition, we also analyze the impact of

earlier departures, with probability Pth, of vehicles than expected times on the performance

of the V2V operation.
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Chapter 4

Performance Evaluation

In this chapter, we study the impact of weight αsoc and probability Pth on the system

performance parameters. The details of the system performance parameters are given in

Section 4.2. We focus on obtaining the optimum value of αsoc such that the total energy

transaction in the V2V operation (as given by the total V2V operation revenue, R) is

maximized while satisfying PHEVs’ SOC constraints. In addition, we observe the impacts

on the other performance parameters such as overall RES utilization, total amount of

backup and storage services etc. In order to observe such impacts, we build a simulator

using a general purpose programming language C++, which has an object-oriented feature.

The simulator implements the relationships between all the system variables explained in

Chapter 3. In simulation, we vary the values of αsoc and Pth, and compute the values of

performance parameters. The impact of αsoc and Pth on the performance parameters are

analyzed based on the computed values.
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4.1 Simulation Procedure

The microgrid system variables can broadly be classified into deterministic variables and

random variables. Let a simulation run defines an instance of simulation that is executed

over a time horizon. Variables that do not change (change) over different simulation runs

are categorized as deterministic (random) variables. Let a simulation scenario defines a

number of simulation runs for a given set of deterministic variables. In this research, the

deterministic variables include load profile, L[n], and mobility profile, Mi. The random

variables include R[n] and Zi[n]. Note that, if τi[n] = 0, a parking spot i is empty. If

τi[n] = 1, PHEV i will leave the parking spot i at the end of time-slot n. If τi[n] > 0, a

parking spot i is occupied at time-slot n.

The variables discussed above are input to the simulated microgrid system. The output

variables in the simulated microgrid system are G[n], GL[n], ci[n], cV 2G,i[n], cv,i[n], cG,i[n],

di[n], dv,i[n], and dV 2G,i[n]. The output variables are updated at the end of time-slot n. In

this research, we consider a simulation scenario with 5000 simulation runs.

Figure 4.1 demonstrates the flowchart for the simulation procedure. Refer Appendix A for

detail algorithms used for the simulation.

4.2 Simulation Parameters

Consider the microgrid system deployed in a commercial or an industrial area, which is typ-

ically operated during a day time, e.g., from 6 a.m. to 9 p.m. in a day. This implies that the

time horizon, T , is 15 hours. The duration of a time-slot (∆) is chosen to be 10 minutes [27].

The total number of time-slots, N = T · (total number of time-slots in an hour) = 15 · 6 =

56



If L  [n] < 0N

       Invoke 

Backup Algorithm

       Is

V2V Necessary 

   condition

   satisfied?

       Is

V2V Sufficient 

   condition

   satisfied?

      Invoke 

V2V  Algorithm

Invoke typical

Storage Algorithm

n = n +1

   if

n < N ?

    Is 

simulation 

runs  

enough?

END

Yes

Yes

Yes

Yes

NO

NO

NO

n = 0

NO

Yes NO

Compute L  [n]N

Generate R[n] and Z  [n]i

   Go to Storage 

Algorithm Block

Figure 4.1: Flowchart to illustrate the overall simulation procedure.
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90.

For simplicity, we consider only one typical load profile for the simulation, which is an

industrial load profile from [11], with the peak load 1000 kW. The total number of parking

spots, I, in the parking lot set to be 500. We consider that no parking spot remains empty

for time horizon T . PHEV i arrives to parking spot i after traveling distance yi, where

yi is uniformly distributed from 10 km to 70 km. PHEVs arrive within time-slots 1 to

30 (equivalently 6 a.m. to 11 a.m.) and depart within time-slots 55 to 85 (equivalently

3 p.m. to 8 p.m.). The arrival and departure time-slots are uniformly distributed within

the corresponding range. The values of ranges are chosen arbitrarily, but representing the

typical arrival and departure times. We consider only one mobility scenario.

A PHEV battery is depleted by W = 0.15 kWh for each km traveled [10]. All the PHEV

batteries have same capacity, e, equal to 15 kWh. The PHEV battery charging efficiency,

ηc, and discharging efficiency, ηd, are set to 0.9. Both maximum PHEV battery charging,

Cmax, and discharging rate, Dmax, are set to 2.2 kWh. The self discharging rate, β, is 0.99.

The utility grid can supply up to 1000 kW in a time-slot (i.e., Gmax = 1000 kW). The

nominal wind power is 1000 kW, and other parameters related to wind speed, namely

cut-in wind speed, Vci, rated wind speed, Vr, cut-out wind speed, Vco, are 3 m/s, 10 m/s,

20 m/s respectively. The forecast wind speed data are taken from the wind speed curve

given in [10]. The total solar panel area is 1000 m2 with a conversion efficiency of 0.2 [42].

The threshold for V2V operation, Ω, is set as 0.55. When we increase the value of Ω,

the number of PHEVs discharging in V2V operation is decreased, and vice versa. The

simulation has been performed for varied values of αsoc and Pth. Since αsoc +ατ = 1, when

αsoc is increased, ατ is correspondingly decreased. This refers that, when we increase the
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value of αsoc, we give more priority to state-of-charge of PHEVs and less priority to the

remaining time that a PHEV stays in the parking lot, in calculating metric ωi[n]. The sim-

ulation aims at determining optimum weights (αsoc and ατ ) for maximal performance. The

performance is evaluated based on the performance metrics as explained in the following

section.

4.3 Performance Metrics

The performance metrics are chosen to evaluate the performance of V2G services (storage

service and backup service), V2V operation and RES utilization.

1. Average PHEV battery SOC gain (Γsoc)

The metric provides a measure of overall average gain in SOC of all PHEV batteries.

It is given by

Γsoc =
I∑
i=1

SOCi[dei]− SOCi[ai]
1− SOCi[ai]

(4.1)

where dei is the departure time-slot of PHEV i.

2. Ratio of RES supply over total supply (φRES)

This metric measures the contribution made by RES supply in total supply to the

microgrid. It is given by

φRES =
N∑
n=1

(R[n]−Rc[n])

(R[n]−Rc[n]) +G[n]
. (4.2)

3. Total amount of storage energy (γS)
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It measures the total amount of energy supplied to all PHEVs by RES supply (storage

service) over time horizon T . It is measured in kWh and given by

γS =
N∑
n=1

I∑
i=1

cV 2G,i[n]∆. (4.3)

4. Total amount of backup energy (γB)

It measures the total amount of energy supplied by all PHEVs, providing backup

service, to the typical microgrid load over time horizon T . It is measured in kWh

and given as

γB =
N∑
n=1

I∑
i=1

dV 2G,i[n]∆. (4.4)

5. Total energy from V2V charging (γv2v)

It measures the total amount of entire PHEVs charging performed by the V2V op-

eration over time horizon T . It is measured in kWh and given by

γv2v =
N∑
n=1

I∑
i=1

cv,i[n]∆. (4.5)

This metric evaluates the total amount of energy gained due to the V2V operation.

The amount of energy would have been lost as RES curtailment in absence of the

V2V operation. Hence, this metric evaluates the benefit from V2V operation.

6. Total extra energy conversion loss due to V2V operation (νv2v)

When a V2V operation is invoked, a PHEV is charged with an expense of extra

energy conversion loss, which would not occur if the PHEV is directly charged from
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the grid. The extra energy conversion is occurred due to the discharging of PHEVs

during V2V operations. This metric gives the total energy conversion loss in time

horizon T . It is measured in kWh and given by

Total extra energy conversion loss due to V2V operation, νv2v =
1− ηd
ηd

N∑
n=1

I∑
i=1

di[n]∆.

(4.6)

This metric evaluates the total cost due to the V2V operation.

4.4 Evaluation of αsoc Impact

In simulation, the value of αsoc is varied from 0.1 to 0.9 with a step size of 0.1 to evaluate

the impact of αsoc. Recall that a high value of αsoc corresponds to a low value of ατ and

vice versa, as given by relation αsoc + ατ = 1. For example, with αsoc = 0.9 and ατ = 0.1,

the SOC of PHEV battery is given much higher priority in computation of metric ωi[n]

than remaining number of time-slots for PHEV to depart. Moreover, three different values

of Pth as 0, 0.05 and 0.1 are considered in evaluating the αsoc impact. The simulation re-

sults demonstrates that αsoc has no impact on the average PHEV battery SOC gain (Γsoc),

ratio of RES supply over total supply (φsoc), total amount of storage energy (γS) and total

amount of backup energy (γB). On the other hand, the total energy from V2V charging

(γv2v) and total extra energy conversion loss due to V2V operation (νv2v) increase with an

increasing value of αsoc. Nevertheless, such increment is significant only for Pth = 0, i.e.,

when PHEVs do not depart early from the parking lot.

Impact on average PHEV battery SOC gain (Γsoc)
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Figure 4.2: Average PHEV battery SOC gain.

For the impact on the final SOC of PHEVs before they depart from the parking lot, Fig-

ure 4.2 depicts the average PHEV battery SOC gain (Γsoc). The variation of αsoc has

almost no impact on Γsoc. Nevertheless, the overall value of Γsoc decreases abruptly when

Pth increases from 0 to 0.05, and continues decreasing for the further increase in Pth. How-

ever, there is a slight decrease in Γsoc as αsoc is set around 0.7 (for Pth = 0) as shown in

Figure 4.2. This is caused by the increase in the discharging amount of energy in V2V

operation, as discussed in the following.

Impact on Ratio of RES supply over total supply (φRES)

In order to study the impact on RES contribution to the microgrid load, the ratio of RES

supply over total supply (φRES) versus αsoc is shown in Figure 4.3. The curves are almost

constant for the different values of αsoc. However, the overall φRES gradually decreases for

an increasing value of Pth as observed from Figures 4.3.

Impact on total amount of storage energy (γS) and total amount of backup

energy (γB)
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Figure 4.4 demonstrates how the total amount of storage energy (γS) and total amount of

backup energy (γB) vary with αsoc. The curves are insensitive with the variation of αsoc.

However, both γS and γB are almost halved when Pth is increased from 0 to 0.05, and they

continue to decrease for Pth = 0.1. Moreover, γS is always greater than γB, because the

algorithm never lets the SOC of PHEVs’ battery go below the corresponding initial SOC

and there is surplus RES energy for the scenario under consideration.

Impact on total energy from V2V charging (γv2v) and total extra energy con-

version loss due to V2V operation (νv2v)

In order to study the impact on cost and benefit of adopting V2V operation, Figure 4.5

shows total energy from V2V charging (γv2v), which is the V2V benefit, and the total extra

energy conversion loss due to V2V operation (νv2v), which is the V2V cost, versus αsoc.

The benefit and cost are sensitive to αsoc only when Pth = 0. The total amount of energy

starts to increase mainly when αsoc is larger than 0.5 (i.e., more priority is given to SOC

of PHEV in contrast to remaining time of PHEV’s stay in parking lot, τi[n]). The values

of γv2v and νv2v reach the peaks when αsoc = 0.8. The main reason of an increased γv2v

for prioritized αsoc over ατ is that SOC of PHEVs’ battery tends to increase, while, τi[n]

monotonically decreases over time horizon T . Hence, the metric ωi[n] is likely to cross the

threshold, Ω, more often for an increased αsoc, which means more PHEVs are discharging

in V2V operation, thereby increasing the value of γv2v.

The peak values of γv2v and νv2v are around 100 kWh and around 10 kWh, respectively.

The value of γv2v is always greater than νv2v, because the discharged amount of energy

during V2V operation is mostly compensated by surplus RES energy, under the considered

scenario, over time horizon T .
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Figure 4.5: Total amount of energy from V2V charging and Total extra energy conversion
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Conclusion

From simulation results, the total energy from V2V charging (V2V operation benefit) is

always greater than the total extra energy conversion loss due to V2V operation (V2V

operation cost). The benefit starts increasing from αsoc = 0.6 and peaks at αsoc = 0.8 with

a value of around 100 kWh. The value is nearly 10% of γS. However, such an increment

exists for Pth = 0 only (i.e., no PHEVs departs early). For early departure of only 5%

PHEVs, the increment in αsoc has almost no impact on the values of benefit. Moreover,

when the benefit peaks to value of around 100 kWh, the value of cost is only around 10

kWh. That is, the V2V operation cost is only around 10% of the V2V operation benefit,

which is very encouraging performance.
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4.5 Evaluation of Pth Impact

In simulation, the value of Pth is varied from 0 to 0.1 with a step size of 0.025 to eval-

uate the impact of Pth. As an illustration Pth = 0 implies that no PHEV departs early

from the predetermined departure time (as determined in the mobility scenario). Similarly,

Pth = 0.1 implies that a PHEV independently departs early with 10% of chances. It can

also be referred as 10% of PHEVs departs early from the parking lot. The impact of varied

Pth is evaluated from three different values of αsoc, 0.1, 0.5 and 0.9.

The simulation results show that Pth has an impact on all the performance metrics dif-

ferent from αsoc. There exists a reverse impact on the performance metrics for increasing

value of Pth. As discussed Section 4.4, there is a relative increment in the overall value of

total energy from V2V charging (γv2v) with αsoc = 0.5 and 0.9, which is consistent with

the results given in the following.

Impact on average PHEV battery SOC gain (Γsoc)

In order to study the impact on the final SOC of PHEVs before they depart from the park-

ing lot, Figure 4.6 demonstrates the average PHEV battery SOC gain (Γsoc) for αsoc = 0.1,

0.5, and αsoc = 0.9. The curves abruptly decline when Pth increases from 0 to 0.025 and

gradually decreases with an increasing value of Pth. The decrement comes from that a

PHEV will miss the opportunity of charging due to its early departure. On the other

hand, the curves are almost the same for αsoc = 0.1 and 0.5, while, there is a slight de-

crease in overall results when αsoc = 0.9.

Impact on ratio of RES supply over total supply (φRES)

The ratio of RES supply over total supply (φRES) gradually decreases with an increasing
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Figure 4.6: Average PHEV battery SOC gain.
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value of Pth. When PHEVs depart early, the opportunities of storage and backup operation

are decreased, thereby decreasing the values of γS and γB. Decreasing values of γS and γB

corresponds to a decreased value of φRES.

Impact on total amount of storage energy (γS) and total amount of backup

energy (γB)

The total amount of storage energy (γS) and total amount of backup energy (γB) mono-

tonically decrease with an increasing value of Pth, as shown in Figure 4.8. However, the

plots γS and γB do not change with the variations in αsoc value. As the number of early

departing PHEVs increases (with an increase in the Pth value) the number of PHEVs for

V2G operation is relatively decreased. Hence, the values of γS and γB decrease.

Impact on total energy from V2V charging (γv2v) and total extra energy con-

version loss due to V2V operation (νv2v)

The impact of early departure PHEVs on both total energy from V2V charging (γv2v) and

total extra energy conversion loss (νv2v) is shown in Figure 4.9. The curves decline with

an increasing value of Pth. However, it is significant only when αsoc = 0.9. The level of

curves increases with the αsoc value. As discussed earlier, the value of νv2v is always less

than that of γv2v. Similarly, the peak values of γv2v and νv2v are obtained when αsoc = 0.9

and Pth = 0.

Conclusion

As shown in the simulation results, the performance metrics, namely average PHEV bat-

tery SOC gain, total energy from V2V charging and total extra energy conversion loss

due to V2V operation decrease abruptly when Pth increases from 0 to 0.025 and gradually

decreases for a further increment in Pth. On the other hand, the performance metrics,
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Figure 4.8: Total amount of storage and backup energy.

namely ratio of RES supply over total supply, total amount of storage energy (γS), and

total amount of backup energy decrease gradually with an increasing value of Pth.

4.6 Summary

In summary, the impact of αsoc variations is only limited to the performance metrics of

the total energy from V2V charging and total extra energy conversion loss due to V2V

operation. Moreover, such impact seizes to exist when the PHEVs start to depart early

from the parking lot. It is also observed that early departures of PHEVs are not desirable

as they have a reverse impact on all the performance metrics. It is also observed that the

total amount of energy transaction in the V2V operations never exceed the total amount
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Figure 4.9: Total energy from V2V charging and Total extra energy conversion loss due to
V2V operation.

of energy delivered by the surplus RES supply for the given RES profile. This shows that

the V2V operation is effective for the given RES profile.
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Chapter 5

Conclusion and Future Work

The performance of vehicle-to-vehicle operation depends upon how the total number of

vehicles are divided into two groups, namely a charging group and a discharging group.

An algorithm should aim at optimally dividing the total number of vehicles into the two

groups such that the energy transaction in the V2V operation is maximized. The algorithm

must satisfy the constraints imposed by vehicle owners such that as a minimum SOC of

the vehicle battery is maintained before it departs for its next trip.

The decision rule to determine if a given vehicle should discharge in the V2V operation

should governed mainly by three factors: i) SOC of vehicle battery, ii) remaining time

before vehicle departs, and iii) likelihood of surplus RES in the future. In this research,

we have addressed first two factors only to limit the scope of the research.

We can summarize our research contributions as

• We proposed a novel vehicle-to-vehicle power transfer operation towards enhancing

renewable energy sources utilization in the microgrid. To the best of our knowledge,
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the idea of vehicle-to-vehicle operation is a novel approach. The main idea of the V2V

operation is to enhance the storage capacity of V2G system in the future. The V2V

operation transfer the energy from source vehicles (which stay parked for relatively

longer time) to destination vehicles (which are going to depart soon). In this way, the

source vehicles are ready to accept more energy in the future. Finally, the renewable

energy sources will be better utilized for the given condition that there will be a

sufficient amount of surplus RES generation in the future.

• We have presented a comprehensive analysis of impacts of SOC and mobility pat-

tern of vehicles on the overall performance. It was found that the SOC of vehicle

battery should be given more priority over the remaining time before the vehicle

departs. Similarly, it was found that when vehicles start to depart unexpectedly the

performance starts degrading rapidly.

5.1 Future Work

In this research, we focused on studying the impacts of SOC and mobility pattern of

vehicles on the V2V operation performance. As mentioned earlier, the impact of likelihood

of surplus RES in the future should also be analyzed. If there is a very low chance of

surplus RES in the future, the V2V operation will become meaningless because the only

motivation is to utilize the future surplus RES. By incorporating the prediction of future

surplus RES while making a decision whether or not a V2V operation is invoked, the overall

algorithm should become more meaningful. Moreover, we have chosen a fixed value of V2V

threshold, Ω. Hence, the impact of Ω on the V2V performance should also be analyzed in
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the future work.
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Appendices
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Appendix A

Algorithms

A.1 Main Algorithm

1: set I,N

2: for n← 1 to N do

3: generate R[n] and pi[n],∀i ∈ {1, 2, 3, ..., I}

4: compute LN [n] = L[n]−R[n], and τi[n],∀i ∈ {1, 2, 3, ..., I}

5: if LN [n] ≥ 0 then

6: run Backup Algorithm (Section A.3)

7: end if

8: if LN [n] < 0 then

9: go to Storage Algorithm Block (Section A.2)

10: end if

11: compute G[n], Rc[n], GL[n], G[n]

12: limit Cagg[n] and Dagg[n] to limiting values Cagg
max and Dagg

max respectively

13: compute G[n], Rc[n], GL[n], Lc[n]

14: end for
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A.2 Storage Algorithm Block

1: for i← N do

2: compute the minimum demand of PHEV i, δi,min[n]

δi,min[n] =



0, n 6∈Mi or τi[n] = 0

e− βxi
τi[ai]

, n = ai

e− β · xi[n− 1]

τi[n]
, otherwise

3: end for

4: compute total amount of minimum PHEV demand,

sumδ =
I∑
i=1

δi,min[n]

5: if sumδ > |LN [n]| (i.e., Necessary condition for a V2V operation) then run Algo-

rithm A.4: V2V Algorithm

6: else

7: Begin Typical Storage Algorithm as follows

8: for i← N do

9: compute

cV 2G,i[n] =
δi,min[n]

sumδ

|LN [n]|

10: if cV 2G,i[n] > min(Cmax, e− xi[n− 1]) then

11: cV 2G,i[n] = min(Cmax, e − xi[n − 1]) and divide the remaining energy to other

PHEVs

12: end if

13: end for

14: if |LN [n]| >
∑I

i=1 cV 2G,i[n] then Rc[n] = LN [n]−
∑I

i=1 cV 2G,i[n]

15: end if
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16: if δi,min[n] > cV 2G,i[n] then cG,i[n] = δi,min[n]− cV 2G,i[n]

17: end if

18: end if

A.3 Backup Algorithm

1: for i← 1 to I do

2: compute maximum discharge rate of PHEV i,

δi,max[n] =


0, n = 1 or n = ai

xi[n− 1]− xi
τi[n]

, otherwise.

3: if δi,max[n] ≤ 0 then δi,max = 0 and cG,i[n] = min(Cmax, e− xi[n− 1])

4: else cG,i[n] = 0

5: end if

6: end for

7: if
∑I

i=1 δi,max[n] ≥ LN [n] then

dV 2G,i[n] =
δi,max[n]∑I
i=1 δi,max[n]

LN [n], ∀i ∈ {1, 2, ..., I},

8: and GL[n] = 0

9: else set dV 2G,i[n] = δi,max[n],∀i ∈ {1, 2, ..., I},

10: and GL[n] = LN [n]−
∑I

i=1 δi,max[n]

11: end if

12: if GL[n] > Gmax then Lc[n] = GL[n]−Gmax

13: else Lc[n] = 0

14: end if

15: for i← 1 to I do

16: compute ci[n] = cV 2G,i[n] + cv,i[n] + cG,i[n] and di[n] = dV 2G,i[n] + dv,i[n]
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17: update xi[n] = βxi[n− 1] + ci[n]ηc − di[n]
ηd

18: end for

A.4 V2V Algorithm

1: for i← 1 to I do

2: compute metric ωi[n]

3: if ωi[n] ≥ Ω then (from research question 1 ), assign PHEV i to set Ψd,n, and

compute dv,i[n] (from research question 2)

4: else assign PHEV i to set Ψc,n, and dv,i[n] = 0

5: end if

6: end for

7: compute

total mimumum demand, sumcv,n =
∑
i∈Ψc,n

δi,min[n],

total maximum supply, sumdv,n =
∑
i∈Ψd,n

δv,i[n]

8: if (sumcv,n > |LN [n]| and Ψd,n 6= ∅), the sufficient condition for a V2V operation, then

9: compute

cV 2G,i[n] =
δi,min
sumcv,n

|LN [n]|, ∀i ∈ Ψc,n

and limit cV 2G,i[n] to limiting values Cmax and (e− xi[n− 1])

10: compute

∆R = sumcv,n − |LN [n]|

11: if ∆R > sumdv,n then

12: dv,i[n] = dv,i[n] and cG,i[n] = 0,∀i ∈ Ψd,n;
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13: cv,i[n] =
δi,min

sumcv,n
sumdv,n,∀i ∈ Ψc,n;

14: else

15: dv,i[n] =
dv,i[n]

sumdv,n
∆R and cG,i[n] = 0; ∀i ∈ Ψd,n

16: cv,i[n] = δi,min[n]− cV 2G,i[n];∀i ∈ Ψc,n

17: end if

18: for all i ∈ Ψc,n do

19: limit cv,i[n] to limiting values (Cmax − cV 2G,i[n]) and (e− xi[n− 1]− cV 2G,i[n])

20: compute cG,i[n] = δi,min[n]− cV 2G,i[n]− cv,i[n],∀i ∈ Ψc,n,

21: limit cG,i[n] to limiting values (Cmax − cV 2G,i[n] − cv,i[n]) and (e − xi[n − 1] −

cV 2G,i[n]− cv,i[n])

22: end for

23: if
∑I

i=1 dv,i[n] >
∑I

i=1 cv,i[n] then

24: reset dv,i[n] = dv,i[n]− { dv,i[n]

sumdv,n
· (
∑I

i=1 dv,i[n]−
∑I

i=1 cv,i[n])}, ∀i ∈ Ψd,n

25: end if

26: else goto step 7 of Storage Algorithm Block (Section A.2) i.e., Typical Storage

Algorithm

27: end if
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