
NOVEL DESIGN AND ENERGY MANAGEMENT APPROACHES
FOR SEAMLESS INTEGRATION AND ADOPTION OF PLUG-IN

ELECTRIC VEHICLES

ABDULLAH AZHAR ABDULLAH AL-OBAIDI

A DISSERTATION SUBMITTED TO THE FACULTY OF GRADUATE STUDIES
IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

GRADUATE PROGRAM IN ELECTRICAL ENGINEERING AND COMPUTER
SCIENCE

YORK UNIVERSITY
TORONTO, ONTARIO

SEPTEMBER 2022

© ABDULLAH AZHAR ABDULLAH AL-OBAIDI, 2022



Abstract

Electric vehicles (EVs) are witnessing increased utilization throughout the world

as an alternative to fossil–fueled vehicles. However, the adoption of EVs and their

integration into the power grid is yet to be fully materialized due to several issues,

of which two are the most salient. First, the extensive deployment of EVs can bring

challenges to the grid if not properly managed. Second, access to a variety of EV

supply equipment (EVSE) in different areas is still lacking.

To that end, the research in this thesis aims to address these issues through the

development of adaptive approaches that enhance the management of EV energy and

the development of a charging strategy and a design approach that help to expand

the proliferation of EV charging infrastructure.

Three approaches that are adaptive to their operator/user preferences are devel-

oped to enhance energy management in EVs. The first approach allows adaptive

utilization of EV batteries’ distributed energy resources in an EV fleet system for

concurrent services to the transportation sector and ancillary services market. The

second approach is a decentralized quality of service (QoS)-based scheme for peer-peer

(P2P) energy trading among EV energy providers and consumers. The proposed

mechanism is designed to match energy traders based on consumers’ and providers’

ii



QoS requirements and offers, respectively. The third approach is a bidirectional

smart charging algorithm for EVs considering P2P energy trade, provision of ancillary

services to the grid, and utilization of low electricity prices for battery charging. The

algorithm incorporates user preferences into the scheduling process enabling it to

adapt to various conditions.

Further, to expand the proliferation of EV charging infrastructure, this thesis

introduces (i) a charging control strategy that does not require a communication

network, which in turn reduces additional grid upgrades, and (ii) a design approach for

EV parking lots that helps private investors to participate in the growth of charging

facilities.

The findings of this thesis highlight the efficacy of the proposed approaches in

achieving their objectives. This would provide implementable and cost-effective

solutions to facilitate EVs deployment and address imminent and timely concerns

that limit the wide adoption of EVs into electric distribution infrastructure.
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Chapter 1 - Introduction

1.1 Background and Motivation

The current environmental crisis caused by increasing levels of GHG is accelerating

the need to substitute fossil fuel-based vehicles with a more environmentally friendly

transportation solution [1]. In 2020, the transportation sector was the second-largest

contributor of GHG in Canada, accounting for 24% of total emissions, with the majority

coming from light-duty vehicles [2]. Since electricity GHG intensity has dropped sig-

nificantly in recent years due to a switch to lower-carbon energy sources for electricity

production, transportation electrification is becoming increasingly important to mitigat-

ing climate change [3]. In this context, EVs have attracted significant attention as a

sustainable and clean transportation alternative. To that end, more than 90000 EVs

were sold in Canada and over 5.6 million in the world in the last decade [4]-[5]. However,

several issues impede the wide adoption of electric vehicles and their integration into

power grids. The two most salient issues are the EV charging negative effects on the

electrical power grid and the the lack of access to EVSE due to the high financial

investments required for the proliferation of EVSE and its associated electrical grid

infrastructure upgrades [6]-[7].

Despite their environmental benefits, the extended penetration of EVs has been

associated with several unwanted effects on local distribution networks [8]. The biggest

1



impact stems from the uncoordinated charging resulting in a demand peak that can

coincide with other traditional load peaks. This would, in turn, cause higher power

losses and voltage regulation issues. Further, EVs deployment in large scale would

lead to a large shift in the total demand that cannot easily be handled by the existing

distribution network infrastructures, which can lead to electrical equipment overloading

and a reduction in distribution transformers lifespan [9]. These effects, among others,

have obstructed integration of EVs into power grids and called for energy management

methods that optimally coordinate EV charging/discharging setpoints, incentivize EV

owners to shift their consumption away from the peak periods, and provide ancillary

services to the power grid [10].

The management of EV charging is mainly classified into G2V and V2G schemes

[10, 11]. G2V methods govern and coordinate EV charging from the grid to achieve

goals including lowering EV charging costs, regulating load to meet power system limits,

and/or promoting societal welfare and charging fairness. With the recent improvement in

communication networks and the advancements in EV charger technology that facilitated

bidirectional power flow between EVs and the grid, EVs can now be operated under V2G

schemes that take advantage of EVs’ energy storage capabilities to provide ancillary

services to the grid [12]. In this regard, while the battery of each EV offers small storage,

hundreds of EVs collectively can offer large energy storage to serve a power grid in V2G

schemes. Since some of the most well-known EV fleet management systems such as

UBER have committed to switching to 100% EV utilization by the next decade [13],

and in order to promote faster utilization of EVs in fleet systems, their full benefit needs

to be exploited [14]. Therefore, new optimal scheduling approaches should be developed

to fully coordinate the operation of many EVs in a fleet system for various services to
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the transportation sector and ancillary services market.

In contrast to G2V and V2G techniques, P2P energy trading amongst EVs (i.e.,

V2V charging) has been presented as an energy management method that provides

distributed and flexible control of EV energy by balancing supply and demand through

local transfers between EVs [15]. EVs could schedule their charging (i) during off-peak

periods when electricity prices are low, and/or (ii) from their local renewable energy

sources, and then sell their stored energy at competitive rates to other EVs during peak

times to generate profits [16]. This would, in turn, provide an economic benefit for

both sides of the transaction while helping local distribution systems to shift power

demand from peak times. However, although the utilization of EVs for P2P energy trade

could bring significant advantages to the grid, it also comes with serious implementation

challenges as to how the trading is coordinated and administered among the different

participants. Therefore, P2P energy trading coordination schemes should be designed to

facilitate resilient and reliable transactions that would encourage EV owners to consider

V2V charging as a reliable service.

Furthermore, the research on G2V, V2G, and V2V schemes mainly focuses on the

control of EV charging and/or discharging from the perspective of system operators

and aggregators. However, given that there is at least one human user per vehicle, it is

expected that EV users will have various interactions based on their own preferences, and

thus, different options are required to accommodate their preferences. It is also argued

that EVs can be scheduled for joint applications concurrently including V2V energy

trade and V2G services to the grid. Thus, it is important to consider EV users’ input

into the scheduling process through self-scheduling (i.e., user-based) algorithms that

help each individual EV user determine the optimal charging and discharging setpoints
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for their EV batteries.

The aforementioned energy management techniques for EVs require communication

links to be connected to individual EVs’ chargers to communicate with the grid operator

and/or other EVs to coordinate the charger’s setpoints [17]. Such a communication

network is typically not available in all distribution networks, especially at the secondary

distribution level, and requires a costly infrastructure upgrade [18]. Furthermore, access

to a variety of EVSE in different areas is critical to popularizing the use of EVs.

Therefore, it is significant to introduce implementable and cost-effective solutions that

could potentially accelerate the growth of charging facilities, and reduce the anticipated

electrical grid upgrades that are required for such adoption.

In this regard, firstly, autonomous and communication-less EV charging techniques

should be developed to facilitate the adoption of EVs for many electric distribution

systems in residential areas that have limited or no communication infrastructure. The

autonomous EV charging can regulate the EV load without the need for a communication

network by utilizing local system measurements at the point of charger connection with

the grid to decide the charging power that does not disrupt the system stability [19]-

[20]. Secondly, while public investments and government incentives are needed for

the development of EVSE infrastructure, it is important to benefit from the private

sector resources to reduce the government’s financial burden and accelerate the growth

of charging facilities [21]. In this case, the private sector can invest in the design,

construction, and operation of EVSE infrastructure in return for making profit on

charging services to EVs and V2G services to the grid [22]. In densely populated areas,

charging EVs at home may not be practical or economically feasible. In this context,

private investors could be involved in the proliferation of public charging infrastructure

4



to help accommodate the deployment of EVs. In particular, the deployment of EVPLs

with charging capability in commercial and workplace districts has been proposed as a

solution for EV owners in these areas to meet their charging needs [23]. Furthermore,

the storage capacity of EVs in EVPLs could be used in V2G schemes coordinated by the

EVPL owner to provide grid relief during peak hours [24]. Therefore, it is important to

introduce new approaches that can help investors to design and assess their investments

in EVPL infrastructure used for charging and V2G services in terms of its technical

viability and economical feasibility.

1.2 Thesis Objective

The research in this thesis aims to enhance the adoption of EVs and their integration into

the power grid through two objectives. The first objective involves the development of

adaptive systems that enhance the management of EV energy, while the second objective

is concerned with the development of charging strategies and design approaches that

help to expand the proliferation of EV charging infrastructure. Therefore, the thesis

includes five sub-objectives related to these main objectives as shown in Fig. 1.1 and

outlined below.

1.2.1 Objective (1): Enhancing EV Energy Management

This thesis enhances the current research on EV energy management techniques by

introducing three novel systems that are adaptive to operator/user preferences.
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User-based EV Energy Optimization

EV Energy Coordination in a Fleet 

System  

QoS-based Coordination of V2V 

Operation

EV Autonomous Charging

EVPL Design and Operation

Main Objective (2): 

Expanding the Proliferation of EV Charging 

Infrastructure  

Main Objective (1): 

Enhancing EV Energy Management

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Fig. 1.1. Layout of the thesis research objectives

Sub-objective (1): EV Energy Coordination in a Fleet System

The aim of this objective is to develop an optimization model for a central controller

in a fleet system that allows adaptive utilization of EV batteries distributed energy

resources for concurrent services to the transportation sector and ancillary services market.

The optimization model incorporates various slack variables and control parameters

for managing real–time fare prices, adaptive energy, and reserve margin allocation,

interaction with the grid operator, and meeting the fleet target revenue. A dynamic

pricing mechanism is developed for real–time calculation of fare rates to allow the EV

fleet optimization problem to achieve a daily revenue target while limiting fare prices in

order to make the fleet more competitive in the market.
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Sub-objective (2): QoS-based Coordination of V2V Operation

The aim of this objective is to design a novel decentralized QoS-based system for P2P

energy trading among EV energy providers and consumers. Two QoS-based mechanisms

are proposed to match trading EVs in this system. The proposed mechanisms are

designed to match single-consumer to multiple-providers and multiple-consumers to

multiple-providers based on consumers’ and providers’ QoS requirements and offers,

respectively.

Sub-objective (3): User-based EV Energy Optimization

The research in this objective aims to develop a new algorithm for bidirectional smart

charging of EVs considering P2P energy trade, provision of ancillary services to the grid

and utilization of low electricity prices for battery charging. The algorithm incorporates

user preferences into the scheduling process, enabling the algorithm to adapt to various

conditions.

1.2.2 Objective (2): Expanding the Proliferation of EV Charg-

ing Infrastructure

To expand the proliferation of EV charging infrastructure, this thesis introduces (i) a

charging control strategy that does not require communication network, which in turn

reduces additional grid upgrades, and (ii) a design approach for EVPL that helps private

investors to participate in the growth of charging facilities.
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Sub-objective (4): EV Autonomous Charging

This objective involves the development of a communication-less control strategy for EV

residential charging. The strategy considers social charging fairness and can work in

droop-controlled IMGs. A charging fairness system that assigns priority levels to EVs

based on their past charging power allocation is developed. The priority level is utilized

to adjust the Sigmoid-based controller to provide more system capacity to the EVs with

higher priority levels. Further, the strategy includes a novel EV load shedding scheme

that gets triggered when an under-voltage or under-frequency event occurs in the IMG

when the generation does not meet the required demand.

Sub-objective (5): EVPL Design

This objective aims to develop an optimal design approach for EVPLs that can provide

services to the electrical power grid. The approach allows multi-objective planning for

the maximization of operator profit or user comfort. Further, the approach enables the

design of an EVPL with the optimal combination of uni-directional and bi-directional

chargers, considering the financial aspects of the provision of V2G services and the

incentive-participation modeling of EV users. Moreover, the approach decouples the

intertwined economic dynamics of EV charging and discharging services in the EVPL

through revenue models that target each service separately.

1.3 Thesis Layout

The remainder of this thesis is organized as follows:

• Chapter 2: Presents a critical literature survey on topics relevant to the thesis
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research objectives.

• Chapter 3: Presents a new optimization model for a central controller in a fleet

system that allows adaptive utilization of EV batteries distributed energy for

concurrent services to the transportation sector and ancillary services market.

• Chapter 4: Presents a new bidirectional smart charging algorithm of EVs for

P2P energy trade and ancillary services provision to the grid.

• Chapter 5: Introduces a novel QoS-based coordination approach for P2P energy

trading systems among EV energy providers and consumers.

• Chapter 6: Introduces a novel autonomous control strategy for EV charging in

residential droop-controlled IMGs.

• Chapter 7: Presents a design approach for an EVPL that can provide services to

the electrical power grid.

• Chapter 8: Presents the conclusion and contributions of this dissertation, and

offer possible directions for future work.
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Chapter 2 - Literature Survey

2.1 Introduction

This chapter provides a literature review on the state-of-the-art of EV energy management

approaches, as well as autonomous EV charging and EVPL design and operation

management. Then, the gaps and shortcomings of the works addressed in the literature

are summarized at the end of the chapter.

2.2 EV Energy Management

2.2.1 G2V and V2G Management

Traditionally, researchers have focused on developing EV energy management methods

that involve coordinated G2V charging management. The authors in [11] propose

distributed online and offline EV scheduling algorithms where aggregators aim to

generate revenue by optimizing the charging schedule of EVs. In [25], a heuristic method

is presented which determines the most suitable charging/discharging instances for an

EV battery in a day-long period for reducing the energy cost. The method requires

some basic input parameters, such as real-time market prices, household demand, and

parameters of the EV. Similarly, in [26], an optimal EV charging coordination approach

is presented with the objectives of minimizing the charging cost and energy losses in
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an unbalanced residential distribution network. A decentralized charging scheduling

algorithm is proposed in [27] based on the augmented Lagrangian method. A scheduling

algorithm for large residential EV populations is implemented in [28] using a two-stage

hierarchical optimization approach. A real–time energy management system is proposed

in [29] for optimal scheduling of EVs to reduce the energy cost associated with EV

charging. Similarly, charging scheduling is implemented in [30] using a collaborative

multi–aggregator approach with variable energy purchase charges. The study in [31]

investigates a game-theoretical approach that considers social incentives to help reduce

charging costs of EVs while satisfying individual EV charging requirements and charging

stations constraints. The authors in [32] develop a method based on the multi-modal

approximate dynamic programming to manage charging/discharging of EVs in a grid-

connected charging station.

Electricity prices have been considered for optimal management of EV charging

patterns in several studies. For example, a method is presented in [33] to reduce the

peak load of EV charging stations by utilizing dynamic prices for different charging

schedules and deadlines. The authors in [34] utilize a game theory model based on Nash

equilibrium to develop a day-ahead charging scheduling algorithm that considers the

interplay between EV demands and electricity prices. A robust optimization technique

is utilized in [35] for scheduling of EV aggregators considering uncertainties associated

with electricity prices.

While the aforementioned G2V schemes help coordinate EVs charging, it is important

to take advantage of EVs’ energy storage capabilities to improve the grid’s resiliency

through V2G energy management approaches. In [36], a hierarchical management

system is proposed for integration of EVs into a distribution grid aiming to prevent grid’s

11



congestion. Numerical studies indicate that the grid’s congestion can be prevented via

proper controlling of the EV charging. Authors in [37] formulate a binary optimization

problem for real-time charging of EVs in a parking lot. The scheme coordinates EV loads

based on dynamic electricity pricing and demand response signals issued by the grid

operator. Primary frequency regulation and dynamic grid support with EVs participation

are implemented in [38]. The authors in [39] propose a scheduling strategy that utilizes

the droop control in response to frequency uncertainties while satisfying EVs charging

loads. In [40], a two-phase hierarchical V2G scheduling process is devised to schedule

EVs for providing frequency regulation service to the grid. The authors in [41] present

an optimal charging strategy that utilizes reactive power injection capability of the EVs

to support the grid. The work in [42] develops an aggregate EV model to estimate

V2G capacity for use in applications such as participating in frequency regulation and

providing operating reserve to the grid. The model shows a high accuracy level in

reducing real-time reserve shortages. The authors in [43] present a dynamic demand

response-based V2G capacity model that accounts for EVs’ movement across the energy

network. The study in [44] proposes a strategy to manage and utilize V2G capacities to

control voltage rises and reverse power flow that result from PV system integration into

the grid. The study in [45] proposes to incorporate a demand response and inter-EV

sharing frameworks into the scheduling strategy of EVs in residential networks.

2.2.2 V2V Charging Management

Recent initiatives towards distributed solutions as well as advancement in P2P com-

munication networks have extended EV charging schemes to involve V2V charging. In

this context, the authors in [46] incorporate V2V charging into a scheduling algorithm
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of EVs charging inside a station to reduce the charging cost and increase renewable

energy utilization. The study in [47] optimizes the trading prices between energy trading

EVs considering charging scheduling of individual EVs. In [48], an optimal charging

scheduling model is developed considering a scenario where EVs could charge from

the grid, other EVs, or mobile charging vehicles. However, V2V schemes proposed in

[46],[47]–[48] are dependent on G2V scheduling models and do not introduce separate

P2P energy market schemes for EVs.

An independent energy trading market managed by a fog computing-based coordina-

tor is proposed in [49]. The coordinator sets trading prices based on non-profit-oriented

or profit-oriented behaviors. In [50], the authors develop an auction-based energy market

between EVs. The market is coordinated by a central auctioneer that runs a naive auc-

tion process iteratively to determine energy prices. Similarly, the study in [51] proposes

an online double auction mechanism for P2P energy trading among EVs that includes

anonymity schemes to tackle the issue of trading participants’ identity and location

leakage. A matching scheme is implemented for cooperative P2P energy trading among

EVs in [15] where a Pareto optimal matching algorithm is utilized to assign discharging

and charging EVs based on their utility preferences. Another V2V charging management

scheme is proposed in [52], where matching algorithms are utilized to maximize the

social welfare of trading participants considering cost and profit preferences. The study

in [53] designs an integer linear program to optimize the routes and the schedules of

charging trucks to maximize the served number of EVs through V2V energy transfer.

Nevertheless, studies conducted in [15], [46]–[52] have relied on the existence of a central

third party to coordinate between the market participants, which makes them prone to

single-point failures, as well as privacy and security issues. To address such a drawback,
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blockchain technology has been proposed as a platform that allows decentralized EV

energy trading without the presence of a third party [54].

Blockchain is essentially a distributed ledger that contains a record of system states

and digital transactions and is controlled by a group of nodes instead of one central

entity. These nodes share the tasks of verifying the integrity of the distributed ledger

and preserving its data in their data storage devices, which makes transactions in these

systems more transparent [55]. Further, blockchain eliminates the costs required to be

paid to third parties to manage central systems [56]. Researchers in the literature have

recently investigated the application of blockchain in P2P energy trading among EVs.

In order to reduce the power fluctuation level in the grid, the work in [57] develops a

blockchain-based EV participation scheme to facilitate and match large volumes of EV

charging and discharging demands. In [58], the authors propose a blockchain-based

energy trading model between EVs inside local parking lots. An iterative double auction

audited by authorized local aggregators is introduced to maximize total participants’

utility. A framework for P2P energy trading between EVs is studied in [59] considering

the use of blockchain, contract theory, and computational intelligence.

2.2.3 Energy Management of Electrified Private Transportation

Fleets

Private transportation fleets are among the major transportation sectors that are

expected to be converted to EVs [60]. In this context, the authors in [61] introduce

an optimal deployment framework for public charging stations considering EV fleet

drivers and passengers’ demands as well as power distribution network constraints.
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Similarly, the work in [62] studies the optimal location of public charging stations

using a multi-agent system and evidential reasoning approach. The multi-agent system

is utilized to simulate and quantify EV taxi fleets charging demand, while evidential

reasoning optimizes stations’ locations based on the total charging cost, power losses, and

voltage deviations. The study in [63] considers the dynamic distribution and charging

requirements of electric taxis to develop a model for locating charging stations that

can meet the requirements of EV taxi fleets. The authors in [64] design a charging

system for electric taxis considering the historical charging patterns and real-time global

positioning system data mining. Nonetheless, the studies in [60]-[64] are limited to the

optimal design and integration of charging stations for EV fleets without considering

the development of energy management systems for their EV batteries.

Various energy management strategies have been proposed in the literature to

effectively integrate EV-based fleets into the electric grid. The study in [65] utilizes a

real-time pricing method to regulate the charging loads of electric private transportation

fleets. The method introduces a special real-time electricity market for EV fleets to follow

the desired load profile while giving autonomous charging decisions for drivers. The

authors in [66] propose a distributed two-stage charging decision process for electric taxis.

The process aims to reduce the charging cost for each taxi by choosing the best charging

time slot and charging station using a thresholding method and a game-theoretical

approach. The work in [67] models electric taxi charging loads in temporal and spatial

dimensions. Accordingly, the operation of the electric taxis fleet is modeled using a

Java-based multi-agent framework, and a reinforcement learning algorithm is utilized to

make decisions that maximize the taxis’ revenue by charging at the lowest costs. The

authors in [68] use the Markov decision process in modeling and optimization of electric

15



taxi services strategy. The strategy aims to assist drivers in improving their revenue

considering different EV related constraints, such as constrained battery capacity and

limited charging stations. The work in [69] presents a stochastic game model based

charging scheme for electric taxis. The objective is to reduce taxi charging costs while

considering distribution network transformer aging risks. The authors in [70] formulate

and solve a constrained binary programming problem for charging of electric taxis. The

problem considers EV battery constraints aiming to maximize the long-term profit for

drivers. The study in [71] integrates the scheduling of private and taxi EVs in a two-stage

distributed model that can obtain optimally feasible charging profiles for both types.

Centralized and decentralized approaches are considered in the charging control of

EV fleets. In centralized approaches, the authors in [72] propose a mixed-integer linear

programming-based algorithm for management of EV fleet charging from PV units. The

algorithm integrates several applications including ancillary services support to the grid,

but it is limited to EV charging in workplace parking lots. The authors in [73] employ

a four-quadrant control system for EV chargers in order to inject or absorb reactive

power, depending on the voltage profile of the grid.

In decentralized approaches, the study in [74] proposes a strategy for EV fleets

charging coordination. The strategy is formulated as a large population game, with EV

players coupled by the same electricity price signal aiming to minimize the operating cost

of individual EVs. The work in [75] develops a decentralized EV charging management

scheme based on evolutionary game dynamics, where EVs can also provide ancillary

services to the grid. Nevertheless, game-theoretical approaches assume that participants

are rational and that complete information is available to strategy players which may

not be feasible in practical applications. The authors in [76] develop a decentralized
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optimal charging algorithm that involves an operator broadcasting a control signal to

EVs. Based on this signal, EVs update their charging profiles in order to shift the

charging load away from peak periods. Similarly, the work in [77] designs a decentralized

charging algorithm to reduce overloading in power distribution feeders. A hierarchical

framework is developed by the authors in [78] to concurrently optimize power flow

routing and frequency regulation service scheduling. Despite their strong mathematical

basis, the decentralized charging methods proposed in [76]- [78] are designed from the

grid operator’s perspective, which may not be efficient to EV fleet operators that need

to be in control of their own scheduling operations with a high degree of certainty.

Centralized approaches are more effective and offer better performance in coordinating

EV operations in a fleet system for various services to the transportation sector and

ancillary services market. Due to complete information being available to the main

controller, centralized controllers are able to obtain optimal solutions to EV charging

control problems. Further, in the case where EVs are owned by a single entity like

a private transportation company company, centralized approaches enable complete

control of EV operations, as well as enhanced ability to forecast electricity prices and

EVs driving patterns. Moreover, management of business models that involve EV fleets

can be more thoroughly performed with centralized approaches [79].

2.3 Autonomous EV Charging

In contrast to the EV energy management systems described in the previous works

reviewed so far in this chapter, autonomous EV charging techniques can regulate the

EV load without the need for a communication network [19]. The basic concept of

autonomous charging is to utilize local system measurements at the point of charger
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connection with the grid to decide the charging level that does not disrupt the system

stability [20]. These techniques help to facilitate the adoption of EVs for many electric

distribution systems that have limited or no communication infrastructure and reduce

the computational burden on system operators. There have been numerous studies in

the literature that have proposed autonomous EV charging control schemes. A charging

technique based on duty cycles and EV departure time is proposed in [80]. The departure

time input by the user is used to calculate a unique duty cycle that switches on and off

the charger at a different rate from other chargers in the system to prevent simultaneous

power consumption. The work in [81] also proposes to use the user departure time in

order to decide whether to charge EV once it is plugged in or delay it to avoid peak

loading times. The methods introduced in [80] and [81] assume that EV users will input

their departure time accurately. Nevertheless, this assumption is not always valid and

users can “game" these methods by inputting false early departure times to charge their

EVs faster. The study in [82] presents an autonomous algorithm based on historical

records of system conditions at the EV charger point. This algorithm is not reliable

because it does not account for future changes in the system’s configuration and loading.

Several studies have considered the use of measured voltage at the PCC as a direct

input to control the EV charging load. The study in [83] introduces a voltage-based

EV charging controller that adjusts the charging load through a voltage-droop function.

The work in [84] proposes a non-linear voltage-based autonomous controller with an

exponential function that compares the PCC voltage with a reference voltage to decide

the charging rate. A fuzzy-based charging scheme that is sensitive to voltage levels

at the PCC is proposed in [85]. Other studies have investigated the control of EV

charging based on the system frequency. In this regard, the operation of IMGs is

18



more constrained than grid-connected systems, where the low short circuit capacity of

IMGs could result in frequency deviations as a result of any configuration change [86].

Further, droop-controlled IMGs require the drooping of frequency and voltage in order

to achieve active and reactive power-sharing. Therefore, it is important to consider

system frequency in autonomous EV charging control logic in IMGs. A frequency-based

controller is introduced in [87], where EV charging load is controlled based on the

microgrid’s frequency deviation. Similarly, the authors in [88] propose to use the system

frequency to regulate the EV charging load, while the bus voltage is used to control the

level of EV’s reactive power support to the grid.

2.4 Design and Operation Management of EVPL

Several studies have proposed models for the design of EVPLs in electric DNs. An

economic design model for EVPL sizing and location siting is introduced in [89]. The

model maximizes the investor NPV considering the traffic flow, as well as electric power

grid and EV charging constraints. The authors in [90] present a design and operation

management model for EVPLs considering the driving and behavioral patterns of EV

users. The work in [91] proposes a planning method that considers different power

charging capacities. The model minimizes the annualized cost of the EV charging system

including the costs related to investment, grid reinforcement, and O&M. The study in

[92] proposes a method for minimizing the capital and operational cost of EVPLs using

a battery energy storage system. A planning framework for residential, commercial,

and industrial EVPLs is introduced in [93]. The framework is formulated from the

perspective of a social planner and aims to minimize the total social costs of all planned

charging systems. Nevertheless, the studies in [89]-[93] do not consider the provision of
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V2G services to the grid by the EVPL. Utilizing the power injection capacity of EVPLs

can enhance the DN operation and provide economic benefits to the EVPL owners and

EVs that participate to V2G services [94].

An EVPL planning model that maximizes the operator profit through the provision

of V2G services to the energy and reserve markets is proposed in [95]. The model

also considers the minimization of operating DN costs resulting from power losses and

voltage deviations. The study in [96] presents a model to determine the optimal location

and capacity of EVPLs considering optimal scheduling of EV charging and discharging,

minimization of EVPL distance to EV users, and maximization of DN operator profit.

The work in [97] utilizes a probabilistic approach to model the uncertain parameters

in driving patterns of EVs and optimize EVPL power exchange with the grid. The

authors in [94] propose a stochastic model for optimal placement of EVPLs in DNs

in view of EV owners’ payoffs from subscribing to EVPL services. The study in [98]

formulates a multi-objective bi-level model for dynamic planning of DN that involves

the sizing of new EVPLs. The model considers the conflicting objectives of DN and

EVPL operators and aims to enhance DN flexibility through the use of EVPLs as a

backup power supply during faults. Another bi-level model is introduced in [99] where

the distributed storage of EV batteries in EVPLs is utilized to defer investment in

DN. A planning model is proposed to design and site EVPLs given the improvement of

renewable energy integration into DNs [100]. The authors in [101] propose a collaborative

multi-objective DN and EVPL expansion planning model. The model aims to find the

optimal location and size of EVPL that would maximize the profit of DN and EVPL

operators and provide reinforcement to the DN. The study in [102] models the EVPL as

a DG in the DN and presents a multi-objective approach to determine their optimal
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location and size. The authors in [103] investigate the sizing and siting of EVPL in the

reconfigurable DNs, taking into account the minimization of power losses and reliability

issues through the G2V and V2G programs. The work in [104] presents an approach for

planning and siting of EVPLs in a DN considering uncertainties in cost of investment and

availability of budget. The study in [105] proposes an optimal mixed-integer nonlinear

model to decide the number of EV chargers and size of photovoltaic (PV) panels in an

EVPL. The uncertainty in EV owners’ behavior is considered in parking lot planning

and investment decision in the model proposed by the work in [106]. The model aims

to maximize the revenue of parking lot operators through optimization of parking lot

allocation and operation management. EVPLs are planned to act as backup generators

during outages and help in the service restoration process of faulted zones as examined

by the study in [107].
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Chapter 3 - Adaptive Optimal Management
of EV Battery Distributed Energy in a Fleet
System

3.1 Introduction

Deployment of EVs in a fleet system to deal with environmental issues has been at

the center of attention over the past several years [108]. In regards to EV fleet energy

management, what is missing from the literature is a multiobjective optimization model

that can fully coordinate the operation of several EVs in a private transportation fleet

system for various services to the transportation sector and ancillary services market.

In prior studies, the full benefit of the huge distributed energy in EV batteries within

a fleet system is not exploited. As such, a new model is needed for full integration of

hundreds of EVs into a fleet with consideration of various parameters including real-time

dynamic fare prices, energy and reserve margin allocation, full interaction with the grid

operator, and the target revenue of the fleet system. Therefore, this research unveils

a new optimization model to fill the gap between the existing works and one that can

optimally integrate and manage several EVs within a fleet system for various services

while enhancing the financial profile of the fleet system. In particular, this research

contributes to the existing works via the following avenues:
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1) Development of a model for a central controller in a private transportation fleet

system that allows adaptive utilization of EV batteries distributed energy for concurrent

services to the transportation sector and ancillary services market.

2) Proposing a cooperative–based model to coordinate and manage the operation

of each EV in order to provide a large operating reserve to the grid while maintaining

services to the transportation sector.

3) The optimization model incorporates various slack variables and control parameters

for managing real–time fare prices, adaptive energy, and reserve margin allocation,

interaction with the grid operator, and meeting the fleet target revenue. Integration of

slack variables also allows the optimization problem to converge in case it is not feasible

for an EV to participate in a service request.

4) The model incorporates the EV driver’s preferences into the scheduling process

in order to allow the driver to adjust the minimum and maximum limits of the EV

battery prior to data sharing with the central controller. This allows EV drivers to

flexibly manage their battery capacities based on their availability and assessment of

the transportation services demand when needed.

5) A dynamic pricing mechanism is developed for real–time calculation of fare rates

to allow the EV fleet optimization problem to achieve a daily revenue target while

limiting fare prices in order to make the fleet more competitive in the market.

Numerical studies are utilized to demonstrate the efficacy and feasibility of the

proposed model under various scenarios. It is indicated that the new model in this

research reinforces the fleet financial parameters while lowering the fare prices for the

customers who use the fleet EVs in order to stay competitive in the market.

Table 3.1 compares the proposed model in this work with previous studies in the
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literature. The table indicates how the proposed model has contributed to the existing

studies. As reported in the table, in the proposed model, various objectives are con-

currently included and integrated. It is worth noting that the results in Table 3.1 do

not indicate that the proposed model is simply including more objectives than prior

studies. It expresses how various services are integrated into the model and the EV fleet

is scheduled for various services concurrently.

Table 3.1: Comparison of the Proposed Model with Prior Studies in Literature.

Model Objectives / Reference [45]–[78] [65]–[71] Proposed

Management of Distributed EVs ✓ ✓ ✓

Transportation Operation Services ✓ ✓

Dynamic Fare Prices Mechanism ✓

Return on Investment Optimization ✓

Ancillary Service Provision ✓ ✓

User-based Battery Management ✓
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Table 3.2: Chapter 3 Nomenclature

Indices
s Index of EVs in the fleet.
t Index of time steps.

Sets
S Set of fleet EVs in optimization

problem.
T Set of optimization problem time

steps.

Constants
∆T Optimization problem time interval

(h).
αLB,Res

s User adjustable lower bound reserve
SOC factor.

αUB,Res
s User adjustable upper bound reserve

SOC factor.
Bs Battery capacity (kWh).
κDsp Energy dissipation factor (%).
NCon Rate of energy consumption

(kWh/km).
OCChg Battery charging operating cost

($/kWh).
OCDhg Battery discharging operating cost

($/kWh).
P Chg

s,min EV minimum charging power (kW).
P Chg

s,max EV maximum charging power (kW).
P Dhg

s,min EV minimum discharging power
(kW).

P Dhg
s,max EV maximum discharging power

(kW).

RExp EV fleet revenue target. ($).
SOCH

s,min Minimum physical level of EV bat-
tery (kWh).

SOCH
s,min Maximum physical level of EV bat-

tery (kWh).

Time–Dependent Parameters
σRes,LB

t Penalty factor for management of
lower reserve SOC limit ($/kWh2).

σRes,UB
t Penalty factor for management of

upper reserve SOC limit ($/kWh2).
σT rp,Adj

t Penalty factor for management of
passenger trip price.

σExp,Adj
t Penalty factor for management of EV

fleet daily revenue.
σF lt

s,t Ancillary services penalty factor
($/kWh).

CT oU
t ToU electricity prices ($/kWh).

CF lt
t Ancillary services price ($/kWh).

Dt EV transportation distance at time t
(km).

Jt EV charger plug–in status, J = 1
when plugged–in.

MT rp,Min
t Minimum passenger trip price ($).

P Anc
t Ancillary services signal (kW).

SOCF lt,LB
t Collective SOC level lower limit of

EV fleet (kWh).
SOCF lt,UB

t Collective SOC level upper limit of
EV fleet (kWh).
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Table 3.2: Chapter 3 Nomenclature ... continued.

Variables
EDrv

t EV driving energy consumption
(kWh).

MT rp,Adj
t Slack variable for passenger trip

price adjustment ($).
P Drv

t EV driving power consumption
(kW).

P Chg
s,t EV charging power (kW).

P Dhg
s,t EV discharging power (kW).

P Utl
s,t EV power charge from the grid

(kW).
P F lt

s,t Ancillary services power provided
by EV fleet (kW).

P F lt,Chg
t Slack variable for charging ancil-

lary services contribution (kW).

P F lt,Dhg
t Slack variable for discharging ancil-

lary services contribution (kW).
RExp,Adj

t Slack variable for EV fleet daily
revenue adjustment ($).

SOCDod,S
t Slack variable for depth of dis-

charge management (kWh).
SOCH

s,t SOC level of EV s (kWh).
SOCRes,LB

s,t Slack variable for lower bound re-
serve SOC level (kWh).

SOCRes,UB
s,t Slack variable for upper bound re-

serve SOC level (kWh).

3.2 Optimal Scheduling Model

The proposed scheduling model for the EV fleet system is described in this section. It is

assumed that the fleet is utilized by a privately owned chauffeured EV transportation

company. It is also assumed that the trip fares do not follow any city regulations. The

communication scheme between the central controller, EVs, and utility operator is shown

in Fig. 3.1. In this scheme, the central fleet operator receives EV operators’ preferences

as well as their EV status. The EV user preferences information includes how much

reserve each EV is willing to maintain for the provision of ancillary services to the grid.

The controller also receives ancillary service signals from the utility operator, including

operating reserve signals that require either injecting or absorbing power to/from the

grid. Based on these signals, the central controller sends a provision request to each EV

user in the fleet and based on their responses, it decides the amount of accumulated
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power that will be serviced to the grid.

Fig. 3.1. Communication scheme among EVs, central controller, and utility.

It is important to emphasize here that the proposed model does not have to rely

on private communication networks, but can be implemented using the existing com-

munication platforms, i.e., the internet. The internet is proven to be fairly solid and

reliable, and therefore, it is possible to implement a centralized architecture with a high

degree of success. This has been proven by major internet-based ride-sharing/hailing

companies such as Uber, which rely on the internet for all of their communication needs.

3.2.1 Mathematical Formulation

Table 3.2 presents the nomenclature of the proposed model. The developed model in this

research is based on a real-time scheduling model that is run using the approach referred

to as the rolling time horizon or model predictive control [109], [110]. In this approach,
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Fig. 3.2. Real-time optimization problem.

the optimal scheduling model is converted into a multi-interval optimization problem,

where optimal setpoints are issued for the current and look ahead time steps as shown

in Fig. 3.2. Therefore, the optimization problem is re-run at every time step, and the

optimal setpoints are updated recursively, which alleviates the uncertainty associated

with the time-varying nature of the optimization parameters. Without loss of generality,

the optimization horizon in this work is set to look at the next six time steps ahead, with

each step equal to one-hour interval. It should be noted that the problem is modeled as

a deterministic optimization model because it is assumed that the trips requested by

passengers are booked in advance. Stochastic models including Markov decision process

(MDP) could be utilized in case the model is applied to a transportation service where

the trips are requested randomly [111].

The mathematical formulation of the proposed optimal EV fleet scheduling model is

given below.
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Objective Function

The objective function of the EV fleet central controller is given by (3.1):

Maximize :
∑
t∈T

∑
s∈S



|P F lt
s,t | . CF lt

t − P Utl
s,t . CT oU

t

−OCDhg
s . P Dhg

s,t −OCChg
s . P Chg

s,t − σT rp,Adj
t . MT rp,Adj

t

−σExp,Adj
t . RExp,Adj

t − σAnc
s,t . (P F lt,Chg

t + P F lt,Dhg
t )

−σRes,LB
s,t . SOCRes,LB

s,t − σRes,UB
s,t . SOCRes,UB

s,t


. ∆T.

(3.1)

The objective function in (3.1) aims to optimally manage the EV fleet to maximize the

system profit which is achieved via:

• Participation of fleet EVs to grid’s ancillary services: ∑
s∈S |P F lt

s,t | . CF lt
t

• Minimization of EV fleet charging costs: −∑
s∈S P Utl

s,t . CT oU
t

• Management of passenger trips and fleet revenue:

−σT rp,Adj
s,t . MT rp,Adj

s,t − σExp,Adj
s,t . RExp,Adj

s,t

• Limiting fleet charging/discharging operating cost:

−OCDhg
s . P Dhg

s,t −OCChg
s . P Chg

s,t

• Controlling ancillary services participation levels:

−σAnc
s,t . (P F lt,Chg

t + P F lt,Dhg
t )

• Controlling the SOC reserve of individual EVs in the fleet:

−σRes,LB
s,t . SOCRes,LB

s,t − σRes,UB
s,t . SOCRes,UB

s,t
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EV Fleet Operation Constraints

The operation of fleet EVs are subject to the following operational constraints:

Js,t .P Chg
s,min ≤ P Chg

s,t ≤ Js,t .P Chg
s,max ∀s ∈ S ∧ t ∈ T (3.2)

Js,t .P Dgh
s,min ≤ P Dhg

s,t ≤ Js,t .P Dhg
s,max ∀s ∈ S ∧ t ∈ T , (3.3)

where (3.2) and (3.3) represent the charging and discharging limits for EV s, respectively.

The charger connection time parameter Js,t indicates that charging and discharging

operations are only possible when the EV is plugged-in. The constraints in (3.4) and

(3.5) restrict charging/discharging to G2V and V2G operations and required power for

meeting the trip requirements:

P Chg
s,t = P F lt

s,t ∨ P Utl
s,t ∀ P Dhg

s,t = 0 ∧ s ∈ S ∧ t ∈ T , (3.4)

P Dhg
s,t = P F lt

s,t ∀ P Chg
s,t = 0 ∧ s ∈ S ∧ t ∈ T . (3.5)

The energy consumed by the EV during driving is represented by the following equation

[112]:

EDrv
s,t = (1− Js,t) . Ds,t . NDrv

s ∀t ∈ T, (3.6)

where the term (1− Js,t) prevents the model from consuming energy for driving when

the EV charger is plugged in.

30



EV Storage Constraints

The battery storage of EVs in the fleet is managed by the central controller according to

the energy demand from the transportation sector as well as the G2V and V2G services.

Therefore, battery storage of EV s is subject to the following physical and operational

constraints:

SOCH
s,t = SOCH

s,t−1+
(
Js,t. P F lt

s,t /Bs+Js,t. P Utl
s,t /Bs

)
. ∆t− EDrv

s,t /Bs − κDsp. SOCH
s,t

∀s ∈ S ∧ t ∈ T ,(3.7)

where (3.7) represents the SOC balance taking into consideration the previous state,

and all charging and discharging operations as well as the energy dissipation of the

battery. It is worth noting here that for the smart charging models, detailed battery

behavior models including data-driven models [113, 114] are important to effectively

use the charging infrastructures. However, this research is focused on development of a

scheduling model for EV fleets that use the existing charging infrastructures and may

include different types of EVs with different battery charging behaviors. Therefore, the

proposed model does not aim to discuss the details of charging behaviors for each EV in

the fleet system, and assumes that the EV charger operates to reach the target battery

SOC setpoints.

The minimum and maximum limits of the battery in the sth EV are adjusted

according to the user preferences shared with the central controller. This allows the

EV drivers to flexibly manage their battery capacities based on their availability and

assessment of the transportation services demand. The SOCs,t of each EV is subject to
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the following equations:

SOCH
s,t ≥ αLB,Res

s,t . SOCH
s,min − SOCRes,LB

s,t ∀t ∈ T ∧ ∀s ∈ S ∧ SF lt
t = 0 (3.8)

SOCH
s,t ≤ αUB,Res

s,t .SOCH
s,max + SOCRes,UB

s,t ∀t ∈ T ∧ ∀s ∈ S ∧ SF lt
t = 0, (3.9)

where (3.8) and (3.9) represent the upper and lower bound reserve limits of the SoC,

respectively. Both limits are adjusted and controlled by the ancillary services contri-

bution factors for each EV s (αLB,Res
s,t , αUB,Res

s,t ), as well as slack variables (SOCRes,LB
s,t ,

SOCRes,UB
s,t ). The slack variables allow the optimization program to converge in case it

is not feasible for an EV to participate in ancillary services. When the value of a slack

variable is zero, it means that the EV is able to contribute to the ancillary service signal

in full. The slack variables are limited by the following:

0 ≤ SOCRes,LB
s,t ≤ (αLB,Res

s,t − 1) . SOCH
s,min ∀t ∈ T ∧ ∀s ∈ S ∧ SF lt

t = 0, (3.10)

0 ≤ SOCRes,UB
s,t ≤ (1−αUB,Res

s,t ) . SOCH
s,max ∀t ∈ T ∧ ∀s ∈ S ∧ SF lt

t = 0, (3.11)

where (3.10) and (3.11) represent the limit for battery reserve management slack variables.

Fleet Storage Constraints

The collective storage capacity controlled by the EV fleet operator is represented as

follows:

∑
s∈S

SOCH
s,min+SOCF lt,LB

t ≤
∑
s∈S

SOCH
s,t≤

∑
s∈S

SOCH
s,max−SOCF lt,UB

t ∀t ∈ T ∧ SF lt
t = 0,

(3.12)
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where SOCF lt,LB
t and SOCF lt,UB

t in (3.12) are adjustment parameters decided depending

on the reserve contribution factor of each individual EV, as follows:

SOCF lt,LB =
∑
s∈S

(αLB,Res
s,t − 1) . SOCH

s,min ∀t ∈ T ∧ SF lt
t = 0 (3.13)

SOCF lt,UB =
∑
s∈S

(1− αUB,Res
s,t ) . SOCH

s,max ∀t ∈ T ∧ SF lt
t = 0. (3.14)

Ancillary Service Constraints

The collective EV fleet response to an ancillary service signal by the grid is modeled as

below:

P F lt
s,t = P Anc

t + P F lt,Dhg
t − P F lt,Chg

t ∀t ∈ T ∧ SF lt
t = 1 (3.15)

SOCH
s,min ≤ SOCH

s,t ≤ SOCH
s,max ∀t ∈ T ∧ ∀s ∈ S ∧ SF lt

t = 1, (3.16)

where P F lt,Dhg
t and P F lt,Chg

t in (3.15) control the ancillary service contribution for the

entire fleet and ensure that the optimization model converges in case it is not profitable

or it is infeasible to participate. Equation (3.16) indicates that the reserved energy can

be released when an ancillary service signal is received. The slack variables in (3.15) are

limited by:

P F lt,Chg
t , P F lt,Dhg

t ≥ 0 ∀t ∈ T . (3.17)

Profit Target Constraints

The EV fleet optimization problem aims to achieve a daily revenue target, while limiting

fare prices in order to make the fleet more competitive in the market. This is achieved
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through the following price control model:

MT rp
t = MT rp,Min

t + MT rp,Adj
t ∀ t ∈ T (3.18)

0 ≤MT rp,Adj
t ≤ γT rp

t ·MT rp,Min
t ∀ t ∈ T , (3.19)

where (3.18) controls the price through adjustable slack variable limited by (3.19). The

control model ensures a minimum price adjusted according to a target daily revenue.

The target revenue model is given by the following:

RExp −RExp,Adj
t ≤

∑
t∈T ∗

∑
s∈S

{
P F lt

s,t .CF lt − P Utl
s,t . CT oU

t + MT rp,Min
t . Ds,t

+MT rp,Adj
t . Ds,t

}
∀t ∈ T ∗, (3.20)

where T ∗ is a set of historical and look-ahead time steps as shown in Fig. 3.3. The figure

shows that the scheduling model stores and utilizes the historical revenue data that are

added to the future revenue values. The fare is computed based on the expected revenue

over a given time period (i.e., T ∗). The calculated profit is resulted from the sum of the

historical revenue data over the past several hours and the look–ahead revenue values.

This would ensure that unexpected and sudden changes in the market does not cause

abrupt changes in the fare prices. In such a case, the price follows a smoother trend

to ensure that the longer–term revenue quantities meet the expected value rather than

very short–term targets. The target revenue model in (3.20) indicates that revenue

achieved at time step t should be at least equal to the summation of historical and

expected revenue in the next several time steps that are pre-defined in the model. Since

transportation and ancillary services as well as charging operations are unpredictable,
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Fig. 3.3. Revenue calculation during historical and look-ahead time period.

a slack variable RExp,Adj
t is utilized to ensure that the model converges in case it did

not achieve the target revenue. The revenue adjustment slack variable is limited by the

following:

0 ≤ RExp,Adj
t ≤ γExp.RExp ∀ t ∈ T . (3.21)

Since the price and revenue adjustment slack variables are conflicting, the penalty terms

are set to assign priority to price adjustment rather than the revenue as follows:

σT rp,Adj
t ≤ σExp,Adj

t ∀ t ∈ T . (3.22)

3.3 Numerical Studies

The proposed model in Section 3.2 is simulated to evaluate its effectiveness. Practically,

a fleet can consist of any number of vehicles [115]. Without loss of generality, simulations

are carried out on a fleet of 10 EVs because it is difficult to show detailed simulations

results for higher numbers, but the model can be extended to thousands of EVs. The

EVs considered in the simulation platform are considered as being the same type of Tesla
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Model S. This type of EV has a battery capacity (i.e., SOCH
max) of 75 kWh and an average

energy consumption rate NDrv of 22kWh/100km [116]. The onboard charger available

for this EV is rated at 11.5 kW [117]. Figs. 3.4 (a) and (b) show the electricity prices

and the expected travel plan for a typical day used for simulation studies, respectively.

The price for electricity purchase by EVs is based on Ontario ToU rates [118] consisting

of:

• Off-peak rate from 7 p.m. to 7 a.m.: 6.5 cents/kWh.

• Mid-peak rate from 7:00 a.m. to 11:00 a.m. and from 5:00 p.m. to 7:00 p.m.: 9.4

cents/kWh.

• On-peak rate from 11:00 a.m. to 5:00 p.m.: 13.2 cents/kWh.

Further, different trip profiles are considered for each EV in the fleet as illustrated

by Fig. 3.4 (b). The EV fleet is simulated for two cases, the first case considers only

normal fleet management and does not include a provision of ancillary services to the

grid. In the second case, a provision of ancillary services to the grid with different hours

of support per day is considered in the simulations. It is worth noting that the operating

reserve is considered as the ancillary services to the grid for simulation purposes.

3.3.1 Case 1: No Ancillary Services Support to Power Grid

Fig. 3.5 shows the simulation results when EV fleet is operating for transportation

services only. In particular, Fig. 3.5 (a) shows the charger power of each EV in the

fleet, while Figs. 3.5 (b) and (c) demonstrates the SOC of each EV and the total fleet

SOC, respectively. Figs. 3.5 (a) and (b) show that each EV has its own charging profile
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Fig. 3.4. Simulation parameters for Cases 1 and 2, (a) Electricity prices as per Ontario
ToU rates, and (b) Simulated trips profiles for fleet EVs considered for simulation.

that is optimized to reduce charging costs and manage the battery level to be ready for

all trips. For example, EV no. 6 starts at an SOC equal to 29% and charges at rated

power when the electricity price is lower in order to reach an SOC level of 50%. During

peak electricity rates, it charges only at half of the rated charger power to reduce the

cost while maintaining the energy in the battery to satisfy the planned trip as shown

in Figs. 3.5 (a) and (b). The total SOC of all EVs in the fleet starts at around 37%

and end up with 31% at the end of the simulation time. This small decrease is due

to all the charging signals that the central controller sends in order to keep enough

battery level required for the operation of EVs. It is worth noting that the EV fleet does

not keep a reserve margin in this case since it only operates for transportation services.

Therefore, the charging setpoints are optimized to keep the collective SOC within the

fleet above the minimum value (i.e. 10%) and charge only when it is required to satisfy

the expected travel plan. Figs. 3.5 (d) and (e) demonstrate the fleet revenue and trip
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Fig. 3.5. Simulation results when EV fleet is operated for transportation services only,
(a) EV chargers’ power, (b) EVs SOC, (c) EV fleet total SOC, (d) Fleet operator revenue,
and (e) Passenger trip price.

price for each hour of the scheduling time, respectively. It can be seen from Fig. 3.5

(e) that the trip price increases during peak time in order to achieve the daily target

revenue. The average price over the simulation period is $1.158.

3.3.2 Case 2: With Ancillary Services Support to Power Grid

In this case, the EV fleet operates to provide concurrent services to the transportation

system and the ancillary services market. Figs. 3.6, 3.7, and 3.8 show the simulated
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Fig. 3.6. Simulation results when EV fleet is operated for transportation services and one
hour of ancillary service per day, (a) Ancillary service signals, (b) EV chargers’ power,
(c) EVs SOC, (d) EV fleet total SOC, (e) Fleet operator revenue, and (f) Passenger trip
price.

operating parameters when the fleet is operated for one, two, and four hours of ancillary

services, respectively. Fig. 3.6 (a) shows the ancillary service signals sent by the grid to

the fleet operator. The charger power of each EV in the fleet is shown in Fig. 3.6 (b),

while Figs. 3.6 (c) and (d) demonstrate the SOC of each EV and the total fleet SOC,

respectively. Figs. 3.6 (e) and (f) demonstrate the fleet revenue and trips price for each

hour of the scheduling time, respectively. In this case, the ancillary service signals are

issued at 3 p.m for Case 1, at 11 a.m and 3 p.m for Case 2 (two hours contribution),
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Fig. 3.7. Simulation results when EV fleet is operated for transportation services and two
hours of ancillary service per day, (a) Ancillary service signals, (b) EV chargers’ power,
(c) EVs SOC, (d) EV fleet total SOC, (e) Fleet operator revenue, and (f) Passenger trip
price.

and at 3 a.m, 4 a.m, 11 a.m, and 3 p.m for Case 4 (four hours contribution). Such

signals are sent during the day including discharging requests in order to assist the

grid during the peak load demand. Charging signals are sent when there is surplus

generation from renewables at night, as studied in Case 2. It can be noticed from Figs.

3.6, 3.7, and 3.8 that the model always maintain the EV fleet SOC above the reserve

margin level which is set at 22%, calculated based on the required energy in the fleet.

However, when an ancillary service request is received, the model releases this reserve if
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Fig. 3.8. Simulation results when EV fleet is operated for transportation services and four
hours of ancillary service per day, (a) Ancillary service signals, (b) EV chargers’ power,
(c) EVs SOC, (d) EV fleet total SOC, (e) Fleet operator revenue, and (f) Passenger trip
price.

necessary to provide the required service to the grid. For example, Fig 3.6 (d) shows

that during the peak time when EVs SOC is depleted for EV transportation, the model

releases 3.5% of the EV fleet SOC reserve (equal to 26 kWh) in order to respond to the

signal received at 3 p.m. Once the signal comes to an end, the model immediately starts

raising the EV fleet SOC above the reserve level. Nevertheless, the availability of reserve

SOC is not the only factor that affects the response to the ancillary signals. Since the

model utilizes the distributed SOC of individual EVs to respond to such ancillary service
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signals, the availability of the EVs might limit the capability of the fleet to respond.

This is shown in Fig. 3.7 (a), where the EV fleet only provides 57 kWh in response to

a 64 kWh discharging signal (compare blue vs. red curves at hour 11:00 a.m). This

limited response occurs due to the fact that most EVs serving trips at the issue time of

the signal . Therefore, the model manages such a situation by partial cancellation of the

signal in order to converge. This demonstrates the distributed management capability

of the model in managing concurrent services to the grid and transportation sector.

Further, the average trip prices are calculated for each ancillary service participation

level and found to be $1.123 for one hour, $1.117 for two hours, and $1.098 for four

hours. This indicates that the more the fleet participates in the ancillary services, the

lower the trip price becomes. This allows the fleet to stay competitive in the market,

which translates into higher revenue in long term.

3.3.3 Financial Analysis of Case Studies 1 and 2

Several financial parameters are computed under various ancillary service provisions,

and the results are listed in Table 3.3. The parameters are defined as follows [119, 120]:

• Gross income: indicates the fleet total revenue from services less the operating

costs.

• Net income: represents the fleet’s profit after considering all expenses, including

capital and operating costs.

• NPV: represents the difference between the present and future cash inflows, con-

sidering the discount rate throughout the years.
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• Break even time: the time required for the discounted cash inflows in the fleet to

match the initial capital costs.

• IRR: shows the percentage of profit from the fleet throughout its lifetime. An

iterative trial and error method is used to calculate this value based on cash inflows

and outflows during the yearly intervals.

• Profitability: the system profitability considering the initial cost and expected

return of investment.

As reported in the table, the level of contribution to ancillary services affects the financial

parameters of the EV fleet. In general, the gross income, net income, NPV, IRR, and

profitability levels all increase with an increase in ancillary services contribution. In

particular, the gross and net incomes of the EV fleet are enhanced from $0.770 M and

$0.172 M (under no participating to ancillary services) to $0.795 M and $0.196 M under

four hours of services per day. In such a case, the NPV is increased from $0.765 M

to $0.969 M, while the IRR and the profitability are improved by 0.66% and 1.75%,

respectively. The increase is due to compensation paid by the grid to the fleet operator

for the serviced energy, as well as payment for the availability to provide the services.

It is worth noting that despite the decrease in average trip prices for the passengers

at higher levels of ancillary services provision, the profitability of the EV fleet system

increases by 1.85%.

3.3.4 Model Solution and Convergence Analysis

This section serves to analyze the convergence and optimality of the optimization problem.

The model is linear when no ancillary service provision to the grid is considered. In this
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Table 3.3: Annual Financial Parameters of EV Fleet under Various Scenarios.

Ancillary Services Gross
Income

Net
Income

Net Present
Value

Break
Even Time

Internal Rate
of Return

Profitability

None $0.770 M $0.172 M $0.765 M 7.77 Year 4.87% 55.95%
One Hour/Day $0.786 M $0.187 M $0.890 M 7.6 Year 5.27% 57.1%
Two Hours/Day $0.789 M $0.191 M $0.920 M 7.58 Year 5.38% 57.3%

Three Hours/Day $0.791 M $0.192 M $0.936 M 7.57 Year 5.41% 57.4%
Four Hours/Day $0.795 M $0.196 M $0.969 M 7.53 Year 5.53% 57.7%

case, the dual simplex method is utilized to obtain optimal solutions to the proposed

optimization problem [121]. When an ancillary service participation is considered, the

model activates the constraints (3.4) and (3.5), which are needed to force the EV battery

to operate in either charging or discharging mode.

With the ancillary service provision taken into consideration, the model becomes a non-

convex bi-linear optimization problem. For this problem type, the Gurobi non-convex

quadratic-constrained program solver has been used in this research to obtain optimal

solutions [122]. Gurobi searches for and guarantees globally optimal solutions to bi-linear

QCPs by applying spatial branch-and-bound method to solve the problem. The quality

of the solution for this type of optimization has been evaluated and depicted in Fig. 3.9.

Fig. 3.9 (a) shows tracking the relative optimality gap percentage between the primal

objective bound and the dual objective bound, and (b) depicts tracking the current

objective bound for a feasible solution. The relative optimality gap is calculated as

follows:

Gap% = |zP − zD| ×, 100
|zP |

(3.23)
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Fig. 3.9. Model convergence analysis.

where zP and zD represent the primal and dual objective bounds, respectively. As shown

in the figure, the model terminates at the optimal solution after 44 iterations when

the relative optimality gap is less then 10−6 times the absolute value of the objective

solution [122].

3.3.5 Computational Analysis

The model complexity is analyzed is order to study the effect of increasing the fleet

size on real-time optimization of the fleet operation. All simulations are run on a

desktop PC with a 64-bit Intel Core i7-8700T CPU running at 3.50 GHz with 16

GB RAM. The processing time of the proposed optimization problem includes two

stages, pre-optimization and optimization. The pre-optimization stage involves model

formation which includes building the objective function and constraints, assigning

constant coefficients, and determining problem variables. This stage does not affect the
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real-time operation and can be performed offline. The second stage includes operations

that need to be handled in real time in order to obtain the optimal solution of the model.

This includes assigning time-varying coefficients and algorithm solving. Table 3.3 lists

the computational time required for the algorithm formation and optimization.

Table 3.3: Computational Time of the Proposed Model per Number of EVs.

No. of EVs Model Formation (s) Model Optimization (s)

10 0.02915 0.316
20 0.04450 0.278
50 0.20695 0.279
75 0.4494 0.282
100 0.7922 0.416
200 3.7107 0.746
500 40.856 1.102
750 132.547 1.382
1000 662.435 1.751

It can be observed from Table 3.3 that the total computational time of the proposed

model grows exponentially with the number of EVs. Therefore, the regular PC utilized

to run the simulations in this research can only handle few thousands of EVs. In this

regard, a super computer with enhanced computational power or a high performance

distributed grid computing system is required to handle higher number of EVs. Using

a super computer to handle operation optimization and scheduling of more than few

thousands of EVs in large fleet systems is expected.

3.4 Discussion and Summary

This chapter develops a model for a central controller in a fleet system that allows adaptive

utilization of EV batteries distributed energy for concurrent services to the transportation
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sector and ancillary services market. The optimization model incorporates various slack

variables and control parameters for managing real–time fare prices, adaptive energy

and reserve margin allocation, spotting EV locations, interaction with the grid operator,

and meeting the fleet target revenue. The model allows EV drivers to flexibly manage

their battery capacities based on their availability and assessment of the transportation

services demand when needed. The numerical results for various cases including no

contribution, low contribution, and high contribution levels to the ancillary services

market are presented. The results demonstrate how distributed energy stored in several

EV batteries within the fleet can be used as a whole to support the grid without negative

impacts on the regular trip schedule. The effectiveness of the proposed model for creating

the reserve margin is evident from the results. The reserve margin is optimally utilized

to meet the grid’s demand when needed. The success of the proposed dynamic pricing

mechanism for real–time calculation of fare rates for achieving daily revenue target

in a competitive market is indicated. The results demonstrate that the extra revenue

stream from contribution to the ancillary services market on top of the one from regular

passenger transport enhances the system profit. It is indicated that the more the EV

fleet participates in the ancillary services, the lower the trip prices become, and the more

the system profit is enhanced. As such, the proposed model can increase the profitability

of an EV fleet management system, thereby promoting investment and success in this

area in the near future.
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Chapter 4 - Decentralized Quality of Service
Based System for Energy Trading Among
Electric Vehicles

4.1 Introduction

In recent years, P2P energy trading among EVs (i.e. V2V) has been proposed as an

energy management scheme that helps to regulate EV charging process as well as provide

economic benefit to its participants [50]. V2V schemes allow distributed and flexible

control of EV energy by balancing supply and demand through local transfer between

EVs [123]. However, P2P EV energy trading models in the literature are limited to

utilizing blockchain as a distributed database without proposing a specific governance

mechanism that allows decentralized and autonomous matching and administration of the

process. To address such shortfalls, there is a need to integrate EV energy trading within

a decentralized platform that can match, monitor, and govern the P2P transactions

between EV users. Another common shortfall in previous works of P2P energy trading

among EVs is the lack of QoS control metrics that consider user preference and help

trading participants achieve reliable and flexible transactions. Despite incorporating

user preferences in the P2P energy trading process, the studies in [15] and [52] are

only concerned with preferences related to the amount of energy traded and profit/cost
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of trade, while the study in [53] only considers the predefined deadlines of EV energy

consumers, which may not be sufficient to provide satisfactory services to the participants.

For instance, these studies do not consider aspects related to unexpected changes to

schedule of EV users in their developed energy trading models, which could pose a risk to

P2P trading and cause sudden disruptions/disconnections. For this reason, participants

would be discouraged to consider P2P charging as a reliable service and thus careful

consideration should be given for the incorporation of QoS management in P2P energy

trading among EVs. In this context, this research contributes to the existing literature

by proposing a novel QoS-based scheme for P2P energy trading systems among EV

energy providers and consumers. Without loss of generality, six QoS attributes have

been selected and modeled in this work. These attributes are: requested energy, power

transfer rate, risk of disconnection/unavailability, time flexibility, budget, and credibility.

Such attributes have been selected considering the goals of achieving user satisfaction

with transaction reliability and flexibility. The proposed P2P energy trading scheme

includes weight values that are assigned to QoS requirements to reflect their relative

importance to energy consumers. In this regard, a fuzzy-based approach with minimum

and intelligible input is introduced to determine the weight values of QoS requirements.

Also, two QoS-based matching mechanisms that work like reverse auctions are proposed

to match energy trading EVs. These include SCMP and MCMP matching mechanism.

In order to discourage dishonest requests/offers and ensure that trading parties stick to

their contractual obligations, a penalty mechanism is developed and incorporated in the

proposed scheme. The proposed QoS–based scheme utilizes a smart contracts platform

to carry out (i) the matching between EV energy providers and consumers, and (ii)

monitor the delivery of contracts without the presence of a third party. A smart contract
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is an autonomous executable software on the blockchain network that enforces specific

terms and conditions between transaction parties without the requirement of third-party

interference. Smart contracts make the trading process more transparent because its

contents can be seen by all nodes and the contract’s code logic is more straightforward

when compared to the complex language used in traditional contracts [54].

Table 4.1 presents the nomenclature of the proposed system model.

Table 4.1: Chapter 4 Nomenclature

Indices
h Index of QoS attributes.
j Index of energy provider EVs.
i Index of energy consumer EVs.

Sets
C Set of energy consumer EVs.
D Set of energy provider EVs.

Parameters
B Budget.
CR Credibility.
e Links (edges) between vertices.
E Requested energy.

F Utility function.
k Number of QoS attributes.
L Preference vector.
m Number of energy provider EVs.
n Number of energy consumer EVs.
O Energy provider offer.
P Power transfer rate.
R Energy consumer request.
RD Risk of disconnection.
T Time flexibility.
y QoS attribute value.

4.2 System Model

Fig. 4.1 depicts a schematic diagram of the P2P energy trading system considered in

this work. As shown in the figure, the system consists of physical and cyber layers.

Transactions in the form of P2P energy transfer occur in the physical layer, which con-

stitutes the parking lot that is agreed upon beforehand between the trading participants.

It is assumed that these transactions are carried out in local areas, where designated
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parking lots are not more than 10 km far from participants. This restriction can be

enforced through smart contracts that only matches between participants located within

this distance. The energy consumed to reach the designated parking lots is small and

participants are assumed to have taken this cost into their price consideration.As illus-

trated by Fig. 4.1, the designated parking lots are equipped with connection points that

allow bidirectional power transfer using short underground connections with minimum

losses. Such a setup has been proposed by many studies, e.g. in [58] and [51]. The

main asset traded is energy, which is measured through smart meters/chargers that

are connected to the communication layer represented by the blockchain network. This

allows the smart contract to monitor the QoS delivery and compliance at runtime. For

example, the energy transferred can be measured at the smart charger terminal whereas

the time of connection and disconnection to the smart meter is enough to measure any

time-related QoS requirements. Moreover, all P2P energy trading transactions between

EVs are recorded in a distributed ledger shared by all peers in the network. This feature

allows smart contracts to review the transactions they participated in, which could be

used to assign a credibility score to each participant. Also, the smart contract has access

to e-wallets of trading participants, which are used in transactions settlement.

In this model, an EV that requires energy is represented as an EC, whereas an EV with

excess energy to sell is defined as an EP. EPs compete to win energy transfer contracts

from ECs by offering better QoS values than competitors. The smart contract receives

from ECs their energy requests that include specific QoS requirements. Based on these

requirements, the smart contract generates an energy request on the blockchain network

that can be read by all other nodes that have access to the distributed ledger. EPs

respond by submitting offers based on their capabilities to satisfy the QoS requirements.
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Fig. 4.1. Schematic diagram of a blockchain–based P2P energy trading system between
EVs.

The smart contract creates a matching and agreement between the trading parties and

administers the trading process to ensure adherence to the terms agreed upon in the

contract. The mathematical representation of the system model is given by the following:

Let C and D be the respective sets of ECs and EPs as listed below:

i ∈ C ∧ C = {1, 2, .., n}, (4.1)

j ∈ D ∧ D = {1, 2, .., m}, (4.2)

where n and m are the number of ECs and EPs, respectively. An EC demands energy

in the form of a tuple set R that includes all QoS requirements as follows:

Ri = ([Rmin
1,i , Rmax

1,i ], ..., [Rmin
h,i , Rmax

h,i ], [Rmin
k,i , Rmax

k,i ]), ∀i ∈ C (4.3)

where [Rmin
i,h , Rmax

i,h ] represents the range of acceptable values of the hth QoS requirement

belonging to the ith EC. k is the number of QoS requirements in the request. Similarly,
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an EP presents an energy offer in the following tuple form:

Oj = (Oj
1, Oj

2, .., Oj
h, Oj

k), (4.4)

where Oj
h is the hth QoS attribute value given by the jth EP. Oj must be within the

range required by Ri in order to satisfy the EC’s QoS requirements and qualify for

matching. Given the decision matrix Q = yjh with alternative offers, j = {1, 2.., m} and

QoS attributes, h = {1, 2.., k}:

Q =



y11 y12 ... y1h

y21 y22 ... y2h

: : . . . :

yj1 yj2 ... yjh


, (4.5)

the objective function of the system could be defined as follows:

Max :
∑

i

Fi(Oj), ∀j ∈ D, (4.6)

where Fi(Oj) is the utility function of an EC i that indicates the EC satisfaction with

the jth EP offer. The utility function in (4.6) is subject to:

Rmin
h,i ≤ Oj

h ≤ Rmax
h,i , ∀i ∈ C ∧ ∀j ∈ D, (4.7)

where (4.7) indicates that every EP offer must be within the QoS limits that are

pre-specified by the EC.

Based on the above discussions and without loss of generality, six QoS requirements
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are modeled in this work as follows:

Requested energy: ECs submit a minimum Emin
EC and maximum Emax

EC energy

demand limits to engage in P2P energy trade. This opens up the opportunity for more

energy providers to submit bids by allowing flexible energy offers.

Emin
EC ≤ EEP ≤ Emax

EC (4.8)

Power transfer rate: ECs can specify how fast P2P trading is conducted by

demanding a minimum discharging power P min
EC . The power transfer rate is limited by

the physical attribute of EC’s charger P max
EC .

P min
EC ≤ P Dhg

EP ≤ P max
EC (4.9)

Risk of Disconnection/Unavailability: due to the mobility of EVs and the

uncertain schedule of EV users, there is a risk that an EV provider does not show up

or disconnect during the trade. This requirement specifies how important this energy

request to the EC. Risk value mainly affects the penalty imposed for not completing the

trade. This deters EPs from engaging in trades that they are not sure to complete.

RDEP ≤ RDMax
EC (4.10)

Time flexibility: this requirement indicates how long an EC can wait from the

designated time of trade for EP to arrive at the required parking lot and plug in their

EV to the smart charger.

TEP ≤ T max
EC (4.11)
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Budget: expresses the maximum cost EC is willing to pay for a unit of energy.

BEP ≤ Bmax
EC (4.12)

Credibility: given that an EC is looking to charge from another EV instead of

the grid, it is reasonable that they prefer to trade with providers who have credibility.

Credibility is affected by the number of withdrawals after winning the P2P energy trading

contract, as well as the number of times EC’s QoS requirements were not satisfied after

winning the contract.

CRmin
EC ≤ CREP (4.13)

4.3 Decentralized QoS-based Matching System for Energy
Trading EVs

This section describes the proposed decentralized QoS-based system for matching and

administration of P2P energy trading among EVs. Fig. 4.2 demonstrates the self-

enforcing smart contract scheme for matching and administration of P2P energy trading

among EVs. As shown in the figure, the system consists of four main stages. In

stage one, an EC specifies QoS requirements and invokes weight generation function

WeightGen() to generate weights for these requirements. In this regard, it is required that

all QoS requirements are assigned weight values that reflect their relative importance to

the EC. These weight values allow ECs to customize their preferences and to differentiate

between alternative offers. Further, when there are multiple matching mechanism

available, the EC must select the one to be run inside the smart contract. In this work,

two types of matching mechanisms are considered, which are SCMP and MCMP. In
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Fig. 4.2. Smart contract process flow diagram for P2P energy trading of EVs.

SCMP, multiple EPs submit energy offers based on the QoS request of a single EC

(i.e. |C| = 1, |D| ≥ 1), whereas multiple energy requests and offers are matched in the

MCMP mechanism (i.e. |C| ≥ 1, |D| ≥ 1). These mechanisms work similar to reverse

auctions, where the sellers bid to provide services to buyers. The SCMP is tailored to

find the offer that provides the best utility to the EC considering their individual QoS

requirements. The MCMP mechanism, however, aims to (i) satisfy QoS requirements of

ECs, (ii) maximize matching of ECs and EPs, and (iii) maximize the sum of utilities for

all matched ECs. Therefore, the two mechanisms have a trade-off in terms of utility

and matching maximization. Accordingly, the EC uploads QoS requirements and their

weight values, as well as the requested matching mechanism into the smart contract by
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invoking QoSrequest(). When the smart contract receives QoSrequest(), it reserves an

amount of BEC from the e-wallet of EC to be used for payments and/or penalties. The

matching mechanism and preferences of EC are then encrypted in order to prevent EPs

from submitting dishonest offers that are tailored to win the energy contract.

In stage 2, an energy request is created on the blockchain network that can be read

by all other nodes that have access to the distributed ledger. In response, EPs invoke

QoSOffer() to upload their offers to the smart contract. The function OfferCheck()

is then run to discard all offers that violate QoS requirement constraints presented

in (4.8)–(4.13). Further, all offers are extended using ExtendOffer() to include the

credibility attribute value obtained from the distributed ledger.

In stage 3, the smart contract runs the matching mechanism selected by the EC to

determine the best offers, and then an agreement for P2P trade is established between

the ECs and EPs according to the approved QoS attributes.

In stage 4, transaction parties carry out the energy trade at the agreed location

and the smart contract monitors the energy meters of the transaction parties in order to

measure the QoS of the trade. Based on the measured QoS, the function PenaltyMech(),

which includes the payment and penalty process, is called to settle the trade with both

parties.

4.3.1 Fuzzy-based QoS Attributes Weight Calculation Approach

ECs might not be able to manually determine the proper weight values that reflect

the true importance of their QoS requirements because of the conflict of thoughts and

priorities, as well as difficulty in expressing number ranking [124]. Several methods have

been proposed in the literature to determine weight values based on preference input from
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Fig. 4.3. Fuzzy-based approach to determine weight values of QoS requirements.

users but these methods require complicated inputs and suffer from inconsistency, as well

as uncertainty [125]. Therefore, a fuzzy-based approach with minimum and intelligible

input is proposed in this work to determine the weight values of QoS requirements.

In this approach, the simplicity and intelligibility of the inputs help to reduce the

inconsistency, whereas the uncertainty is tackled through fuzzy logic.

The proposed approach is illustrated in Fig. 4.3. As shown in the figure, an EC

inputs the linguistic importance variables of QoS attributes to a preference generation

model, which is used to determine EC’s fuzzy preference ranking of the attributes. These

preferences are inputted to an optimization model based on the Best Worst Method

(BWM) [126], which generates optimal fuzzy weights for each QoS attribute.

Table 4.2: QoS Attributes Preferences Fuzzy Conversion.

Linguistic Terms Relative Importance Triangular Fuzzy Importance

Extremely High (EH) 1 (1, 1, 1)
Very High (VH) 2 (1.5, 2, 2.5)

High (H) 3 (2.5, 3, 3.5)
Medium High (MH) 4 (3.5, 4, 4.5)

Medium (M) 5 (4.5, 5, 5.5)
Medium Low (ML) 6 (5.5, 6, 6.5)

Low (L) 7 (6.5, 7, 7.5)
Very Low (VL) 8 (7.5, 8, 8.5)

Extremely Low (EL) 9 (8.5, 9, 9.5)
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Algorithm 4.1: Preference Generation Model
Input: Linguistic terms set for QoS attributes
Output: Fuzzy preference vectors Lf

B and Lf
W

Generate relative importance set V from Table 4.2
Lbb ← min(Vh)
Lww ← max(Vh)
LB ∪ Lbb

LW ∪ Lww

for each Vh ∈ V \ {Lbb, Lww} do
Lbh = (Vh − Lbb)
Lhw = (Lww − Vh)
LB ∪ Lbh

LW ∪ Lhw

end

The linguistic importance terms are listed in Table 4.2. Nine importance levels are

considered in this table because they allow a reasonable comparison for most individuals

[127]. The linguistic terms are input to the preference generation model, which is shown

in Algorithm 4.1. As depicted in the algorithm, the model converts linguistic terms to

relative importance numbers V based on Table 4.2. For example, if the EC assigns a

Very High (VH) term to a QoS attribute, then the model will convert it to the relative

importance of V = 2. It is worth noting that the model is designed to interpret a higher

V as of lower importance. Therefore, the model designates the attributes with minimum

and maximum values of V as the most important and least important, respectively.

Based on the relative importance values, the model generates two pairwise comparison

vectors between the attributes, which are best-to-others vector LB and worst-to-others

vector LW . In the LB vector, the most important QoS attribute takes the rank of 1 (i.e.

Lbb = 1) and the rest of the attributes are ranked based on the distance between its

importance number Vh and Lbb in order to formulate the vector LB = (Lb1, Lb2, ...Lbk).
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Similarly, Lww is ranked as 1, while the rest of the attributes are ranked based on the

reverse distance between them and Lww in order to generate the worst-to-others vector

LW = (L1w, L2w, ..., Lkw). Vectors LB and LW then undergo a fuzzification according

to Table 4.2. For example, the vector LB = (1, 6, 2) will be converted to the triangular

fuzzy vector Lf
B =

(
(0.5, 1.0, 1.5), (5.5, 6.0, 6.5), (1.5, 2.0, 2.5)

)
.

Fuzzy preference vectors Lf
B and Lf

W generated from the preference generation model

are utilized to find the optimal weight for each attribute h that satisfies the following

constraints:
M f

B

M f
h

= Lf
bh ∧

M f
h

M f
W

= Lf
hw ∀ h ∈ R, (4.14)

where M f
B and M f

W are the weights of the highest and worst ranking attributes, respec-

tively. The conditions in (4.14) can be met by finding the weights that minimize the

maximum absolute difference of the terms as per the following BWM model:

Min Max :
{∣∣∣∣∣M

f
B

M f
h

− Lf
Bh

∣∣∣∣∣ ,

∣∣∣∣∣ M f
h

M f
W

− Lf
hW

∣∣∣∣∣
}
∀ h ∈ R, (4.15)∑

h

M f
h = 1, ∀ h ∈ R, (4.16)

M f
h ≥ 0, ∀ h ∈ R. (4.17)

The triangular fuzzy weight values obtained from (4.15)–(4.17) are defuzzified using

the following equation [128]:

Mh = M f1
h + 4.M f2

h + M f3
h

6 , ∀ h ∈ R. (4.18)
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4.3.2 Proposed QoS-based SCMP Matching Mechanism

The evaluation of the EC utility in problem (4.6) involves the assessment of EP offers in

terms of all QoS characteristics in the design space. In this regard, multiple-attribute

decision making (MADM) methods are suitable for problems with explicitly defined

alternatives that have multiple attributes (i.e. discrete decision field) [127]. Therefore,

an SCMP matching scheme based on a MADM technique is introduced to find the offer

that maximizes EC utility. MADM is divided into non-compensatory and compensatory

techniques. Non-compensatory techniques could exclude an offer based on one bad

attribute, while compensatory ones allow “trade offs"; a decrease in one attribute could

be compensated by another attribute. In the SCMP matching, the effects of all QoS

attribute values must be considered in the best offer selection criteria. Therefore, a

non-compensatory MADM method is utilized in this work [127]. Among different non-

compensatory MADM methods, the Technique for Order of Preference by Similarity to

Ideal Solution (TOPSIS) closely represents the selection rational of humans [129]. The

basic principle of the TOPSIS method is to choose the alternative that stands closest

to the positive ideal solution and farthest from the negative ideal solution. TOPSIS

measures the Euclidean distance between each alternative and the ideal solution and then

ranks them based on these measurements. In this context, the positive ideal solution is

the alternative that realizes the best values for all attributes considered in the problem.

Similarly, the worst attribute values represent the negative ideal solution. The proposed

SCMP matching mechanism is therefore presented as follows:

Considering the decision matrix in (4.5), a weighted and normalized value is calculated
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for each QoS as in (4.19):

vjh = Mh .
yjh√∑

y2
jh

, ∀ j = 1, ..., m, h = 1, ..., k, (4.19)

where Mh is the weight value of the jth required QoS. Each QoS value is normalized

using yjh√∑
y2

jh

. For each QoS requirement, the ideal offer A+ and the negative-ideal A−

offer are determined as below:

A+
h = maxj

(
vjh

)
, A−

h = minj

(
vjh

)
, h = 1, ., k. (4.20)

Subsequently, the euclidean distances between each offer and the ideal offer are

calculated as follows:

ED+
j =

√∑
j

(vjh − A+
h )2, ED−

j =
√∑

j

(vjh − A−
h )2 (4.21)

Finally, the relative closeness RCj to the ideal solution for each offer is calculated as per

the following equation:

RCj =
ED−

j

ED−
j + ED+

j

, (4.22)

where a higher value of RCj indicates a higher utility obtained from offer j in relative

to other offers.

4.3.3 Proposed QoS-based MCMP Matching Mechanism

In this section, a QoS-based matching mechanism is proposed to allocate multiple EP

offers to EC requests. The matching of multiple EP offers to multiple EC requests is a
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combinatorial optimization problem that considers the objective of finding the optimal

assignment of EPs to ECs that maximizes total social welfare as follows:

max
n∑

i=1

m∑
j=1

ei,j .Ui,j, (4.23)

where ei,j represents the linking between the ith EC and jth EP, whereas Ui,j expresses

the utility resulting from this linking. The problem in (4.23) is subject to:

n∑
i=1

ei,j = 1, ∀ j ∈ D, (4.24)

m∑
j=1

ei,j = 1, ∀ i ∈ C, (4.25)

ei,j ∈ {0, 1}nxm, ∀i ∈ C ∧ ∀ j ∈ D, (4.26)

where (4.24) and (4.25) indicate that only one EP can be assigned to one EC. In this

study, an MCMP matching mechanism with elements from matching theory and auction

algorithm [130] is introduced to solve the integer optimization problem in (4.23)–(4.26).

The procedures of this mechanism are shown in Algorithm 4.2. In this mechanism,

the matching of multiple ECs and EPs based on QoS attributes is modeled as a weighted

bipartite graph [131]. Using the energy requests and offers received by the smart contract,

an undirected bipartite graph model G = (C, D, E) is constructed. In this model, C and

D are two independent sets of vertices that represent n EC requests and m EP offers,

respectively. E denotes the set of edges e that link requests to the offers that can satisfy

their QoS as per (4.7). Each edge eij in G that links between the ith request and jth

offer is assigned a value Uij that represents the utility of the ith EC obtained from the
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jth EP offer. Similar to the SCMP mechanism, a special utility calculation method must

be employed considering different attribute units and weights. However, the MCMP

mechanism requires a method that finds the absolute utility for each EC in order to

maximize the utilities of all ECs.

Therefore, the weighted sum model (WSM) [129] is employed to calculate Uij as

follows:

Uij =
∑

Mh × η(Oj
h) (4.27)

where Mh is the weight of the hth QoS attribute, while η(Oj
h) is the hth normalized QoS

attribute. The constructed weighted bipartite graph G is used to produce a maximum

weighted matching M. In the matching phase of the MCMP mechanism, ECs are

considered as bidders, EPs as goods, and the utility that an EP j gives to EC i as the

value of the matching. The matching could be initialized with any set of assignments

and prices while each round of the mechanism has its own assignment and prices set. In

this case, an empty assignment set M is considered, and all unassigned ECs are grouped

in a queue set S, while the prices for EP offers in the set Pj are initialized to zero. The

matching phase consists of two parts: bidding and assignment. In the bidding part, all

unassigned bidders place their bids on the goods that provide them with the best utility.

The bids are calculated as follows:

bidi,j = p∗
j + vi − ui + δ (4.28)

where p∗
j is the previous round price for the good, vi and ui are the highest and second

highest utilities of all objects, respectively, and δ is a positive real number value that pre-

vents infinitive bidding rounds when two bidders get the same utility from one good [130].
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Algorithm 4.2: Proposed MCMP Matching Mechanism
Input: C & D

Output: Maximum weighted matching M
Graph Construction Phase:
E ← ∅
for each j ∈ D & i ∈ C do

if |Oj| ≥ |Ri| then
Uij = ∑

Mh × η(Oj
h))

E ∪ (j ↔ i, Uij)
end

end
Matching Phase:
M← ∅
S = {c1, c2, ...cn} //unassigned ECs
pj ← 0 ∀ j ∈ D

NT = n + m //number of trading participants
δ = 1

1+(NT )

while S ̸= ∅ do
Bidding:
for each i ∈ S do

j∗
i = argmaxj (Uij − pj)

vi = maxj (Uij − pj)
ui = maxj ̸=j∗

i
(Uij − pj)

bidi,j = pj + vi − ui + δ

P (j) ∪ i
end
Assignment:
for each j ∈ D do

if P (j) ̸= ∅ then
i∗ = argmaxi∈P (j) (bidi,j) ∀i ∈ P (j)
pj = maxi∈P (j) (bidi,j) ∀i ∈ P (j)
M∪ (i∗, j)
M =M\ (i, j)

end
end

end
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In the assignment part, each good j is assigned to the highest bidder i∗ and its price

is updated by the highest bid value. The matching phase terminates when a complete

assignment is achieved.

4.3.4 Proposed Penalty Mechanism

A penalty mechanism is developed to discourage dishonest requests/offers and ensure that

ECs and EPs stick to their contractual obligations. This means that both transaction

parties must carry out the P2P energy transfer as per the agreed-upon QoS values. The

penalty mechanism depends mainly on the total energy transferred, rate of transfer, and

time of connection. These attributes are measured through the smart charger, which is

connected to the blockchain network. Based on these measurements, the smart contract

can monitor the QoS delivery and calculate the penalty value. The smart contract

is authorized to use a reserved amount of trading participants’ e-wallets in penalty

payments. If a party fails to carry out the trade (i.e. does not connect to the smart

charger as per agreed time and considering TEP ), then a penalty is levied as per the

following term:

Bpen,i = 100−RDEC

100 . BEP (4.29)

Bpen,j = 100−RDEP

100 . BEP (4.30)

where (4.29) indicates the penalty for EC i considering the required risk RDEC , while

the penalty for EP j is given by (4.30) taking into account offered risk RDEP . It is noted

that the penalty increases as the requested/offered risk decreases in both equations.

In the case where the actual QoS delivered by an EP j is worse than offered, the
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penalty affects the payment received as follows:

Bpay,j = EN
act + P N

act + T N
act

EN
EP + P N

EP + T N
EP

. BEP (4.31)

where (.N ) indicates a normalized parameter. If the reason for EP j failing to deliver full

QoS lays on the EC, (e.g. disconnection by EC before energy transfer is complete), then

EC i must compensate the EP for the lost opportunity in the form of penalty payment

as follows:

Bpay,i = BEP −
EN

act + P N
act + T N

act

EN
EP + P N

EP + T N
EP

. BEP (4.32)

4.4 Numerical Simulation

In this section, numerical studies are conducted in order to validate the superiority and

effectiveness of the proposed QoS-based mechanisms.

4.4.1 QoS Attributes Weight Calculation and SCMP Matching

Mechanisms Analysis

The first study examines optimal QoS attributes weight calculation and SCMP matching

mechanisms. The QoS requirements and linguistic variables of a random request are

listed in Table 4.3. The QoS values in Table 4.3 are selected from realistic values that

can be requested by energy consumers. For example, the energy requested range is

set to values (i.e. [20-30] kWh) that are not very high to drain the energy provider’s

battery and not very low to make it unprofitable/unreasonable to participate in the
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trade [52]. Similarly, minimum discharging power is set a range of 70-100% to avoid

long trading sessions while allowing flexibility in energy providers’ offers [15]. Two EC

Table 4.3: QoS attributes simulation parameters

QoS
Requirement

QoS
Values

Linguistic
Variables Set I

Linguistic
Variables Set II

[Emin
EC , Emax

EC ] (kWh) [20,30] VH VH
[P min

EC , P max
EC ] (%) [70,100] L M

CRmin
EC 3.5/5 MH MH

RDmax
EC (%) 40 EH ML

T max
EC (min) 30 ML EH

Bmax
EC (¢/kWh) 9.5 VH H

linguistic variable sets are considered to demonstrate the effect of changing importance

input on weight calculation and offer selection using the SCMP mechanism. Six offers

are generated randomly in response to the request in Table 4.3. The decision matrix

created from the received offers is:

Q =



E P CR RD T B

O1 20 70 3.8 40 15 8.2

O2 25 80 3.9 25 40 8.3

O3 30 80 3.1 10 25 8.1

O4 27 70 3.9 30 15 8.4

O5 25 80 4.0 10 15 8.0

O6 30 80 4.0 25 15 7.8



Based on set I in Table 4.3, the preference generation model in Algorithm 4.1

generates the following best-to-others and worst-to-others fuzzy pairwise comparison

68



vectors:

ABfuzzy =



(1.5, 2.0, 2.5)

(6.5, 7.0, 7.5)

(3.5, 4.0, 4.5)

(0.5, 1.0, 1.5)

(5.5, 6.0, 6.5)

(1.5, 2.0, 2.5)



AW fuzzy =



(6.5, 7.0, 7.5)

(0.5, 1.0, 1.5)

(4.5, 5.0, 5.5)

(7.5, 8.0, 8.5)

(2.5, 3.0, 3.5)

(6.5, 7.0, 7.5)



It can be noticed from ABfuzzy that RD has been ranked as the most important

attribute with a fuzzy preference base of 1, whereas other attributes have been given

values that correspond to their preference position in relation to the RD preference

value in Table 4.3. Similarly, T is ranked as the least important attribute in AW fuzzy

taking the rank of 1 but with the other attributes ranking in reverse order. The optimal

fuzzy weight distribution values for sets I and II are shown in Figs. 4.4 (a) and (b),

respectively.

It can be noticed from both figures that the weight values are distributed based

on their importance in Table 4.3. For example, Fig. 4.4 (a) shows that attributes

RD and P have the highest and lowest weight values, respectively. This is a result of

having respective EH and L input by EC in set I of linguistic importance variables.

Further, Figs. 4.4 (a) and (b) clearly show that weight values distribution changes in

response to linguistic importance terms change for each attribute. In particular, it can

be noticed that attribute RD has been given the lowest weight distribution in Fig. 4.4

(b) after having the highest values in Fig. 4.4 (a). This change is a result of changing
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Fig. 4.4. Fuzzy weight distribution of QoS requirement for (a) Linguistic variables set I,
and (b) Linguistic variables set II.

the importance from EH to ML as listed in Table 4.3. Another notable change occurs

for T , which changes from having the lowest value in set I to the highest value in set II.

In the SCMP mechanism simulations, offers that is not within the QoS limits specified

by the EC are discarded as given by the modified decision matrix Qmod:

Qmod =



E P CR RD T B

O1 20 70 3.8 40 15 8.2

O4 27 70 3.9 30 15 8.4

O5 25 80 4.0 10 15 8.0

O6 30 80 4.0 25 15 7.8



where the bold numbers indicate the best QoS attribute value among different offers

in Qmod. As can be seen from the original Q and modified Qmod decision matrices,

O2 and O3 have been discarded due to violations of EC QoS requirements stated in

Table 4.5. Particularly, the values of T in O2 and CR in O3 do not satisfy the stated

requirements.

70



(a)

0 0.2 0.4 0.6 0.8 1
Relative ER Utility

O6

O5

O4

O1

E
P 

O
ff

er
s

(b)

0 0.2 0.4 0.6 0.8 1
Relative ER Utility

O6

O5

O4

O1

E
P 

O
ff

er
s

Fig. 4.5. Offers Ranking based on SCMP mechanism considering weights generated from
(a) Linguistic variables set I, and (b) Linguistic variables set II.

The ranking of offers for the SCMP mechanism in Qmod is demonstrated in Figs. 4.5

(a) and (b), which show the ranking of offers for set I and II of the linguistic variables,

respectively. It can be noticed from Fig. 4.5 (a) that the mechanism matches the EC

request with O5 for set I despite offering slightly less E and requesting higher B than

O6. The reason is that O5 offers a significantly lower RD, which has a high weight value

in set I, resulting in higher utility for EC from this offer. When RD is assigned a low

weight value in set II, O6 is selected as the best offer by the SCMP mechanism as shown

in Fig. 4.5 (b) due to offering relatively higher QoS values for multiple attributes.

4.4.2 MCMP Mechanism Analysis

In this study, randomly generated QoS-based energy requests and offers that follow a

Gaussian distribution are utilized to validate the effectiveness of the proposed MCMP

mechanism. QoS attributes in each request are assigned random weight values. The

parameters of the distribution for the six QoS attributes specified in Section 4.2 are

((µE = 12 , σE = 1),(µP = 80 , σP = 2),(µCR = 4 , σCR = 0.1),(µRD = 18 , σRD =
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Fig. 4.6. Simulation results of the proposed MCMP mechanism compared to the
Hungarian and JV algorithms for, (a) Total EC utility, (b) Percentage of matched
participants, and (c) Matching algorithms execution time.

2),(µT = 9 , σT = 2),(µB = 9.5 , σB = 1)). The number of trading participants is varied

from 20 to 1000 with a random distribution of ECs and EPs among these participants.

The MCMP matching algorithm is compared with two well-known algorithms to test its

performance. The first algorithm is the Hungarian algorithm, which is a primal-dual

method that can solve linear assignment problems based on the principle of finding

feasible augmenting paths [132]. The Hungarian algorithm enjoys a high reputation

and popularity since it has been proven to always find the minimum weight-matching
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Table 4.4: Simulation results for MCMP, Hungarian, and JV algorithms

Total Number
of Trading

Participants

Total Utility Matching (%) Execution Time (s)

Hungarian JV MCMP Hungarian JV MCMP Hungarian JV MCMP

250 60.9 57.1 57.1 92.5 92.5 86.1 0.3 0.05 0.1

500 126.7 113.9 122.6 95.0 95.0 91.2 2.1 0.6 0.6

750 190.6 170.1 188.5 95.0 95.0 93.6 9.0 2.9 3.2

1000 252.2 225.5 250.5 95.4 95.4 94.4 26.9 10.1 10.7

1250 320.3 282.0 320.0 96.3 96.3 96.1 73.4 35.7 37.9

1500 388.3 341.1 388.0 96.3 96.3 96.2 183.7 104.1 110.6

in assignment problems [133]. Therefore, it is widely used in the literature [134],[135]

and industrial applications [136],[137]. In terms of efficiency, the Hungarian algorithm

outperforms linear programming based methods, including different variants of simplex

algorithms. The second algorithm to compare the proposed MCMP with is the shortest

path algorithm, which is also known as the Jonker and Volgenant (JV) algorithm [138].

JV is a dual algorithm that is based on the principle of finding the shortest augmenting

path. Compared to the Hungarian algorithm, JV can obtain optimal assignments within

a shorter execution time [132].

The algorithms are coded and simulated in the MATLAB environment, which is run

on a PC with the following specifications: Core i7-8700T, 2.4 GHz CPU, 16 GB RAM,

and 64 bits system. Simulation results for the MCMP, Hungarian, and JV algorithms

are demonstrated in Figs. 4.6 (a)–(c). A summary of the results shown in Figs. 4.6

(a)–(c) is also listed in Table 4.4. Fig. 4.6 (a) demonstrates the total utility for different

numbers of trading participants. As shown in the figure, the proposed algorithm clearly

outperforms the JV algorithm in terms of maximizing the total EC utility for different
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numbers of participants. However, it has a slightly lower performance in comparison

to the Hungarian algorithm when the number of participants is low. As the number of

participants increases, MCMP provides similar performance to the Hungarian algorithm

while still outperforming the JV. Besides, as depicted in Fig. 4.6 (b), the percentage

of matched participants of the Hungarian and JV algorithms is slightly higher (≃ 4%)

than MCMP when the number of participants is low and almost similar for a high

number of participants. Fig. 4.6 (c) depicts the execution time of the three algorithms

for different numbers of participants. It is noticed from the figure that the MCMP

algorithm is marginally slower than JV and much faster than the Hungarian in terms

of the computational time required to reach the assignment solution. On average, the

proposed algorithm can solve the problem in less than 50% of the time required by the

Hungarian algorithm and slightly higher time than JV (i.e. 7%). This shows that the

proposed MCMP mechanism (i) can provide fast near-optimal solutions under different

scales of data, and (ii) it is scalable, where its superiority increases with the increase of

the number of participants.

The results reported in Fig. 4.6 and Table 4.4 can be explained by certain charac-

teristics in the compared algorithms. The MCMP provides a slightly lower utility and

matching percentage at low numbers of participants because it is based on approximate

optimality represented by the δ − complementary slackness in the bidding equation

(4.28) in algorithm 2. The δ parameter, which is set to 1
1+NT

in algorithm 2 according to

the minimum recommended value by [139], increases the aggressiveness of the algorithm

to terminate faster but might slightly reduce the utility and matching percentage. Since

δ is inversely proportional to the number of trading participants NT , the effect of δ

on the optimality of the solution decreases as NT increases. This can be seen in Fig.
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4.6 that shows that Hungarian and MCMP algorithms approach the same utility and

matching values for high numbers of trading participants. Moreover, the reason that

MCMP provides solutions with higher utility than the JV algorithm could be attributed

to the original design of JV that assumes a balanced number on both sides of the

assignment problem, as well as an integer edges’ weights (i.e. utility) [138], [140]. In

this context, the MCMP is a better fit for the problem formulated in (4.23) since it can

accept an unbalanced number of ECs and EPs along with utilities that contain floating

decimal points.

4.5 Discussion and Summary

This research proposes a novel decentralized scheme for P2P energy trading between EVs

that takes into consideration QoS management and utilizes smart contracts to match

and administer the energy trade. SCMP and MCMP mechanisms are proposed to match

EC requests and EP offers based on QoS attributes. In these mechanisms, each attribute

is assigned a weight value according to a fuzzy-based optimal weight calculation method.

Further, a penalty mechanism is developed to discourage dishonest requests/offers and

ensure that ECs and EPs stick to their contractual obligations. Numerical simulations

are conducted to validate the effectiveness of the proposed mechanisms. The results

show that the SCMP mechanism selects the EP offer that provides the best utility to

EC with high awareness of EC preferences represented by weight values assigned to

QoS attributes. The results also demonstrate that the MCMP mechanism is superior in

finding fast near-optimal solutions when matching a high number of ECs and EPs.
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Chapter 5 - Bidirectional Smart Charging of
Electric Vehicles Considering User
Preferences

The research on G2V, V2G, and V2V schemes mainly focuses on scheduling of EV

charging and/or discharging from the perspective of system operators and aggregators.

However, given that there is at least one human user per vehicle, it is expected that EV

users will have various interactions based on their own preferences, and therefore, require

different options to accommodate their preferences. It is also argued that EVs can be

scheduled for joint applications concurrently including P2P energy trade and ancillary

services to the grid. Thus, it is important to consider EV users’ input into the scheduling

process through new models that help each individual EV user determine the optimal

charging and discharging schedule for their EV batteries. This research argues that the

EV user’s input can be taken into consideration for the scheduling process. The inputs

considered in this research are utilized to provide a personalized user control over P2P

transactions and ancillary services participation as well as battery SOC management

and trips adjustment.

To that end, the present research contributes to the existing literature by:

• Presenting a new algorithm for bidirectional smart charging of EVs considering
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P2P energy trade, provision of ancillary services to the grid and utilization of low

electricity prices for battery charging.

• Incorporating user preferences into the scheduling process enabling the model to

adapt to various conditions.

• Utilizing optimization slack variables for optimal management of EV battery SOC

and energy allocation for multiple services.

• Introducing indices for quantification of EV participation in ancillary services and

P2P transactions.

Without loss of generality, the following assumptions are made during development

of this research:

• Due to the mobility nature of EVs and users’ uncertain schedules, ancillary service

signals are assumed to be an optional request sent by the aggregator on an ad

hoc basis. EV users would decide whether they want to participate in ancillary

services six hours ahead of the request time.

• While the EV user’s behavior is stochastic in nature, the scheduling process is

adaptive to various conditions based on the human input into the scheduling

algorithm. The input from the human user is utilized to deal with the uncertainties

of the scheduling parameters.

• Time–of–use electricity prices are considered in this research since trading is done

at the distribution level. This would also reduce the uncertainties associated with

the price data since they are predictable.
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• Due to the dynamic nature of smart grids and uncertainties in renewable energy

generation as well as the issues that can be caused by bidirectional power flow, P2P

energy trading is carried out on the same feeder. This would also help alleviate

power congestion, reduce power losses, and decrease the complexity of power flow

management [141]. In addition, distribution system constraints and transaction

fees are neglected.
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Table 5.1: Chapter 5 Nomenclature

Indices
t Index for time steps.

Sets
T Set time steps in optimization

problem.

Constants
∆T Optimization problem time interval

(h).
ηChg Charging efficiency.
ηDhg Discharging efficiency.
κDsp Battery dissipation factor (%).
F Con Rate of energy consumption per dis-

tance unit (kWh/km).
OCChg Battery charging operating cost

($/kWh).
OCDhg Battery discharging operating cost

($/kWh).
SOCmin Physical minimum level of EV battery

(kWh).

Parameters
βP,P 2P,Dhg

t P2P Discharging penalty factor
($/kWh).

βP,P 2P,Chg
t P2P Charging penalty factor ($/kWh).

βP,Res
t Penalty factor for management of re-

serve SOC ($/kWh2).
βP,Dod

t Penalty factor for management of stor-
age depth of discharge ($/kWh2).

βP,T r2
t Penalty factor for management of Tier

2 traveling distance ($/km·h).
βP,T r3

t Penalty factor for management of Tier
3 traveling distance ($/km·h).

βP,Anc
t Ancillary service penalty factor

($/kWh).
BT oU

t Electricity time-of-use (ToU) prices
($/kWh).

BAnc
t Ancillary service price ($/kWh).

BP 2P
t Peer-to-Peer energy exchange price

($/kWh).
Dt EV traveling distance during time pe-

riod t (km).
DT r1

t EV Tier 1 traveling distance time pe-
riod t (km).

DT r2
t EV Tier 2 traveling distance during

time period t (km).
DT r3

t EV Tier 3 traveling distance during
time period t (km).

P P 2P
t P2P power trade quantity (kW).

SAnc
t Ancillary service signal (kW).

SOCRes
t Reserve SOC level (kWh).

SOCDod
t SOC level for depth of discharge man-

agement (kWh).
SOCUsr

min SOC user adjustable minimum (kWh).
SOCmax,y Maximum degraded SOC level (kWh).
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Table 5.1: Chapter 5 Nomenclature ... continued.

Variables
Ct EV charger plug–in status, C = 1

when plugged–in.
DSch,T r2

t Scheduled EV Tier 2 traveling dis-
tance during time period t (km).

DSch,T r3
t Scheduled EV Tier 3 traveling dis-

tance during time period t (km).
DT r2,S

t Binary slack variable for manage-
ment of Tier 2 traveling distance.

DT r3,S
t Binary slack variable for manage-

ment of Tier 3 traveling distance.
EDrv

t EV energy consumption during
driving (kWh).

P Grd
t EV power charge from the grid

(kW).
P P 2P,Chg

t EV power charge from the peer
(kW).

P P 2P,Dhg
t EV power discharge to the peer

(kW).

P Anc
t Ancillary service power (kW).

P P 2P,Chg,S
t Slack variable for management of

EV power charge from the peer
(kW).

P P 2P,Dhg,S
t Slack variable for management of

EV power discharge from the peer
(kW).

SAnc′,S
t Slack variable for ancillary service

contribution (kW).
SAnc′′,S

t Slack variable for ancillary service
contribution (kW).

SOCRes,S
t Reserve SOC level slack variable

(kWh).

SOCDod,S
t SOC level for depth of discharge

management slack variable (kWh).
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Fig. 5.1. Proposed smart charging mechanism of EVs considering user preferences.

5.1 Proposed Model

5.1.1 Optimal Scheduling Model

Fig. 5.1 presents the proposed smart charging model which takes into consideration user

preferences in the optimal management of EV charging and discharging. As shown in the

figure, an optimal model schedules the EV battery charging and discharging setpoints

based on the following inputs: (i) EV status such as charging system physical limits and

battery capacity, (ii) TOU electricity prices, (iii) reserve provision for participation in

ancillary service market and P2P energy trade, and (iv) user input which includes EV

expected location throughout scheduling time period as well as scheduling risk profile.

In order to account for the time-varying nature of the energy demand, optimization

results are updated by re-running the optimization calculations at every time step.

In this case, the optimal scheduling algorithm would include six-time steps, each of

which represents a one-hour time interval. As such, optimization variables would be
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Fig. 5.2. Example of a GUI for user-based scheduling of EV battery.

1-dimension arrays with six elements determined at the end of each time interval. This

method for scheduling is referred to as the rolling time horizon or model predictive

control [109], [110]. The algorithm generates time-ahead charging scheduling profiles,

conveyed to the EV user through an interactive graphical user interface (GUI) as shown

in Fig 5.2.

The user can interact with the application to dynamically adjust certain inputs

aiming to maximize/minimize the income/cost of EV operation. Using a GUI, the
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EV user can check the total driving energy cost as per the electricity prices and learn

how much it could be potentially reduced by their scheduling settings. The GUI also

demonstrates the expected battery SOC throughout the scheduling time horizon. The

user will then have the option of adjusting individual trips and choosing whether to

participate in different charging/discharging events related to the ancillary services

and P2P transactions. In the proposed model, users are given an option for optimally

adjusting a trip based on the type of trips. Without loss of generality, trips are assumed

to be of three types as follows: Tier 1, Tier 2, and Tier 3. Tier 1 represents critical

trips that a user must take during the day at the pre-specified time such as commute

to work or medical appointments, while Tiers 2 and 3 indicate non-critical trips that a

user can afford to adjust or reschedule. Tier 2 trips come with a higher priority than

Tier 3 trips (i.e., essential trips such as shopping or banking), while Tier 3 trips are

non-essential trips such as recreational activities [112]. It should be noted that other

types of trips can be added to the algorithm, and this trips classification is only intended

to demonstrate how the algorithm can make adjustments for users depending on their

inputs. After the user adjusts the inputs through the GUI, the application will apply

these adjustments based on the input data and a new scheduling profile is generated.

Further, the algorithm incorporates EV user input with the aim of maximizing

revenue and/or minimizing the cost of EV operation through ancillary service provision

to the grid, P2P energy exchange, and electricity prices arbitrage exploitation. Thus,

scheduling is carried out from the perspective and for the benefit of the EV owners.

While the grid’s ancillary services are considered in the scheduling, the model does not

aim to minimize or discuss the cost of the grid operation. Fig. 5.3 demonstrates different

user profiles and how they affect the scheduling algorithm. In this regard, three users’
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Fig. 5.3. Process flow for specification of the EV scheduling model.

profiles are defined in this research as follows: conservative, moderate, and aggressive.

Without loss of generality, these profiles are adopted in this research to represent risk

levels chosen by the user in pursuing their preferences for maximizing the income and/or

minimizing the EV cost of operation. In such a case, the conservative profile represents

the lowest risk level and the aggressive profile represents the highest risk level.

By choosing a profile through the GUI, the user changes the penalty values on the

slack variables. These slack variables are related to various functionalities as depicted

in the figure. Slack variables act as factitious quantities decided by the optimization

problem in order to 1) maximize the profit, 2) satisfy the need of the user, and 3)

create soft constraints to ensure the optimization converges in cases where deviation

from the hard constraints is needed. As such, depending on the choices of the user,

the parameters of the scheduling model, and thus, the scheduling results are adopted.

As the risk level increases, the penalty values on the P2P and ancillary service slack

variables will increase in order to force more participation in these transactions while

the penalty factors on the battery SOC and trips adjustment slack variables decrease;

giving the algorithm more flexibility to adjust the charge/discharge setpoints to increase
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the income and/or minimize the cost. By looking at the value of the slack variable, EV

users would learn whether a solution is obtained through the soft constraints and how

such a solution impacts the results. If the slack variable is zero, then hard constraints

have been used and results are not impacted by the slack variable. On the other hand,

if it is non-zero for any time step, that means soft constraints are used, and the results

are impacted. With operation at a higher risk level, the user’s comfort could slightly

be compromised, but this will be rewarded by a higher income and lower cost. The

mathematical formulation of the model is given below.

Objective Function

The objective function of the optimization problem is stated in the following:

Maximize :

∑
t∈T



P Anc
t . BAnc

t + P P 2P,Dhg
t . BP 2P

t

−P Grd
t . BT oU

t − P P 2P,Chg
t . BP 2P

t

−OCDhg . (P Anc
t + P P 2P,Dhg

t )

−OCChg . (P Grd
t + P P 2P,Chg

t )

−βP,Anc
t . (SAnc′,S

t + SAnc′′,S
t )

−βP,P 2P,Chg
t . P P 2P,Chg,S

t

−βP,P 2P,Dhg
t . P P 2P,Dgh,S

t

−βP,Res
t . SOCRes,S

t − βP,Dod
t . SOCDod,S

t

−βP,Nct
t . DT r2,S

t − βP,Opt
t . DT r3,S

t



. ∆T. (5.1)
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The objective function aims to maximize the profit and/or minimize the cost for EV

users through the following:

• Contributing to ancillary services:

P Anc
t . BAnc

t

• Exchanging energy with other EV peers:

BAnc
t + P P 2P,Dhg

t . BP 2P
t − P Chg

t . BT oU
t

• Exploiting low electricity prices for battery charging:

−P Chg
t . BT oU

t

• Managing ancillary signals contribution:

− βP,Anc
t . (SAnc′,S

t + SAnc′′,S
t )

• Managing P2P energy transactions:

− βP,P 2P,Chg
t . P P 2P,Chg,S

t − βP,P 2P,Dhg
t . P P 2P,Dgh,S

t

• Controlling reserve and minimum battery level:

− βP,Res
t .SOCRes,S

t − βP,Dod
t .SOCDod,S

t

• Controlling user specified trips:

− βP,Nct
t .DT r2,S

t − βP,Opt
t .DT r3,S

t

EV Driving Constraints

Energy consumed during driving is represented by [47]:

EDrv
t = (1− Ct) . Dt . F Con ∀t ∈ T, (5.2)
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where the term (1− Ct) ensures that driving energy is only consumed when the vehicle

is not plugged into the grid. EV trips driving distance Dt in (5.2) is constrained by the

following:

Dt = DT r1
t + DSch,T r2

t + DSch,T r3
t ∀t ∈ T, (5.3)

where (5.3) sets EV trips distance based on the different trips categories defined earlier,

while ensuring that different types of trips do not occur concurrently. While Tier 1 trips

are categorized as the critical ones and not adjusted by the algorithm, Tiers 2 and Tier

3 trips can be adjusted as the non-critical and low priority ones:

DSch,T r2
t = DT r2

t −DT r2,S
t . DT r2

t ∀t ∈ T, (5.4)

DSch,T r3
t = DT r3

t −DT r3,S
t . DT r3

t ∀t ∈ T, (5.5)

where trips adjustment in (5.4) and (5.5) depends on binary slack variables DT r2,S
t ∈

{0, 1} and DT r3,S
t ∈ {0, 1}.

EV Charging/Discharging Constraints

The objective function (5.1) is subject to the following charging and discharging con-

straints:

Ct .P Chg
min ≤ P Chg

t ≤ Ct .P Chg
max ∀t ∈ T, (5.6)

Ct .P Dgh
min ≤ P Dhg

t ≤ Ct .P Dhg
max ∀t ∈ T, (5.7)

P Chg
t = (P Grd

t ∨ P P 2P,Chg
t ) ∀ P Dhg

t = 0 ∧ t ∈ T, (5.8)

P Dhg
t = (P Anc

t ∨ P P 2P,Dhg
t ) ∀ P Chg

t = 0 ∧ t ∈ T, (5.9)
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where (5.6) and (5.7) state the operational constraints of the EV charging converter

when connected to the grid. The variable Ct in (5.6)–(5.7) ensures that no energy is

taken from or given to the grid without EV charger being plugged in. The constraints

in (5.8) and (5.9) ensure that charging and discharging do not occur at the same time.

EV Battery Constraints

The EV battery is subject to the following operational and physical constraints:

SOCt = SOCt−1+
(
Ct. P P 2P,Chg

t − Ct. P P 2P,Dhg
t + Ct. P Anc

t +Ct. P Grd
t

−(1− Ct). Dt .F Con − κDsp. SOCt

)
. ∆t ∀t ∈ T, (5.10)

SOCUsr
t,min ≤ SOCt ≤ SOCmax ∀t ∈ T, (5.11)

where (5.10) expresses the energy balance equation considering the charging, discharg-

ing, and dissipation of the EV battery, while (5.11) states the battery minimum and

maximum SOC constraints. The lower bound SOCUsr
min is expressed by:

SOCUsr
t,min = SOCmin + SOCDod

t + SOCRes
t − SOCRes,S

t − SOCDod,S
t ∀t ∈ T , (5.12)

0 ≤ SOCRes,S
t ≤ SOCRes

t ∀t ∈ T , (5.13)

0 ≤ SOCDod,S
t ≤ SOCDod

t ∀t ∈ T , (5.14)

where SOCUsr
t,min value in (5.12) depends on the physical lower limit of the battery along

with user specified reserve and depth of discharge SOC levels. The slack variables

SOCRes,S
t and SOCDod,S

t relax the user-specified values to ensure the feasibility of the
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optimization problem and maximize the profit when needed.

Ancillary Service Constraints

The EV receives an ancillary service request from the electricity market and contributes

based on the following constraints:

P Anc
t = Ct . SAnc

t − SAnc′,S
t + SAnc′′,S

t ∀t ∈ T, (5.15)

0 ≤ SAnc′,S
t ≤ SAnc

t ∀t ∈ T, (5.16)

0 ≤ SAnc′′,S
t ≤ SAnc

t ∀t ∈ T, (5.17)

where SAnc
t in (5.15) can take both the negative and positive values depending on the

type of the ancillary service required. The slack variables SAnc′,S
t and SAnc′′,S

t act as soft

constraints allowing the algorithm to converge in case it is not feasible or profitable to

contribute to the ancillary service market.

Applied Constraints for P2P

The P2P offers received by the EV user through the P2P network are managed through

the following constraints:

P P 2P,Chg
t − P P 2P,Dhg

t = Ct . P P 2P
t − P P 2P,Chg,S

t + P P 2P,Dgh,S
t ∀t ∈ T, (5.18)

0 ≤ P P 2P,Chg,S
t ≤ P P 2P

t ∀t ∈ T, (5.19)

0 ≤ P P 2P,Dgh,S
t ≤ P P 2P

t ∀t ∈ T, (5.20)
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where P P 2P
t in (5.18) states the energy exchange value between the EV user and other

peers.

5.1.2 Ancillary Services and P2P Participation Indices

In order to quantify the contribution of the EV user to ancillary services and P2P trans-

actions, the following ancillary service participation index (ASPI) and P2P transactions

involvement index (P2PTII) are proposed, respectively:

ASPI % =
(

1−
∑

t∈T(SAnc′,S
t + SAnc′′,S

t )∑
t∈T SAnc

t

)
× 100 (5.21)

P2PTII % =
(

1−
∑

t∈T(P P 2P,Chg,S
t + P P 2P,Dgh,S

t )∑
t∈T P P 2P

t

)
× 100. (5.22)

5.2 Numerical Studies

The proposed model in Section 5.1 is numerically evaluated using the specification of a

Tesla Model S AWD - P75D which is one of the most popular EV models available in

the market [142]. The maximum battery capacity for this model is 75kWh with energy

consumption F Con of 22.2 kWh/100 km [143]. The onboard charger is rated at 11.5

kW [144]. Battery reserve SOCRes,S and battery depth of discharge SOCDod,S are both

set to 10%. ToU prices of Ontario, Canada are used in this work which are set at an

off-peak rate of 6.5 cent/kWh from 7 p.m. to 7 a.m. and mid-peak rate of 9.4 cent/kWh

from 7:00 a.m. to 11:00 a.m. and from 5:00 p.m. to 7:00 p.m. The on-peak rate is set
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Fig. 5.4. (a) EV battery plug–in status, (b) User trip distances, (c) External signals
compiled by the algorithm.

at 13.2 cent/kWh from 11:00 a.m. to 5:00 p.m. [145]. The P2P prices for mid-peak

time and on-peak time are 7.95 and 11.3, respectively, while ancillary service prices are

set at 13.2 cent/kWh. These prices are set at mid-point between different ToU levels

presuming that an EV user is looking to sell energy at rates higher than utility prices

and buy energy at rates lower than utility prices. However, the algorithm is designed

to be generic, where different rates and specifications can be utilized with the aim of

maximizing profit and/or minimizing cost for EV users. This case study is focused

on the provision of operating reserve to the grid as an ancillary service. Operating

reserve services are utilized during unexpected or contingency situations when regulation

services are not enough to keep the balance between the generation and demand [146].

Survey data represented in [112] is used to construct a trip profile from a typical EV
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Fig. 5.5. EV scheduling setpoints based on, conservative profile (a)-(e), moderate profile
(f)-(j), and aggressive profile (k)-(o).

user. Without loss of generality, this profile is considered for simulation studies in this

section. The profile is based on EV users’ responses in regard to the average daily trips.

The survey results in [112] show that most respondents take 1 to 6 trips per weekdays

on average; thus, four trips are considered for simulation studies. Moreover, the average

traveling distance per each EV user in a weekday comes to 50 km which is considered as

the essential trips’ total distance in the numerical studies. The time of the day when

charging typically takes place is used to create a profile for charger plug-in status. It

is also assumed that EVs come with a bidirectional onboard charger allowing them to

charge or discharge when connected to any outlet.

Figs. 5.4 (a)–(c) show the expected charger plug-in status, trips, and external signal

profiles for a typical day, respectively. During the implementation of the model, it is
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assumed that the location information given by the user is analyzed and compared with

the data on online maps to generate the expected charger plug-in status profile and

expected trip duration and distance as seen in Figs. 5.4 (a) and (b), respectively. The

trip duration is considered as one hour, but changing the duration does not impact the

validity of the model. The model is also assumed to obtain the importance of these

locations for the user in order to classify the trips into Tier 1, Tier 2 or Tier 3. After

generating the EV charger plug-in status, the model analyzes the time-ahead ancillary

service requests and P2P transaction offers that coincide with the expected connected

status throughout the scheduling time; this information is then used to generate a profile

representing the ancillary and P2P signals as shown in Fig. 5.4 (c). In such a case,

it is expected that multiple P2P offers will be available within the same hour but the

model will only retrieve the ones with the lowest cost or highest profit. Using the data

in Fig. 5.4, the algorithm is executed for a period of 24 hours using the three profiles

described in Section 5.1. For illustration purposes, the minimum scheduling time for

each variable is set to one hour. The initial SOC is set to 50% at the beginning of the

simulation. The penalty factors are varied according to the profile risk level. Penalty

factors that manage slack variables related to P2P charging/discharging participation

and ancillary service responses are increased as the risk level in the profile increases. In

the case of other slack variables, the penalty factors are decreased as the risk level in the

profile increases. The penalty values utilized for different user profiles are categorized in

Table 5.2. These values are in the range of near-zero level (i.e. 10−6–1), low level (i.e.

1–10), medium level (i.e. 10–100), and high level (i.e. >100). These ranges are exclusive

for this application and are obtained through numerical experimentation. A different

application would require different penalty values to achieve its objectives.
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Table 5.2: Penalty values for different user profiles.

Penalty Factor Conservative Profile Moderate Profile Aggressive Profile

βP,Anc
t Near Zero Low Medium

βP,P 2P,Chg
t Near Zero Low Medium

βP,P 2P,Dhg
t Near Zero Low Medium
βP,Res

t High Near Zero Near Zero
βP,Dod

t High Medium Near Zero
βP,Nct

t High High Near Zero
βP,Opt

t High Medium Near Zero

5.2.1 Scheduling Results

Fig. 5.5 shows the scheduling setpoints based on the proposed three user profiles; where

Figs. 5.5 (a)-(e) are based on the conservative profile, Figs. 5.5 (f)-(j) are based on the

moderate profile, and Figs. 5.5 (k)-(o) are given for the aggressive one. Comparing the

EV battery SOC in the three user profiles, it can be noticed that the SOC never goes

below 40% under the conservative profile due to the high penalty factors on the slack

variables that manage the battery depth of discharge and reserve levels. The reserve

battery slack variable becomes more relaxed in the moderate setting, which allows the

SOC to drop to 30% shown in Fig. 5.5 (f). Under the aggressive profile, the battery

SOC-related penalty values are very low allowing the SOC to reach 20%, pertaining

to the recommended minimum SOC level without causing serious degradation to the

battery life. Figs. 5.5 (b) and (c) represent the conservative-based hourly scheduled

charging and discharging power, respectively. As clearly depicted, involvement in P2P

transactions and participation in ancillary services are kept at a low level, and half of

the external requests are canceled by the algorithm through the slack variables as shown

in Fig. 5.5 (d). Figs. 5.5 (g)-(i) and Figs. 5.5 (l)-(n) show the scheduled charging and
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discharging power for moderate and aggressive profiles, respectively. It is noted that

ancillary service participation is increased to its maximum as can be seen in Figs. 5.5

(h)-(i) and (m)-(n) while more involvement in P2P transactions takes place in Figs. 5.5

(l)-(m) than Figs. 5.5 (g)-(h). This shows that the aggressive setting has the highest

contribution to the external energy exchanges. Figs. 5.5 (e), (j), and (o) represent

driving energy under the conservative, moderate and aggressive settings, respectively.

It is worth noting that due to the high penalty values on Tier 2 and Tier 3 trip slack

variables under the conservative profile, all trips detailed in Fig. 5.4 are scheduled to

take place without any adjustment, as shown in Fig. 5.5 (e). By contrast, Tier 2 and

Tier 3 trips are adjusted under the aggressive setting as depicted in Fig. 5.5 (o). This

expresses the aggressive behavior of the algorithm to minimize the cost and increase the

income of the EV user. The extra available energy is clearly utilized to respond to the

external energy requests as shown in Figs. 5.5 (l) and (m).
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5.2.2 Ancillary Services and P2P Participation Indices

The algorithm is executed for a period of one year using a driving profile based on the

survey results in [112]. Analysis and quantification under various user profiles are shown

in Fig. 5.6 demonstrating the ASPI and P2PII values for each profile. It is clear that

as the risk level in the profile rises, the index values increase where the ASPI increases

from 90% under the conservative setting to 100% under the moderate and aggressive

profiles; whereas the P2PII increases from 50% in the conservative setting to 98%. Table

5.3 lists the annual cost and revenue as well as the savings for different operating modes.

The savings represent the cost reductions that the EV user achieves by utilizing the

proposed model.

Table 5.3: Annual cost/revenue incurred under different operating modes.

Operating Mode Cost ($) Revenue ($) Savings ($)

Unoptimized Charging 535 0 0
Optimized Charging Only 361 0 174

Conservative Profile 717 628 446
Moderate Profile 805 776 506
Aggressive Profile 792 845 588

In the unoptimized mode, the EV is charged as needed without any look-ahead

optimization. Meanwhile, the second mode (i.e. optimized charging only) involves the

exploitation of low electricity prices for charging without participation in any external

transactions. The last three modes follow the profiles described in the previous sections.

It can be observed from the values in Table 5.3 that the second mode reduces the annual

cost of charging by $174. Further, participation in external transactions in the last three

modes leads to an increase in charging costs. However, this increase in cost is partially
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counterbalanced in the conservative and moderate profiles with an increase of revenues

that leads to savings of $446 under the conservative profile and $506 under the moderate

profile. Under the aggressive profile, the user starts to generate a small annual profit of

$53 and a high saving of $588.

The simulation is executed for one year using light and heavy driving schedules (in

extreme cases). The new results are compared with those related to the average driving

profile as shown in Fig. 5.4. The light schedule represents one or two trips per weekday

while the heavy schedule implies more than five trips in a weekday. The ASPI and

P2PII values for the light and heavy trip schedules are indicated in Fig. 5.7 and 5.8,

respectively.

Fig. 5.7 illustrates that with fewer trips per weekday, EV owner could fully follow

the ancillary services signal, where it is also able to participate more in P2P transactions.

Conversely, it can be seen from Fig. 5.8 that participation in external transactions is

slightly decreased due to less battery energy available for peers and grid. For example,

ASPI and P2PII values are decreased by 7% for the conservative profile in comparison

with the results obtained under the average driving profile as shown in Fig. 5.6.

Table 5.4: Annual cost/revenue incurred under different operating modes for light trip
plan.

Operating Mode Cost ($) Revenue ($) Savings ($)

Unoptimized Charging 295 0 0
Optimized Charging Only 152 0 143

Conservative Profile 612 711 394
Moderate Profile 697 806 404
Aggressive Profile 710 854 439

Tables 5.4 and 5.5 list the annual cost and revenue values as well as savings for
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Fig. 5.8. Ancillary service participation index (ASPI) and P2P transactions involvement
index (P2PII) for heavy trip plan.

Table 5.5: Annual cost/revenue incurred under different operating modes for heavy trip
plan.

Operating Mode Cost ($) Revenue ($) Savings ($)

Unoptimized Charging 621 0 0
Optimized Charging Only 393 0 228

Conservative Profile 771 528 378
Moderate Profile 860 734 495
Aggressive Profile 866 822 577
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different operating modes in case of light and heavy trip schedules, respectively. Table

5.4 indicates that the EV owner with a light trip schedule could generate profit under

any profile that allows participation in external transactions. With a heavy trip schedule,

EV owners could reduce the cost of unoptimized charging by a maximum of 93% through

the aggressive profile without generating any profit.

5.3 Discussion and Summary

This research argues that EV user’s input can be taken into the scheduling process. It

is also argued that EVs can be scheduled for joint applications concurrently including

P2P energy trade and ancillary services to the grid. To that end, the research proposes

a new bidirectional smart charging model of EVs for P2P energy trade and ancillary

services provision to the grid. The user input is incorporated into the scheduling model

using optimization variables and soft constraints. The EV user is able to adjust some of

the settings of the scheduling model that would make the model adaptive to various

conditions. Optimization slack variables are utilized for optimal management of the

battery SOC and energy allocation for multiple service. Real-world data collected

from EV owners pertaining to the usage of their EVs are utilized for numerical studies.

Through numerical studies, the efficacy and feasibility of the proposed model are

evaluated. The results demonstrate how the incorporation of user preferences into the

scheduling process can enhance the aggregated revenue generated by the EV scheduling

model.
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Chapter 6 - Autonomous Control of EV
Residential Charging

6.1 Introduction

Recently, research on EV charging control has focused on developing communication-

based techniques for residential EV charging control [147–150]. However, direct charging

control will necessitate significant expenditures to supply the extra communication

infrastructure and control technologies required for each EV customer. Further, a

failure in the communication network means that either the EVs will have to charge

without control which could result in power quality issues and overloading of power

system equipment, or that the EV chargers will have to be deactivated which will cause

a significant inconvenience to EV users. As a result, autonomous charging control is

required in the residential sector where it can control the charging power at the local level

without requiring a communication network. Autonomous controllers can be utilized

in stand-alone mode where they serve as the main control method of EV charging at

homes, or they can be installed as a backup controllers that can be activated in case of

failure in communication networks.

With respect to autonomous charging control, the existing research has the following

shortcomings and gaps. First, the communication-less controllers proposed in the
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literature are very conservative, causing unnecessarily slow charging without fully

utilizing the capacity of the power system. In this regard, the frequency and voltage-

based controllers proposed in previous studies reduce the EV charging load even when

the system frequency and the bus voltage are above their respective nominal values.

Second, the charging control logic implemented in previous studies can result in unfair

allocation of power system capacity among EVs. In this context, social charging fairness

is defined as the equal share of limited power system capacity among EVs when power

resources are in short supply [151]. Multiple solutions have been proposed to solve the

issue of charging fairness in communication-based EV energy management techniques,

see [147–150]. In regards to communication-less techniques, the controller proposed in

[87] considers equal charging rate for EVs in the system. Further, the study in [152]

investigates the use of voltage sensitivity to achieve charging fairness among EVs in the

system. However, both of the controllers in [87] and [152] allocate power system capacity

among EVs based on "memory-less fairness", which is allocating resources fairly in the

present moment without regard for historical allocations [153]. A memory-less fairness

policy equates the EVs that are being charged for hours and the EVs that are just

plugged-in into the system, which does not achieve charging fairness. Third, the voltage

and frequency based controllers in [83]-[88] are set to regulate the EV charging load

down to the minimum acceptable charging rate and then switch off the charger when the

system frequency and/or bus voltages go below their respective acceptable limit. This

creates a discontinuity in controllers that could lead to charging load oscillations around

the cut-off point. In this regard, the EV chargers are switched off due to violation of

the system operating conditions, i.e., frequency and/or bus voltages, and as a result, the

system frequency and/or bus voltages rebound, which causes the chargers to activate
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again and so forth.

Therefore, this research aims to develop a communication-less control strategy for

EV charging via an adaptive Sigmoid-based controller. The strategy considers social

charging fairness and can work in droop-controlled IMGs. The key contributions of this

research are as follows:

1. An adaptive Sigmoid-based controller that manages the rate of charging based on

the system frequency and bus voltages is proposed. Compared to previous works,

the proposed controller provides more flexibility and better utilization of the power

system capacity in EV charging without jeopardizing stability.

2. A social charging fairness system that assigns priority levels to EVs based on their

past charging power allocation is developed. The priority level for each EV is

autonomously lowered as its charging allocation in the historical time horizon

increases. The priority level is utilized to adjust the Sigmoid-based controller to

provide more system capacity to the EVs with higher priority levels.

3. The cut-off point in the controllers proposed in previous works has been replaced

by a novel EV load shedding scheme that gets triggered when an under-voltage or

under-frequency event occurs in the IMG when the generation does not meet the

required demand. The proposed shedding scheme is coordinated with the priority

level of EVs to ensure fair EVs shedding.

4. A system violations index (SVI) is proposed to quantify the effectiveness of the

proposed strategy in reducing violations of system operating constraints that result

from EV charging.
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Fig. 6.1. The proposed communication-less EV charging control strategy

Without loss of generality, the following assumptions are made during development of

this work:

• Similar to the works in [88] and [154], it is assumed that this strategy is programmed

into all EV smart chargers connected to the microgrid, and cannot be modified by

EV users.

• All chargers follow the constant current/constant voltage (CC/CV) charging profile,

which is widely used in charging EV lithium-ion batteries [155].

• When compared to other residential loads, EVs have a greater degree of flexibility

due to the energy stored in their batteries. As a result, during periods when

the microgrid is not operating normally, the normal load is prioritized while EV

charging load is reduced or interrupted before any other loads.
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6.2 Proposed Communication-less EV Charging Load Con-
trol Strategy

This section describes the proposed communication-less EV charging load control strategy.

The proposed strategy is applied locally by each EV charger in the system without any

communication with the system operator or other EV chargers. The block diagram of the

proposed strategy is shown in Fig. 6.1. As depicted in the figure, the proposed control

strategy receives inputs which are, (i) local system measurements (i.e., bus voltage and

system frequency) taken at PCC, and (ii) EV’s battery SoC. The proposed control

strategy calculates the battery SoC increase for each EV once it starts charging. An EV

priority system then assigns a priority level to the EV based on how much SoC it gained

in the past hours. The priority level of the EV will affect the logic of a Sigmoid-based

controller that is responsible for regulating EV charging based on changes in the system’s

frequency and bus voltage. In this regard, a lower priority level for an EV indicates

that a decrease in frequency or voltage will result in a higher reduction of charging

speed in comparison to higher priority EVs. Moreover, in situations where system

frequency or bus voltage go below their respective lower limit despite the reduction of

EV charging current to the minimum by the other controllers, the proposed control

strategy can deactivate the EV charger through its shedding scheme. The proposed

strategy is explained in detail in the following subsections.

6.2.1 EV Priority System

The proposed control strategy continuously logs the charging process and calculates

the increase in EV battery SoC in the past time horizon to determine the priority level
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assigned to the EV. Let D be the set of historical time steps and d is the length of

historical time horizon considered with D = {t− 1, t− 2, ...., t− d}. This means that if

d = 4 hours for example, then the smart charger will continuously calculate the total

SoC increase in the last four hours. Parameter d is programmed into all EV smart

chargers and can be decided by the IMG operator depending on system requirements.

In this regard, a higher SoC increase during the historical time horizon leads to a lower

priority assignment in comparison to the EVs with less past charging. The priority level

affects the degree to which the EV charging speed is reduced when the system frequency

and/or bus voltage are below their nominal values. The SoC increase of the jth EV at

each time step is estimated by integrating the charging current and adding it to the

previous state as follows [81]:

SOCt,j = SOCt−1,j + 1
Cbatt

∫ t

t−1
IBatt

t,j dt, (6.1)

where Cbatt is the rated capacity of the jth EV battery in Ampere-hour (Ah). The total

SoC increase W chg
t,j during the historical time horizon for the jth EV is calculated as

follows:

W chg
t,j = SOCt,j − SOCt−d,j. (6.2)
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The proposed control strategy assigns a priority level Lt,j to the jth EV at time t

according to (6.3):

Lt,j =



1, W chg
t,j < ϕ

2, ϕ ≤ W chg
t,j < 2 · ϕ

. .

λ, (λ− 1) · ϕ ≤ W chg
t,j < λ · ϕ


, (6.3)

where λ is the number of priority levels in the system that can be assigned to EVs,

while ϕ is the total SoC increase that moves an EV from one priority level to another.

In (6.3), L = 1 is a higher priority level than L = 2 because that latter has gained

higher SoC in the past time horizon. In summary, the priority system embedded in each

local charger uses the EV battery SoC increase in the historical time horizon to assign

an EV a priority level without the need for communication with system operator or

other chargers. The priority level will affect the charging power that an EV is allocated

through the adaptive parameter in Sigmoid-based controller as explained in the next

subsection.

6.2.2 Adaptive Sigmoid-based Controller

A Sigmoid controller is programmed on each EV charger. The voltage and frequency

Sigmoid-based functions that control the rate of EV charging are given by (6.4):

St,j = 1(
1 + e−ρ(Lt,j)·vt,j

) · 1(
1 + e−ρ(Lt,j)·ft,j

) , (6.4)
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where vt,j and ft,j are voltage and frequency measured by the charger at the PCC,

respectively. ρ(Lt,j) is a parameter that is a function of the priority level Lt,j. Relation

(6.4) consists of two Sigmoid functions multiplied by each other. The first function

changes in response to changes in the bus voltage vt,j at time t, while the second function

is changed according to the system frequency ft,j. The parameter ρ in (6.4) changes

according to the priority level Lt,j of the EV. This parameter affects the rate of change

of the Sigmoid functions (i.e. the shape and rise of the function). In this context, a

lower priority level for an EV indicates that a decrease in frequency or voltage will

result in a higher reduction of charging in comparison to higher priority EVs. The effect

of the priority level on the level of charging derating in the frequency-based control

function is demonstrated in Fig. 6.2. As shown in the figure, the decrease in the priority

level from level 1 (L = 1) to level 6 (L = 6) increases the rate of decay of the function

in response to the decrease of system frequency and, therefore, increases the charging

derating level. The voltage-based control function has a similar behavior but with an

input range corresponding to voltage measurements. In this work, it is proposed that

the setting of parameter ρ is based on providing high derating in charging power for the

lower priority levels and slight derating to higher priority levels in the event that system

parameters (i.e., voltage and/or frequency) decrease from their nominal values. Once

voltage and/or frequency are in the midpoint between their nominal value and lower

limit, the function should start to steeply derate the charging power for EVs from all

priority levels, albeit keeping the higher charging rate for high priority levels. When

system parameters are close to their lower limits, then the derating are almost equal for

all priority levels.

The Sigmoid controller is utilized in the proposed strategy because it provides a
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Fig. 6.2. Example of how the EV charging speed for the frequency-based control logic
varies with priority level

flexible three regions of continuous EV charging control as illustrated in Fig 6.2. At

nominal system operating condition (frequency and/or voltage is one per unit), the

EV charging speed factor is set at unity i.e., EV charges at full speed. When the

deviation for the system operation from the nominal values is small (upper region), the

EV charging speed decreases slowly. This prevents unnecessary reduction of charging

power when the system operating parameter is slightly deviating from its nominal value.

The intermediate region provides a rapid reduction in the charging speed to slow the

decrease in frequency and/or voltage. When the system parameter is near its lower

acceptable limit in the lower control region, the charging speed is slowly changed to

prevent any large power oscillation near this point in case of synchronized actions of

controllers. For example, if the system parameter is increasing in the lower region, the

charging speed factor is slowly increased to ensure that the power system can handle

the extra load without putting its stability at risk.
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6.2.3 Charging Current Calculation

The charging current of the jth EV at each time step t is determined by the following

equations:

IBatt
t,j = Imax

j , SoCt,j < SoCmin
j (6.5)

IBatt
t,j = Imin

j + (Imax
j − Imin

j ) · St,j, SoCmin
j ≤ SoCt,j < SoCmax

j (6.6)

IBatt
t,j = 0, SoCt,j ≥ SoCmax

j (6.7)

where Imin
j and Imax

j are the minimum and the maximum output current limits

of the jth EV charger, respectively. A minimum charging current is included based

on the requirements of EV charging standards [156]. In summary, when the SoCt,j is

below the pre-defined minimum level SoCmin
j , the EV charger provides the maximum

charging current to the EV battery. When the SoCt,j is below the max level but above

the minimum value, the proposed strategy adjusts the charger current based on the

Sigmoid-based controller represented by the factor St,j calculated in (6.4). If the SoCt,j

is higher than the maximum level SoCmax
j , the strategy switches off the EV charger in

order to extend the battery lifetime.

6.2.4 Communication-less EV Load Shedding Scheme

In the situations where the system frequency and/or bus voltage go below their respective

lower limit despite the reduction of EV charging current to the minimum, the proposed

control strategy can deactivate the EV charger through its shedding scheme. While

the charger is plugged-in, a communication-less EV load shedding scheme continuously

monitors the system frequency, bus voltage, and EV priority level at each time step
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t as shown in Fig. 6.1 above. Based on these inputs, the scheme decides the charger

status through the shedding control signal Kt,j, where Kt,j = 0 deactivates the charger.

Algorithm 6.1 demonstrates the overall logic of this scheme. By default, Kt,j = 1 for

Algorithm 6.1: Proposed EV Load Shedding Scheme
Input : Priority level Lt,j, System frequency ft and bus voltage vt,j measured

at EV j PCC
Output : Shedding control signal Kt,j

Kt,j ← 1;∀t
Function Main(ft, vt,j, Lt,j):

while EV Plugged In do
if ft < fr || vt < vr then

if IBatt
t,j == 0 then
Kt+1,j ← 0;

else
if τj == 0 then

τj = Time_Delay(Lt,j);
event← t;

else
if τj == (t− event); then

Kt+1,j = Shedding_Cont(Lt,j);
end

end
else

τj ← 0;
end

end
return Kt,j

any time step unless it is changed by the scheme. When the frequency or the voltage

goes below its respective acceptable limit fr or vr, the scheme checks whether the EV is

being charged at the current time step t. If the EV is charging, then the EV is assigned

a time delay based on the function Time_Delay, which is detailed in Algorithm 6.2.

The purpose of the time delay is to wait for the frequency and/or voltage to return
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to their normal operating range and prevent nuisance load shedding. The time delay

assigned by this function varies according to the priority level assigned to the EV at

that particular time step. In this regard, EVs with lower priority levels are assigned

shorter time delays to be shed. It is worth noting that the function Time_Delay assigns

random time delays within a certain range for each priority level. This prevents the

simultaneous shedding of EVs that belong to the same priority level, which could lead

to large swings in the system load that affect its stability. In case the EV charger is

not charging because it has been deactivated by a previous shedding control signal, the

scheme will not make any changes and the shedding signal for the next time step is kept

at zero. In a situation where a time delay is assigned, the scheme checks if the time delay

has passed based on the recorded event time. In that case, function Shedding_Cont in

Algorithm 6.3 deactivates the charger for a future time set ∆ based on the priority level.

The deactivation time (i.e., the total time in which the charger is switched off) increases

as the priority level decreases.

Algorithm 6.2: Time Delay Function
Function Time_Delay(Lt,j):

switch Lt,j do
case λ do

τj = rand(π, 2π);
case λ− 1 do

τj = rand(2π, 3π);
.
.

case 1 do
τj = rand(λ.π, (λ + 1).π);
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Algorithm 6.3: Shedding Control Function
Function Shedding_Cont(Lt,j):

switch Lt,j do
case λ do

∆1 = [t + x1, t + x2];
K∆1,j = 0;

case λ− 1 do
∆2 = [t + x2, t + x3];
K∆2,j = 0;.

.
case 1 do
∆λ = [t + xy, t + xz];
K∆λ,j = 0;

6.2.5 Performance Index

The effectiveness of the proposed charging control strategy to reduce the violations of

the system operating constraints that result from EV charging is quantified using the

system violations index (SVI) as follows:

SV I =
∑
t∈T

|Ωf
t | ·∆t +

∑
j∈B

∑
t∈T

|Ωv
t,j| ·∆t ∀t ∈ T ∧ ∀j ∈ B, (6.8)

where:

Ωf
t =


ft − fru , ft > fru

frl − ft , ft < frl

0 , else

(6.9)
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Ωv
t,j =


vt,j − vru , vt,j > vru

vrl − vt,j , vt,j < vrl

0 , else

(6.10)

Parameters frl and vrl in (6.8) are the minimum operating limits for system frequency

and bus voltage, while fru and vru represent the maximum limits for frequency and

voltage, respectively. Also, B is the set of buses in the power system and T is set of time

steps in the studied duration.

6.3 Droop-based Islanded Microgrid Test Model

In IMGs, DGs are the main components responsible for creating balanced power gen-

eration in the distribution systems [157]. Due to the absence of a slack bus, DGs are

operated to follow the power demand by controlling the IMG system frequency and

bus voltages. Therefore, the suitable operation mode for DGs is the droop control,

where without loss of generality, the injected active power P Src
i increases by drooping

the frequency of the DG unit output voltage, and the reactive power QSrc
i increases by

drooping the magnitude of the DG unit output voltage as follows [86]:

P Src
i,t =

(ω∗
i − ωt

mPi,t

)
∀i ∈ G, G ⊆ B, (6.11)

QSrc
i,t =

( |V ∗
i | − |Vi,t|

nqi,t

)
∀i ∈ G ⊆ B, (6.12)

where, mPi,t
and nqi,t

are the droop control settings for DG i, ω∗
i is the frequency
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setting for the DG at no load, |V ∗
i | is the voltage at no load for the DG, |Vi,t| is the

voltage of the bus connected to the DG, ωt is the system operating frequency at time

instant t, G is a subset of buses with DGs, and B is the set of all buses in the system.

The drooped injected active and reactive power are balanced with the load demand

P Dmd
i,t and QDmd

i,t through the power mismatch equations as follow:

P Src
i,t −

∑
l∈B

(
|Vi,t| · |Vl,t| · Yil.cos(θil + δl,t − δi,t)

)
= P Dmd

i,t ∀i, l ∈ B ∧ i ̸= l, (6.13)

QSrc
i,t +

∑
l∈B

(
|Vi,t| · |Vl,t| · Yil.sin(θil + δl,t − δi,t)

)
= QDmd

i,t ∀i, l ∈ B ∧ i ̸= l. (6.14)

where, Yij and θij are the Y-bus admittance magnitude and angle, respectively, and

δi is the voltage phase angle at any bus i.

6.4 Numerical Simulations

Numerical simulations are performed in a MATLAB environment to test the effectiveness

of the proposed strategy. The modified IEEE benchmark distribution system shown

in Fig. 6.3 (a) is selected as the test system [158]. The power distribution system

operates as an IMG and consists of a 33-bus primary distribution network operating

at a nominal voltage of 12.47kV. In order to capture the interaction of IMG with EV

chargers installed in residential areas, seven secondary distribution networks operating

at 220V are modeled and connected to the primary buses in the system. Each secondary

network is modeled as per the CIGRE 14-node residential lateral benchmark shown in

Fig. 6.3 (b) [159]. Non-EV residential load profiles with a resolution of one minute are
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Fig. 6.3. Test IMG system, (a) IEEE 33-bus primary distribution network, and (b)
CIGRE 14-node secondary network.

generated from real data of houses in Canada [160]. It is assumed that a total of four

DGs are connected in the system, where all the DGs are dispatchable with the exception

of DG2, which is wind-powered. The parameters of the DGs including ratings, droop,

and nominal operating settings are listed in Table 6.1, while the wind power profile for

DG2 is shown in Fig. 6.4 [161].

Table 6.1: DGs Parameters in 33-Bus Test IMG System

DG mp nq ω∗ V∗ Sgmax PF# p.u. p.u. MVA p.u. p.u.
1 0.00208 0.0486 1 1.03 2.5 0.8
2 - - - - 1.5 0.95
3 0.00505 0.101 1 1.02 1 0.8
4 0.00833 0.166 1 1.02 0.6 0.8

Level 2 chargers with a maximum charging power of 6.6 kW are considered in this

study, and the minimum charging rate is set to 1.5 kW as per the IEC 61851 standard.

A maximum of 200 EVs are assumed to be present in the IMG system, which sets the
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Fig. 6.4. DG2 wind-based power profile

rated EV charging load to be around 35% of the total rated system load. The battery

capacities for all EVs are set at 62 kWh, which is similar to the Tesla 3 model, one of

the most popular EVs in the market [162]. The parameters SoCmin and SoCmax are

set at 25% and 85%, respectively. The EVs are assumed to be charged at homes while

the arrival times follow a truncated Gaussian distribution [163], with a mean value µ

equal to 5 p.m. and standard deviation σ set at 1.5h, while the initial battery SoCs

of EVs distribution parameters are set at µ = 45% and σ = 10%. All case studies are

run from 12 p.m to 12 a.m. Without loss of generality, six priority levels are chosen

based on d = 6 hours and ϕ = 15%. The parameters of the adaptive Sigmoid-based

controller are listed in Table 6.2. These parameters are chosen based on six priority

levels to create a control that varies when voltage and frequency goes below 1 p.u and

60 Hz, respectively. It should be noted that Lx in Table 6.2 and following figures refers

to priority level L = x (e.g, L6 means L = 6).

Table 6.2: Sigmoid-based Controller Parameters

Parameter L6 L5 L4 L3 L2 L1
ρ 2000 2300 2600 2900 3200 3500
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6.4.1 System Operation Without EV

In the first case, the IMG is operated assuming that there are no EVs in the system.

Figs. 6.5 (a) and (b) show the operating voltage and frequency parameters of the system,

respectively, while the load power is shown in Fig. 6.5 (c). DGs active and reactive

power outputs are shown in Figs 6.6 (a) and (b), respectively. It is noticed from Figs.

6.5 (a) and (b) that the system voltage and frequency are within the standard limits,

which specify that the acceptable operating ranges for voltage and frequency are between

0.95 p.u and 1.05 p.u, and 0.995 p.u (59.7 Hz) to 1.005 p.u (60.3 Hz), respectively [164].

Both the bus voltages and system frequency reach their lowest operating points when
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Fig. 6.7. Case 2 simulation results, (a) Minimum and maximum bus voltages, (b) System
frequency, and (c) Normal and EV charging load power.

the normal load power peaks around 8 p.m as demonstrated in Fig. 6.5 (c).

6.4.2 Opportunistic Charging

In the second case, the IMG is simulated with the presence of EV load and the assumption

that the EV chargers are operated without restrictions. Figs. 6.7 (a)-(d) demonstrate

the operating parameters for this case. It is clear from Figs. 6.7 (a) and (b) that no

violation is recorded in system parameters during light loading conditions. However, this

type of uncontrolled EV charging results in an unacceptable violation of the respective

limits of both the voltage and frequency during the peak loading time. The voltage
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limit violations occur in laterals 4 and 5 because they are relatively farther from the

nearest DGs than other laterals. It is noteworthy that these violations result from the

coincidence of both normal and EV peak loads, which is clear from Fig. 6.7 (c). These

conditions overload the DGs in the IMG and cause undesirable voltage drops across the

distribution lines.

6.4.3 Controlled Charging

Proposed Strategy vs Voltage-based Controller

In this case, the control strategy proposed in Section 6.2 is simulated and compared with

controllers from the state-of-the-art review. First, the proposed strategy is compared

with the voltage-based charging controller proposed by the authors in [152]. The charging

power controller proposed in [152] is given by the following equation:

EPt,j =


P min

j + βj · e−(uj,t)(vt,j−vr) · e(1−SoCt,j), vt,j ≥ vrl

0, vt,j ≤ vrl

 (6.15)

where βj is a controller parameter for EV j while vt,j and ut,j are the voltage and

sensitivity measured by EV charger j, respectively. The parameter vrl in (6.15) is a

reference voltage set to the lower acceptable limit, which is 0.95 p.u. The performance of

the two controllers during peak load time from hour 19 to hour 21 are compared to test

their effectiveness in controlling the EV charging load when system operating parameters

approach their lower respective limits. Simulation results for the voltage-based controller

are shown in Figs. 6.8 (a)-(c). Fig. 6.8 (a) shows that the voltage-based controller results

in oscillations around the lower limit of bus voltage during the peak load period. These
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Fig. 6.8. Peak loading conditions, voltage-based controller simulation results, (a)
Minimum bus voltages, (b) System frequency, and (c) EV charging power, and proposed
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oscillations occur because of the discontinuity in the controller that leads to charging

load fluctuations as shown in Fig. 6.8 (c). It is worth to recall that this controller is

designed to control EV charging based on voltage, and therefore, the frequency violation

shown in Fig. 6.8 (b) is not corrected due to the absence of frequency in the input

parameters of the controller. The results of the proposed strategy are demonstrated

in Figs. 6.8 (d)-(f). Fig. 6.8 (d) and (e) show that the voltage and frequency of the

system stay above their respective lower limits throughout the peak loading conditions.

This is because each EV charger in the system modulates its power according to the

measured voltage and frequency. This results in reduced total EV charging load as

shown in Fig. 6.8 (f), which reliefs the DGs and reduce voltage drops across the system.
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It is also important to note that in contrast to previous works, the charging fairness

technique implemented in the proposed strategy does not degrade the performance of

the EV charging control. This can be clearly observed from Figs. 6.8 (a)-(c) that show

that the EV charging load for the voltage-based controller slightly changes in response

to voltage changes due to the presence of sensitivity parameter that is used to achieve

charging fairness. Meanwhile, the proposed strategy effectively controls the EV charging

according to system conditions as shown in Figs. 6.8 (d)-(f).

The SVI index values for opportunistic charging, voltage-based controller, and

proposed strategy are listed in Table 6.3. It can be observed that the proposed strategy

provides a remarkable improvement in reducing system parameters violations.

Table 6.3: SVI for different charging techniques

Charging Control Technique Opportunistic Voltage-based Proposed Strategy
SVI 0.0855 0.0196 0

As described in Section 6.2, the level at which chargers are reduced depends on the

priority level of each EV. Fig. 6.9 demonstrates the power system capacity allocation

for different priority level. It is clear from the figure that a higher priority level (less

past charging allocation) will result in higher power allocation for the EV.

Proposed Strategy vs Frequency-based Controller

The proposed strategy is also compared with the frequency-based controller implemented

by the authors in [87], which is represented by the following:

It,j = Imin
j + (Imax

j − Imin
j ) ∗ (ft − frl) . Ψ (6.16)
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Fig. 6.9. EV priority level distribution during peak loading period for the proposed
strategy
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Fig. 6.10. Simulation results for frequency-based controller during peak loading condi-
tions, (a) Minimum bus voltages, (b) System frequency, and (c) EV charging power

Parameter Ψ in (6.16) is the controller droop gain. Figs. 6.10 demonstrate system

parameters during peak load time when the frequency-based controller is implemented

in the IMG. As noticed from the figures, the controller helps to avoid violations in

frequency and voltage during the peak time. Nonetheless, the controller applies equal

charging reduction to all the EVs without the consideration of fairness as can be seen

from Fig. 6.11, which shows that the charging power allocation during the peak load
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Fig. 6.11. EV priority level distribution during peak loading period for the frequency-
based controller

time for frequency-based controller. The performances of the frequency-based controller

and the proposed strategy are also compared during DG outages, which could cause a

further drop in frequency during the peak loading conditions. A DG outage scenario is

implemented where DG4 goes out of service at 18:30. Figs. 6.12 (a)-(c) illustrate the

results for this scenario in the case of the frequency-based controller. It can be noticed

from Figs. 6.12 (a)-(c) that oscillations in voltage, frequency, and EV charging load

when the DG outage event occurs during the peak loading conditions. These oscillations

occur despite the reduction of charging load to the minimum limit as shown in Fig. 6.12

(c), which indicates that further curtailment of EV load is required.

The simulation results of DG4 outage scenario are demonstrated in Figs. 6.12 (d)-(e)

for the proposed strategy. It is worth noting that once the shedding scheme detects a

violation of voltage and frequency in the system, it starts to curtail EV loads to prevent

further violations and bring back the system parameters to the acceptable limits as

shown in Fig. 6.12 (d) and (e). This results in shifting the peak EV charging load

a bit further and reliefs the system during the abnormal condition of DG outage as

demonstrated in Fig. 6.12 (f). The SVI index for this scenario is calculated for the

frequency-based controller and the proposed strategy as shown in Table 6.4. The SVI
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Fig. 6.12. DG outage scenario, simulation results for frequency-based controller;
(a) Minimum bus voltages, (b) System frequency, and (c) EV charging power, and
proposed strategy results, (d) Minimum bus voltages, (e) System frequency, and (f)
EV charging power.

values indicate that the load shedding scheme incorporated in the proposed strategy

greatly reduces the system parameter violations during the DG outage event.

Table 6.4: SVI for frequency-based Controller and Proposed strategy in a DG outage
scenario

Charging Technique Frequency-based Proposed Strategy
SVI 0.0247 0.0039
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6.5 Discussion and Summary

This research develops a communication-less control strategy for the EV charging load

in droop-controlled IMGs. The proposed strategy controls the speed of EV charging

based on both the system frequency and bus voltage, as well as the battery SoC and

past charging power allocation. Further, a novel EV load shedding scheme is proposed

that gets triggered when an under-voltage or under-frequency event occurs in the IMG.

Moreover, a charging fairness system that assigns priority levels to EVs based on their past

charging power allocation is developed. Numerical simulations are conducted to validate

the effectiveness of the proposed strategy. The results demonstrate the superiority of

the proposed control strategy to the state-of-the-art controllers in modulating the EV

charging load. The results also show that the charging fairness system implemented in

the proposed strategy does not degrade the performance of the EV charging control.

During a DG outage scenario, the proposed control strategy successfully curtailed EV

loads to prevent further violations and bring back the system operating parameters to

the acceptable limits.
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Chapter 7 - Optimal Design of Charging
Facilities within Parking Lots

7.1 Introduction

The deployment of EV parking lots (EVPLs) with charging capability in commercial

and workplace districts has been suggested as a solution that could serve the charging

needs of EV owners in these areas [165]. However, the prior research on the topic of

EVPL design and operation management are associated with shortcomings that need

be addressed. First, the requirements, specifications, and limitations of electric DNs

and/or transportation networks are the focal points in the EVPL design models proposed

in the literature. Second, a common shortcoming in previous research that considers

EVPL provision of V2G services to the grid is that they assume all chargers installed

in the EVPL are of the BD type. However, such an assumption may not be practical

due to (i) the cost of BD chargers being up to three times the cost of the UD type

[166], and (ii) the lack of clear evidence that many EV users will participate in the

provision of V2G programs due to fears about their EV batteries degradation [167].

Therefore, it is imperative to unveil a design model that can determine the optimal ratio

of BD to UD chargers to be installed in the EVPLs according to the benefit to costs

ratio and the projected EV owners’ participation in V2G programs. Third, designed
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financial models of EVPL in the literature follow a holistic approach that consolidates

the financial aspects of different services (i.e., charging, V2G) into one model. However,

it is imperative to have the ability to separately view each service contribution to the

project’s financial performance and optimize its related parameters. Such an approach

allows efficient planning of the project through (i) effective utilization of investment

capital on profitable services, (ii) re-evaluation of service operation and pricing strategy,

(iii) reassessment of costs, and (iv) elimination of unprofitable services. Therefore, this

research aims to develop a new approach for optimal design of an EVPL providing

charging services to EV users and V2G support to the electrical power grid. In particular,

the key contributions of this research are listed as follows:

1. A new multi-objective model is developed that allows for the maximization of

EVPL owner profit and/or EVPL social responsibility using control parameters

incorporated in the model.

2. The model provides the design of an EVPL with the optimal combination of UD

and BD chargers, considering the financial aspects of V2G services as well as the

incentive-participation scheme for EV users.

3. The model decouples the intertwined economic dynamics of EV charging and V2G

services in the EVPL via revenue models targeting each service separately. This

allows optimal pricing of services with respect to the invested capital.

Table 7.1 compares the proposed EVPL design model in this work with previous

studies in the literature. The table indicates how the proposed model has contributed

to the existing studies. As reported in the table, in the proposed model, various new

features are included and integrated.
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Table 7.1: Comparison of the Proposed EVPL Design Model with Prior Studies in
Literature.

Model Features / Reference [89]–[93] [95]–[107] Proposed

Provision of V2G services to the grid ✓ ✓

Independent of DN and Transportation Requirements ✓

Optimal Ratio of BD to UD Chargers ✓

Decoupled Financial Models for Various Services ✓

Objective Customization ✓

Fig. 7.1. Overview of Electric Vehicle Parking Lot Structure.

7.2 Problem Hypothesis and Specification

Fig. 7.1 depicts a schematic diagram of the proposed EVPL charging system. As shown

in the figure, the EVPL is connected to the DN through a transformer. EVs in the EVPL

can be charged by either UD or BD chargers. The installation of BD chargers increases

the CAPEX incurred by the investors due to its relatively high costs. However, it can also

provide an opportunity to reduce the OPEX of the EVPL or generate profit through the

provision of V2G services. In this case, the EVPL owner would receive benefits from the
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grid operator for the energy discharged by the EVs plugged in in the EVPL. Further, EVs

discharging their power during peak times to charge other EVs at the EVPL could help

reduce the transformer size, which in turn decreases the required CAPEX to construct

the EVPL. Appropriate agreements between the EV users and EVPL owners are put in

place for the purpose of vehicle registration, metering, utilization, and payments. EVPL

owners have to offer an appropriate incentive model/mechanism to encourage EV users

to participate in V2G provision while meeting the target benefits/costs ratio. In this

work, the participation of EVs in the provision of V2G services depends mainly on the

amount of incentive offered.

Without loss of generality, it is assumed in this work that two V2G programs are

offered to EVPL owners:

1. V2G Program: this program encourages EV owners to discharge during peak times

to reduce peak load. The EVPL owner receives benefits from the grid operator

for any V2G discharging and uses a part of this proceeding to pay the EV users a

V2G incentive.

2. V2G Program + V2GAP: DN operator introduces a V2G availability program

(V2GAP) to defer/avoid assets upgrade at certain identified locations. DN opera-

tors offer an appropriate incentive model/mechanism to encourage EV users to

participate in the V2GAP. The capacity availability of each EVPL depends on the

capacity of installed BD chargers. EVPL owners will be incentivized for both the

availability and V2G services utilization, and EV users receive specific payment

from EVPL owners due to V2GAP service provision.
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Fig. 7.2. Details of the EVPL design approach.

7.3 Proposed Model

Fig. 7.2 shows a detailed view of the proposed optimal EVPL design approach. As

depicted in the figure, the model receives input data including: (i) owner setpoints

that control the objective of the model, (ii) EVPL specifications, e.g., the number of

parking spots, (iii) the EV charging behavior model including the expected time of

arrival and departure, requested charging energy, and battery capacity, as well as how

EV owners respond to charging price and V2G incentive, and (iv) grid electricity prices.

The proposed model could run in two modes including:

• Profit maximization: maximizes the profit of the EVPL owner.

• Social responsibility: maximizes utilization of EV charging service and participation

in V2G programs.

The model switches between the aforementioned modes depending on the value of charg-

ing price control parameter (CPCP) and V2G discharging incentive control parameter

(DICP). These parameters are used to penalize the slack variables that control the

charging price and V2G incentive paid to EV users to either maximize the benefits from
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the EVPL services (i.e., prioritize generating the highest revenue), or allow them to

change freely within the predefined limits (i.e., maximize utilization of EV charging

services and participation in V2G programs). In this regard, the model assumes that

when the charging price decreases, EV users increase their charging demand. Further,

almost all EV users are willing to participate in V2G programs if sufficient financial

incentives are provided, and their participation increases to a certain degree depending

on the level of incentives provided. As shown in Fig. 7.2, in the profit maximization

mode, the CPCP and DICP quantities are assigned low values, and thus, the revenue

of the EVPL owner is maximized, while the user comfort and V2G participation are

balanced. This means that the model will try to find the highest charging price and

the lowest V2G incentive while minimizing the CAPEX and OPEX of the system. In

the social responsibility mode, the operating profit is balanced, while the EV user

comfort and V2G participation are maximized. This translates into finding the minimum

charging price and highest V2G incentive that maximize the EV charging demand and

V2G participation while satisfying the minimum target revenue of the owner. In this

context, it is worth noting that the social responsibility mode could also be utilized

by public EVPL and/or commercial entities that do not aim for a profit. In both

modes, the technical and economical aspects of EV charging and discharging in the

EVPL are coordinated through smart charging/discharging control and minimum target

revenue constraints. Th objectives in these two modes are achieved through finding the

optimal decision variables including: (i) sitting and sizing of UD chargers, (ii) sitting

and sizing of BD chargers, (iii) transformer size, (iv) EV battery state of charge (SoC)

and charging/discharging power of each EV in the EVPL for every time step in the

planning horizon, (v) EV charging prices, (vi) V2G incentives, and (vii) the reserve power
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capacity of the demand response (DR) service provision to the grid. The mathematical

formulation of the above-described model is given hereunder.

7.3.1 Objective Function

Table 7.2 presents the nomenclature of the proposed approach.

Table 7.2: Chapter 7 Nomenclature

Indices
c Indices for parking spots.
h, s Indices for time steps and scenarios.

Sets
C,S Sets of parking spots and scenarios.
T Set of planning optimization time steps.

Parameters
α Parking spot occupancy.
ηChg EV charging efficiency (%).
ηDhg EV discharging efficiency (%).
ρCP CP Control parameter for EV charging

price.
ρDICP Control parameter for EV V2G incen-

tive.
ϕs Probability of scenario s .
BEV EV battery capacity (kWh).
CT x Transformer cost ($/kVA).
CBD EV bi-directional (BD) charger cost ($).

CUD EV uni-directional (UD) charger cost
($).

CCtl EV charging control system cost ($).
CP li Parking lot instruction system cost ($).
EV 2G V2G scheme payoff ($/kWh).
EAnc Demand response (DR) availability

price ($/kWh).
EGrd Distribution network electricity price

($/kWh).

KDN Distribution network capacity limit
(kVA).

LS Equipment lifespan (years).
NP L Maximum number of parking spots.
P Chg,max Maximum EV charging power (kW).
P Dhg,max Maximum EV discharging power (kW).
r Interest rate (%).
tArr EVs arrival time.
tDep EVs departure time.
SoCArr EVs arrival state of charge (SoC) (%).
SoCDep EVs departure SoC (%).

Variables
EP L Parking lot EV charging price ($/kWh).

EChg,S Slack variable for EV charging price
($/kWh).

EInc EV V2G incentive ($/kWh).
EInc,S Slack variable for EV V2G incentive

($/kWh).
KT x Transformer capacity (kVA).
LUD Placement variable for UD charger.
LBD Placement variable for BD charger.
P DR,Cap Parking lot DR capacity provision to

the grid (kW).
P Chg,EV EV charging power (kW).
P Dhg,EV EV discharging power (kW).
SoCEV SoC of EV battery (%).
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The optimal model is formulated with the following multi-objective function:

Max:
(
MRev −M Inv

)
f1

−
(
ρCP CP · EP L,S

s + ρDICP · EInc,S
s

)
f2

(7.1)

The first objective in (7.1) is to maximize the difference between the operational

revenue (MRev) and the annualized investment and operation and maintenance cost of

the EVPL infrastructure (M Inv). The second objective is to control charging prices and

V2G incentives through control parameters (ρCP CP , ρDICP ) and slack variables (EP L,S,

EInc,S), which are incorporated into the optimization problem. In the case where the

EVPL owner sets the control parameters to high values, the slack variables are penalized

to keep them at a minimum value for convergence of the algorithm. On the other hand,

low control values allow the charging price and V2G incentive to change freely within

the limits of the problem.

The operational revenue is obtained from selling energy to EVs and the grid, as well

as providing DR capacity to the grid, while the operational cost, on the other hand, is

calculated from the cost of energy bought from the grid and the EVs in the EVPL as:

MRev =
∑
s∈S

∑
h∈T

ϕs

(
P Chg,P L

s,h · EP L
s + P Dhg,P L

s,h · EV 2G + P DR,Cap
s,h · EAnc

s,h − P Chg,P L
s,h · EGrd

s,h

−P Dhg,P L
s,h · EInc

s

)
.

(7.2)

It can be noted from the term P Dhg,P L
s,h ·EV 2G in (7.2) that EV users who participate

in a V2G program are compensated with a “Pay As You Go" scheme. The value of ϕs

represents the probability of the each scenario s according to the utilized probability

distribution model . The total annualized investment along with the operation and
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maintenance costs are represented by (7.3). This includes the costs related to the

acquisition, installation, operation, and maintenance of the transformer as well as the

BD and UD chargers.

M Inv = (1 + CO&M) · AF Chg ·
∑
c∈C

(
LUD

c · CUD + LBD
c · CBD

)
+(1 + CO&M) · AF T x ·KT x · CT x,

(7.3)

where the annuity factor AF is expressed by the following:

AF = r · (1 + r)LS

(1 + r)LS + 1 . (7.4)

7.3.2 EVPL Charging and Discharging Power Constraints

The objective functions in (7.1) are subject to the following parking spots connection to

chargers constraints:

0 ≤
(
LUD

c + LBD
c

)
≤ 1 ∀c ∈ C, (7.5)

0 ≤
∑
c∈C

(
LUD

c + LBD
c

)
≤ NP L

, (7.6)

where (7.5) denotes that a parking spot can be connected to either a UD or BD charger,

while (7.6) indicates that the total number of chargers is limited to the maximum number

of spots in the EVPL. The charging and discharging power constraints of the parking

spot connections to the chargers are represented by the following:

0 ≤ P Chg,EV
s,h,c ≤ P Chg,max, ∀s ∈ S ∧ h ∈ T ∧ c ∈ C, (7.7)
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0 ≤ P Dhg,EV
s,h,c ≤ P Dhg,max, ∀s ∈ S ∧ h ∈ T ∧ c ∈ C, (7.8)

0 ≤
c+cm∑

c

P Chg,EV
s,h,c ≤

c+cm∑
c

P Chg,max · (LUD
c + LBD

c ), ∀s ∈ S ∧ h ∈ T ∧ c ∈ C∗, (7.9)

0 ≤
c+cm∑

c

P Dhg,EV
s,h,c ≤

c+cm∑
c

P Dhg,max · LBD
c , ∀s ∈ S ∧ h ∈ T ∧ c ∈ C∗, (7.10)

P Chg,EV
s,h,c · P Dhg,EV

s,h,c = 0, ∀s ∈ S ∧ h ∈ T ∧ c ∈ C, (7.11)

P Chg,EV
s,h,c · (1− αs,h,c) = 0, ∀s ∈ S ∧ h ∈ T ∧ c ∈ C, (7.12)

P Dhg,EV
s,h,c · (1− αs,h,c) = 0, ∀s ∈ S ∧ h ∈ T ∧ c ∈ C, (7.13)

where (7.7) and (7.8) represent the charging and discharging power limits of EV chargers

in the EVPL, respectively. Equations (7.9) and (7.10) indicate that each charger

can supply power to a maximum of cm EVs in the parking spots. The C∗ in (7.9)

and (7.10) represents a set of parking spots grouped based on the value of cm, with

C∗ = {1, 1 + cm, 1 + 2 · cm, ..., NP L}. The constraint in (7.11) prevents simultaneous

charging and discharging for the same parking spot, while (7.12) and (7.13) respectively

force the charging and discharging power of the parking spot to zero if it is not occupied

by an EV, where the parking spot occupancy parameter αs,h,c = 1 indicates that the

spot is occupied.

The EVPL power demand P P L at the PCC with the grid is formulated as follows:

P P L
s,h =

∑
c∈C

P Chg,EV
s,h,c −

∑
c∈C

P Dhg,EV
s,h,c , ∀s ∈ S ∧ h ∈ T ∧ c ∈ C, (7.14)

0 ≤ P P L
s,h ≤ KT x ∀s ∈ S ∧ h ∈ T, (7.15)
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where (7.14) indicates that the EVPL power represents the total charging and discharging

power of all parking spots, which is restricted to the rated capacity of the EVPL

transformer as given by (7.15). It is worth noting that (7.15) also indicates that EV

discharging in EVPL is limited to reducing the EVPL power consumption without

discharging power into the grid.

The rated power of the transformer is a variable that is limited by the electric DN

capacity at the node where the transformer is connected as follows:

0 ≤ KT x ≤ KDN (7.16)

7.3.3 EV Charging and Discharging Coordination

The EV battery charging and discharging powers are coordinated using the control

mechanism represented by the following:

SoCEV
s,h,c = SoCArr

s,c , ∀s ∈ S ∧ h = tArr
s,c , (7.17)

SoCEV
s,h,c = SoCEnd

s,c ,∀s ∈ S ∧ h = tDep
s,c , (7.18)

SoCEV
s,h,c =

(ηChg · P Chg,EV
s,h,c

Bc

−
P Dhg,EV

s,h,c /ηDhg

Bc

)
·∆t + SoCEV

s,h−1,c,

∀s ∈ S ∧ tArr
s,c < h ≤ tDep

s,c ,

(7.19)

where (7.17) and (7.18) set the SoC of the battery to the arrival and requested departure

SoC, respectively. It is noted that the requested departure SoC varies according to the

charging price as indicated by (7.21). The battery SoC balance is represented by (7.19)

taking into consideration the charging and discharging operations. The battery SoC
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control mechanism in (7.17)-(7.19) shows that charging and discharging are coordinated

to ensure that the target departure SoC is satisfied without any specific pattern. The

charging/discharging patterns are dependent on the objective function. For instance, an

objective function that tries to minimize the cost would shift the charging to lower grid

price periods. The EVs battery is subject to the following constraints:

SoCEV
min,c ≤ SoCEV

s,h,c ≤ SoCEV
max,c ∀s ∈ S ∧ tArr

s,c < h ≤ tDep
s,c ,∧∀c ∈ C, (7.20)

where (7.20) defines the operational limits of the battery SoC required to maintain its

expected lifetime.

7.3.4 EVPL Charging and Discharging Economic Model

The economics of the EVPL depends mainly on two variables namely: (i) the charging

price paid by the EV users to charge their batteries, and (ii) the V2G incentive given to

EV users for providing V2G services. The charging price impacts the energy demand

for EVs in the EVPL as follows:

SoCEnd
s,c = SoCDep

s,c −
(
SoCDep

s,c − SoCArr
s,c

)
·(1− (EP L,max − EP L

s )
(EP L,max − EP L,min)) , ∀s ∈ S. (7.21)

As indicated by the linear price-demand model [168], [169], in (7.21), the lower the

charging price is, the higher the charging demand by EV users would be. The EVPL
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charging price is set by the following:

EP L
s = EP L,min + EP L,S

s , ∀s ∈ S, (7.22)

0 ≤ EP L,S
s ≤ (EP L,max − EP L,min), ∀s ∈ S. (7.23)

where (7.22) denotes that the charging price is controlled by the slack variable EP L,S
s ,

which is penalized in the objective function through the CPCP parameter. A high

control parameter value would force the charging price to a minimum, while a low control

parameter value allows the price to change within the limit imposed on its slack variable

as given by (7.23).

The changes in the charging price must satisfy the profitability constraint which sets

a minimum target revenue as given by the following:

RChg ≤
∑
s∈S

∑
h∈T

P Chg,P L
s,h · EP L

s − P Chg,P L
s,h · EGrd

s,h , (7.24)

RChg = β1 ·
∑
c∈C

(
(LUD

c + LBD
c ) · CUD

)
+ CCtl + CP li + KT x · CT x. (7.25)

The constraint in (7.24) adjusts the charging price to ensure that the revenue from

charging operations in the EVPL meets a percentage β1 of the minimum target revenue

represented by (7.25). Depending on the project risk profile, an investor could set the

target profitability of the charging operation, i.e., the return on investment considering

the NPV of the CAPEX required to construct the charging infrastructure. This allows

optimal pricing of charging service with respect to the invested capital. The charging

infrastructure CAPEX includes the cost of EV chargers, charging control hardware and

software, the EVPL instruction system required to route EVs to the designated parking
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spot, and the transformer connected to the grid.

The V2G incentive is set as follows:

EInc
s = EInc,max − EInc,S

s , ∀s ∈ S, (7.26)

0 ≤ EInc,S
s ≤ (EInc,max − EInc,min), ∀s ∈ S. (7.27)

The slack variable EInc,S
s controls the V2G incentive as expressed by (7.26) and

(7.27). Therefore, a high control parameter value on the slack variable EInc,S
s variable

forces the incentive to higher values, which would increase the participation of EV users

in the V2G programs as given by the following:

∑
c∈C

(LBD
c ) ≤ λV 2G(EInc

s ) ·NP L, (7.28)

where λV 2G(EInc
s ) represents the percentage of EV users willing to participate in V2G

programs as a function of V2G incentive. The V2G participation restricts the number of

BD chargers installed in the EVPL as expressed by (7.28). The minimum target revenue

for V2G services is represented by the following:

RDhg ≤
∑
s∈S

∑
h∈T

P DR,Cap
s,h · EAnc

s,h + P Dhg,P L
s,h · EV 2G − P Dhg,P L

s,h · EInc
s , (7.29)

RDhg = β2 ·
∑
c∈C

LBD
c · (CBD − CUD), (7.30)

where the EV V2G incentive is adjusted by the revenue model in (7.29) and (7.30). The

parameter β2 in (7.30) represents the percentage of the minimum target revenue from

V2G operations that the EVPL must meet. It is noted from (7.25) and (7.30) that the
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cost of a BD charger is divided into two parts. The first part is equal to the cost of a

UD charger and it should be covered by the charging services revenue. The second part

represents the marginal increase compared to a UD charger which is covered by V2G

services revenue.

7.3.5 EVPL V2GAP Program Constraints

The EVPL provision of capacity-based DR services to the grid through the V2GAP

program is determined by the design model as per the following:

0 ≤ P DR,Cap ≤
∑
c∈C

LBD
c · P Dhg,EV

max , (7.31)

where (7.31) restricts the DR capacity to the power capacity of BD chargers installed in

the EVPL. In this regard, it is assumed that since a smart charging control scheme is

applied by the EVPL as indicated by (7.17)-(7.19), the only way for EVPL to reduce

its power consumption from the grid is to use the V2G services by the plugged-in EVs

located in the EVPL.

7.3.6 EV Behavior Uncertainty Characterization

The uncertainty in the EV users charging demand stems mainly from five random

parameters including: (i) time of arrival, (ii) time of departure, (iii) SoC at arrival, (iv)

SoC at departure, and (v) EV battery capacities. According to [94], [100], and [170],

the randomness in these parameters can be handled using a probabilistic approach with

predetermined probability density functions (PDFs). In this work, truncated Gaussian
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distribution functions are employed to estimate the charging behavior parameters of

each EV user as follows:

SoCArr
s,c = f

(
x, µsoc,arr, σ2

soc,arr,
(
socarr,min, socarr,max

))
(7.32)

SoCDep
s,c = f

(
x, µsoc,dep, σ2

soc,dep,
(
socdep,min, socdep,max

))
(7.33)

tArr
s,c = f

(
x, µt,arr, σ2

t,arr,
(
tarr,min, tarr,max

))
(7.34)

tDep
s,c = f

(
x, µt,dep, σ2

t,dep,
(
Max

{
tdep,min, tarr

}
, tdep,max

))
(7.35)

Bs,c = f
(
x, µB, σ2

B,
(
Bmin, Bmax

))
(7.36)

In order to ensure that the requested energy by each EV is possible to be satisfied by

the chargers in the parking lot, the following constraint is applied:

Bs,c · (
SoCDep

s,c − SoCArr
s,c

tDep
s,c − tArr

s,c

) ≤ P Chg,max (7.37)

7.4 Case Studies

7.4.1 Model Configuration

Case studies are conducted in this section to test the effectiveness of the proposed model.

The case studies are carried out on an EVPL with a capacity of 250 EVs. The probability

distribution of the EV behavior parameters is extracted from [94], [97]. Since the EVPL

is assumed to be located in a workplace and/or commercial areas, the simulations are
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Fig. 7.3. ToU prices in Ontario; (a): summer rates and (b): winter rates.
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Fig. 7.4. V2G incentive-based participation model.

performed for weekdays only with one sample summer weekday and a sample winter

weekday. The maximum number of EVs to be connected to a charger is set at cm = 4

[171].

The historical Ontario electricity market rates are used to construct the electricity

rate profiles for case studies [118]. It is assumed that the EVPL purchases electricity

from the grid at the hourly energy wholesale prices, and sells it to EVs at an average

price that is lower than or equal to the average residential ToU rates. The Ontario

time-of-use (ToU) rates for summer and winter seasons are shown in Fig. 7.3 [118].

Similarly, the V2G payments by the utility operator to the EVPL owner are set at 1.5

times the ToU peak rates to allow an effective V2G operation [94].
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The percentage of EV users willing to participate in V2G programs is represented by

the following:

λV 2G =



ζ1
(
EInc − γ1

)
, γ1 ≤ EInc ≤ γ2

ζ2
(
EInc − γ2

)
+ λ1, γ2 ≤ EInc ≤ γ3

ζ3
(
EInc − γ3

)
+ λ2, γ3 ≤ EInc ≤ γ4


, (7.38)

where (7.38) is a piecewise function that represents the V2G incentive-based partici-

pation assuming a contribution of 10 kWh per a working day. Through curve fitting

analysis, the parameters in (7.38) are found to be as follows: γ1 = 0.11, γ2 = 0.14, γ3 =

0.21, γ4 = 0.28, ζ1 = 12.1, ζ2 = 7.2, ζ3 = 1.8, λ1 = 0.35, λ1 = 0.88. The V2G incentive-

based participation model is plotted in Fig. 7.4. The remainder of the parameters are

listed in Table 7.3.

Table 7.3: Modeling and Simulation Parameters.

β1 = 140% β2 = 140%
ηDhg = 90% ηChg = 90%
SoCEV

min = 20% SoCEV
max = 90%

∆t = 1 hour CT x = 10 $/kVA
CUD = $3600 CBD = $9000
CO&M = 5% r = 2.5%
LSChg = 12 years LST x = 25 years
EP L

min = 0 ¢/kWh EP L
max = 14.1 ¢/kWh

EInc
min = 11 ¢/kWh EInc

max = 26 ¢/kWh
EV 2G = 26 ¢/kWh EDR = 0.03 ¢/kWh
KInc

DN = 1500 kVA KInc
DN = 1500 kVA

The chargers’ costs are obtained from [166] and [171], where they include the cost of

acquisition, installation, smart meters, and wire connections to parking spots and the

transformer. Based on [95] and [100], Level 2 chargers with a rated power of 11.5 kW

are considered. The model is built in the MATLAB environment and solved using the
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Gurobi Optimization Toolbox. The proposed model is simulated for six cases as listed

in Table 7.4.

Table 7.4: Case Studies Specifications

Cases Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Charging Service Yes Yes Yes Yes Yes Yes
V2G Program No No Yes Yes Yes Yes

V2GAP Program No No No No Yes Yes
Profit Maximization Mode Yes No Yes No Yes No
Social Responsibility Mode No Yes No Yes No Yes

7.4.2 Results

Fig. 7.5 shows the simulation results for EVPL charging and discharging power profile

considering a typical summer weekday. Fig. 7.5 (a) illustrates the grid hourly electricity

price profile for a summer weekday, while Figs. 7.5 (b) and (c) show the EVPL charging

and discharging power profiles, respectively. It is noted from Fig. 7.5 (a) that peak

demand occurs between Hours 12 and 20 with a peak at Hour 19 and a second peak

at Hour 13. Therefore, the proposed model coordinates the EV charging power for all

cases to be reduced during these projected peak rates and shifted to lower price periods

as can be noted from 7.5 (b). Because of this shift in the EVPL charging power, the

discharging by EVs for cases 3 to 6 are coordinated to be mainly during the periods

when there is a peak in charging power as shown in Fig. 7.5. This can help reduce the

total EVPL power at the PCC, which reduces the operating costs and the transformer

size. It is also worth noting from Figs. 7.5 (b) and (c) that in cases where the EVPL

design model is simulated for the social responsibility maximization (i.e., Cases 2, 4,
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Fig. 7.5. Simulation results for Cases 1-6 considering EVPL charging and discharging
power in a typical summer weekday, (a) Grid electricity price, (b) Parking charging
power profile, and (c) Parking discharging power profile.

and 6) the EV charging demand and V2G discharging are increased in comparison to

the profit maximization mode. Similar trends can be seen in the results for the EVPL

charging and discharging power considering a typical winter weekday. For example, the

EVPL is operated to shift the charging power from peak price periods (Hours 9 to 11

and 19 to 21), towards lower price rates (Hours 12 to 18) as can be seen in Fig. 7.6 (b).

Table 7.5 lists the output parameters of the optimization model for the case studies

considered. It can be observed that charging prices are higher and V2G incentives
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Fig. 7.6. Simulation results for Cases 1-6 considering EVPL charging and discharging
power in a typical winter weekday, (a) Grid electricity price, (b) Parking charging power
profile, and (c) Parking discharging power profile.

provided to EV users are lower for cases that operate in the profit maximization mode.

This, would in turn, result in a lower charging demand and V2G participation, which is

reflected in the lower number of UD and BD chargers installed in the EVPL. On the

other hand, when the EVPL is operated for social responsibility maximization, the EV

charging prices are lowered and the V2G incentives are increased, which results in higher

charging demand and V2G participation. Therefore, the model suggests increasing the

number of UD and BD chargers. It is also noted that the number of BD chargers for
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Table 7.5: EVPL Parameters under Various Case Studies.

Cases Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Charging Price (Cents/kWh) 10.26 5.69 11.66 6.19 11.66 5.57
V2G Incentive (Cents/kWh) N/A N/A 14.35 16.24 16.78 16.78

Number of UD Chargers 63 66 51 65 41 50
Number of BD Chargers N/A N/A 13 19 22 21

Demand Response Capacity (kW) N/A N/A N/A N/A 253 242
Transformer Capacity (kW) 900 900 750 950 750 900

Cases 5 and 6 is the highest because of the provision of DR capacity to the grid. Table

7.5 also indicates that the provision of V2G services reduces the size of the transformer

when operated for profit maximization.

7.4.3 Financial Analysis

Table 7.6 lists the annualized revenue and costs for investment and charging and V2G

services for Cases 1-6. It can be noted from Table 7.6 that the V2G service significantly

increases the net revenue of the EVPL for both modes of operations. It can also be

observed that Case 5 has the highest annual net revenue due to participation in the

V2G service with the provision of DR service to the grid. It is worth noting that the net

revenue represents the EVPL profit after taking into consideration all costs, including

CAPEX and OPEX.

To further analyze the economic viability of the EVPL project, several financial

parameters are calculated and shown in Fig. 7.7. The figure includes the following

quantities:

1. NPV in Fig. 7.7 (a) which is the difference between the present and future
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Table 7.6: Annualized Revenue and Cost Parameters in Thousands $ for Different Cases

Cases Charging Services V2G Services Investment

Cost Revenue Cost Revenue CAPEX O&M Net Revenue

Case 1 22.98 126.70 0.00 0.00 28.00 12.60 61.03

Case 2 38.22 95.31 0.00 0.00 31.63 14.05 17.08

Case 3 26.28 143.60 18.06 34.46 34.70 15.28 82.49

Case 4 42.20 101.30 19.81 33.38 40.53 17.61 26.22

Case 5 27.16 148.07 24.79 45.30 36.97 16.19 87.69

Case 6 44.48 103.58 34.51 56.06 45.09 19.44 23.77

discounted cash inflows throughout the years,

2. the internal rate of return (IRR) in Fig. 7.7 (b) which is the percentage of profit

from the EVPL throughout its lifetime,

3. the payback time in Fig. 7.7 (c) which is the time required for the discounted cash

inflow to match the initial capital costs,

4. the profitability in Fig. 7.7 (d) which represents the EVPL profitability considering

an expected return of investment set to 8% for the results in this figure. The

profitability is calculated as follows:

Profitability = Annualized Present Value of Future Cash Flows

Initial Investment · Profit Target + Initial Investment
Project Lifetime

× 100

(7.39)

From Fig. 7.7, it can be concluded that while the profit maximization mode results
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Fig. 7.7. Annual financial parameters of EVPL project for different case studies

in very promising financial parameters, the social responsibility mode is very modest

economically.For instance, the NPV for Case 4 is only $32,000, while the payback time

is 9.91 years which is very close to the EVPL lifetime set at 12 years. This observation

is more clear through the obtained profitability parameters for Cases 2, 4, and 6 which

averages around 60%. It is worth noting that the average of profitability values for the

presented cases is used for illustration purposes. Taking the average of profitability for

the profit maximization and social responsibility maximization modes results in a value
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Fig. 7.8. Profitability of the EVPL project considering different targeted profit.

of around 90%. This means that for a profitability target of 8%, the EVPL project might

not be profitable unless all the technical and financial projections of the project are

assumed to be accurate. This is further confirmed by the results in Fig 7.8, which shows

the profitability of the EVPL project considering different target values. From the figure,

it is clear that only a 5% target results in a profitable project; however, this target is very

low for such a risky project. Therefore, the profitability of such a project would remain

below the target value without incentives from the government, different electricity rates,

or other sources of revenue. Further investigation and proposals for incentivizing the

EVPLs are needed which is considered by the authors as future research.

7.4.4 Discussion and Summary

This research proposes an optimal design model for an EVPL that can provide charging

services to EVs and V2G services to the grid. The model realizes a multi-objective design

scheme for the maximization of the EVPL owner profit or EV user comfort using a

settable parameter and allows the design of an EVPL with the optimal combination of UD
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and BD chargers. Historical operating quantities are utilized to verify the feasibility and

efficacy of the model, and the results are analyzed. The results show that the proposed

model is effective in achieving the design targets as well as the charging/discharging

management requirements for the two modes of operations set by the EVPL operator.

The V2G services, particularly with the provision of DR services to the grid, significantly

add to the net revenue of the EVPL for both modes of operations. Advanced financial

analysis shows that the best profitability target that can be achieved for the EVPL

project is 5%. It is, therefore, concluded from the numerical studies that the EVPL

project profitability can be enhanced through incentives from the government, use of

higher electricity rates, or other sources of revenue due to higher CAPEX. Further, as

new technology materializes, it is expected that the equipment degradation decreases,

thereby enhancing the financial metrics of such EVPL projects. Further studies on the

topic would include investigation and development of new models for incentivizing the

EVPLs to further promote deployment of such EV charging stations.
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Chapter 8 - Conclusions and Future Work

8.1 Summary and Conclusions

The research in this thesis presents a number of approaches that aim to enhance the

adoption of EVs and their integration into the power grid. In particular, the thesis

focuses on the development of adaptive systems that enhance the management of EV

energy (Chapter 3, 4, and 5), and the development of charging strategies and design

models that help to expand the proliferation of EV charging infrastructure (Chapter 6

and 7).

Chapter 3 develops a model for a central controller in a fleet system that allows

adaptive utilization of EV batteries distributed energy for concurrent services to the

transportation sector and ancillary services market. The optimization model incorporates

various slack variables and control parameters for managing real–time fare prices,

adaptive energy and reserve margin allocation, spotting EV locations, interaction with

the grid operator, and meeting the fleet target revenue. The model allows EV drivers

to flexibly manage their battery capacities based on their availability and assessment

of the transportation services demand when needed. The numerical results for various

cases including no contribution, low contribution, and high contribution levels to the

ancillary services market are presented. The results demonstrate how distributed energy

stored in several EV batteries within the fleet can be used as a whole to support the
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grid without negative impacts on the regular trip schedule. The effectiveness of the

proposed algorithm in Chapter 3 for creating the reserve margin is evident from the

results. The reserve margin is optimally utilized to meet the grid’s demand when needed.

The success of the proposed dynamic pricing mechanism for real–time calculation of

fare rates for achieving daily revenue target in a competitive market is indicated. The

results demonstrate that the extra revenue stream from contribution to the ancillary

services market on top of the one from regular passenger transport enhances the system

profit. It is indicated that the more the EV fleet participates in the ancillary services,

the lower the trip prices become, and the more the system profit is enhanced. As such,

the proposed model can increase the profitability of an EV fleet management system,

thereby promoting investment and success in this area in the near future.

Chapter 4 proposes a novel decentralized system for P2P energy trading between EVs

that takes into consideration QoS management and utilizes smart contracts to match

and administer the energy trade. SCMP and MCMP mechanisms are proposed to match

EC requests and EP offers based on QoS attributes. In these mechanisms, each attribute

is assigned a weight value according to a fuzzy-based optimal weight calculation method.

Further, a penalty mechanism is developed to discourage dishonest requests/offers and

ensure that ECs and EPs stick to their contractual obligations. Numerical simulations

are conducted to validate the effectiveness of the proposed mechanisms. The results

show that the SCMP mechanism selects the EP offer that provides the best utility to

EC with high awareness of EC preferences represented by weight values assigned to

QoS attributes. The results also demonstrate that the MCMP mechanism is superior in

finding fast near-optimal solutions when matching a high number of ECs and EPs.

Chapter 5 proposes a new bidirectional smart charging algorithm of EVs for P2P
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energy trade and ancillary services provision to the grid. The user input is incorporated

into the scheduling model using optimization variables and soft constraints. The EV

user is able to adjust some of the settings of the scheduling model that would make

the model adaptive to various conditions. Optimization slack variables are utilized for

optimal management of the battery SOC and energy allocation for multiple service.

Real-world data collected from EV owners pertaining to the usage of their EVs are

utilized for numerical studies. Through numerical studies, the efficacy and feasibility

of the proposed model are evaluated. The results demonstrate how the incorporation

of user preferences into the scheduling process can enhance the aggregated revenue

generated by the EV scheduling model.

Chapter 6 develops a communication-less control strategy for the EV charging load in

droop-controlled IMGs. The proposed strategy controls the rate of EV charging based on

both the system frequency and bus voltage, as well as the battery SoC and past charging

power allocation. Further, a novel EV load shedding scheme is proposed that gets

triggered when an under-voltage or under-frequency event occurs in the IMG. Moreover,

a charging fairness system that assigns priority levels to EVs based on their past charging

power allocation is developed. Numerical simulations are conducted to validate the

effectiveness of the proposed strategy. The results demonstrate the superiority of the

proposed control strategy to the state-of-the-art controllers in modulating the EV

charging load. The results also show that the charging fairness system implemented in

the proposed strategy does not degrade the performance of the EV charging control.

During a DG outage scenario, the proposed control strategy successfully curtailed EV

loads to prevent further violations and bring back the system operating parameters to

the acceptable limits.
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Chapter 7 proposes an optimal design and operation model for an EVPL that can

provide charging services to EVs and V2G services to the grid. The model realizes a

multi-objective design scheme for the maximization of the EVPL owner profit or user

comfort using a settable parameter and allows the design of an EVPL with the optimal

combination of UD and BD chargers. Historical operating quantities are utilized to

verify the feasibility and efficacy of the model, and the results are analyzed. The results

show that the proposed model is effective in achieving the design targets as well as the

charging/discharging management requirements for the two modes of operations set by

the EVPL operator. The V2G services, particularly with the provision of DR services to

the grid, significantly add to the net revenue of the EVPL for both modes of operations.

Advanced financial analysis shows that the best profitability target that can be achieved

for the EVPL project is 5%. It is, therefore, concluded from the numerical studies that

the EVPL project profitability can be enhanced through incentives from the government,

use of higher electricity rates, or other sources of revenue due to higher CAPEX. Further,

as new technology materializes, it is expected that the equipment degradation decreases,

thereby enhancing the financial metrics of such EVPL projects. Further studies on the

topic would include investigation and development of new models for incentivizing the

EVPLs to further promote deployment of such EV charging stations.

8.2 Future Work

The following list outlines some of the research points that can be pursued in the future,

based on the proposed algorithms and the findings of this thesis:

• Development of an EV user-based scheduling algorithm that can link up with

other EV users profiles to coordinate charging/discharging operation.
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• Investigate the co-scheduling of EV fleet charging and trips considering traffic

conditions.

• Development of a communication-free and artificial intelligence (AI) based scheme

for the control of the EV charging load in islanded/isolated microgrids.

• Development of new economic models for electricity markets that can incentivize

investment in EVPLs.
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