3,166 research outputs found

    Architecture-driven, Multi-concern and Seamless Assurance and Certification of Cyber-Physical Systems.

    Get PDF
    Unlike practices in electrical and mechanical equipment engineering, Cyber-Physical Systems (CPS) do not have a set of standardized and harmonized practices for assurance and certification that ensures safe, secure and reliable operation with typical software and hardware architectures. This paper presents a recent initiative called AMASS (Architecture-driven, Multi-concern and Seamless Assurance and Certification of Cyber-Physical Systems) to promote harmonization, reuse and automation of labour-intensive certification-oriented activities via using model-based approaches and incremental techniques. AMASS will develop an integrated and holistic approach, a supporting tool ecosystem and a self-sustainable community for assurance and certification of CPS. The approach will be driven by architectural decisions (fully compatible with standards, e.g. AUTOSAR and IMA), including multiple assurance concerns such as safety, security and reliability. AMASS will support seamless interoperability between assurance/certification and engineering activities along with third-party activities (external assessments, supplier assurance). The ultimate aim is to lower certification costs in face of rapidly changing product features and market needs.This project has received funding from the Electronic Component Systems for European Leadership Joint Undertaking under grant agreement No 692474. This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation programme and Spain, Czech Republic, Germany, Sweden, Austria, Italy, United Kingdom, Franc

    Goal-Oriented Requirements Engineering: State of the Art and Research Trend

    Get PDF
    The Goal-Oriented Requirements Engineering (GORE) is one approach that is widely used for the early stages of software development. This method continues to develop in the last three decades. In this paper, a literature study is conducted to determine the GORE state of the art. The study begins with a Systematic Literature Review (SLR) was conducted to determine the research trend in the last five years. This study reviewed 126 papers published from 2016 to 2020.  The research continues with the author's search for scientific articles about GORE. There are 26 authors who actively publish GORE research results. Twenty-six authors were grouped into seven groups based on their relation or co-authoring scientific articles. An in-depth study of each group resulted in a holistic mapping of GORE research.  Based on the analysis, it is known that most research focuses on improving GORE for an automated and reliable RE process, developing new models/frameworks/methods originating from GORE, and implementing GORE for the RE process. This paper contributes to a holistic mapping of the GORE approach. Through this study, it is known the various studies that are being carried out and research opportunities to increase automation in the entire RE process

    A PRISMA-driven systematic mapping study on system assurance weakeners

    Full text link
    Context: An assurance case is a structured hierarchy of claims aiming at demonstrating that a given mission-critical system supports specific requirements (e.g., safety, security, privacy). The presence of assurance weakeners (i.e., assurance deficits, logical fallacies) in assurance cases reflects insufficient evidence, knowledge, or gaps in reasoning. These weakeners can undermine confidence in assurance arguments, potentially hindering the verification of mission-critical system capabilities. Objectives: As a stepping stone for future research on assurance weakeners, we aim to initiate the first comprehensive systematic mapping study on this subject. Methods: We followed the well-established PRISMA 2020 and SEGRESS guidelines to conduct our systematic mapping study. We searched for primary studies in five digital libraries and focused on the 2012-2023 publication year range. Our selection criteria focused on studies addressing assurance weakeners at the modeling level, resulting in the inclusion of 39 primary studies in our systematic review. Results: Our systematic mapping study reports a taxonomy (map) that provides a uniform categorization of assurance weakeners and approaches proposed to manage them at the modeling level. Conclusion: Our study findings suggest that the SACM (Structured Assurance Case Metamodel) -- a standard specified by the OMG (Object Management Group) -- may be the best specification to capture structured arguments and reason about their potential assurance weakeners

    Demonstration of a Model-based Approach for Formal Verification of I&C Logics

    Get PDF
    This paper introduces a model-based methodology for conformity assessment of I&C logics using model checking analysis. The presented method extends our previous work of model-based, artefact-driven support for engineering of mission-critical systems. The approach includes an ontology and a data model for constructing a tool-supported data repository for the model checking artefacts. The repository brings to the assessment, among others, the benefits of traceability between requirements, claims and analysis results, and it acts as a sole source for information, avoiding distortion and fragmentation of data. For demonstrating and testing the capabilities of our approach, we performed an exemplary model checking task on an I&C related case study, storing all the created work items to the data repository created with Siemens' Polarion™ tool. Finally, we present a methodology for using the relations between the artefacts to automatically generate assessment reports and explore the capabilities of the selected tool for this task
    • …
    corecore