9,132 research outputs found

    Personalised trails and learner profiling within e-learning environments

    Get PDF
    This deliverable focuses on personalisation and personalised trails. We begin by introducing and defining the concepts of personalisation and personalised trails. Personalisation requires that a user profile be stored, and so we assess currently available standard profile schemas and discuss the requirements for a profile to support personalised learning. We then review techniques for providing personalisation and some systems that implement these techniques, and discuss some of the issues around evaluating personalisation systems. We look especially at the use of learning and cognitive styles to support personalised learning, and also consider personalisation in the field of mobile learning, which has a slightly different take on the subject, and in commercially available systems, where personalisation support is found to currently be only at quite a low level. We conclude with a summary of the lessons to be learned from our review of personalisation and personalised trails

    The role of learning styles in intelligent tutoring systems

    Get PDF
    The Bologna Process changes the educational paradigm, to be focus on the student and in the learning outcomes. The majority of e-learning platforms are used as mere repositories of content, based on the classroom paradigm and don't support the individualism of each student learning process. Through the integration of new pedagogical methodologies based on students learning styles, we present an approach to intelligent tutoring systems in order to improve the learning process. This article is focused on the importance of learning styles to create the student model in intelligent tutoring systems and what was the student's feedback about the adaptation of the system to each learning experience.- (undefined

    From Interactive Open Learner Modelling to Intelligent Mentoring: STyLE-OLM and Beyond

    Get PDF
    STyLE-OLM (Dimitrova 2003 International Journal of Artificial Intelligence in Education, 13, 35–78) presented a framework for interactive open learner modelling which entails the development of the means by which learners can inspect, discuss and alter the learner model that has been jointly constructed by themselves and the system. This paper outlines the STyLE-OLM framework and reflects on the key challenges it addressed: (a) the design of an appropriate communication medium; this was addressed by proposing a structured language using diagrammatic presentations of conceptual graphs; (b) the management of the interaction with the learner; this was addressed by designing a framework for interactive open learner modelling dialogue utilising dialogue games; (c) the accommodation of different beliefs about the learner’s domain model; this was addressed with a mechanism for maintaining different views about the learner beliefs which adapted belief modal logic operators; and (d) the assessment of any resulting improvements in learner model accuracy and learner reflection; this was addressed in a user study with an instantiation of STyLE-OLM for diagnosing a learner’s knowledge of finance concept, as part of a larger project that developed an intelligent system to assist with learning domain terminology in a foreign language. Reviewing follow on work, we refer to projects by the authors’ students and colleagues leading to further extension and adoption of STyLE-OLM, as well as relevant approaches in open learner modelling which have cited the STyLE-OLM framework. The paper points at outstanding research challenges and outlines future a research direction to extend interactive open learner modelling towards mentor-like intelligent learning systems

    A conceptual architecture for interactive educational multimedia

    Get PDF
    Learning is more than knowledge acquisition; it often involves the active participation of the learner in a variety of knowledge- and skills-based learning and training activities. Interactive multimedia technology can support the variety of interaction channels and languages required to facilitate interactive learning and teaching. A conceptual architecture for interactive educational multimedia can support the development of such multimedia systems. Such an architecture needs to embed multimedia technology into a coherent educational context. A framework based on an integrated interaction model is needed to capture learning and training activities in an online setting from an educational perspective, to describe them in the human-computer context, and to integrate them with mechanisms and principles of multimedia interaction

    Adaptive User Interfaces for Intelligent E-Learning: Issues and Trends

    Get PDF
    Adaptive User Interfaces have a long history rooted in the emergence of such eminent technologies as Artificial Intelligence, Soft Computing, Graphical User Interface, JAVA, Internet, and Mobile Services. More specifically, the advent and advancement of the Web and Mobile Learning Services has brought forward adaptivity as an immensely important issue for both efficacy and acceptability of such services. The success of such a learning process depends on the intelligent context-oriented presentation of the domain knowledge and its adaptivity in terms of complexity and granularity consistent to the learner’s cognitive level/progress. Researchers have always deemed adaptive user interfaces as a promising solution in this regard. However, the richness in the human behavior, technological opportunities, and contextual nature of information offers daunting challenges. These require creativity, cross-domain synergy, cross-cultural and cross-demographic understanding, and an adequate representation of mission and conception of the task. This paper provides a review of state-of-the-art in adaptive user interface research in Intelligent Multimedia Educational Systems and related areas with an emphasis on core issues and future directions

    A generic architecture for interactive intelligent tutoring systems

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University, 07/06/2001.This research is focused on developing a generic intelligent architecture for an interactive tutoring system. A review of the literature in the areas of instructional theories, cognitive and social views of learning, intelligent tutoring systems development methodologies, and knowledge representation methods was conducted. As a result, a generic ITS development architecture (GeNisa) has been proposed, which combines the features of knowledge base systems (KBS) with object-oriented methodology. The GeNisa architecture consists of the following components: a tutorial events communication module, which encapsulates the interactive processes and other independent computations between different components; a software design toolkit; and an autonomous knowledge acquisition from a probabilistic knowledge base. A graphical application development environment includes tools to support application development, and learning environments and which use a case scenario as a basis for instruction. The generic architecture is designed to support client-side execution in a Web browser environment, and further testing will show that it can disseminate applications over the World Wide Web. Such an architecture can be adapted to different teaching styles and domains, and reusing instructional materials automatically can reduce the effort of the courseware developer (hence cost and time) in authoring new materials. GeNisa was implemented using Java scripts, and subsequently evaluated at various commercial and academic organisations. Parameters chosen for the evaluation include quality of courseware, relevancy of case scenarios, portability to other platforms, ease of use, content, user-friendliness, screen display, clarity, topic interest, and overall satisfaction with GeNisa. In general, the evaluation focused on the novel characteristics and performances of the GeNisa architecture in comparison with other ITS and the results obtained are discussed and analysed. On the basis of the experience gained during the literature research and GeNisa development and evaluation. a generic methodology for ITS development is proposed as well as the requirements for the further development of ITS tools. Finally, conclusions are drawn and areas for further research are identified

    Maximising gain for minimal pain: Utilising natural game mechanics

    Get PDF
    This paper considers the application of natural games mechanics within higher education as a vehicle to encourage student engagement and achievement of desired learning outcomes. It concludes with desiderata of features for a learning environment when used for assessment and a reflection on the gap between current and aspired learning provision. The context considered is higher (tertiary) education, where the aims are both to improve students’ engagement with course content and also to bring about potential changes in the students’ learning behaviour. Whilst traditional approaches to teaching and learning may focus on dealing with large classes, where the onus is frequently on efficiency and on the effectiveness of feedback in improving understanding and future performance, intelligent systems can provide technology to enable alternative methods that can cope with large classes that preserve the cost-benefits. However, such intelligent systems may also offer improved learning outcomes via a personalised learning experience. This paper looks to exploit particular properties which emerge from the game playing process and seek to engage them in a wider educational context. In particular we aim to use game engagement and Flow as natural dynamics that can be exploited in the learning experience

    Integrating knowledge tracing and item response theory: A tale of two frameworks

    Get PDF
    Traditionally, the assessment and learning science commu-nities rely on different paradigms to model student performance. The assessment community uses Item Response Theory which allows modeling different student abilities and problem difficulties, while the learning science community uses Knowledge Tracing, which captures skill acquisition. These two paradigms are complementary - IRT cannot be used to model student learning, while Knowledge Tracing assumes all students and problems are the same. Recently, two highly related models based on a principled synthesis of IRT and Knowledge Tracing were introduced. However, these two models were evaluated on different data sets, using different evaluation metrics and with different ways of splitting the data into training and testing sets. In this paper we reconcile the models' results by presenting a unified view of the two models, and by evaluating the models under a common evaluation metric. We find that both models are equivalent and only differ in their training procedure. Our results show that the combined IRT and Knowledge Tracing models offer the best of assessment and learning sciences - high prediction accuracy like the IRT model, and the ability to model student learning like Knowledge Tracing
    corecore