Aalborg Universitet
AALBORG UNIVERSITY

DENMARK

NI2S3- D1.1 NEC/SOA state of the art

Lund, David ; Heravi, Behzad ; Soltanpur, Cinna ; Pacyna, Piotr ; Rapacz, Norbert ; Pecorella,
Tommaso; Rosi, Matteo; Sowa, Grzegorz; Stango, Antonietta

Publication date:
2010

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):

Lund, D., Heravi, B., Soltanpur, C., Pacyna, P., Rapacz, N., Pecorella, T., Rosi, M., Sowa, G., & Stango, A.
(2010). NI2S3- D1.1 NEC/SOA state of the art. http://ni2s3-project.eu/publications/public-deliverables/ni2s3-
deliverablel-1-nec-soa-state-of-the-art.pdf/view

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
? You may not further distribute the material or use it for any profit-making activity or commercial gain
? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at von@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: November 29, 2020


https://vbn.aau.dk/en/publications/80ee3797-fa46-448b-b72f-ca657537b330
http://ni2s3-project.eu/publications/public-deliverables/ni2s3-deliverable1-1-nec-soa-state-of-the-art.pdf/view
http://ni2s3-project.eu/publications/public-deliverables/ni2s3-deliverable1-1-nec-soa-state-of-the-art.pdf/view

NI2S3

A Systems
NI2S3

MNEC Enabler

Project no.:

Project full title:

Project Acronym:
Deliverable no.:

Title of the deliverable:

D1.1 NEC/SOA State of the Art

H European Commission

Enterprise and Industry

NET Information Integration Services for Security

225488

NET Information Integration Services for Security
Systems

NI2S3
D1.1
NEC/SOA state of the art

Contractual Date of Delivery to the CEC:
Actual Date of Delivery to the CEC:

M3 (30" September 2009)
M12 (30th June 2010)

Editor: HWC
Participant(s): AGH, UniFl, Comarch, CTIF
Author(s): David Lund (HWC), Behzad Heravi (HWC), Cinna Soltanpur

(HWC), Piotr Pacyna (AGH), Norbert Rapacz (AGH), Tommaso
Pecorella (UniFl), Matteo Rosi (UniFl), Grzegorz Sowa
(Comarch), Antonietta Stango (CTIF),

Work package contributing to the
deliverable:

Dissemination level:
Nature:
Version:

Total number of pages:

WP1
PU

R
1.0
60

Abstract:

This document presents the state of the Art in NEC and SOA and studies the envisaged use of
SOA for the benefit of NEC. An initial analysis is made on key gaps with respect to security
provisions for SOA in the NEC context. Previous and current projects are discussed together
with applicable technologies and standards with their relevance to SOA and NEC and general

NI2S3 concepts.

1 of 60




NI2S3 D1.1 NEC/SOA State of the Art

Table of Contents

1Y 13 4 Vo s 1
EXECULIVE SUMMAIY ..oiceiiiiiiiiiiiieiiiieneiirineesteneertnssestenssesenssessenssessnssessassssssnsssssnssssssnssssenssssssnnses 9
O 11 4o o [¥ Tt T T 10
L1.1 BACKGROUND ..uuueiiieeieiitiiaeeeeeeseetttuu i aeeeeeseeeastsaaaaaaaaasssssssnnnanaaaaesssssssnnnnsaessssssssnsannsseeeesssssssnnnaaeesaeeeeeesenssnnnnnns 10
1.2 NI2S3 OBIECTIVES ... vuvreereaiseseesseseesssessesssssessssessessessesssssssessessessssssssssessessessssesssassessessesssssassessesssssnss sessssnssnnens 10

2 NEC & SOA State Of Art.....ccccccueeeeeniiiiiiiiiiiiniiiiiiiisssssssessneniniiiisssssssssssssssssssssssssssens 12
2.1 NETWORK ENABLED CAPABILITY ..etteeesuurteeeeesaurteeesesausreeeessaasseeeessasssssaesssssasssseessssanssesesssssnnseeeessensssseeesessnnsesesanns 12
2.2 SERVICE ORIENTED ARCHITECTURE (SOA) ..eeiiitiieeiiieecittee ettt e e ettt e e stte e e ettt e e etteeeeabeeeeabaeeeesaeeeeasaeesnnseseesteaesnsanesesenean 15
2.3 OTHER TECHNOLOGIES ((NET WWCF) .. uiiiitiii et eitiee e ettt ette e ettt e e ettt e e e ete e e e sate e e etaeeeeateeeenbeeesbaeeeessseessaeasanseaessenasn 17

3 NECANd SOA INtEEIratioN .....ccceeeeuieeirireennieerireennsieetreennsseeereennssseesessnsssssssssnssssssssnnnssnanes 19
3.1 ACHIEVING NEC BY SOA ... cceeiieiee ettt ettt e e e sttt e e e s s ab e e s e e b et e e e e e sasbe e e ee e e s nsaeeeeessannsbeeeeseasnnbaeeeseannnrane sannee 19
3.2 SECURITY KNOTS c.uitttteeieiiitttee s e ettt e s e e bbbttt e s e e abb et e e e s e aunab et e e s s eunbb e e e e s aembba e e e s s e asbaeeeeeeannbb et eeeansabeee sabnaeeeeesannnne 21

4  Projects and initiatives.....coueeeeiieeiiiicrcrrrc e ers e s en e e s e n s e s snnnans 22
L R 0 B T oy £ PP 22

5  ReSEArch areas........cccccviiiiiiiiummmmnnnniiiiiissss s s aas e e e 30
5.1  SECURITY OF SOA AND WEB SERVICES .....uvtttteieiuuttteeessiunrteeeseeiuttteesssesasseeeessesanssaeeesesasnsateesssansseeesssassnseeesssenasenes 30
5.1.1 Basic building blocks of Web Services SecUrity .......cccooevviirririiieeiieeee e 30
5.1.2 Web Services security standards .........cccceeeceeerriiieriiee e 31
5.1.3 Other WS standards relevant for NI2S3 ..........ooiiiiiiiiiieeeeeeeee e 34

5.2 SOA RELIABILITY AND DEPENDABILITY - OPEN ISSUES AND CHALLENGES .....eeevttttuiiieeeeeeeeeresssiniseesesesesssssnnaeaessessesnssnnnnnns 35
5.2.1 Dependability ONtOIOZY......uuviiiiciiieiie ettt esbrae e e e e e eabraee e 35
5.2.2 Attributes of dependability........cccceeiiieciiiiii i 36
5.2.3 Threats to dependability......cccccoimiiiiiiiiiiee e 37
5.2.4 Means to preserve dependability.......ccccveeiiiiiiiiiieii e 38
5.2.5 Accountability extensions to dependability ........ccccceeeveciiiei i, 39

5.3 CHALLENGES AND OPEN ISSUES FOR SOA DEPENDABILITY IN NEC CONTEXT eitiuiiiieeiiieeieiiiiiiieee e e e e eeerviriseee e e e e e e e easaananes 40
5.3.1  Fault tolerance in SOA ...ttt as 40

LT T =T o] Tor- o o PSRN 41
5.3.3  MiddIeWare @XtENSIONS. ....cccoiiiiiiiiieeiite ettt et e e see e e ssate e s sbae e s sbaeessbaeessseeens 41
5.3.4  REAITIME SOA .ottt et e et e e e st e e e st e e s sabee e s sabeeeeanbeeens 41

2 of 60



NI2S3 D1.1 NEC/SOA State of the Art

5.3.5 EVOIVING arChiteCIUIE ...t e e e e e e e e e e e 42
5.3.6  Evaluation of architeCtures.........cooueiiiiiiieiiieeeeeee e 42
5.3.7 Instrumentation (Tracking and MoNItoring)........cccecvuveeeciieeeeciee et 42

5.4  VALIDATION AND COMPLIANCE TESTING METHODS vvvevveeeeeeeeeeeeeeeeeeeesesesessssssassnnnnnsssssssssssssssssssssssssseseesseeeseeneesseeenens 42
L O I ] o = SO TPPUP 42
5.4.2  Software SeCUrity tESHING .cuvv i e 44
5.4.3 Technology for black BOX tESTING .....ecciviiiiiiiiiiiiiiiei e 45
5.4.4 Known tools and SOTtWAre .....cocueeiiiiiiiieiecieee e 50

6 Summary and CONCIUSION......cccciiiiiiiiiiiiiiiiiiiisinissess e sssssasssssssssssssssssssssnsssssssssnns 55
7 3 3= (=1 o =1 o PPN 56

3 of 60



NI2S3 D1.1 NEC/SOA State of the Art

Abbreviations

With a breadth of activities ongoing in Europe and beyond, we intend to form a common
taxonomy for use throughout the project.

Acronym Meaning
AAA Authentication, Authorization, and Accounting

ADABTS Automatic Detection of Abnormal Behaviour and Threats in crowded Spaces

AP| Application Programming Interface

ASCII American Standard Code for Information Interchange
ASP Active Server Pages

BNF Backus-Naur Form

BPEL Business process execution language

BPM Business Process Management

Command, Control, Communications, Computers, Intelligence, Surveillance, Target

C4ISTAR . .
Acquisition and Reconnaissance

CCTV Closed Circuit Television

clip Critical Information Infrastructure Protection
CLR Common Language Runtime
CMS Content Management System

CORBA  Common Object Request Broker Architecture

CPU Central Processing Unit
CRC Cyclic Redundancy Check
CTMF Conformance Testing Methodology and Framework

DETECTER Detection Technologies, Counter-Terrorism Ethics, and Human Rights
DoDAF  Department of Defence Architecture Framework

ebXML  Electronic Business using eXtensible Markup Language

EC European Commission
EFS Evolutionary Fuzzing System
elD electronic identity

4 of 60



NI2S3

eldM
ENISA
ESB
ETSI
EU
EU-SECII
FSM
FT
FTP
GPF
GPL
GSM
HTTP
IAM
IEC
IEV

IFIP

Indect

ITU-T
J2EE
LDAP
LLAMA
MART
MASTER
MoD

MoDAF

D1.1 NEC/SOA State of the Art

Electronic Identity Management

European Network and Information Security Agency
Enterprise Service Bus

European Telecommunications Standards Institute
European Union

Coordinating National Research Programmes and Policies on Major Events Security
Finite State Machine

Fault Tolerance

File Transfer Protocol

General Purpose Fuzzer

GNU General Public License

Global System for Mobile communications
HyperText Transfer Protocol

Identity and Access Management

International Electrotechnical Commission
International Electrotechincal Vocabulary
International Federation for Information Processing

Intelligent Information System Supporting Observation, Searching and Detection for
Security of Citizens in Urban Environment

International Telecommunications Union-Telecommunication
Java Platform, Enterprise Edition

Lightweight Directory Access Protocol

The inteLLigent Accountability Middleware Architecture
Mean Active Repair Time

Managing Assurance, Security and Trust for sERvices

Ministry of Defence

Ministry of Defence Architecture Framework

5 of 60



NI2S3

MSMQ
MTBF
MTFF
MTTF
NAF
NEC
NECTISE
NIS
NIST
NSOV
OASIS
(0N
PDU
PICOS
PRIME

PrimelLife

PROTOS
QoS

RST

RT
SABSA
SAML
SAMURAI
SERICOM
SGML

SIP

D1.1 NEC/SOA State of the Art

Microsoft Message Queuing

Mean Time Between Failure(s)

Mean Time to First Failure

Mean Time To Failure

NATO Architecture Framework

Network Enabled Capability

Network Enabled Capability through Innovative Systems Engineering
Network and Information Security

National Institute of Standards and Technology

NATO Service Oriented View

Organization for the Advancement of Structured Information Standards
Open Systems Interconnection

Protocol Data Unit

Privacy and Identity Management for Community Services

Privacy and Identity Management for Europe

Bringing sustainable privacy and identity management to future networks and
services

Project Security Testing of Protocol Implementations

Quality-of-Service

Request Security Token

Real Time

SHERWOOD APPLIED BUSINESS SECURITY ARCHITECTURE

Security Assertions Markup Language

Suspicious and Using a netwoRk of cAmeras for sltuation awareness Enhancement
Seamless Communication for Crisis Management

Standard Generalized Markup Language

Session Initiation Protocol

6 of 60



NI2S3

SLA
SLO
SME
SMTP
SNMP
SOA
SOAP
sQL
SRS
STORK
STS
SUBITO
SWIFT
TEDS
TETRA
TOGAF
uDDI
UDP
URI
URL
wW3C
WCF
WS
WS-*
WSDL
WSE

WSLA

Service level agreements

Service Level Objectives

Small and Medium Enterprises

Simple Mail Transfer Protocol

Simple Network Management Protocol
Service Oriented Architecture

Simple Object Access Protocol
Structured Query Language

Shared Registry System

Secure idenTity acrOss boRders linKed

Security Token Services

D1.1 NEC/SOA State of the Art

Surveillance of unattended baggage and the identification and tracking of the owner

Secure Widespread Identities for Federated Telecommunications

TETRA Enhanced data service

TErrestrial Trunked Radio

The Open Group Architecture Framework

Universal Description Discovery and Integration

User Datagram Protocol

Uniform Resource Identifier

Uniform Resource Locator

World Wide Web Consortium
Windows Communication Foundation
Web Services

Web services specifications

Web Services Description Language
Web Services Enhancements

Web Service Level Agreements

7 of 60



NI2S3 D1.1 NEC/SOA State of the Art

XACML  eXtensible Access Control Markup Language

XML eXtensible Markup Language

8 of 60



NI2S3 D1.1 NEC/SOA State of the Art

Executive Summary

This document presents the state of the Art in NEC and SOA and studies the envisaged use of
SOA for the benefit of NEC. An initial analysis is made on key gaps with respect to security
provisions for SOA in the NEC context. Previous and current projects are discussed with their
relevance to SOA and NEC and general NI2S3 concepts.

It is clear through the reference material in this document that the state of the art in SOA itself
is fairly well advanced with several examples of commercial use of SOA based infrastructure
deployments. The research field is very active with regard to SOA with activity generally
focused toward specific aspects such as security, dependability and compliance. Many relevant
activities have been identified in this document, which can form major input basis to the work
of NI2S3.

With regard to NEC there is material mainly published through larger national defense
frameworks which are primarily encapsulated within Enterprise Architecture Frameworks such
as MoDAF[9], DoDAF[7] and NAF.

No detailed material is found which uses NEC for the use by CIIP [3], although SOA is an
enabling architecture. The Enterprise Architecture Frameworks do, however, present a broad
application onto architectures which are not necessarily military based, although no material
has been identified which deals explicitly with the concept of using SOA for NEC in the context
of CIIP. This issue is expanded in the companion deliverable D1.2.

9 of 60



NI2S3 D1.1 NEC/SOA State of the Art

1 Introduction

NI2S3 is a project funded by European Commission FP7 programme. This document presents
deliverable D1.2 as a part of Workpackage 1 with the primary aim to assess the State of the Art
in Network enabled Capability (NEC) and Service Oriented Architectures (SOA)

1.1 Background

Critical infrastructures are often protected by several protection systems of various types. In
such complex systems, the situation awareness is the key to the success in securing the
infrastructure. Unfortunately, protection systems often act independently, and therefore can
fail at discovering and reacting to minor alarms. NEC Information and Integration Services
(NEC) permit to create situational awareness and allow to share the view of the protected
infrastructure, thus facilitating the decision making. The NEC methodology, originally applied in
some defence applications, can also be used for the protection of infrastructures in civil
applications, however a methodology for developing effective protection systems needs to be
elaborated. The aim of the NI2S3 Project is to address this vacancy and to come up with a
reference methodology for building critical infrastructure protection systems based on of NEC
framework.

1.2 NI2S3 Objectives

Critical infrastructures are central to the sustainable development in societies and economies.
The existing critical infrastructures have been evolving for a long time and have become large.
Protection systems for such infrastructures have usually been designed for some specific
purpose, and are usually operated as independent systems. Along time, some new, increasingly
sophisticated capabilities have been added to the protection systems.

Complex interactions between the elements of a critical infrastructure indicate that there is
also a need to deploy a corresponding infrastructure protection system, which is capable of
extending security control to all elements of the protected system, and which is, at the same
time, capable of maintaining a global view of the infrastructure. Unfortunately, one of the
concerns with the networked protection systems is related to the complexity of interactions
and to the amount of exchanges, during the acquisition, transmission, aggregation and
processing of data pertaining to the state of the elements in the protected infrastructure. The
amount of data, its different type and origin, can quickly become overwhelming to an
aggregation and processing system, thus making any systematic correlation and inference
about the state of the infrastructure quite infeasible. As a result, protection systems are
becoming incapable of ensuring appropriate security levels. Such situation requires an
approach, which is different than what is commonly supported today.

The key objective of the NI2S3 project is to research and implement a reference methodology
for developing security systems based on NEC Information and Integration Services. The
security systems must be capable of collecting and processing information from many
heterogeneous sources in order to build up or improve situation awareness of critical
infrastructures.

10 of 60



NI2S3 D1.1 NEC/SOA State of the Art

More specifically, the NI2S3 Project aims:

e to provide a definition and a design of an NI2S3 critical infrastructure protection system
regarding the security, resiliency and availability of the subject infrastructure,

e to define performance indicators and tools for system validation,

o to develop a technology for the evaluation of the performance, robustness and
reliability of such a protection system,

e to develop a NI2S3 application demo.

The resulting protection system should involve all the necessary components and tools to
acquire, exchange and process the state monitoring information. It should rely on the
continuous feeding of the information, in order to ensure that it arrives at the right place, right
time, preferably in the form, which makes it quickly usable for the intended purpose, and which
can result in appropriate and timely actions. NI2S3 Project will ensure that the prospective
protection system is error-proof, in what concerns vulnerabilities. As an example, the
protection system must not react in ways that may lead to erroneous, inadequate or
disproportional system reactions. Instead, the NI2S3 system has to provide information at
different granularity levels in a timely manner to plan, direct and control all operational
activities pertaining to critical infrastructure protection.

This document initially presents the state of the Art in NEC and SOA and studies the envisaged
use of SOA for the benefit of NEC. An initial analysis is made on key gaps with respect to
security provisions for SOA in the NEC context. Previous and current projects are discussed with
their relevance to SOA and NEC and general NI2S3 concepts. A considerable section presents
some fo the wider and active research areas, primarily focuses around web services with a
more general application within SOA. A comprehensive list of applicable references is given
together with list of standards from which all material presented in this document is based
upon.

11 of 60



NI2S3 D1.1 NEC/SOA State of the Art

2 NEC & SOA State of Art

Within this section, we discuss NEC and SOA in their own separate and individual contexts.

Section 2.1 presents the highest level conceptual definition of NEC. Please note that D1.2
explains various publicly available Enterprise Architecture Frameworks from which specific
implementations can vyield. A further inclusion of Enterprise Security Architectures is also
presented in D1.2.

Section 2.2 describes the technical state of art and capabilities of Service Oriented Architecture
and those components which are applicable for implementation of an NEC focussed system.

2.1 Network Enabled Capability

Network Enabled Capability is a term defined originally by the UK Ministry of Defense (MoD)
[MODNEC] [15] which promotes the extended use of communication and data network
technologies for providing an extension to the capability of critical operations.

The earliest reference to NEC is given as follows

""The ability to gather knowledge; to share it in a common and comprehensible form with our partners; to assess
and refine it to turn into knowledge; to pass it to the people who need it in an edited, focussed form; and to do it
in a timescale necessary to enable relevant decisions to be made in the most economic and efficient manner** -
[DCDS(EC) 8 Nov 01]

More recent and simplistic

“Network Enabled Capability (NEC) is about the coherent integration of sensors, decision makers and weapon
systems along with support capabilities” — [22]

The term NEC is originally defined and largely associated with its use in the military domain. For
NI2S3, we intend to reapply NEC techniques for use in the management of critical
infrastructures. Figure 1 illustrates how technology can be applied for improved capability.

12 of 60



NI2S3 D1.1 NEC/SOA State of the Art

Better Effects Synchronised,
proportionate, appropriate

Agile, improved tempo

Better

Decisions Superiority better informed

Shared, joint, inter-
governement, coalition,
multinational

Better Shared
Understanding

Better .
Information Shared, accurate, timely,
Sharing relevant, available

Robust, Secure, more
extensive

Better
Networks

Figure 1 Improvements in capability brought by NEC [15] [MODNEC]

NEC is a term that intentionally fuses together people, networks and information. The concept
draws upon managerial and social aspects which are needed to build a capability and makes
use of modern and advancing technology to achieve that fusion. Figure 2 illustrates the
conceptual grouping of people, information and networks for a combined, joint and
consolidated resultant capability.

INFORMATION

NETWORKS PEOPLE

Figure 2 Key components of NEC [15][MODNEC]

NEC describes a broad class of approaches which were originally defined for military and
homeland security in the context of operations that are enabled by the networking of those
components which develop a core and consolidated force. NEC concepts can be understood by
focusing on the following 3 relationships, that take place simultaneously in and among the
physical-, the information-, and the cognitive domains.

13 of 60



NI2S3

D1.1 NEC/SOA State of the Art

Physical Domain. The physical domain is where physical platforms and the
communications networks that connect them reside. Comparatively, the elements of
this domain are the easiest to measure. Performance of a critical operation has
traditionally been measured primarily in this domain due to the involvement of mainly
physical humans and increasingly automated physical equipment. In NEC, where
communications move towards a more automated and connected physical approach, all
elements within the physical domain are robustly networked achieving secure and
seamless operation.

Information Domain. The information domain is the domain where information is
stored, manipulated, shared and viewed. It is the domain that facilitates the
communication of information among key sources, consumers, processors and
operators of the system. Consequently, and increasingly, the information domain must
be protected and defended to enable a system or service to retain its capability to
perform and react. The service has the capability to collect, share, access, collaborate,
analyze, and protect information, achieving an information advantage over changing
and adverse operational conditions.

Cognitive Domain. The cognitive domain is where high-quality situational awareness is
associated for the use by the management / commander staff to take decisions and
implement those through synchronized operations.

14 of 60



NI2S3 D1.1 NEC/SOA State of the Art

2.2 Service Oriented Architecture (SOA)

The Service Oriented Architecture (SOA) is a network-enabled solution that has the potential to
combine assets (software resources, people, equipment and processes) to provide capability;
that is, the ability to achieve a mission objective.

SOA is an information technology approach or strategy in which applications make use of
(perhaps more accurately, rely on) services available in a network. The use of services provides
a distributed computing approach for integrating extremely heterogeneous applications over
the network.

The functions of an application or system (including legacy systems) can be easier to access as a
service in an SOA than in some other architecture. So integrating applications and systems can
be much simpler.

The Web service specifications are completely independent of programming language,
operating system, and hardware.

The technology is based on open technologies such as:
e eXtensible Markup Language (XML)
e Simple Object Access Protocol (SOAP)
e Universal Description, Discovery and Integration (UDDI)

e Web Services Description Language (WSDL)

Using open standards provides broad interoperability among different vendor solutions.

XML

Extensible Markup Language (XML) is a simple, very flexible text format derived from SGML (ISO
8879). Originally designed to meet the challenges of large-scale electronic publishing, XML is
also playing an increasingly important role in the exchange of a wide variety of data on the Web
and elsewhere.

SOAP

Simple Object Access Protocol (SOAP) is a lightweight protocol for exchange of information in a
decentralized, distributed environment. It is an XML based protocol that consists of three parts:

1. an envelope that defines a framework for describing what is in a message and how to
process it,

2. aset of encoding rules for expressing instances of application-defined data types, and

3. aconvention for representing remote procedure calls and responses.

15 of 60



NI2S3 D1.1 NEC/SOA State of the Art

uDDI

Universal Description, Discovery, and Integration (UDDI) protocol is an approved OASIS
Standard and a key member of the Web services stack. It defines a standard method for
publishing and discovering the network-based software components of a service-oriented
architecture (SOA).

WSDL

Web Services Description Language (WSDL) is an XML format for describing network services as
a set of endpoints operating on messages containing either document-oriented or procedure-
oriented information. The operations and messages are described abstractly, and then bound
to a concrete network protocol and message format to define an endpoint. Related concrete
endpoints are combined into abstract endpoints (services).

Figure 3 shows an example of SOA Architecture. The stack includes all of platforms and tooling
available for an enterprise SOA, but a simple architecture will not necessarily include all
elements of the stack. The Enterprise Service Bus (ESB) is the only necessary component to
have a SOA.

C: Service Consumers ) ~ Presentation Layer

[ Business Process Management )

L, Orchestration Layer
I'_-.-_.'.'?.f'_-_“.“,.‘-“"".—"_“.'T.".'"‘.f'_.f‘ !‘.f‘-."-.'?‘.'.-_"l.j"?"‘;'?..‘".'_'.".'_“."-'f-‘»‘_-j-‘.;."-'."‘.‘.‘!“‘.f‘: L S ﬁ._?‘
{ Functional Services ;

Srsessassssssssssasss S e S i St e e - Service Layer

L Data Layer

Figure 3 SOA Architecture

16 of 60



NI2S3 D1.1 NEC/SOA State of the Art

Functional Services

These are the atomic services coming from the adapters or from the service providers. The
adapter is a layer or an interface between an old system (for example legacy systems) and the
ESB.

ESB

An Enterprise Service Bus is a software architecture which provides fundamental services for
SOA architectures. The most important functions supported are:

e Invocation

o Message Routing

e Mediation

e Messaging

e Service Orchestration
e Security

e Management

BPM

The Business Process Management (BPM), is a software component that manages and
orchestrates human tasks and system services in a systematic way to streamline business
processes. Business process execution language (BPEL) is the de-facto standard for automating
processes in a SOA.

Service Consumers

The service consumers or end user can be a different type of systems. For example a Portal,
Business Intelligence application, or a system for decision support.

2.3 Other technologies (.NET WCF)

Windows Communications foundation (WCF) is a Microsoft technology for SOA. First released
as part of the .NET Framework 3.0 in 2006, WCF simplifies development of connected
applications through a new service-oriented programming model. WCF supports many styles of
distributed application development by providing a layered architecture. At its base, the WCF
channel architecture provides asynchronous, untyped message-passing primitives. Built on top
of this base are protocol facilities for secure, reliable, transacted data exchange and broad
choice of transport and encoding options.

The typed programming model (called the service model) is designed to ease the development
of distributed applications and to provide developers with expertise in ASP.NET Web services,
.NET Framework remoting, and Enterprise Services, and who are coming to WCF with a familiar
development experience. The service model features a straightforward mapping of Web
services concepts to those of the .NET Framework common language runtime (CLR), including

17 of 60



NI2S3 D1.1 NEC/SOA State of the Art

flexible and extensible mapping of messages to service implementations in languages such as
Visual C# or Visual Basic. It includes serialization facilities that enable loose coupling and
versioning, and it provides integration and interoperability with existing .NET Framework
distributed systems technologies such as Message Queuing (MSMQ), COM+, ASP.NET Web
services, Web Services Enhancements (WSE), and a number of other functions.

WCF addresses a range of challenges for communicating applications. Three things stand out,
however, as the most important aspects of WCF:

e Unification of existing .NET Framework communication technologies.

e Support for cross-vendor interoperability, including reliability, security, and
transactions.

e Explicit service orientation.

Because WCF’s fundamental communication mechanism is SOAP-based Web services, WCF-
based applications can communicate with other software running in a variety of contexts. An
application built on WCF can interact with all of the following:

e WHCF-based applications running in a different process on the same Windows machine.
e WCF-based applications running on another Windows machine.

e Applications built on other technologies, such as J2EE application servers, that support
standard Web services. These applications can be running on Windows machines or on
machines running other operating systems.

While WCF introduces a new development environment for distributed applications, it is
designed to interoperate well with the non-WCF applications. There are two important aspects
to WCF interoperability: interoperability with other platforms, and interoperability with the
Microsoft technologies that preceded WCF[38] [39].

18 of 60



NI2S3 D1.1 NEC/SOA State of the Art

3 NEC and SOA integration

There is very little available material which studies in detail, the use of SOA for the NEC
approach. The most useful material is that produced by the NECTISE project which makes an
initial basis through publication, most of which is only 1-2 years old. The roadmap for the
NECTISE project would expect that some of this activity is ongoing in the academic domain
although at the time of writing there is no formal liaison through which we can gain access to
their work.

Revision 3 of the NATO architecture framework [23] explicitly makes provision for the use of
SOA. Revision 3 supposedly builds upon MoDAF[9] and DoDAF[7] together with industrial
experiences and explicitly defines the NATO Service Oriented View (NSOV) for achievement of
this purpose. D1.2 explains MoDAF and DoDAF.

The nature of SOA matches primarily to the flexibilities needed for the orchestration of NEC
capabilities.

SOA primarily decentralises middleware. Whilst this can provide a significant overhead on each
service, the benefits are justified as described in [40]:-

= Loose Coupling is an architectural property exhibited by services that makes them
independent from other components in the system.

= Defining services by interface, including data exchange and behaviour (pre/post
conditions). This allows implementations to be interchangeable, offering dependability,
availability and scalability by replication of services.

= Interface definitions also support late binding of services and resources, which supports
evolvable systems by changing implementations to improve performance such as speed
and accuracy.

= Reusable services. Loose coupling promotes the reuse of services in new contexts not
previously envisaged.

Inter-organisational. By using a loosely coupled system, an application or process would be able
to use services developed outside organizational bounds. The integration of services is achieved
through the definition of procedures and workflows. This can support ultra-late binding, by
selecting services implementations at the point of service execution.

3.1 Achieving NEC by SOA

SOA is defined as a framework for the distribution and use of networked services. This generally
makes no specific assumption on the platforms upon which type of device or where the
services are deployed, nor does SOA consider the types of data aggregation which may be
required to be presented to enable a specific capability

For NEC, the following key requirements are placed on the SOA ‘toolbox’ :-
= Availability - the probability that a service is present and ready for use;

= Reliability - the capability of maintaining the service and service quality;

19 of 60



NI2S3

D1.1 NEC/SOA State of the Art

Safety - the absence of catastrophic consequences;

Confidentiality - information is accessible only to those authorized to use it;
Integrity - the absence of improper system alterations;

Maintainability - to undergo modifications and repairs;

Cost - the price customers are willing to incur to obtain a level of service.

In addition to these, the consideration should be made of technologies which already play a
part in critical infrastructures and those emerging to become powerful technologies for
enhancing capability. Areas of concern include wireless technologies whereby operatives
and/or devices need to be mobile in the critical environment [40].

Such technologies include:-

Sensor Networks — localized cooperating devices which can be used for gathering
sensory information in a distributed form. SOA may provide too much heavy
functionality for small devices such as these

Professional Mobile Radio (i.e. TETRA) — TETRA is widely used in critical environments.
TETRA has primarily provided a voice service to date although there is currently a fast
uptake of data services. The TETRA Enhanced data service (TEDS) is now available which
can provide wideband data rates up to 600kbps. Providing SOA over TETRA can be
limited by available bandwidth and latency.

Existing Cellular (GSM, 3G and beyond) — Similar to TETRA, with a higher data capability
but lesser in terms of reliability

20 of 60



NI2S3 D1.1 NEC/SOA State of the Art

3.2 Security Knots

The NEC concept does not define specific security requirements or constraints within the
overall framework. However, the different ‘capabilities’” defined within a particular NEC driven
framework may have different requirements. The capabilities specific to NI2S3 shall be define
during WP2.

SOA already provides various standardised hooks for provision of a varied security topology
although many of these hooks are abstract and require refinement during a specific
implementation and subsequent orchestration. Key items of flexibility across the NEC,
potentially provided by SOA are as follows in terms of both the individual service and the
connectivity required to access that service:

= Reliability

Section 5.1 describes specific SOA building blocks which are available for extension for a
particular capability.

= Dependability

Section 5.2 describes open issues with regard to dependability of web services. This
includes somewhat the Availability criteria.

"  Trust

Section 5.1 also describes specific SOA building blocks for trusted message exchange.
However, this can be restrictive in terms of trust of the service itself.

=  Compliance

A particular NEC capability may fall within well defined and strict operating criteria.
Should the real operating performance fall short of such criteria, the resulting capability
may be invalidated in terms of inaccurate provision of outputs which may have
significant effects on decision making or be later problematic should an issue arise later.

Operation of the capability and associated compliance checking may have to stand up to
a court of law.

All criteria related to Availability, Reliability, Safety, Confidentiality, Integrity,
Maintainability and Cost must generally have forms of operation monitoring and
compliance checking.

Section 5.4 describes methods validation and compliance

The following sections describe the currently available technologies for these in further detail

21 of 60



NI2S3 D1.1 NEC/SOA State of the Art

4 Projects and initiatives

4.1 R&D Projects

In this section we summarise R&D projects and activity that may be relevant to this research.
Topics covered include monitoring and surveillance, assurance and trust, privacy, privacy and
electronic identity management, and Communication for crisis management. Whilst these
project may not immediately approach SOA and NEC, it is considered that at least their general
concepts are applicable for consideration in NI2S3.

Indect

Intelligent Information System Supporting Observation, Searching and Detection for Security
of Citizens in Urban Environment

The Indect Integration Project has the objective to develop a platform for:

e automatic detection of threats and recognition of abnormal behavior or violence
through processing video surveillance information.

e registration and exchange of operational data and acquisition of multimedia content,
To achieve this goal Indect aims:

e to develop the prototype of an integrated, network-centric system supporting the
operational activities of police officers, providing techniques and tools for observation
of various mobile objects,

e to develop a new type of search engine combining direct search of images and video
based on watermarked contents, and the storage of metadata in the form of digital
watermarks.

The Indect project declares the following results:

e a trial installation for the monitoring and surveillance system in various points of city
agglomeration,

e implementation of a distributed computer system that is capable of acquisition, storage,
on-demand data sharing as well as intelligent processing,

e construction of a search engine for fast detection of persons and documents based on
watermarking technology and utilizing comprehensive research on watermarking
technology used for semantic search,

e elaboration of Internet based intelligence gathering system.

More information can be found at: http://www.indect-project.eu/

MASTER
Managing Assurance, Security and Trust for sERvices

22 of 60



NI2S3 D1.1 NEC/SOA State of the Art

The MASTER project focuses on different levels of trust between entities and provides
methodologies and infrastructures that facilitate the monitoring, enforcement, and audit of
guantifiable indicators on the security of a process.

The MASTER project aims to provide models, technology, and tools to define policies, goals and
performance indicators from a security, trust, and assurance perspective, and to map goals and
indicators across levels of abstractions, as well as enforce such policies, and allow for visibility
and audit ability of goals, indicators, and compliance with policies.

MASTER objectives address the following levels of complexity:

e Inside Single Trust Domain to support the management of assurance of the single
provider. This includes protection against insider fraud as well as assessment and
integration of existing security mechanisms.

Distributed Multiple Domains solutions needed to establish security between different trust
domains building upon the results achieved for the single trust domain. This tackles the
challenge of providing end-to-end security within a loose federation of mutually distrusting
organizations.

Some potential output relevant to the objectives of NI2S3 may include: assurance of the
security levels, trust levels and regulatory compliance of dynamic service-oriented architecture.

More information on MASTER project can be found at: http://www.master-fp7.eu .

PRIME
Privacy and Identity Management for Europe

The project aimed at addressing the means for the exchange of personal data, referred to as
the so-called partial identities, which may convey sensitive personal data, such as patient health
data, employment data, banking card data for the use in application areas such as public
services as well as in public security (e.g. in border controls). PRIME focused on solutions for
privacy, supported end-users' sovereignty over their private sphere and enterprises' privacy
compliant data processing.

PRIME developed a working prototype of a Management System. To foster market adoption,
partial solutions for managing identities were demonstrated in real Communication, Airline and
Airport Passenger Processes, Location and Collaborative e-Learning.

This project has terminated in 2008, but it is now continued as Primelife project.

More information on PRIME can be found at: https://www.prime-project.eu/

PrimelLife
Bringing sustainable privacy and identity management to future networks and services

The Primelife project addresses the need to protect autonomy of human individuals and to
retain self-control over their personal information, irrespective of their activities.

e The first challenge is about how to protect privacy in emerging Internet applications
such as collaborative scenarios and virtual communities.

23 of 60



NI2S3 D1.1 NEC/SOA State of the Art

e The second challenge is how to maintain life-long privacy.
PrimelLife aims to resolve the core privacy and trust issues pertaining to these challenges.

More information can be found at http://www.primelife.eu/

SWIFT
Secure Widespread Identities for Federated Telecommunications

The SWIFT project leverages technology for identity management as a key to integrate service
and transport infrastructures for the benefit of users and the providers. It focuses on extending
identity functions and federation to the network while addressing usability and privacy
concerns.

The scope of the project covers transport and services strata across all protocol layers, with the
user’s identity being intrinsic to the control, data and management plane protocols. Specifically,
technological advances and breakthroughs are targeted for:

e Vertical integration of identity, privacy, trust and security across layers with the use of
protocols, addressing schemes and inter-layer interfaces that provide controlled privacy
for the user.

e identity-centric user schemes supporting different levels of information access control,
both policy as well as credential-based with well-defined privacy rules about who can
change or know the data handled.

e Methods and techniques on how users are identified and located, but at the same time
remain pseudonymous at all layers based on preferences set by the users and their
context,

e Techniques for name and identifier resolution across very heterogeneous namespaces.

e |dentity-based mobility solution through adaptation of mobility protocols to the user’s
“moving identities” across devices, services and networks,

e An lIdentity Management Platform providing a common framework and APIs for
accessing identity attributes across services and networks in a controlled way enabling
user privacy mechanisms including specific APIs, such as for an Identity Broker.

e Mapping new identity techniques to existing technology (SIM cards, etc), and eldM and
AAA solutions to accommodate Identity Management. Specification and validation of
extensions or modifications of existing solutions to support SWIFT vision.

More information can be found at: http://www.ist-swift.org

STORK
Secure idenTity acrOss boRders linKed

The STORK Project aims at developing a series of pilot projects which should be available to
citizens of several European countries, using the identification/authentication means preferred
by the governments of those countries. The STORK project makes it easier for citizens and

24 of 60



NI2S3 D1.1 NEC/SOA State of the Art

businesses to access online public services across borders by developing and testing common
specifications for mutual recognition of national electronic identity (elD) between the
participating countries. It will approach these objectives by:

e Developing common rules and specifications to assist mutual recognition of elDs across
national borders;

e Testing, in real life environments, secure and easy-to-use elD solutions for citizens and
businesses;

e Interacting with other EU initiatives to maximize the usefulness of elD services.

STORK will focus on pragmatic elD interoperability solutions, implementing several pilot cross-
border elD services chosen for their high impact on everyday life.

Currently the following pilots are under way:
e Pilotl: Cross border authentication platform - for electronic services,
e Pilot2: Safer Chat - To promote safe use of the Internet by children and young people,
e Pilot3: Student Mobility - To help people who want to study in different Member States,

e Pilot4: Electronic Delivery - To develop cross-border mechanisms for secure online
delivery of document,

e Pilot5: Change of Address - To assist people moving across EU borders.
It is expected that the pilot programme will:

e contribute to accelerating the deployment of elD for public services, while ensuring co-
ordination between national and EC initiatives in the field, and support federated elD
management schemes across Europe based on open standard definitions where
appropriate; and

e test, in real life environments, secure and easy-to-use elD solutions for citizens and
businesses, in particular SMEs and government employees at relevant levels (local,
regional, national and cross-border levels).

More information can be found at: http://www.eid-stork.eu/

PICOS
Privacy and Identity Management for Community Services

The PICOS project is developing and building a state privacy and identity management aspects
of community services and applications on the Internet and in mobile communication
networks. The PICOS approach to trustworthy on-line community collaboration addresses the
following issues:

e Trust, Privacy and Identity issues in new context communication services, especially
community-based services,

e Support for acceptable, trustworthy, open, scalable methods.

25 of 60



NI2S3 D1.1 NEC/SOA State of the Art

The work is focusing on platform design and prototype development in order to create
interoperable, open, privacy respecting identity and trust management tools.

More information can be found at: http://picos-project.eu

ADABTS
Automatic Detection of Abnormal Behaviour and Threats in crowded Spaces

ADABTS project aims to facilitate the protection of EU citizens, property and infrastructure
against threats of terrorism, crime and riots by the automatic detection of abnormal human
behavior. In order to achieve it, ADABTS aims to develop models for abnormal and threat
behaviors and algorithms for automatic detection of such behaviors, as well as for deviations
from normal behavior in surveillance data.

Also, ADABTS aims to develop hardware, in order to enable such systems. The proposed system
tracks and classifies objects in the scene and analyses their behavior according to specified
alarm criteria.

More information can be found at:

http://cordis.europa.eu/fetch?CALLER=FP7 SECURITY PROJ EN&ACTION=D&DOC=37&CAT=PR
OJ&QUERY=0123e36de3ce:4312:22d3b7d9&RCN=91158

SAMURAI
Suspicious and Using a netwoRk of cAmeras for sltuation awareness Enhancement

The SAMURAI project aims to develop robust moving object, segmentation, categorisation and
tagging in video captured by multiple cameras from medium-long range distance, e.g.
identifying, monitoring and tracking people with luggage between different locations at an
airport. Automated focus of attention and identification in a distributed sensor network that
includes fixed and mobile cameras, positioning sensors, and wearable audio/video sensors.

Global situational awareness assessment and image retrieval of objects by types, movement
patterns with incidents across a distributed network of cameras is in scope of the project.

Online adaptive abnormal behavior monitoring for profiling and inference of abnormal
behaviors or events captured by multiple cameras.

The project aims to incorporate methods for feeding back into the algorithm human operator’s
evaluation on any abnormality detection output in order to guide and speed up the incremental
and adaptive behavior profiling algorithm.

SAMURAI is developing technology that can be interfaced with the existing CCTV systems. It
aims to allow for prevention and rapid-response to events as they unfold.

More information can be found at: http://www.samurai-eu.org/

SECRICOM
Seamless Communication for Crisis Management

26 of 60



NI2S3 D1.1 NEC/SOA State of the Art

The SECRICOM project aims to solve problems of crisis communication infrastructures through
the creation of pervasive and trusted communication infrastructure and bringing
interconnectivity between different networks of the following characteristics:

e provisioning of true collaboration and interworking of emergency responders,
e seamless support for different user traffic over different communication bearers,
e instant information gathering and processing focusing on emergency responders.

The Project aims to add new functions using distributed IT systems based on an SDR secure
agents infrastructure.

More information can be found at: http://www.secricom.eu/

SUBITO
Surveillance of unattended baggage and the identification and tracking of the owner

The SUBITO project aims to research and develop automated detection of abandoned luggage,
fast identification of the individual responsible and the tracking of their subsequent path.

The consortium plans to develop integrated threat detection system for a robust, timely alert
to security personnel. A system will be capable of distinguishing between genuine threats and
false alarms in order to alert the user to high priority situations.

The detection of unattended goods and of its owner will be focused on the automated real
time detection of abandoned luggage or goods and the fast identification of the individual who
left it

The key design drivers include assessment of the situations faced in such scenarios, and the
existing security equipment available that will support the automatic operation of such
functionality. To achieve the above, the SUBITO project brings in:

e expertise in state-of-the-art processing and detection and tracking algorithms,
e sensor data processing, sensor design and sensor systems integration.

SUBITO addresses objectives which are similar to those of NI2S3 in the area of detection of
threats by means of surveillance.

More information can be found at: http://www.subito-project.eu/

DETECTER
Detection Technologies, C and Human Rights

Police and intelligence have recently increasingly focused on methods of preventing future
attacks, and not just on identifying the perpetrators of offences already committed. Preventive
police work includes the use of detection technologies. These range from CCTV camera-
surveillance of suspicious behavior in public places to secret Internet monitoring and data-
mining.

27 of 60



NI2S3 D1.1 NEC/SOA State of the Art

Such technologies raise ethical and legal issues (notably issues of privacy) that must be
confronted against the background of the legal and ethical issues raised by counter-terrorism in
general. Legal questions arise about counter-terrorism in general, because recent informal co-
operation agreements between European heads of government may conflict with pre-existing
legal commitments on the part of the same governments to safeguard freedom of association,
free expression and privacy.

The goal of the DETECTER project is to identify human rights and other legal and moral
standards that detection technologies in counter-terrorism must meet, while taking into
account the effectiveness of these technologies as judged by law- enforcement bodies
responsible for counter-terrorism, and other relevant authorities.

More information can be found at: http://www.detecter.bham.ac.uk/

EU-SEC I

Coordinating National Research Programmes and Policies on Security at Major Events in
Europe

According to EU-SECII project, security at major events remains a top priority for host nations,
attendees, participants and neighboring countries. Our task in this instance was to elevate the
standard of analysis research to ensure airtight security during major events.

Therefore, EU-SEC Il project aims to assist, through the harmonization of national security
research policies, in the creation of a European House of Major Events. The driving force behind
this initiative is the need for effective security policies supporting the efforts of major events
organizers.

The core aspect of the project is the application of advanced managerial skills to cooperation in
security. National and international entities require coordination in order to ensure that their
information and policies do not overlap, while at the same time permitting them to work
together as a unified system.

The project also aims to synchronize private security technology providers with national
security practitioners, thus facilitating development and supply of the most effective security
technology.

More information can be found at: http://lab.unicri.it/eusecll.html

ENISA
European Network and Information Security Agency

ENISA agency has been established to enhance the capability of the European Union, the EU
Member States and business community to address and respond to network and information
security problems. Today, ENISA is a centre of expertise for the EU Member States and
european institutions in Network and Information Security, providing advice and
recommendations on security- and trust-related matters.

Objectives:

= advising and assisting the Commission and the Member States on information security,

28 of 60



NI2S3

D1.1 NEC/SOA State of the Art

collecting and analysing data on security incidents in Europe and emerging risks,

promoting risk assessment and risk management methods to enhance capability to deal
with information security threats,

awareness-raising and co-operation between different actors in the information security
field, notably by developing public / private partnerships with industry in this field.

Some of its reports include:

“Who-is-Who Directory on Network and Information Security (NIS)” - contains
information on NIS stakeholders, such as national and European authorities and NIS
organisations, contact details, websites, and areas of responsabilities or activities[16].

“Report on the state of pan-European elDM initiatives “ - contains information on the
origins and scope of the ambitions for European elD interoperability, and looks
specifically at how these are reflected in specific initiatives [17]

“Web 2.0 Security and Privacy” - describes in detail these risks and others, based
around a set of architectural patterns characterising the Web 2.0 paradigm shift. It then
recommends a comprehensive set of initiatives in web standards and architecture, as
well as policy actions [18]

More information can be found at: http://www.enisa.europa.eu/

29 of 60



NI2S3 D1.1 NEC/SOA State of the Art

5 Research areas

In this section we overview key areas of research that can add value to the definition and
construction of NI2S3. We cover security of SOA and Web services, SOA reliability and
dependability, SOA dependability in NEC context, and validation and compliance testing
methods.

5.1 Security of SOA and Web Services

Distributed systems are increasingly built on the basis of SOA and in particular the Web
Services. SOA allows building systems based on loosely coupled self-describing services, which
can be dynamically linked. The basic format for data exchange standard is an XML. For a long
time before standards were developed for Web Services, they had limited capabilities to secure
transmission, to ensure data confidentiality, integrity, privacy etc. - in general to ensure the
safety of passing data in the distributed system. Often, different manufacturers used their own
software solutions to ensure security in SOA - not compatible with solutions of other suppliers.
Currently, the OASIS consortium founded by powerful players in the software development like
IBM, Microsoft, Oracle, Sun and others standardized the security issues in Web Services. Using
standardized solutions enhances interoperability and contributes to the increasingly
widespread use of security in SOA and thus opens SOA to be used in more critical applications
in business and military areas.

5.1.1 Basic building blocks of Web Services Security

Web Services Security is built on the technology of digital signature with private/public keys
and symmetric encryption. Current work in the W3C organization on XML Security [54] is
carried on by Security Working Group.

Web Services standards are based on XML Signature and XML Encryption standards.

Figure 4 shows the dependencies of relevant standards for Web Services.

30 of 60



NI2S3 D1.1 NEC/SOA State of the Art

WS-Federation

uses

uses
extends "'@S-SecureCOnversatioD

WS-Security - extends uses
WS-Trust . .
uses WS-ReliableMessaging
uses
uses

uses uses

uses C WS-SecurityPolicy >

@s-ReliabIeMessagingPOliCD
XML Encryption XML Signature AN
extends extends
WS-Addressing WS-Policy

Figure 4 Web Services security related standards relations

uses

XML Signature

This specification defines XML digital signature processing rules and syntax. XML Signatures
provide integrity, message authentication, and/or signer authentication services for data of any
type, whether located within the XML that includes the signature or elsewhere [55]. As two
XML elements can be logically identical they can differ in textual representation. Thus the
canonicalization methods and procedures have been defined to obtain the same digest for
logically identical XML elements[56] [57].

XML Encryption

XML Encryption is a specification that defines how to encrypt and decrypt data in XML. The data
may be arbitrary data (including an XML document), an XML element, or XML element content.
The result of encrypting data is an XML Encryption EncryptedData element which contains (via
one of its children's content) or identifies (via a URI reference) the cipher data [58].

WS-Addressing

WS-Addressing provides transport-neutral mechanisms to address Web services and messages.
This specification defines XML elements to identify Web service endpoints and to secure end-
to-end endpoint identification in messages. This specification enables messaging systems to
support message transmission through networks that include processing nodes such as
endpoint managers, firewalls, and gateways in a transport-neutral manner.

5.1.2 Web Services security standards

WS-Policy
WS-Policy is a baseline for other policies. Specific policies inherit from WS-Policy to extend it to
particular needs. WS-Policy defines a framework for allowing web services to express their

31 of 60



NI2S3 D1.1 NEC/SOA State of the Art

constraints and requirements. Such constraints and requirements are expressed as policy
assertions that usually are part of WSDL describing the web service [59].

WS-Security

WS-Security ensures that a message isn't tampered on route from the client to the server and
that sensitive information (such as passwords) is encrypted. It defines a set of enhancements to
the SOAP specification of messaging to enable protection of the message through
authentication, confidentiality, and assurance of integrity.

WS-SecurityPolicy that is based on WS-Policy describes the security requirements and
constraints of WS-Security enabled web service. Figure 5 presents a scenario with client
connecting with WS-SecurityPolicy defined access method to a certain secured web service.

2) Request Security Tok

3) RST Response

1) Get Policy

4) Use service with token

Client Service

Figure 5 The role of WS-SecurityPolicy (Policy) in WS Security. Policy (1) describes that access to the service (4)
requires authentication/authorization that can be achieved by acquiring token from SRS (2,3). Secured Service
can validate token (5) by accessing SRS.

WS-SecureConversation

This is a set of enhancements to SOAP that allow specifying how a message can be secured
throughout a long-running message exchange. WS-SecureConversation addresses the case
when multiple messages are exchanged between nodes and it would be much more efficient if
one could establish a context that reduces the overall burden of securing each message
separately. The WS-SecureConversation specification defines a Security Context Token that is
used in that conversation [60].

The security context is defined as a new WS-Security token type that is obtained using a binding
of WS-Trust.

32 of 60



NI2S3 D1.1 NEC/SOA State of the Art

WS-Trust

This specification defines extensions that build on WS-Security to provide a framework for
requesting and issuing security tokens, and to broker trust relationships. This specification uses
these base mechanisms and defines additional primitives and extensions for security token
exchange to enable the issuance and dissemination of credentials within different trust
domains [61].

Figure 6 presents a scenario when a client from a separate domain accesses the secured web
service in the other domain. The WS-SecurityPolicy defines the access method which is based
on token issued by Security Token Service in the same domain as the service. The trust between
domains allows the client to achieve a security token from its own SRS and then retrieve a
token from service’s domain SRS.

Domain 1 Domain 2

»}ﬁ

STS 1

3) Get Policy
5) RST Response

4) Request Security Token

Service

8) Use service with token

Figure 6 Security token provided by Security Token Service in Domain 1 (local to client) which is trusted for
Domain 2, allows client to access Service in Domain 2

WS-Federation
This is a set of enhancements to SOAP that allows federating trust credentials among a group of
Web service partners.

WS-Federation specification defines mechanisms to enable identity, account, attributes,
authentication, and authorization federation across different trust realms. The WS-Security,
WS-Trust, and WS-Policy models define the basis for federation. WS-Federation extends these

33 of 60



NI2S3 D1.1 NEC/SOA State of the Art

by describing how they may combine to enable richer trust across and between domains and
federated services.

Although the final decision of access control is strictly controlled by the domain, which controls
the resources, the federation provides mechanisms that allow the decision based on the choice
(or mediation) of identity, attribute, authentication and authorization assertions between
domains. Choice of mechanisms depends on the trust relationship between the domains.
Generalized federation framework is able to integrate the existing infrastructure without new
major investments in infrastructure. This means that the types of safety and infrastructure can
vary in domains. WS-Security and WS-Trust specification allows for different types of security
tokens, trust infrastructure and topology. WS-Federation uses these elements in order to
identify additional mechanisms of the federation, which extend these specifications and
leverage other WS-* specifications [62].

5.1.3 Other WS standards relevant for NI2S3

Apart from strictly defined standards for provision of security for Web Services there are some
additional WS standards that may be particularly useful for Network Enabled Capability systems
that target to provide fast and reliable building of services.

WS-ReliableMessaging

WS-ReliableMessaging is designed to ensure reliability of message interchange between
distributed applications. Reliable message delivery means the ability to ensure that a message
will be delivered with the desired and specified levels of quality of service. Some examples of
this are:

e Message sent at least once (guaranteed delivery)
e Message sent at most once (guaranteed duplicate elimination)
e Message sent exactly once (guaranteed delivery and duplicate elimination)

WS-ReliableMessaging is designed to maintain reliability characteristics even in the presence of
software component, system, or network failures. Thus it allows extending Web Services
dependability. The protocol is transport-independent; allowing it to be implemented with
network technologies other than SOAP, but a SOAP binding is also defined within the
specification [63].

Nodes that are going to exchange data with WS-ReliableMessaging use WS-ReliableMessaging
Policy assertions to indicate the required quality of service of the message sequence [64].

WS-Discovery

This specification defines a discovery protocol to locate services. In an ad hoc mode of
operation, probes are sent to a multicast group, and target services that match return a
response directly to the requester. To scale to a large number of endpoints and to extend the
reach of the protocol, this protocol defines a managed mode of operation and a multicast
suppression behaviour if a discovery proxy is available on the network. To minimize the need

34 of 60



NI2S3 D1.1 NEC/SOA State of the Art

for polling, target services that wish to be discovered send an announcement when they join
and leave the network.[65]

The SOAP-over-UDP is necessary to WS-Discovery [66].

5.2 SOA reliability and dependability - open issues and challenges

Dependability addresses the key aspect of whether a system can effectively carry out its
defined functions. It is important a system operates correctly in a dynamic environment of
complex distributed systems and services in various organizations, where it is not possible to
verify that they are trouble-free.

Dependability as applied to a computer system is defined by the IFIP 10.4 Working Group on
Dependable Computing and Fault Tolerance as: “[..] the trustworthiness of a computing system
which allows reliance to be justifiably placed on the service it delivers [..]".

An alternative and broader definition is provided by IEC IEV 191-02-03: “dependability (is) the
collective term used to describe the availability performance and its influencing factors :
reliability performance, maintainability performance and maintenance support performance”.

It is worth noting that dependability is really a broad concept and should not be narrowed
down to, for example reliability only. Reliability is only one of many attributes of general
concept of dependability. It is better illustrated in Figure 7 which shows ontology of the
dependability [67].

Similarly, security property of a system can be defined as a property that covers attributes like
safety, integrity and confidentiality. In this sense dependability is a concept broader than
security, which includes security (see Figure 7).

5.2.1 Dependability ontology

A number of factors affect dependability of a system [68]. Dependability can be characterized
by the use of three concepts:

1) Attributes: ways to measure dependability of a system;
2) Threats: possible things that can affect dependability of a system;

3) Means: ways to increase dependability of a system.

35 of 60



NI2S3

//
¥
Threads

Faults
- physical faults
[ - Design faults
‘ - Interaction faults
- environment

Errors
- detection
-multiplicity

<
Failures
- symptons
- severities

v
Attributes
E— —

/K
/ Availability

- instantaneous and
| asymptotic unavailability
[l -interval unavailablity

L “Reliability
L] - reliability function
bl - MTFF

- MTTF

- MTBF failure intensit

' Maintainability
- Mean Active Repair Time
(MART)
- Mean automatic service
restoration time

< Safety
- safety function

- catastrophic failure ¥

intensity

A Confidentaility <

A Integrity

- Dependability —

D1.1 NEC/SOA State of the Art

“A Fault prevention
[ - quality assurance
[ - derating
| - conservative design
| - formal methods

) Fault tolerance

- error detection
- recovery

h Fault removal
- verification
- diagnosis
\ - correction

\

<Fa\ult prediction

- ordinal evaluation
- probabilistic evaluation

]

Figure 7 Structure of the vocabulary on dependability

5.2.2 Attributes of dependability

Attributes are measurable (quantitatively or qualitatively) properties of a system that allows
determining its overall dependability.

1) Availability - the probability, that a service is present and ready for use — sufficient
capacity is provided,

2) Reliability - the capability of maintaining the service and service quality (response
times, delays etc),

3) Safety — the absence of catastrophic consequences,

4) Confidentiality - the absence of unauthorized disclosure of information - information
is accessible only to those entities, who are authorized to access it;

5) Integrity - the absence of unauthorized or improper system alterations;

6) Maintainability — how easy handling of modifications and repairs is.

Some attributes like availability and reliability are quantitative and possible to measure while
the rest are more relative or subjective like, for example, security. Measurements of
dependability attributes can also become a significant QoS attributes for describing services

36 of 60



NI2S3 D1.1 NEC/SOA State of the Art

provided by a system. Some of the characteristics are also related to security, which deals with
intentional threats to systems trustworthiness.

5.2.3 Threats to dependability

Threats are things that can affect a system and cause a drop in dependability. There are three
main terms here:

=  Fault: A fault (or a bug) is a defect in a system. The presence of a fault in a system may
or may not lead to impairment or a failure. Although a system may contain a fault, its
input and state conditions may never cause this fault to be executed so that an error
does not occur and thus never exhibits as a failure.

= Error: An error is a deviation of actual behaviour of the system from the intended
behaviour within the system boundary. Errors occur at runtime when some part of the
system enters an unexpected state due to the activation of a fault. Since errors are
generated from invalid states they are hard to observe without instrumentation
(debugging, log files)

= Failure: A failure is a manifestation of an error outside of the system boundaries — it is
violation of its specification. An error may not necessarily cause a failure, for instance an
exception may be thrown by a system but this may be caught and handled using fault
tolerance techniques so the overall operation of the system will conform to the
specification.

It is important to note that Failures are recorded at the system boundary. They are basically
Errors that have reached the system boundary and have become observable. Faults, Errors and
Failures operate according to a mechanism called Fault-Error-Failure chain. As a general rule a
fault, when activated, can lead to an error (which is an invalid state) and the invalid state
generated by an error may lead to another error or a failure (which is an observable deviation
from the specified behaviour at the system boundary).

Once a fault gets activated, an error is generated. An error may act in the same way as a fault in
that it can create further error conditions, therefore an error may propagate multiple times
within a system boundary without causing an observable failure. If an error propagates outside
the system boundary a failure occurs. Since the output data from one service may be fed into
another, a failure in one service may propagate into another service. Figure 8 illustrates the
chain and shows the position of the means (fault prevention, fault tolerance, contingency and
recovery planning) that helps improving the system dependability and deal with consequences
of failures.

37 of 60



NI2S3 D1.1 NEC/SOA State of the Art

Fault Prevention

i
Causes
- System
Physical ¥
Contingency and
External A Faults Fault Tolerance (disaster) recovery planning
5 Permanent
Internal
- -
» [lransient -
- Errors  ———  Failures - = Consequences
Human _ »
» Intermittent _
Spesificat. ¥
Design ~ *
- i i
Implement Design
Operation » Interaction
Interaction

-+

Figure 8 Fault-Error-Failure-Consequences chain and means to deal with them

5.2.4 Means to preserve dependability

Means to increase the dependability of a system is to break chains of the mechanism of a Fault-
Error-Chain. Four means have been identified so far:

= Prevention
=  Removal

=  Prediction

= Tolerance

Fault Prevention deals with preventing faults being incorporated into a system. This can be
accomplished by use of development methodologies and good implementation techniques.

Fault Removal can be sub-divided into two sub-categories: Removal During development and
Removal During Use.

Removal during development requires verification so that faults can be detected and removed
before a system is put into production. Once systems have been put into production a system is
needed to record failures and remove them via a maintenance cycle.

Fault Prediction forecasts likely faults so that they can be removed or their effects can be
circumvented.

Fault Tolerance deals with putting mechanisms in place that will allow a system to still deliver
the required service in the presence of faults, although that service may be at a degraded level.

Dependability means are intended to reduce the number of failures presented to the user of a
system. Failures are traditionally recorded over time and it is useful to understand how their
frequency is measured so that the effectiveness of means can be assessed.

38 of 60



NI2S3 D1.1 NEC/SOA State of the Art

Dependability attributes in the systems based on autonomous services

In distributed systems, where the functions are provided based on services from different
participants that may be autonomous, new challenges appear to dependability.

Availability - A participant within a business process may have no control over the availability of
services provided by other participants; service availability may be dynamic and unpredictable.

Reliability - A participant within a business process may have little or no knowledge of the
reliability (including the performance) of services provided by other participants; this is
especially a problem in long running interactions

Confidentiality - A participant within a business process may have little or no knowledge of the
access procedures in place to protect the confidentiality of data shared with services provided
by another participant.

Integrity - A participant within a business process may have little or no knowledge of the
security procedures in place to protect the integrity of services provided by another participant.

The SOA Web Services Security standards like WS-Security and WS-Trust and WS-Federation
partially addresses the problem of confidentiality and integrity attributes for systems build on
autonomous services.

In such environment the critical is to maintain information upon the services that may be
troublesome. This issue may be addressed by accountability extensions to support
dependability.

5.2.5 Accountability extensions to dependability

When users invoke services in their business processes, they expect them to produce good
results that have both functionally correct output and acceptable performance levels in
accordance with quality-of-service (QoS) constraints, such as those in service-level agreements
(SLA). Service level agreements (SLAs) are formal contracts negotiated with the customers. SLA
definition typically includes SLA templates, which are predefined contract templates, QoS
parameters defining what can be measured for a particular service (either business or technical
perspective), Service Level Objectives (SLOs) are particular values for a given SLA on QoS
parameters. Alternatively to SLOs, QoS Classes of Service, which bundle different parameters
and their thresholds to provide standard choices for the customer [69]. The Quality of Service
for a service can be specified using the Web Service Level Agreements (WSLA), a language from
IBM [70]. So, if a service produces incorrect results or violates an SLA, an enterprise must hold
the service provider responsible (also known as accountability).

Identifying the source of a business process failure in a SOA system can be difficult, however.
For one thing, business process can be very complex, having many execution branches and
invoking services from various participants. Moreover, a service’s failure could result from some
undesirable behavior by its predecessors in the workflow, its execution platform, or even its
users. To identify a problem’s source, an enterprise must continuously monitor, aggregate, and
analyze business process services’ behavior. Analyzing such a massive amount of information
requires efficient support from that enterprise’s service-deployment infrastructure. Moreover,

39 of 60



NI2S3 D1.1 NEC/SOA State of the Art

the infrastructure should also detect different types of faults and support corresponding
management algorithms.

In general accountability can be defined as “the availability and integrity of the identity of the
person who performed an operation.” Both legal and financial communities use the notion of
accountability to clarify, who is responsible for causing problems in complex interactions among
different parties. It's a comprehensive quality assessment to ensure that someone or
something is held responsible for undesirable effects or results during an interaction.
Accountability is also an important concept in SOA, because all services should be effectively
regulated for their correct executions in a business process. The root cause of any execution
failure should be clearly inspected, identified, and removed to control damage. The
accountability is the main target of LLAMA Project.[71]

5.3 Challenges and open issues for SOA dependability in NEC context

From NEC perspective the dependability of Service Oriented Architecture can be challenged in
following areas:

= Service integration - Dynamically composable services to achieve critical capabilities.
Problems of granularity of services and its partitioning with relation to hardware
resources. Recognizing the abstract functions that current and future platforms provide
will be key in defining services at an appropriate level to interchange resources while
maintaining a dependable system. At the capability level, abstract service definitions of
functionality and QoS attributes can be combined to achieve a mission objective,
independent of the service implementations.

= Service discovery - Identify service types to define integration.
= Enable dynamic binding during operations

= Service reconfiguration - Adaptation of service and service integration to meet on-
demand requirements. Loose coupling allows resources to be changed to meet new
challenges — the problem is what an impact on dependable operation is.

= Runtime monitoring and management (instrumentation)

= Service evolution - Adaptation of implementations to meet changing consumer needs

5.3.1 Fault tolerance in SOA

Building reliable composite systems from unreliable services is an important aspect of systems
integration. FT-SOAP [72] follows the service approach in fault tolerant CORBA and provides
transparent fault tolerance by upgrading SOAP with additional components to support fault
detection and replication management. FT-SOAP extends WSDL to inform the clients of the
replica information. Other approaches to fault tolerant services concentrate on centralized
service composition or orchestration. Proposed techniques include using BPEL compensation
[73] and fault handlers to achieve fault tolerant composition[74].

40 of 60



NI2S3 D1.1 NEC/SOA State of the Art

5.3.2 Replication

One of the means to increase availability and fault tolerance of SOA systems are achieved by
service [75],[76],[77] replication. Trivial solution of replication introduces problems like
expensive communication when all-to-all request/response is sent. Proposed solution includes
coordinator-follower approach where a dispatcher acts as a proxy for client requests, and sends
them to service replicas in parallel [78]. The other issue with replication arises from replication
of data. The optimal solution is to have each node storing a share of data and coordinated
computation is organized with multiparty computation algorithm [79].

5.3.3 Middleware extensions

Various middleware have been proposed to improve fault tolerance. The solution [80] is based
on an introduced abstract concept of Service Plan containing the whole business process with
defined tasks, structure of process and set of the settings and attributes of the process. This
Service Plan is run on QoS aware middleware platform. Tasks can be accomplished by many
candidate services provided by the Service Communities (design diversity) and in any time given
service from one community may be replaced by another from a different community service.
Basically, this solution is based on intercepting requests and routing them to selected services
in order to optimize the parameters of QoS and reliability of the business process.

5.3.4 Real time SOA

Real-time SOA is the new paradigm for building next-generation, real-time infrastructures and
devices under service-oriented computing. However, current SOA solutions have not addressed
the strict predictability demands that many enterprise applications require, from banking and
finance to industrial automation and manufacturing.[81]

To support RT-SOA also building blocks of whole system must support real-time requirements:

= QOperating System. Any real-time middleware framework must be built atop an
operating system that provides real-time scheduling and a fully pre-emptive kernel.

= Communications Infrastructure. The communications infrastructure must provide
predictability guaranteed by QoS in the network [82]

= Business process composition Infrastructure. The SOA composition infrastructure must
be able to generate a business process that satisfies both a user’s functional and
timeliness requirements. It must be able to negotiate such timeliness requirements with
distribution middleware to ensure predictable business process execution [83]

= Distribution Middleware. The main purpose of a real-time middleware platform (like a
real-time enterprise service bus (ESB)) is to ensure the predictable execution of
individual service requests [84]. Therefore it is essential to provide support for advance
reservations and avoid overloading or overbooking of a given host’s resources.

= (Client Infrastructure. Many existing SOA deployments use a business process execution
language (BPEL [85]) engine, which is a centralized mechanism to coordinate all remote
service interactions within the process. An RT-SOA solution must address any
unpredictability that a BPEL engine may produce.

41 of 60



NI2S3 D1.1 NEC/SOA State of the Art

5.3.5 Evolving architecture

For NEC uses, the very important issue is the ability to adapt architecture to the changing
conditions of the work environment. Loose-coupling of SOA allows flexible changes and
upgrades of components that build the system, but the important issue is that the architecture
allows such changes - because unpredicted changes made in the future, usually results in loss of
dependability attributes and increased probability of errors. [86]

5.3.6 Evaluation of architectures

In order to evaluate the architecture it is essential to define metrics and measures. Basically
metrics rely on the attributes defined in dependability ontology like availability, reliability,
safety. The current work should focus on the definition of measures and practical procedures
on obtaining such measures. Work is this area is carried out in NECTISE project [87]

5.3.7 Instrumentation (Tracking and Monitoring)

Crucial means to evaluate dependability is the quality assurance which basically can be
guaranteed by constant monitoring. The monitoring is implemented usually as instrumentation
in platforms of services’ containers. The typical problem with monitoring and tracking is that it
needs to manage huge amounts of data so the approach needs to be adaptive to conserve
resources.

5.4 Validation and Compliance testing methods

In all software there are bugs, also inside the ones we usually use without experiencing any
problems. In these years there is an increase of the connectivity demand, all the software has
to access the Internet, with relevant risks coming from bugs that could be potentially exploited
by an attacker to compromise security services like privacy, integrity or data availability.
Therefore it's really important to test software, especially the one designed to use a network
connection.

This section is a survey on the state of art of black-box testing for software, with focus on
security testing for network software. We also consider automatic tools to help testing process
and we analyze some tools used by tester communities.

5.4.1 Testing

The analysis process of a software system, intended as a comparison between the real
behaviour with the attended one, is defined by IEEE Standard Glossary of software engineering
terminology with the word testing. When we evaluate a software system, we try to understand
if it complies with specs, otherwise if it has some properties like security. IEEE defines the terms
mistake, fault and failure: a developer can make a mistake writing code; while software
running, this can cause a fault, for example an erroneous command or definition or expression:
this is usually called "error" or "bug". The presence of this fault can cause a failure, in other
words the software enters in a state where it can't perform the wanted functions.

The base unit in testing process is the test case, that focus on some aspects or on evaluation

42 of 60



NI2S3 D1.1 NEC/SOA State of the Art

of design features. Many test cases are reunited in a test group, and they are reunited in a test
suite. Every test case has an aim (test purpose) and a test group can have a common aim (test
group objective). The test result is the verdict and it can be: pass, fail or inconclusive. A test case
with a pass verdict means the software meets the aim of this case and the tested code has a
correct behaviour. A fail verdict means that there are violations of design specs, whereas a case
can be inconclusive when it isn't possible to give a pass or fail verdict.

Black box, white box and grey box testing
Software testing can be classified by the method used, it can be:

e Functional testing
e Structural testing

Functional testing sees the item under test like a black box: an object that takes some input
and responds with an output, that we can evaluate the response using the design specs. Using
this method, the tester is like a normal user, he doesn't know anything about implementation
details, and he works comparing the expected features with the real behaviour of that system.
For example black box testing can be used with either design specs, or protocol definition or
interface description as input.

In structural testing, a tester uses knowledge about software implementation like source
code details, so it is called white box testing. This method of testing can be also classified in
dynamic or static analysis depending on how the software is tested; in the first case a program
is tested when it is running, in the second when it isn't.

Between black and white box testing an intermediate method can be defined. It is called grey
box testing: in this case it uses a limited knowledge of software internals; in other words the
tester knows only some part of code, not all, or usually he has access to some design specs
more detailed than the original system requirements. For example a test case can be generated
on system's architecture diagram or states model.

In grey box testing, like in black box case, software is tested from outside by modifying input.
Test case creation, however, is different because it is based on a deeper knowledge about the
tested system.

Testing level
Usually testing process can be divided in different levels:
e Unit testing: a unit is the smallest testable part of the system, in other words the
smallest part of code that can be compiled, linked and loaded in memory or used under

control of a driver. A unit is the work of only one developer and can be several hundreds
of lines of code.

e Component testing: it is executed on a group of different unit.

e Integration testing: integration is the process where different components are united to
form a more complex component; it is useful to test also bigger components even if
tests of single part are OK.

43 of 60



NI2S3 D1.1 NEC/SOA State of the Art

e System testing: a system is a complex component. This testing level is aimed to find a
bug that is neither inside a single component nor related to the interaction among
them. System testing focuses on behaviour or problem that can be found only on the
whole system or majority of it. This testing includes analysis of performances, security,
start-up process and recovery.

Conformance testing

0S| Conformance Testing Methodology and Framework (CTMF) defines a methodology for
conformance testing of protocol implementation: the goal is to verify if the implementation
behaviour accomplishes compliance requisites defined by a protocol. This testing uses a
functional approach and the same test cases can be used on different implementations of the
same protocol.

5.4.2 Software security testing

Many security violations are caused by software bugs. These vulnerabilities can be generated
both in the design phase and in the development phase. Design vulnerability comes from
system planning errors; Implementation vulnerabilities are generated by a developer while
coding and they are derived from bugs in source code: even if system design is without errors
and it uses protocols or algorithms, theoretically guaranteeing a strong security level,
implementation flaws can still make a software extremely vulnerable. During the design phase
a possible option is to use a formal model that prove security features while during the
implementation phase the developing complexity may often overcome any formal test
capability.

Exploitation of Implementation vulnerability

Implementation vulnerabilities are generated from errors made by developers, and they are
different from common code bugs. Implementation flaws for example can affect correct
software behaviour in a way that is visible also to the users. On the opposite, a vulnerability
can be used by an attacker to get super-user permissions or to compromise system features.
Usually vulnerabilities are not spotted directly by the users and they're likely to sit in the dark
waiting to be exploited. Therefore it's very important to run tests that exercise as many states
of operation as possible to eliminate all the vulnerabilities of a particular implementation in
order to prevent potentially bad software usages. A software or method that uses a
vulnerability to compromise a particular system is called an exploit. This type of attack has
different results ranging from both denial of service to complete system violations. When this
happens only a patch can solve the problem, resulting in a very expensive process. The patch
code has to be developed, properly tested and applied to target software to remove the
vulnerability causing the exploit. A lot of systems can still remain vulnerable even after the
patch has been released, especially embedded systems which are more likely to lack an
upgrade feature.

There are many kinds of vulnerabilities. Common errors are using an input without a validation,
using insecure library functions or using libraries in an insecure manner. Programming
languages like C or C++ can be problematic from a security point of view because it's really

44 of 60



NI2S3 D1.1 NEC/SOA State of the Art

simple to unwittingly write insecure code. For instance a very common and serious vulnerability
is buffer overflow. An error in a memory control that occurs when a process writes some data
without checking if a large enough memory space is assigned to it: if the space is not large
enough a part of information is written out its memory space and it overwrites other data; this
kind of bug usually cause a crash, but with properly chosen input may permit to an attacker to
run arbitrary code with the same permissions of victim process.

Robustness testing

A very important feature for software granting security services access is its robustness. A
robust software has to tolerate a dysfunctional formatted input possibly chosen by an attacker
to cause a behaviour that isn't wanted by design. Robustness problems are security too: several
vulnerabilities can be exploited to compromise a system. This is a really serious problem for
network software, especially for public Internet services which are naturally exposed to wider
risks. Today a great number of common software has robustness problems that can be
exploited to cause security vulnerabilities. There are several services on the internet which
track known robustness flaws and hence vulnerabilities.

Robustness testing is different from traditional conformance testing, since conformance testing
focuses on verifying if tested implementation has a correct behaviour according to protocol
definition. On the contrary robustness testing focuses on software capability of handling and
tolerating dysfunctional events and attacks. This kind of testing looks for implementation
vulnerabilities.

In the opposite of conformance testing, it doesn't check the system output, but it evaluates if
software behaviour is secure and robust in presence of malformed inputs, also seeking if
failures occur.

The main difference is that conformance testing uses inputs that are expected for the particular
software or protocol, while in robustness testing the inputs are unexpected. The latter is also
different for the number of test cases usually written. Robustness testing can be thousands
more tests over and above conformance testing.

Protocol testing

Protocol implementation is a consistent target for security analysis: messages are transmitted
over the Internet or over other insecure network, and they are exposed to different type of
attacks; for example any type of cryptographic protection is useless if an attacker is able to
handle a valid session.

5.4.3 Technology for black box testing

This section lists some technologies used in black box testing with focus on implementation
vulnerabilities. We take in consideration that different methodologies don't exclude each other,
but they have overlapping features. Also, when we consider a test process, often we merge
different technologies.

45 of 60



NI2S3 D1.1 NEC/SOA State of the Art

Fuzzing

Fuzzing is the name of a utility created by Miller: it's a random characters generator that can be
used for testing and it sends random data to the interface of the testing system. With fuzzing
we mean introducing noise in a software interface. For example a fuzzer can intercept a system
call of a software component that reads a file and can substitute the file content with random
chars. Therefore fuzzing focuses on finding abnormal behaviour through the insertion of noise
in the input. Abnormal behaviour can be a symptom for presence of bugs.

Fuzzing methodology is evolved and now overlaps many testing typology like domain testing,
syntax testing, exploratory testing and fault injection.

Shortly fuzzing is a blind search of unexpected bug in software. For example, above we
discussed how a tester replaces a file with random data read by a software under test; if
eventually the software crashes, the tester can prove that the application doesn't check its
input and that it considers all the input files as properly encoded. This lack of control can be
exploited by an attacker that change the input file content to attack the software and
afterwards to obtain process permissions. For many interface a fuzzing approach is too simple
or inadequate. For example if we want to test a web server with a CMS, fuzzing will hardly
create valid URLs, so they'll be immediately rejected by the URL parsing algorithm. In this case
we test that component but we cannot reach any other part of the program. So a completely
random fuzzing approach is often useless for bug hunting.

Nowadays this technique is evolved and it uses a smarter approach: for example a fuzzing
tool knows common Internet protocols, so it is possible to select which part of data have to be
modified and randomized. Also they can select from a list of values the data to be inserted: a
tester can make a range of input to test without using really random inputs. In this case we
have an overlap between fuzzing and syntax testing.

The set of fuzzer inputs is made by all possible combination of data input for the tested
software, so it is virtually unlimited: to limit it, often we use some heuristic depending on our
testing focus. For example, if we want find a buffer overflow it's useful to send long data
stream. Thus, test cases are generated using sets of inputs and a heuristic. Fuzzer software can
be divided into two groups, depending on the test case generations:

e Generation fuzzer (also known full-blown fuzzer) is autonomous software that create
almost valid session: it can build input data from a model, that can be a base model, like
random data, or more complex like a model of the tested protocol.

e Mutation fuzzer (also known capture-replay fuzzer) takes a known valid session and
alters data so it can create almost valid sessions.

A Mutation fuzzer usually has a general purpose, while a generation fuzzer is often specific for a
single protocol or application.

We can describe a fuzzing test in three phases:

46 of 60



NI2S3 D1.1 NEC/SOA State of the Art

e Tokenization. The protocol is split in variable and not variable components, the second
ones aren't fuzzed and they are header or constant; the first ones are instead changed
by fuzzing and they can be strings integer or binary data.

e Traffic Generation. The fuzzer generates network traffic towards the tested component.
It's the most sensitive step because if it's done in erroneous manner, most part of sent
data will be ignored.

e Traffic alteration. Traffic, created in the second step, is changed inserting random data
so there are more chances that a bug happens. This step can be done simply with a bit
flipping or with more complex approach. When the fuzzer alters some variable data it's
also probably needed to change other complementary part of the traffic, like the field
length, to keep the session coherency.

Domain testing and Syntax testing

When a test case uses input specs we talk about domain testing. Possible input values are
grouped in input domains, group of values that are managed in same manner, because
software components use these values in similar ways. Test cases have to look for domain
boundary because there is more probability they are erroneously managed by software. The
aim for this kind of testing is to check the code behaviour in presence of a valid input.

Syntax testing is another approach to generate test cases based on input specs, they aim to
understand what happens when input data breaks protocol syntax: we can test using random
data, with an element in random order or left out, and so on. A common test case is a long
input looking for buffer overflow. So syntax testing helps to understand if input is filtered and
handled correctly. Also valid inputs are useful to test different steps in the protocol without an
immediate discharge of data like in random fuzzing.

Software interfaces can be different: command prompt, input file, shell variable, pipe, socket,
and so on. An interface has a language that discriminates whether an input is valid or not; this
language can be either open or hidden. While an open language can be a widely known
network protocol an hidden language is something usually undisclosed to the final user; for
example it can be a data structure definition inside C code used to assure communications
between different software components.

For an automatic syntax testing a formal description of the tested language is needed. If the
language is hidden, the tester has to create a specs, that describes it. To accomplish this task
testers usually use BNF (Backus-Naur Form) and regular expression. Both can define a free
context language: a language expression is valid if match with that definition. Once the
language specifications have been defined it is used in syntax testing to create a base valid
expression and then sent to the software to evaluate replies.

Test case creation starts with the insertion of a single alteration (only one point in the
expression is not matching the free context language). After this step, tester can use multiple
alterations; numbers of test cases exponentially increase with the number of errors introduced
in the test.

There are different kinds of errors of alteration that can be used:

47 of 60



NI2S3 D1.1 NEC/SOA State of the Art

e Syntax error: error in the language grammar, they are created when a field is deleted or a
different field is inserted or more field are sent in erroneous order.

e Delimiter error: delimiter define separator between fields; in ASCIl coded language fields
are characters and delimiter is space, tab or line-feed or other symbol like dot or comma. If
tester want to insert this type of error can remove a delimiter, or he can insert it more
times or change it with another character.

e Field value error: usually a field has a valid range of values: tester insert an error using a
value that is out of this range.

e Context dependent error: error in some characteristics that cannot be described by a free
context language.

e State dependency error: a valid expression usually cannot be accepted in every internal
state of software, so an error of this type can be the sending of valid expression when
software isn't in a correct state.

Usually valid sequences of data can be created automatically allowing the tester to focus on the
creation of test cases and to run a huge number of different tests. In syntax testing the tester
can automate the testing process developing a driver specific for the tested application. Testing
tools may support him during the test suite creation.

A testing tool focused on security implements common protocols and input formats because
software communicates to each other on private or public networks. So a security tool can be
used for protocols such as HTTP, FTP, SMTP, SQL, LDAP, SOAP and XML.

Many attacks use a data injection approach sending look-alike valid data sequences with hidden
malicious data. If not checked or validated correctly, an input coming from a user can be
exploited to add malicious instructions that can result in a security violation; for example a data
transferred by a URI can be used in a SQL query to create an SQL-Injection attack.

Exploratory testing

When we want to perform security testing, one option is when we don't have any clue about
the expected reply of the tested item. So a tester can continue the testing process using replies
to create the following test cases. When the tester explores the software behaviour, he takes
information about how the code works to continue testing. Many black box approaches can be
used also for this method, but some are closer than others; for example fuzzing, because often
a tester hasn't any idea what he's looking for and so he sends random data inside software
interface.

So testers aren't aware of the kind of errors they are going to spot, they're just looking for
software dysfunctional behaviour. Some alternative approaches, which can be catalogued like
exploratory, are stress testing and fault injection.

48 of 60



NI2S3 D1.1 NEC/SOA State of the Art

Penetration testing

A particular exploratory approach is penetration testing: it is a vulnerability research based on a
real attack to the system. Usually it is performed by a group of people called tiger team. During
this process a tester try to find old vulnerability found in similar systems. This test can be done
manually or automatically with tools called security scanners; this testing is strongly based on
tester experience.

Stress testing

Stress testing proceeds by submitting a huge amount of input to the tested system; for example
a tester can send the same data many times or a big size input. This approach includes also the
creation of an extreme condition, like full memory or hardware failure. Usually the aim is to
guarantee quality of service in difficult situation; but considering a security point of view, it's
useful to search other anomalies. For example a particular condition can cause the software to
call some error handling routine, these routines can have vulnerabilities and only with this
approach a tester can found that kind of bugs.

Obviously an attacker can create any particular condition in order to be successful in his attack.

Fault injection

A fault injection technique is usually applied to hardware testing, where some parts are
voluntarily damaged, and tester evaluates system robustness. In software fault injection we
change the code, or input, and we monitor system behaviour. So we see how software resists in
particular condition, and we evaluate its robustness. If the tester changes the software code
he's performing what we call white box testing; sometimes the tester can step in ongoing
communications between different running components, in this case we can talk about black
box testing.

Fault injection is useful for stress testing, but it can be used to create the same condition
experienced by an attacker; for example tester can change some data in system calls between a
process and operating system so to simulate an attacker taking control of some external
resources.

Often we cannot understand how a bug can be exploited to compromise a system. The real and
valuable meaning of the whole testing process is to find those bugs so they can be removed.

Data analysis

Data analysis is a process whose main goal is to analyze the information contained in the output
of a given component. This is more useful than the simple observation, and the tester can
change the behaviour of an application. Security testing uses this approach to understand if an
attacker can perform alerting operation on the system. Two important things about this kind of
testing are:

e Stateless protocol use external methods to keep state of transmission (for example
HTTP use cookies), so it's dangerous to let an attacker access that information; data
analysis can help to understand which information can be stolen.

49 of 60



NI2S3 D1.1 NEC/SOA State of the Art

e Some cryptographic functions use random number generator, for example when it's
needed to generate secure key. If an attacker can collect a lot of output from a random
number generator and that generator has a bug, the attacker is then able to predict
future output. Therefore a strong secure algorithm can be exploited too. The use of a
weak random number generator is a design error, but testing is useful to search if code
implements correctly the design, or to analyze third part code.

Software monitoring

Monitoring software behaviour is a really important part of the testing process, because it can
help stating the test case result. Monitoring a software requires to collect information about
different aspects of the tested system such as memory usage, cpu usage or network replies.
Once those data are stored it is necessary to evaluate if there is an error or not. In security
testing this process is more difficult because tester doesn't compare the software behaviour
with an expected one: tester looks for evidences of vulnerabilities presence. Also it's important
to monitor all system, like memory use or network transmission, also the one that are less
visible than a blue screen of death!

There are many tools for monitoring automation, and they are helpful for those approaches
requiring to send and analyse a large amount of data like fuzzing.

5.4.4 Known tools and software

There are many tools to help a tester in his work, and they differentiate for generality and
automation. Usually these tools work on only one protocol and use a fuzzing approach. Another
kind of help is given by some libraries or frameworks, which help testers to develop their own
tools. Also there are frameworks that support testing process with organisation of activity.
The section below provides a survey of the more relevant tools used for testing process.

PROTOS and PROTOS protocol genome projects

Classic PROTOS

Project Security Testing of Protocol Implementations (PROTOS) start in 1999, inside University
of Oulu and VTT Electronics, and it focuses on finding different approaches for black box testing
of protocol implementation. Testing evaluates robustness of software that implements high
level protocol like HTTP or SNMP, and they define a method called: mini-simulation method.
The main goal of this approach is the creation of a great number of messages with only one
faulting element, and otherwise correct in all other parts.

This method has the following steps:

o We take the specs of interface that we want test, and then we use BNF for defining a
free context grammars.

e We create a few test cases, which are valid communications for that protocol: these
cases validate BNF protocol model and give an evaluation of transmission with tested
software.

e Using BNF we create manually a set of anomalies, or we can reuse an old set.

50 of 60



NI2S3 D1.1 NEC/SOA State of the Art

e \We add the set of anomalies in the valid case.

e Valid elements and anomalies are used to create many test cases. It uses all
combination of errors and all possible error values, and for each combination it designs
a test case.

e Test cases are automatically created: it makes binary PDU, BNF description and
documentation. After this step if someone wants to add an anomaly or a value he needs
to re-run all processes and to re-build all test cases.

e Test cases are used for testing. Stateless protocol PDUs are sent to the tested system,
for stateful we must evaluate BNF to reach the state that have to be tested.

e We analyze the log for test results.

This method is used for robustness testing. Subsequently it has been used to validate the
protocol implementation. PROTOS works on client-server software that implements request-
response protocol like LDAP, SNMP, SIP and H.323.

PROTOS Protocol Genome Project

PROTOS Protocol Genome Project started in 2003 from PROTOS Classic; the goal is to create a
system that automatically design faults, error and so test cases starting from valid data. This
approach, called model inference assisted fuzzing, uses a set of data for training and
automatically designs a model upon which all test cases for robustness testing are built:

e We collect a training data set, examples of valid data about tested protocol.
e A modelis created.

e Model creates data look-alike original ones.

e Those data are used to test and to search abnormal behaviour.

This approach is used to test for software viruses. It makes a large number of archive files,
modified by the model, and then several anti-viruses scanned by them.

The quality of model depends on training data sets: if examples aren't complete, some features
will not be tested. The main flaw of this approach is the lack of knowledge about domain, as is
the semantic meaning of data.

Codenomicon Defensic

A spin-off of PROTOS creates Defensic, a commercial tool produced and distributed by
Codenomicon. This software has some tools, each of which works on a specific protocol.

Fuzzer tools

There are many tools that implement a fuzzing approach for a wide variety of network
protocols and common file formats; these fuzzers can be used with all software that
implements a protocol or uses a file with that format.

51 of 60



NI2S3 D1.1 NEC/SOA State of the Art

Other fuzzers use a more generic approach so they can be used with many kind of protocols:
they make simple mutation, that doesn't take into account syntax like bit flipping or byte
transcoding.

Finally there are fuzzing frameworks which give more flexibility and are used to test unknown
protocol (proprietary) or never tested protocol. Usually a good fuzzing framework has to help in
some operation:

e Help in the creation of the model of protocol: some have tool that convert network
traffic in a model;

e rebuild automatically the length of a packet: every times it modifies a field in a frame, it
should calculate the new length of the packet and change length field to prevent
immediately discarding;

e calculate CRC or other type of checksum and change it accordingly;
e give functions to generate pseudorandom data;
e include a set of data that are already successfully used in discovery a fault;

e give help to discover a fault: often a fault is spotted because the software does not reply
anymore; more advanced techniques use a debugger;

e give a tool for reusing the code developed by the tester: so the fuzzer can evolve and
become smarter.

There are many fuzzers used today. In the following we give a survey about them.

Spike

SPIKE was started in 2000: developed by Dave Aitel, Spike is a fuzzing framework. It's written in
C and it provides some useful API to develop fuzzers for network protocols. It's an open source
projects licensed under GPL and it includes common functions used to test a wide variety of
both well known and specific protocols. SPIKE uses a fuzzing approach called block-based.:
protocol syntax is divided in blocks and these blocks are changed pseudo randomly. The blocks
are defined with a structure (called spike), which contains binary data of a given length. Spike
can be used to spot SQL injection, buffer overflow or format string bug.

The project is poorly documented and it isn't well organised, also a little change in framework,
like an insertion of a new fuzz string, make it needed to re-compile all packages. Also SPIKE
hasn't any tool for re-using code. In 2006 it was re-written in Python and now it's part of the
CANVAS framework.

Peach

Written by Micheal Eddington, distributed by IOACTIVE under MIT license, Peach born in 2004
and it is a cross platform framework developed in Python. With Peach, tester can define a
structure that have to be fuzzed using XML, creating a peach pit file; subsequently peach engine
mutate data.

52 of 60



NI2S3 D1.1 NEC/SOA State of the Art

Framework can model:
e information about type;
e relationship like length and counter;
e checksum and other type of data validation;
e static data transformation (like zip compression);
e base model of finite state machine;

Peach can do different kind of fuzzing: both generation fuzzing (from structure Peach can create
data) and mutation fuzzing (Peach can change data if a proper input is given).

GPF - General Purpose Fuzzer

It is a open source tool developed by Jared DeMott for UNIX system. It is designed like a generic
fuzzer and it can be used in different ways: a tester can do random fuzzing, or can mutate data
or can manually model a protocol with C written file called tokAids. This framework is really
hard to use, his learning curve is very steep, and modelling a proprietary protocol is an hard
task.

From 2007 GPF is used in Evolutionary Fuzzing System (EFS): it uses generic algorithms to
generate the input that will be sent to tested software. EFS sends semi valid session to target
application, that are monitored by a debugger. It stores the results inside a database and those
results are eventually used by an algorithm to evolve the test case generation system.

Autodafé

Autodafé is a tool written by Martin Vuagnouxand and it is released under GPL license on UNIX
systems. It uses an approach like SPIKE, based on block structure. This framework aims to
reduce the degree of freedom of fuzzing. All test cases are relative to a protocol area that is
more easily vulnerable. It uses a technique called Marker Technique, that mark with a label
every variable fields of the protocol: a marker is a data (string or numeric) that can be changed
by user or tester. For this reason Autodafé makes test processing variable with order defined by
label, therefore it focuses on those variables that are more likely to cause vulnerability.
Autodafé has a debugger that monitors the dangerous API (for example: strcpy() or fprintf())
that can be used by fuzzed variable. The marker system gives more importance to the label
linked to these variables so they will be tested before. The framework will ignore less
dangerous variables, especially the ones used by safe APIs, so space of input will be reduced.

Sulley

Sulley is a framework dedicated to fuzzer development constituted by a large number of easily
upgradeable components. Authors say that Sulley differs from all the other fuzzers since it is
not only focused on input data generation but also on data transmission and target monitoring.

53 of 60



NI2S3 D1.1 NEC/SOA State of the Art

Stateful protocol Fuzzing

Almost all fuzzing tools, also the ones that create a model of the tested protocol, don't consider
the internal state of the target: they send data to the target without being aware of the state of
the target software making difficult to choose an input required to reach a certain state.
Consequently a fuzzer usually tests external protocol exchanges of data and it cannot check all
possible transmissions. Only Sulley developers try to solve this problem, using a graph to
monitor the internal FSM behaviour of the target.

54 of 60



NI2S3 D1.1 NEC/SOA State of the Art

6 Summary and Conclusion

This document presents the state of the Art in NEC and SOA and studies the envisaged use of
SOA for the benefit of NEC. An initial analysis is made on key gaps with respect to security
provisions for SOA in the NEC context. Previous and current projects are discussed with their
relevance to SOA and NEC and general NI2S3 concepts.

It is clear through the reference material in this document that the state of the art in SOA itself
is fairly well advanced with several examples of commercial use of SOA based infrastructure
deployments. The research field is very active with regard to SOA with activity generally
focused toward specific aspects such as security, dependability and compliance. Many relevant
activities have been identified in this document which can form major input basis to the work of
NI2S3.

With regard to NEC there is material mainly published through larger national defense
frameworks which are primarily encapsulated within Enterprise Architecture Frameworks such
as MoDAF, DoDAF and NAF.

No detailed material is found which uses NEC for the use by CIIP [3], although SOA is an
enabling architecture. The Enterprise Architecture Frameworks do, however, present a broad
application onto architectures which are not necessarily military based, although no material
has been identified which deals explicitly with the concept of using SOA for NEC in the context
of CIIP. This issue is expanded in the companion deliverable D1.2.

55 of 60



NI2S3 D1.1 NEC/SOA State of the Art

7 References
[1] The American Heritage Dictionary of the English Language, Fourth Edition. Houghton Mifflin
Company, 2006.

[2] The European Programme for  Critical Infrastructure  Protection (EPCIP)
http://europa.eu/rapid/pressReleasesAction.do?reference=MEMO/06/477&format=HTML&aged=0&language=EN

[3] E.M. Brunner and M. Suter, “International CIIP Handbook 2008/2009”, Center for Security
Studies, ETZ Zurich, 2008

[4] G Brunette et al, “Toward Systemically Secure IT Architectures”, June 14, 2005 at WET ICE
2005, Sweden

http://www.sun.com/software/security/docs/systemic-security-wp-1.pdf

[5] UK Cyber Security Strategy Launched http://news.bbc.co.uk/1/hi/uk politics/8118348.stm

[6] Centre for the protection of national infrastructure http://www.cpni.gov.uk/

[7] US DoD Architecture Framework Version 1.5, 2007
http://www.defenselink.mil/cio-nii/docs/DoDAF Volume |.pdf

[8] Federal Enterprise Architecture http://www.whitehouse.gov/omb/e-gov/fea/

[9] UK MoD Architecture Framework Version 1.2, 2008 http://www.modaf.org.uk/m3

[10] Marco Casassa Mont et al, Identity Analytics - “User Provisioning” Case Study: Using
Modeling and Simulation for Policy Decision Support, HP Labs Technical Report HPL-2009-57

[11] Open Security Architecture
http://www.opensecurityarchitecture.org/cms/

[12] IBM Rational Unified Process

http://www-01.ibm.com/software/awdtools/rup/
[13] SHERWOOD APPLIED BUSINESS SECURITY ARCHITECTURE

http://www.sabsa.org/the-sabsa-method/what-is-sabsa.aspx

[14] The Open Group Architecture Framework http://www.opengroup.org/togaf/
[15] Understanding NEC, UK MoD

http://www.mod.uk/Defencelnternet/AboutDefence/CorporatePublications/
ScienceandTechnologyPublications/NEC/UnderstandingNetworkEnabledCapability.htm

[16] ENISA, “Who-is-Who Directory on Network and Information Security (NIS)“, Feb. 2009.
http://www.enisa.europa.eu/act/sr/files/deliverables/who-is-who-directory-on-nis-ed.-
2009/at_download/fullReport

[17] ENISA, “Report on the state of pan-European elDM initiatives”, Jan. 2009,
http://www.enisa.europa.eu/act/it/eid/eidm-report

56 of 60



NI2S3 D1.1 NEC/SOA State of the Art

[18] ENISA, “Web 2.0 Security and Privacy”, Dec. 2008,
http://www.enisa.europa.eu/act/res/other-areas/web-2.0-security-and-privacy/web-2.0-
security-and-privacy/at_download/fullReport

[19] NATO Network Enabled Capability http://nnec.act.nato.int/default.aspx

[20] BAE Systems Network Enabled Capability

http://www.baesystems.com/ProductsServices/ss tes atc nec.html

[21] CA4ISTAR (Command, Control, Communications, Computers, Intelligence, Surveillance,
Target Acquisition and Reconnaissance)

http://www.baesystems.com/ProductsServices/ss tes atc c4isr.html

[22] UK Defence Industrial Strategy White Paper 2005.

[23] NATO Architecture Framework Rev 3
http://www.nhgc3s.nato.int/ARCHITECTURE/ docs/NAF v3/ANNEX1.pdf
[24] NEC at Thales Research and Technology (UK)

http://www.thalesresearch.com/Default.aspx?tabid=51

[25] The MINT Network Demonstration Environment, Thales White paper, 2004
http://www.thalesresearch.com/Portals/0/NET041001.pdf

[26]  Policy based Management in NEC, Thales White paper, 2004
http://www.thalesresearch.com/Portals/0/NET040502.pdf

[27]  Secure Situation Awareness using Web Based Mashups, Thales White Paper, 2007
http://www.thalesresearch.com/Portals/0/VCS070501.pdf

[28] List of related Thales white papers

http://www.thalesresearch.com/Default.aspx?tabid=59

[29] The Informational Warfare Site http://www.iwar.org.uk/

[30] The Informational Warfare Site - Network Enabled Capability
http://www.iwar.org.uk/rma/resources/uk-mod/nec.htm

[31] Understanding NEC, UK MoD , JSP777

http://www.mod.uk/linked files/issues/nec/nec jsp777.pdf

[32] Smart Uses of Security Technology to achieve Information Age Government, Qinetiq
White paper, March 2004

http://www.ginetig.com/home/security/digital security/white paper index.Par.22642.File.pdf
[33] Qinetiqg NEC Activity

http://www.ginetig.com/home/defence/defence solutions/command and control/interopera
bility.html

57 of 60



NI2S3 D1.1 NEC/SOA State of the Art

[34] EDS Defence Services Approach to MoD Network Enabled Capability
http://www.edsdefence.com/uploads/1461%20NEC.pdf

[35] EDS Defence Battlespace Website
http://www.edsdefence.com/portfolio/battlespace/nec.html

[36] DSTL Press Release, CWID 09, May 2009

http://www.dstl.gov.uk/news events/press/pr2009/cwid-09.pdf
[37] ATLAS Consortium Website and Brochure

http://www.atlasconsortium.info/

http://www.atlasconsortium.info/brochure.pdf

[38] What Is Windows Communication Foundation?

http://msdn.microsoft.com/en-gb/library/ms731082.aspx

[39] David Chappell, Introducing Windows Communication Foundation

http://msdn.microsoft.com/en-gb/library/dd943056.aspx

[40] Liu, Russell, et al, “Evolutionary Service-Oriented Architecture for Network Enabled
Capability”, Second International Workshop on Verification and Evaluation of Computer and
Communication Systems (VECoS 2008)

[41] http://en.wikipedia.org/wiki/Identity Assurance Framework
[42]  NIST Special Publication 800-63 v. 1.0.2

[43] US E-Authentication Credential Assessment Framework

[44] EAP Trust Framework

[45] Identity Assurance Framework

[46] “E-Authentication Credential Assessment Framework (CAF)”
http://www.cio.gov/eauthentication/documents/CAF.pdf

[47] http://www.enisa.europa.eu/act/it/eid/idac-saml/at_download/fullReport

[48] New Zealand Guide to Authentication Standards for Online Services
[49] http://www.w3.org/XML
[50] http://www.w3.0org/TR/2000/NOTE-SOAP-20000508/

[51] http://uddi.xml.org/uddi-101
[52] http://www.w3.0org/TR/wsdl# introduction
[53] http://en.wikipedia.org/wiki/Enterprise service bus

[54] W3C XML Security Working Group http://www.w3.0rg/2008/xmlsec/
[55] W3C XML Signature http://www.w3.org/TR/xmldsig-core/

58 of 60



NI2S3 D1.1 NEC/SOA State of the Art

[56] W3C Canonical XML http://www.w3.org/TR/xml-c14n

[57] W3C Exclusive Canonical XML http://www.w3.org/TR/xml-exc-c14n
[58] W3C XML Encryption http://www.w3.0org/TR/xmlenc-core/

[59] W3C Web Service Policy http://www.w3.org/TR/ws-policy/

[60] OASIS Web Services Secure Conversation http://docs.oasis-open.org/ws-sx/ws-
secureconversation/v1.4/os/ws-secureconversation-1.4-spec-o0s.html

[61] OASIS Web Service Trust http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/os/ws-trust-
1.4-spec-o0s.html

[62] OASIS Web Services Federation Framework http://docs.oasis-
open.org/wsfed/federation/v1.2/ws-federation.html

[63] OASIS Web Services Reliable Messaging v1.2 http://docs.oasis-open.org/ws-
rx/wsrm/200702

[64] OASIS Web Services Reliable Messaging Policy Assertion http://docs.oasis-open.org/ws-
rx/wsrmp/200702

[65] OASIS Web Services Discovery http://docs.oasis-open.org/ws-
dd/discovery/1.1/os/wsdd-discovery-1.1-spec-os.html

[66] OASIS SOAP over UDP http://docs.oasis-open.org/ws-dd/soapoverudp/1.1/0s/wsdd-
soapoverudp-1.1-spec-o0s.html

[67] Perspectives on the dependability of networks and services, Bjarne E. Helvik,
Telektronikk 3.2004

[68] SOA, Dependability, and Measures and Metrics for Network Enabled Capability D.J.
Russell, N. Looker, J.Xu, 2006

[69] Web Services service level management: overview of service level agreement languages,
support infrastructures and tools, Tuomas Nurmela, Seminar on Service Oriented Systems,
2006

[70] Specifying and monitoring service level agreements for Web services, The WSLA
Framework., Keller, A., Ludwig, H., Journal of Network System Management, 2003

[71]  Building Accountability Middleware to Support Dependable SOA, LLAMA Project, Kwei-
Jay Lin, Mark Panahi, Yue Zhang, Jing Zhang, Soo-Ho Chang, University of California, Irvine,
2009

[72]  Fault tolerant web services,C.-L. Fang, D. Liang, F. Lin, and C.-C. Lin.. J. Syst. Archit., 2007

[73]  Using WS-BPEL to Implement Software Fault Tolerance for Web Services, EUROMICRO
2006

[74] A Fault Tolerance Approach for Enterprise Applications, Vina Ermagan, Ingolf Kriger,
Massimiliano Menarini, SCC 2008

59 of 60



NI2S3 D1.1 NEC/SOA State of the Art

[75] Sustaining Web Services High-Availability Using Communities, Zakaria Maamar, Quan Z.
Sheng, and Djamal Benslimane, ARES 2008

[76] Ws-replication: a framework for highly available web services, J. Salas, F. Perez-Sorrosal,
n.-M. Marta Pati and R. Jim enez-Peris, 2006.

[77] Creating Dependable Web Services Using User-transparent Replica, Markus Hillenbrand,
Joachim Gotze, and Paul Miller, NWeSP 2005

[78] FTWeb: A Fault Tolerant Infrastructure for Web Services, G.T. Santos, L.C. Lung, and C.
Montez, EDOC 2005

[79] High Assurance SOA-Based Systems Engineering, F.B. Bastani, R.A. Paul, and I.-L. Yen,
UK-USA Workshop 2008

[80] A QoS-Aware Fault Tolerant Middleware for Dependable Service Composition, Zibin
Zheng and Michael R. Lyu, IEEE 2009

[81] A Framework for Real-Time Service-Oriented Architecture, Mark Panahi, Weiran Nie,
and Kwei-Jay Lin, CEC, 2009

[82] Daidalos I/l WP3 QoS

[83] Service Composition for Real-Time Assurance, Tong Gao; Moussa, H.; I-Ling Yen; Bastani,
F.; Jun-Jang Jeng; COMPSAC 2008

[84] Building an Enterprise Service Bus for Real-Time SOA: A Messaging Middleware Stack,
Garces-Erice, Luis, COMPSAC, 2009

[85] OASIS, Web Services Business Process Execution Language Version 2.0, 2007
[86] Architectural Support for Dependable System Evolution, Jie Xu, UK-USA Workshop, 2008

[87] NECTISE www.nectise.com

60 of 60



