
A GENERIC ARCHITECTURE FOR INTERACTIVE

INTELLIGENT TUTORING SYSTEMS

A Dissertation submitted for the Degree of Doctor of Philosophy

Tajudeen Abayomi Atolagbe

Department of Information Systems and Computing

Brunel University

April, 2001

Abstract 11

ABSTRACT

This research is focused on developing a generic intelligent architecture for an interactive tutoring

system.

A review of the literature in the areas of instructional theories, cognitive and social views of

learning, intelligent tutoring systems development methodologies, and knowledge representation

methods was conducted. As a result, a generic ITS development architecture (GeNisa) has been

proposed, which combines the features of knowledge base systems (KBS) with object-oriented

methodology. The GeNisa architecture consists of the following components: a tutorial events

communication module, which encapsulates the interactive processes and other independent

computations between different components; a software design toolkit; and an autonomous

knowledge acquisition from a probabilistic knowledge base. A graphical application development

environment includes tools to support application development, and learning environments and

which use a case scenario as a basis for instruction. The generic architecture is designed to

support client-side execution in a Web browser environment, and further testing will show that it

can disseminate applications over the World Wide Web. Such an architecture can be adapted to

different teaching styles and domains, and reusing instructional materials automatically can

reduce the effort of the courseware developer (hence cost and time) in authoring new materials.

GeNisa was implemented using Java scripts, and subsequently evaluated at various commercial

and academic organisations. Parameters chosen for the evaluation include quality of courseware,

relevancy of case scenarios, portability to other platforms, ease of use, content, user-friendliness,

screen display. clarity, topic interest, and overall satisfaction with GeNisa. In general, the

evaluation focused on the novel characteristics and performances of the GeNisa architecture in

comparison with other ITS. and the results obtained are discussed and analysed.

On the basis of the experience gained during the literature research and GeNisa development and

evaluation. a generic methodology for ITS development is proposed as well as the requirements

for the further development of ITS tools. Finally, conclusions are drawn and areas for further

research are identified.

A GL'nL'n~' :\rchitecture for InteractivL' Intelligent Tutoring Systems T. A. Atolagtx

Acknowledgements iii

ACKNOWLEDGEMENTS

This work has benefited from the support of many people. I would like to thank my supervisor

and mentor Dr Vlatka Hlupic, for her insight and for encouraging and supporting me throughout

this research. She has provided just the right mix of guidance, feedback, patience and motivation.

and for this I am most grateful.

I am also grateful to Prof. Ray J. Paul for his valuable feedback.

I would also like to express my gratitude to different organisations and individuals that

participated in the empirical studies.

I am grateful to my family for their support and patience throughout.

A Gl'n~ri~' Arl'hltectun: for Int~rJ((i\'e Intelligent Tutoring Systems

Declaration iv

DECLARA TION

Some of the material contained in this dissertation appears in the following publications:

Atolagbe, T. and mupic, V. (1998). A Conceptual Model for An Internet Based Intelligent Tutoring

System for Simulation Modelling. In the Proceedings of 1 (jh European Simulation Symposium

and Exhibition. Bargiela, A. and Kerckhoffs, E. (Eds.), Nottingham, United Kingdom, pp. 692-

694.

Atolagbe, T. (1997). A Generic Architecture for Intelligent Instruction for Simulation Modelling

Software Packages, Informatica 21, pp. 643--650.

Atolagbe. A. T. and Hlupic, V. (1997). A Reusable Architecture for Intelligent Tutoring Systems

for Teaching Simulation Modelling. In the Proceedings of the 9th European Symposium on

Simulation in Industry Conference. Kaylan, A.R. and Lehmann, A. (Eds.), Passau, Germany,

pp. 187-192.

Atolagbe, T. and Hlupic, V. (1997). SimTutor: A Multimedia Intelligent Tutoring Systems for

Simulation Modelling. In the Proceedings of the Winter Simulation Conference. Andradottir, S.,

Healy, K. 1.. Withers, D. H and Nelson, B. L. (Eds.), Atlanta, Georgia, pp. 504--509.

Atolagbe, T. and mupic, V. (1997). Interactive Strategies for Developing Intuitive knowledge as

Basis for Simulation Modelling Education. In the Proceedings of the Winter Simulation

Conference. Andradottir, S., Healy, K. 1. Withers, D. H., and Nelson, B. L. (Eds.), Georgia, pp.

1394-1402.

Atolagbe, T. and mupic, V. (1997). Intelligent Multimedia Tutoring for Simulation Modelling

Education. In the Proceedings of European Simulation Symposium, IstanbuL Turkey, Kaylan,

A.R. and Lehmann, A. (Eds.), pp. 280-284.

Atolagbe, T. and Hlupic. V. (1996). A Generic Architecture for Intelligent Instruction for Simulation

Modelling Software Packages, In the Proceedings of Winter Simulation Conference, Charnes,

1. M, Morrice, D. 1., Brunner, D. T .. and Swain, 1. J. (Eds.), pp. 856-863.

:\ GeneriC Architecture fllr IntC'lacti\'t' Intelligent Tutoring Systems T. A. Atolagbe

Declaration v

Atolagbe, T. and IDupic, V. A Generic Architecture for Instructional Systems for Simulation

Modelling. (1996). In the Proceedings of European International Conference on Simulation

Modelling, Budapest, Javor, A., Lehmann, A. and Molnar, I. (Eds.), pp. 389-393.

A Generic Architecture for Interactive Intelligent Tutoring Systems T. A. Atolagbe

Table of Contents

TABLE OF CONTENTS

Title Page Page

ABSTRACT ... II

ACKNOWLEDGEMENTS ... III

DECLARATION ... IV

TABLE OF CONTENTS ... VI

LIST OF FIGURES ... XI

LIST OF TABLES .. XII

LIST OF ABBREVIATIONS .. XIII

CHAPTER 1. INTRODUCTION ... 1

1.1 INTRODUCTION ... 1

1.2 RESEARCH AREA .. 4

1.2.1 Intelligent Tutoring Systems .. 6

1.2.2 Addressing the Knowledge Acquisition Bottleneck .. 7

1.2.3 Component-Based Architecture ... 8

1.2.4 Pedagogical Agents ... 9

1.3 RESEARCH OBJECTIVES ... 10

1.4 RESEARCH MOTHODS .. 11

1.5 DISSERTATION OUTLINE .. 13

1.6 SUMMARY ... 14

CHAPTER 2. BACKGROUND RESEARCH MATERIAL .. 16

2.1 INTRODUCTION .. 16

') ') INTERACTIVE INSTRUCTIONAL ENVIRONMENT ... 16

2.3 INTELLIGENT TUTORING SYSTEMS ... 18

2.3.1 Intelligent Tutoring Systems Components ... 19

2.3.2 Case-Based Intelligent Tutoring Systems .. 26

2.4 KNOWLEDGE REPRESENTATION METHODS .. 27

2.4.1 Knowledge-Based Hypermedia ... 29

2'-+.2 Knowledge Acquisition .. 31

2.4.3 Probabilistic Reasoning .. 32

.. \ (iencflc :\rd11tecturc for InlL'ractivc Intelligent Tutoring Systems T. A Atolagbe

Table of Contents vii

2.5 CRITIQUE OF THE LITERATURE .. 34

2.6 COMPARISON WITH OTHER RELATED RESEARCH ... 39

2.7 SUMMARY ... 40

CHAPTER 3. A GENERIC ARCHITECTURE FOR INTELLIGENT TUTORING

SySTEMS ... -.+2

3.1 INTRODUCTION .. -+2

3.2 THE ORIGIN OF THE GENERIC ARCHITECTURE .. .43

3.2.1 Designing Users' Interactivity .. .44

3.2.2 Knowledge Support Components48

3.2.3 Requirements for a Generic Intelligent Architecture48

3.2.4 Software Architecture ... 51

3.2.5 Consistency Constraints .. 53

3.3 METHODOLOGICAL ASSUMPTIONS ... 54

3.3.1 Knowledge Sharing and Reuse ... 56

3.3.2 Component Behaviour .. 57

3.4 KNOWLEDGE REPRESENTATION ... 58

3.4.1 Components and Interoperability .. 59

3.4.2 Knowledge Base ... 62

3.4.3 Instructional Planning ... 67

3.4.4 Discourse Planner ... 69

3.4.5 Teaching with Case Scenarios ... 70

3.5 INTELLIGENT TUTORING SYSTEM ARCHITECTURE ... 72

3.5.1 Presentation System .. 72

3.5.2 Domain Expert ... 73

3.5.3 Inference Engine .. 75

3.5.4 Pedagogy Model ... 76

3.5.5 Student Model .. 77

3.6 KNOWLEDGE ACQUISITION .. 77

3.6.1 Integrating Pedagogical Agents ... 78

3.6.2 A Web-Based Instructional Environment .. 80

3.7 SUMMARY ... 84

CHAPTER 4. DEVELOPMENT OF THE GENERIC INTELLIGENT

INSTRUCTIONAL SYSTEM (GENISA) ... 85

-'+.1 INTRODLICTION .. 85

:\ C;enen~' Architecture for InteractIve Intelligent Tutoring Systems T A. Atolagbe

Table of Contents viii

4.2 DESIGN ENVIRONMENT FOR THE GENERIC ARCHITECTURE .. 85

4.2.1 Unified Modelling Language .. 86

4.2.2 Design Environment Class Library ... 91

4.2.3 Components Events Manager .. 93

4.2.4 Design Components .. 95

4.3 GENIS A LEARNING ENVIRONMENT .. 99

4.3.1 User Interface ... 101

4.3.2 Remedial Planner ... 101

4.3.3 Text-to-Speech Engine ... 103

4.3.4 Pedagogical Agents .. 103

4.3.5 Inference Engine .. 104

4.4 KNOWLEDGE ELICITATION AND TUTORIAL MANAGEMENT .. 104

4.4.1 Pedagogical Technique ... 105

4.4.2 Student Model Components .. 108

4.4.3 Tutorial Hints ... 110

4.4.4 Reference Library ... 111

4.4.5 Knowledge Acquisition Module ... 112

4.5 A TUTORIAL FOR SIMULATION MODELLING: AN EXAMPLE 113

4.5.1 Student Activities During Instruction .. 117

4.6 Deploying Applications over the World Wide Web .. 119

4.7 Summary ... 120

CHAPTER 5. EVALUATION OF THE GENERIC INTELLIGENT TUTORING

SYSTEM ARCHITECTURE (GENISA) .. 122

5.1 INTRODUCTION .. 122

5.2 CONDUCTING EVALUATION OF THE GENERIC ARCHITECTURE 123

5.2.1 Evaluation Objectives ... 124

5.2.2 Evaluating the Generic Architecture ... 12.+

5.2.'+ Evaluating the User Interface .. 126

5.2.5 Evaluating the Implementation ... 127

5.2.6 Assessing the Design of the Generic Architecture ... 127

5.2.7 Informal Evaluation .. 129

5.3 USER TRIAL ... 129

5.3.1 Questionnaire ... 129

5.3.2 Evaluation Criteria .. 130

5.3.3 Evaluators .. 130

-

:\ Generic :\rchItL'cture for Interadive Intelligent Tutoring Systems T. A. Alolagbe

Table of Contents
IX

5.3.4 Results and Interpretation of the Questionnaire ... 131

5.4 HEURISTIC EVALUATION ... 135

5.4.1 Procedure Used .. 136

5.4.2 Results of Heuristic Evaluation ... 136

5.4.3 Observations and Comments ... 137

5.4.4 Heuristic Evaluation: Concluding Remarks ... 138

5.5 CRITIQUE AND SYNTHESIS OF EVALUATION RESULTS .. 139

5.6 SUMMARY ... 141

CHAPTER 6. REFLECTION 143

6.1 INTRODUCTION .. 143

6.2 THE GENERIC ARCHITECTURE .. 143

6.2.1 Generic Architecture for Intelligent Tutoring System .. 144

6.2.2 Reusable Components for Intelligent Tutoring System .. 145

6.2.3 Knowledge Base ... 147

6.2.4 Automated Knowledge Acquisition Module .. 148

6.3 A METHODOLOGY FOR INTELLIGENT TUTORING SYSTEM DEVELOPMENT 149

6.3.1 The Concept ... 149

6.3.2 The Proposed Methodology for Developing Intelligent Tutoring Systems 151

6.3.3 Usability of the Proposed Methodology .. 160

6.3.4 Trade-offs Between Traditional and Proposed Methodology 162

6.3.5 Evaluation of the Proposed Methodology .. 165

6.4 IMPROVEMENT PROPOSALS FOR INTELLIGENT TUTORING SYSTEMS 166

6.4.1 Architecture Requirements ... 167

6.4.2 Implementation Requirements .. 169

6.4.3 Security and Constrained Execution .. 171

6.4.4 Dynamically Programmable Student Model .. 171

6.4.5 Reasoning with Multiple Diagnostic Components ... 172

6.5 SUMMARY ... 174

CHAPTER 7. SUMMARY AND CONCLUSIONS .. 175

7.1 INTRODUCTION .. 175

7.2 SUMMARY OF CHAPTER CONTENTS ... 175

7.3 CONCLUSIONS ... 177

7.3.1 Components Portability and Reusability ... 177

7.3.2 Knowledge Representation ... 170

--.--- -------------------------------
:\ (icneric Architecture for Interactive Intelligent Tutoring Systems T A. Atolagbe

Table of Contents x

7.3.3 The Generic Architecture .. 180

7.3.4 Facilitating Design Processes .. 181

7.3.5 Summary of Conclusions/Contributions .. 183

7.4 FURTHER RESEARCH ... 186

7.4.1 Instructional Factors · .. 187

7.4.2 Development Environment ... 187

REFERENCES .. 189

APPENDICES .. 230

APPENDIX A. BACKGROUND RESEARCH MATERIALS ... 231

APPENDIX B. BAYESIAN NETWORK .. 2.+7

APPENDIX C. EVALUATION CRITIERIA ... 260

APPENDIX D. EVALUATION QUESTIONNAIRE ... 267

APPENDIX E. EVALUATION DATA .. 277

APPENDIX F. HEURISTIC EVALUATION .. 280

APPENDIX G. INFORMAL ENQUIRIES .. 282

A Generic Architecture for Interactive Intelligent Tutoring Systems T A Atolagbe

List of Figures

Figure 1.1

Figure 2.1

Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Figure 3.5

Figure 3.6

Figure 3.7

Figure 4.1

Figure 4.2

Figure 4.3.

Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7

Figure 4.8

Figure 4.9

Figure 4.10

Figure 4.11

Figure 4.12

Figure 4.13

Figure 4.14

Figure 4.15

Figure 4.16

Figure 4.17

Figure '+.18

Figure 4.19

Figure 6.1

Figure 6.2

Figure 6.3

Xl

LIST OF FIGURES

Main Research Methods ... 12

ITS Components ... ~o

Observer Pattern ... 53

Knowledge Representation ... 58

A Component Diagram ... 59

Main Modules of the Generic Architecture ... 62

Instructional Design Process ... 64

GeNisa Architecture ... 7 3

Web-Based Learning Environment Components ... 83

Model of GeNisa Design Environment ... 87

Case Diagram for a Courseware .. 88

Structural Model Diagram of a Tutoring System ... 89

A Sequence Diagram for a Tutor .. 90

Section of GeNisa Design Environment Class Library 92

Events Communication Subsystem ... 94

Screenshot of GeNisa Development Environment.. ... 97

Design Assistant. .. 98

GeNisa Learning Environment ... l 01

Tutorial Remediation .. 102

Pedagogical Model ... l 07

Structure of GeNisa Student Model .. 11 0

GeNisa Reference Library .. 112

Scenario Events ModeV Operations .. 115

Simulation Applets ... 116

Client Interview .. 118

Case Diagnostic Tools .. 118

Quiz Tool ... 119

WWW Interface ... 120

Schematic Representation of the Proposed Methodology 151

Proposed Methodology for ITS Development ... 155

Abstraction Method for a Domain-Specific Application 156

A Gl'neri(Architecture for Intera(ti\"e Intelligent Tutoring Systems T A. Atolagbe

List of Tables

Table 2.1

Table 4.1

Table 5.1

Table 5.2

Table 6.1

Table 6.2

Table 6.3

Table 7.1

xii

LIST OF TABLES

Examples ofWWW-BasedITS Authoring Software ... 30

A Summary of Advantages of the GeNisa Design Environment 99

Description of Evaluation Groups ... 131

Performance Score ... 132

Summary of the Trade-offs between Traditional and Proposed Methodology .. 164

Evaluation of the Proposed Methodology .. 165

Summary of Proposals for Improvement of ITS .. 173

Research Objectives and Outcomes/Contributions .. 184

~\- (il~nenc Architecture for Interactive Intelligent Tutoring Systems I A ,\tolagbe

List of Abbreviations

AI

API

CAL

CAl

CLOS

COM

COREA

DAG

DCOM

GFP

GUI

ITS

UML

OLE

OMT

OMG

OO-DBMS

OODM

LIST OF ABBREVIATIONS

Artificial Intelligence

Application Programming Interface

Computer-Aided Learning

Computer-Aided Instruction

Common Lisp Object System

Components Object Module

Common Object Request Broker Architecture

Directed Acyclic Graph

Distributed Common Object Model

Generic Frame Protocol

Graphical User Interface

Intelligent Tutoring Systems

Unified Modelling Language

Object Linking and Embedding

Object Modelling Technique

Object Management Group

Object-Oriented Database Management System

Object-Oriented Development Methodology

--- - -- -----------------
:\ (icneflc :\rcilltl'cture for Intcral'tl\e Intdligent Tutoring Systems

xiii

T A. Atolagbe

Chapter I: Introduction

CHAPTER!

INTRODUCTION

1.1 Introduction

This thesis investigates potential methods for developing a generic architecture for Intelligent

Tutoring Systems (ITS). In particular, it investigates the methods and techniques used for

analysis, synthesis, and refinement (i.e. development) of the ITS. This chapter introduces the

areas of ITS and addresses the use of computers in education in general. Artificial Intelligence

(AI) has been applied to education in many different disciplines for widely diverse purposes

(Murray, 1999), (Murray, 1996), (Anderson, 1990), and such application has been declared to be

"inevitable" (0' Shea and Self, 1983). Nonetheless, despite ever growing focus on the computer

as a dominant medium in the field of educational technology (Saljo, 1996), (Koedinger et aL

1995), (Ely, et al. 1988), there are different opinions concerning the use of AI in the context of

teaching tools and some authors have criticised such an approach as being of poor quality

(O'Shea and Self, 1983). Before an ITS can be employed, it must have a knowledge base from

which to teach. That knowledge must be represented in a form to be useful both for

researcher/developer standpoint and from the point of view of presenting knowledge to student

(Anderson et aI., 1992), (Self, 1999).

ITS use AI techniques for representing knowledge and carrying out interaction with a student

(Murray, 1996), (Clancey, 1987), (VanLehn, 1988), (Yazdani and Lawler, 1986). For a

computerised instructional system to be considered "intelligent," it needs to know what, when,

and how to teach the subject matter (Wenger, 1987), (Ohlsson, 1987). That is to say, the tutoring

system must have an expertise in the domain being instructed as well as the capability to assess

how learners are progressing in their knowledge/skill acquisition. Additionally, as ITS may be

considered as complex systems that are costly to develop, it is opportunistic to investigate these

concepts within the context of the software engineering concept of reusability. This research

investigates ITS with an emphasis on exploring the possibility of developing a reusable

architecture for ITS development. This poses the following research question: is it possible to

develop an interacti ve. dynamic, reusable and portable component-based architecture for ITS?

.--- ._-------------------
A (,cncnL' :\rchitcL'lurL' for IntcrJctl\'e Intelligent Tutoring S~stcms T A. Allliagbe

Chapter I: Introduction

ITS when compared to conventional classroom instruction can improve achievement levels of

students, when tutored on a one-to-one basis (Shute and Psotka, 1996), (Bloom. 198-t.), (Anania.

1983). In this method the student and the tutor collaborate in the process of instruction

(Goodyear, 1991). Unfortunately, one-to-one tutoring is expensive, and there are limited skilled

human tutors to do all of the necessary tutoring (Murray, 1990). Computer-based training (CBT)

and computer-aided instruction (CAl) systems were the first such systems developed as an

attempt to introduce computers into the classroom (Wenger, 1987). In these systems. the

instruction was not adaptable to the learner's needs or abilities (Ohlsson, 1991). Although both

CBT and CAl may be somewhat effective in helping learners, they do not provide the same kind

of adaptive learning that a student would receive from a human tutor (Brusilovsky. 1998),

(Murray, 1996), (Bloom, 1984). However, for a computer-based instructional system to be

adaptable, it must have the ability to reason with the domain and the learner (Wenger, 1987).

Therefore, there is a considerable scope for research in this direction.

Knowledge acquisition is widely acknowledged as bottleneck in building ITS (Murray, 1997),

(Hoffman, 1987), which is exacerbated by the lack of skilled intelligent components developers

(Bell, 1998), (Durkin, 1994), (Hayes-Roth et aI., 1983). This knowledge acquisition bottleneck

has hampered the wide spread use of ITS in schools and in organisations (Anderson, 1987),

(Ohlsson, 1987), (Murray, 1997). The bottlenecks may be due to the lack of structure in the

organisation of the knowledge base, which may hinder the development, maintenance and

reusability of these systems. Furthermore, it may be attributed to the choice of implementation

platform and inconsistencies in ITS architectures that uses different reasoning techniques and

representation formalisms.

Constructing an ITS by reusing previously developed components has always been a subject of

considerable interest to ITS research and development (for example, (Sparks et al., 1999), (Ritter

and Koedinger, 1997), (Roschelle and Kaput, 1995) (Mizoguchi, 1995». Ohlsson (1987)

postulates that an ITS should provide moment-by-moment adaptation of both content and form of

instruction to the changing cognitive needs of the individual learner (VanLehn, 1996b), (Voss et

al., 1995). In order to achieve these objectives, the system must be adaptive to the student

instructional needs and provide useful explanations of student's misconceptions (VanLehn.

1996a), (Smith et al., 1993).

This research il1\'estigates how ITS can use AI techniques to support ITS development activities.

The extant research focuses on exploring the potential of various learning strategies and

knowledge representation formalisms for instructional purposes. Another theme is the design of

A (il'm~nc :\rchitL'cture for Intcracti\e Intelligent Tutoring Systems T A Atolagbc

Chapter 1: Introduction 3

reusable ITS components (Murray, 1999), (Sparks et aL 1999). (Ritter and Blessing. 1998). The

major concern here is to design and implement reusable ITS components capable of facilitating

communication between the different components of the system and the user. The related issues

concern what type of knowledge formalism is required to support adaptation and what internal

mechanism is needed to capture the knowledge and to enable adaptive functionalities (Murray.

1996), (Brusilovsky et aI., 1996), (Brusilovsky, 1998). The investigation of these issues is guided

by contemporary learning theories, software engineering principles and supported by empirical

data (Self, 1990a), (Self, 1992).

Review of the current literature shows that there are too few ITS-related publications to make

informed design decisions about ITS authoring tools and evaluation (Clancey. 1993). This may be

attributed to the fact that ITS are "difficult and expensive to build" (Murray, 1998). Therefore.

this research investigates the feasibility of increasing productivity in ITS development by reusing

and extending ITS components on different domains and across platforms.

Components of an ITS consist of the following: (i) tools that contains a component with expertise

in teaching (Murray, 1999), (Anderson and Pelletier 1991), (Wenger, 1987); (ii) tools that

contains an explicit modelling of expert knowledge and cognitive processes to support learners

during problem solving (Anderson et aI., 1995), (Gertner et aI., 1998), (VanLehn. 1988); (iii)

diagnosis of students' knowledge (correct, incorrect, and missing), (Ohlsson, 1987), (Wenger.

1987); and (iv) detection of student errors and to provide feedback specific to those errors

(Murray, 1996), (Shute and Psotka, 1996), (Gugerty, 1997), (Wenger, 1987). Bums and Capps

(1988) identify these areas as components of an ITS and refer to these as the expert model, the

student diagnosis module and the curriculum and instruction module. Anderson (1988) similarly

identified knowledge representation and tutoring methodologies as areas suitable for the

application of intelligence. Self (1988; 1999) suggests that these approaches are inadequate and

do not "map well". This may be attributed to the fact that ITS are monolithic and there is no

clear-cut architecture used for implementation (Self, 1999), (Wenger. 1987), (yazdani, 1987).

This thesis investigates how component-based development approach (Koedingeret aI., 1999).

(Rosche lIe et al.. 1999), (Ritter and Koedinger. 1997), (Roschelle et aI., 1998), (Suthers and

Jones. 1997) can use AI techniques for developing ITS. In the context of this thesis, a component

is defined as an architectural building block. which provides a unit of independent module and

functionality. i.e. not bound to a particular program. language or implementation (Orfali et al..

1996). As such. components can be implemented as objects or as compositions of collaborating

objects. and packaged as independent pieces of code. This approach has been adopted as the

--- --------
A Generic Architecture Ill[Interactive Intelligent Tutoring Systems

Chapter 1: Introduction

framework for sharing semantics (the nature of the compositions and the role of each component)

across ITS components and their applications (Koedinger et aI., 1999), (Koedinger et al.. 1997),

(Macrelle and Desmoulins, 1998).

Current implementations of component-based approaches are inadequate for building component­

based ITS in which the components must respond interactively to the user's needs (Ritter and

Koedinger, 1997). Furthermore, ITS have not achieved reuse and component reuse may be costly

(Sparks et aI., 1999), (Murray, 1996). Therefore, it seemed feasible to try an implementation of

the component-based approach that would be more suitable for ITS and to investigate the

potential benefits that could be achieved. This approach may provide methods for addressing the

knowledge acquisition bottleneck (Wenger, 1987) that characterises ITS development.

The aim of this thesis is to investigate the requirements of a ITS authoring tool development

methodology.

The remainder of this chapter discusses this research area and states the problem investigated in

this research, together with justification for doing this research. A brief review of development of

ITS is provided. This is followed by the motivation for this research, research objectives and

outline of this dissertation.

1.2 Research Area

A significant number of ITS architectures have been suggested (Paul et aI., 1998), (Siemer and

Angelides, 1998), (Siemer et aI., 1998), (Ritter and Blessing, 1998), (Atolagbe and Hlupic,

1997a; 1996), (Ritter and Koedinger, 1996), (Murray, 1996), (Leitch et aI., 1995), (Doukidis and

Angelides, 1994), (Major and Reichgelt, 1991), (VanMarcke, 1992), (Wenger 1987). These

architectures provide three ITS components: navigation, content delivery and controls. The

behaviour and interaction of these components usually depend on implementation methodology;

and these architectures focus on one or more ITS component to varying details. Furthermore,

some earlier systems tried to keep domain knowledge and teaching strategy independent in order

to maximise reuse of the tutorial system in other domains, but they found this unsatisfactory for

teaching purposes (Murray and Woolf, 1992), (Major, 1993). For example SCHOLAR (CarbonelL

1970) and WHY (Collins et al.. 1975) emphasise knowledge representation (domain expert) and

tutorial dialogues (pedagogy model). BUGGY (Brown lmd Burton, 1978), DEBUGGY (Burton,

1982), and PROUST (Johnson and Soloway, 1984) emphasise student modelling (student model).

-_._----------------------------------
:\ (JellL'ri(:\rchitl'(tUl"l' for Interactive Intelligent Tutoring S~ stems T ;\ Awlagbe

Chapter 1: Introduction 5

MENOTIJTOR (Woolf and McDonald, 1985) emphasises tutorial discourse strategies (pedagogy

model and inference engine). These systems have static and shallow knowledge representation

formalisms (Murray, 1996), (Atolagbe and Hlupic, 1996).

Research and development in ITS are generally based on a standardised method for application

development and implementation (Self, 1999), (Murray, 1999), (Murray, 1997), (Wenger, 1988).

This may be attributed to the difficulty of knowledge representation and reasoning (Musen.

1993), (Hoffman, 1987). Furthermore, most extant research may be hindered by the following

factors:

1. The expert model is an implementation dependent model of expert problem solving

knowledge, with limited interaction (Wielinga and Breuker, 1990), (Lesgold et al., 1989),

(Anderson, 1988). These systems cannot easily accommodate new knowledge (Murray,

1997), (Hoffman, 1987). Therefore, the use of multiple methods of accomplishing a task,

with varying degrees of skill, may help the learner's knowledge acquisition process

(VanLehn, 1996a) and enables the learner to view learning as a continuing process

(Vygotsky, 1978).

11. The instructional contents may not be detailed and flexible enough to provide the support

needed in real applications (VanLehn, 1996a), (Anderson et al. 1995). Furthermore, the

instructional techniques may consist of "bugs", which may result in misconceptions of the

application area (Brown and Burton, 1978), (Anderson, 1987), (Anderson, 1990).

111. Instructional contents and problem-solving methods are the result of sequence of actions,

which may help to achieve the instructional goals (Anderson, 1990), (Cohen and

Feigenbaum, 1982). These approaches use algorithms to aid the elicitation of content

knowledge, and their implementation are usually domain specific (Murray, 1996).

IV. In order to make ITS development more manageable, ITS are generally developed for

specific domains (Wenger, 1987), (Ohlsson, 1987). Therefore the tools and domain contents

are specific for that application (Murray, 1999), (Murray, 1997). Also, the individual

components may have little access to the functionality of other components, and the

components may use different representation methods and programming languages.

v. Maintenance of developed components is a great problem because the software functionality

changes very rapidly as the domain changes (Orey et al., 1993). Therefore, when ITS

components changes in such a way that it affects the conceptual objects, then the courseware

must change as well.

VI. The student models are generally content specific (Lesgold et al., 1993). (Self, 1990). The

student model should involve long-term attributes and should preserve the skills across a

A Gl'neric Architecture for Interactive Intelligent Tutoring Systems T A Atolagbe

Chapter 1: Introduction
6

range of tutorials. These attributes of the learners such as the student model, the pedagogic

knowledge and performance profile should be preserved across a range of tutorials.

VB. The formalisms used to represent knowledge in some ITS lack organisation, which may

hinder knowledge management and portability.

These observations demonstrate that there might be some benefits to examine and investigate the

features that make ITS components difficult to reuse. Therefore, this research investigates

whether it is feasible to develop an architecture for ITS that consists of reusable components for

application development and for instruction. The aim is to develop a framework that will

facilitate developer/leamer activities, and to enhance the effectiveness of their activities (Murray,

1999), (Bloom, 1956). Furthermore, this research investigate ways by which different types of

knowledge can be represented and in different ways in order to achieve portability and reusability

(e.g. (Murray, 1998), (Wielinga and Breuker, 1990».

This research investigates methods for addressing these limitations based on the premise that AI

and education research should be capable of modelling and supporting learning processes and that

these processes are different across domains.

1.2.1 Intelligent Tutoring Systems

The classic ITS model involves four distinct components: an expert model to provide domain­

specific knowledge, a tutor model to provide pedagogical knowledge, a student model to provide

some estimate of the student's knowledge state, and an appropriate human computer interface for

both the domain and instructional components of the system (Clancey, 1987), (VanLehn, 1988),

(Halff. 1988), (Bums and Capps, 1988), (Wenger, 1987), (Woolf, 1992).

Different ITS architectures have been described in the literature (Murray, 1999), (Self, 1999),

(Shute, 1995). This research investigates the feasibility of using a component-based approach

alongside conventional ITS methods in order to develop a generic intelligent architecture for ITS.

This research also aims to investigate the viability of using artificial intelligence techniques

(knowledge-based system, planning and heuristic rules), object-oriented software engineering,

and component-based approach to produce an intelligent environment for developing ITS and for

delivering instruction.

Part of the knowledge acquisition problem stems from the monolithic nature of ITS and the

inability to integrate with other environments (Murray, 1997), (Shute, 1993). Therefore. rrs may

:\ UenL'ric :\rchltccture for Interactive Intelligent Tutoring Systems T A. Atolagbe

Chapter 1: Introduction

be conceptualised as consisting of several interdependent components such as the user interface.

student model, etc. (Wenger, 1987), (Self, 1987), (Self, 1999), (Ohlsson, 1987) (Suthers. 1992).

(Winkels et aI., 1990), (Clancey, 1987), (VanLehn, 1988).

Researchers in ITS and other domains have worked towards the development of shareable and

reusable problem-solving methods and knowledge bases (Chandrasekaran et al.. 1999).

(Chandrasekaran, 1988), (Chandrasekaran, 1986), (Walther et aI., 1992). (Eriksson et al.. 1996).

(Wielinga et aI., 1993). The aim is to reduce development and maintenance costs, and to build

flexible, component-based systems that can be adapted to different environments (Murray, 1996).

In order to investigate the viability of such systems, this research explores the use of object­

oriented methods (Booch, 1994) for facilitating the development of ITS components. and to

enable systems to inter-operate with commercial software and Internet resources (Brusilovsky

and Cooper, 1999), (Brusilovsky et aI., 1996), (Ritter and Koedinger, 1995). This approach might

help reduce the cost and time for developing an ITS (Murray. 1996). (Murray, 1997) and to

enable greater collaboration between users, allow components and instructional material to be

shareable between diverse applications across the Internet.

Researchers have built large-scale environments or toolkits for constructing ITS components. For

example, KREST (Steels, 1990), VITAL (Shadbolt et aI., 1993) and PROTEGE-II (Puerta et aI.,

1992) are all architectures for the development of components and component-based systems, yet

none of these can use components built outside their own environment. Therefore, an ITS

authoring environment needs to incorporate tools for managing evolving software components

and versions management (Murray, 1999). It appears that it could be reasonable to assume that

the development of the generic architecture for ITS is feasible.

1.2.2 Addressing the Knowledge Acquisition Bottleneck

The use of interactive hypermedia in ITS is emerging as a popular and innovative medium for

ITS developers and researchers (Wong and Chan, 1997). (Angeleidis and Tong. 1995).

(Brusilovsky et al.. 1996). Interactive hypermedia provide a more flexible approach to learning

that departs from current classroom instruction. Brusilovsky (1997; 1998) argued that the abi Ii t y

to adapt ITS to students' background and knowledge had rendered the hypermedia approaches to

be more effective as an educational tool. World Wide Web (WWW) based training and ITS

represent an excellent integration of the advanced technologies. WWW browsers overcome many

of the shortcomings of traditional Computer Based Training (CBT) packages by affording

A Cicnenc Architecture for Interactl\L' Intelligent Tutoring SystL'ms T.\ Atolagbe

Chapter 1: Introduction 8

platform-independent supports. Adaptive navigation with an individualised user model and

training materials can easily be updated (Weber and Specht, 1997), (Brusilovsky et al.. 1996).

Software tools have been developed to address knowledge acquisition bottleneck (Boose, 1988).

but this approach is generally based on the use of contrived tasks in order to identify conceptual

dependencies between components data (Murray, 1997). Also, using an authoring tool to build an

ITS involves both knowledge acquisition and design processes (Murray, 1997). Therefore. it

seems feasible to attempt an implementation of an ITS architecture that supports the overall ITS

design process, in order to investigate the potentials that could be achieved.

This research explores how AI and Object Oriented (00) techniques can be used to reduce the

effort required for developing an ITS. In doing so, a framework is constructed in which all the

advantages of object oriented design such as extendibility of architecture and reusability

beneficial effects may be tested. To build this framework the issue of explicit specification of

component mechanism, functionality and why it may be beneficial must be addressed.

1.2.3 Component-Based Architecture

In the component-based architecture (Jacobson et aI., 1997), (Spewak, 1992), (Shaw and Garlan,

1996), (Booch, 1998), (Szyperski, 1998) the underlying design goal is to accommodate

reusability and sharebility, and allows more effective composition of independently developed

components across platforms (Roschelle et aI., 1999), (Booch, 1998), (Roschelle and Kaput,

1997), (Cox, 1996). Component-based architecture also provides a set of building blocks for

constructing interoperable components, applications and systems of applications. This framework

is open, object-oriented, and supports multi-platform. It also allows users to take advantage of

multiple programming languages (Szyperski, 1998), (Booch, 1996), (Jacobson et aI., 1997).

ITS development reqUIres significant programmmg skills (Major. 1995), (Murray, 1998).

Furthermore, ITS components development and their interaction may be hampered either by the

lack of a precise specification of an ITS architecture and/or by having it encoded in terms of

implementation details. Therefore, reuse of development methodology may be hampered by the

inability to precisely define a developmental framework.

The possibility of reusing ITS components may prove more economical (Sparks et al.. 1999) for

researchers and developers, but it also presents some software architecture challenges in order to

ensure flexibility, interoperability, and scalability of components. Therefore. this research \\ill

:\ Generic Architecture for Interacti ve Intelligent Tutoring Systems
T. A. Atolagbc

Chapter 1: Introduction 9

investigate the feasibility of using a component-based architecture for developing a genenc

architecture for ITS.

A component may encapsulate multiple classes (Booch, 1994), and can therefore be viewed as

being analogous to conventional modules. Also, a class can serve as the building block from

which application is constructed (Booch, 1994), (Rumbaugh et al.. 1991). Howe\'er. these

modules can be viewed as classes, as they support the object-oriented mechanisms of

encapsulation and inheritance. Additionally, the components offer a great degree of flexibility

because they are generic with respect to the components from which they inherit.

There are some authoring systems that support components sourced outside of their own

environments, such as HyperCard (Apple, 1997), (Apple, 1993), and AuthorWare (Macromedia,

1997). However, these systems are principally designed and mostly used as closed proprietary

en vironments.

This research will explore component-based approach in the light of how it can be used to address

the knowledge acquisition bottleneck that is inherent in ITS (Murray, 1997), (Musen and

Schreiber, 1995), (Hoffman, 1988) by (i) focusing on specific application classes and (ii)

developing component based modules for these applications. The components in the software

architectures are generic and interact with one other component through an interfaces i.e. an inter­

application communication manager. As needed, the generic components may be parameterised

to simplify customisation for particular applications.

In contrast to traditional ITS components (Wenger, 1987) development, the components are

designed from the outset to be composed from existing software components that can be used in a

variety of environments. By revealing the shared components of different systems at the various

levels of generality, component-based architecture may promote the design and implementation

of components and subsystems that are reusable, cost-effective and adaptable (Booch. 1994),

(Jacobson et al., 1997).

1.2.4 Pedagogical Agents

Pedagogical agents are a contemporary approach for making computer-based learning more

engaging and effective (Johnson et aL. 1998). A pedagogical agent is a type of autonomous agent

that can be used in a learning environment to support pedagogical. communicative. and tutorial

tasks (Clancey. 1983), (Carbonell, 1970).

A (,cneric :\rchitecture for Interactive Intelligent Tutoring Systems T A Atolagbe

Chapter 1: Introduction 10

Pedagogical agents consists of animated interface agents (Andre, 1999), (Ball et aI .. 1997).

(Hayes-Roth and Doyle, 1998), and graphical user interface to provide an effective environment

for learning (Lester et al., 1999). Pedagogical agents use knowledge-based learning environments

(Carbonell, 1970), (Sleeman and Brown, 1982), (Wenger. 1987), to support instruction.

Pedagogical agents combine these two areas of AI, in order to provide a more effective

instructional environment (Lester et al., 1999), (Elliott et al., 1999), (Ritter, 1997).

Pedagogical agents provide means for learners to learn and practice skills in a virtual world. and

can interact with students through mixed-initiative, tutorial dialogue (Hume et at.. 1996). (Fox.

1993), (Carbonell, 1970), (Burton and Brown, 1982). The agent can be used to demonstrate how

to perform a task (Rickel and Johnson, 1999) and assist the learner during problem solving tasks.

This research will also explore the feasibility of using pedagogical agents to support instructional

environment and to increase the bandwidth of communication between students and their learning

environment (Rickel and Johnson, 1999). Other pedagogical approaches such as RAP (Firby,

1994) and Soar (Laird et al., 1987) are agents that can seamlessly integrate planning and

execution, and can readily adapt to changes in their environments. However, the need to support

instruction imposes additional requirements on the developer. Therefore. in order to support

instructional interactions, a pedagogical agent requires a deeper understanding of its domain, the

rationale for carrying out a task, and relationships between actions, than would be needed to

perform the task (Clancey, 1983).

1.3 Research Objectives

The specific objectives of this research are:

l. To review critically ITS published literature, with a particular focus on ITS components,

reusability issues and interactivities. Then, to examine critically the issues associated with

current ITS architecture from a generic architecture perspective, therefore establishing the

basis for this research.

ii. Propose a methodology for developing Intelligent Tutoring Systems.

Ill. To develop a prototype of a multi-platform learning and authoring environment. reusable

for different scenarios and applicable to other domains. The objective is also to explore the

possibility of developing a portable toolkit that wi II facilitate the development of ITS.

---_._-----------------
A Genen~' Architecture for Intera(tivc Intelligent Tutoring Systems T A_ Atolagbe

Chapter 1: Introduction 11

Modular independence is necessary so that one module of the ITS component can be altered

or replaced without affecting the other components.

IV. To investigate how ITS can use case-based reasoning to represent knowledge and use those

representations to monitor and reason about user learning processing and to guide remedial

learning in order to improve the instructional processes.

v. To evaluate critically and empirically the effectiveness of the authoring and learning

environments implemented.

VI. To identify required future developments of ITS.

1.4 Research M9thods

Self (1999) asserted that ITS research is usually part of a multidisciplinary endeavour, and adopts

several methodological paradigms (Galliers 1992), (Dillenbourg et al.. 1996). Theoretical

constructs, application design, implementation and refinement constitute the core activities of the

discipline (Stolterman 1995), (Self, 1990). However methodological and theoretical problems are

inherent to epistemological investigation and ITS development in general. Therefore, this

research employs different research perspectives (Galliers, 1992), (Galliers, 1991), (Galliers and

Land, 1987), (Klein et al., 1991) in order to perform research towards addressing those

difficulties that characterises ITS. This research objectives will be investigated by using action

research (Patton, 1990). Action research involves not just appreciation of a research

methodology, but also epistemological rationale that supports the study (Patton, 1990). Moreover,

this involves the links between different research activities, and includes empirical studies and

conceptualisation (Gibbs, 1995), (Patton, 1990), (Simonsen, 1994), (Klein et al., 1991). Figure 1

depicts the main research methods used for the overall study. Essentially, this includes:

1. Empirical Studies. The first part of this research involves the review of published literature

that spans different areas of ITS including various aspects of cognitive and instructional

theories, AI, and software engineering thereby establishing a compressive background

theory for this research. The reviewed literature will be critically examined, which helps in

attainment of deeper and more thorough understanding of this research area. This helps to

identify difficulties in ITS development process, ITS components, the techniques for

modelling users' dialogue, and knowledge representation formalisms, which translate into

conceptualisation; and to perform research towards addressing these difficulties, by

designing and implementing a prototype that addresses these limitations.

A ('L'ncric Architecture for Interactive Intelligent Tutoring Systems T. A AtoIagtx

Chapter 1: Introduction I::!

An inherent part of the latter effort is to critically evaluate the prototype, to assess whether it

actually does address these limitations and to identify advantages and weakness of the

methods used for the design and implementation of the final product of this research. This

research employs both user trials (Monk et al., 1993) and usability heuristics (Nielsen, 1994)

evaluation methods. The evaluation process will seek to critically appraise each component of

the system and the functionality of the component methods. This should provide solid basis

for further appraisal and re-conceptualisation of design and implementation processes.

Start I ,
1 Literature /

Review
Identify Appropriate

Develop Conceptual Research Strntegy .- Framework
Identify and Chou:c of devdopnenl

Critique of Clarify Research Examine IUld Identify Component -+ mdhodoloay/Dcslgrl.

Literature ..-. Question!
models, lnstructional factors, and implementabon III\d Pro~

I Requirements
Development strategies langull&c

\.

I
t

Design and
Implement Prototype

Debugging and
Testing

t /
Conduct Multiple Evaluation

Arrange, Anal yse and
Identify

Evaluation 1---+ Assessment of Software System Collate the

~
Interpret Data

firouos
Identification of Evaluation Criteria ~ Evaluation IntefJ,.-et and Anulysi. 1

Oevelopment of Questiun Oat a
Responses

\..

I
t Conduct Retlectionl

Draw Refinement Set out Research

Conclusions I--- Results and
I (Propos. McthodologylFulU« I ronc1usions

Rcqwremt=nU

t
[Stop

Figure 1.1 Main Research Methods

11. Conceptualisation. The conceptual bases for this study are determined in VIew of

epistemological rationales supporting existing theories (based on the reviewed literature),

component-based approaches, knowledge representation formalisms and ITS development in

the light of how to design and implement a prototype of a generic architecture for ITS.

Essentially. this stage is responsible for establishing an informal, highly structured, specific

mechanisms or notations and initial system specification (Th et al.. 1993), (Rumbaugh et

al., 1991) that is derived from reviewed literature. This approach facilitates the initial

system development, to examine the interactions between components of the architecture

------ --
,.\ (;~nt'nc "\rchill'clure for Interactive Intelligent Tutoring S~ stems T. A. AlOlagbc

Chapter 1: Introduction
13

and to identify the required component functionality, without details of the design or

implementation (Rumbaugh et aI., 1991), (Garlan and Shaw, 1993). Furthermore, the

resultant architectural structure and components will provide both framework and access to

the necessary data and methods to permit development of consistent, interoperable, and

reusable representations of the generic architecture.

The design and implementation of the generic architecture will take the form of guidelines and

principles for software engineering (Sommerville, 1998), and object-oriented methods (Booch,

1994), (Rumbaugh et aI., 1991) to support modularity, portability, and extendibility. This

approach allows this research to examine critically how object-oriented methods and component­

based development may be used to address the knowledge acquisition bottleneck inherent in ITS.

The conceptualisation, design and implementation of the generic architecture should be regarded

as grounding in reality, for motivating and directing this research towards engineering reusable

components for ITS, and for justifying the conclusions for this study more concretely.

1.S Dissertation Outline

This chapter discusses the background, aims and rationale of this research.

Chapter 2 reVIews the literature on Intelligent Tutoring Systems with reference to ITS

development methodologies and component reuse, thereby identifying the problem domain for

this research. Reviewed literature spans various fields of ITS, which helps to establish a

comprehensive background theory for this study. Particular focus is placed on ITS components,

instructional strategies, knowledge representation formalisms, and teaching with case-based

reasoning. This chapter also presents critique of reviewed literature and comparison of the generic

architecture with similar ITS.

Chapter 3 considers in more depth the benefit of a genenc architecture for ITS. Based on

literature review, this chapter presents the concepts of an open and reusable architecture and the

underlying activities involved are analysed. The chapter argues for the desirability and feasibility

of a domain-independent toolkit for ITS. The generality of the approach is illustrated by a

consideration of its possible application in a variety of subject domains. On the basis of the

literature, this chapter describes the conceptualisation of the generic architecture and its potential

as a reusable, portable architecture for ITS.

~.\- Cil'nl'ric Archlll'cture for Inter~ICll\'e Inlelligenl Tutoring Systems T. A. Atolagbc

Chapter 1: Introduction
14

Chapter 4 describes the genenc architecture development and implementation. A functional

description of each core component that populates the architecture is presented, along with its

implementation methodology and interactions. This chapter also discusses other functionalies of

the GeNisa environment within the contents of the architecture and development methodology.

This chapter also demonstrates the practicality of the proposed architecture.

Chapter 5 describes the evaluation of GeNisa prototype. The usefulness of the

development/learning environments, and the techniques used for the design and implementation

were evaluated. The evaluation uses empirical and heuristic evaluation methods. The empirical

method uses a questionnaire that was designed and distributed to different users, and feedback

was obtained and analysed. The heuristic evaluation was based on guidelines obtained from

literature to evaluate the elements of the system. This chapter also examines critically the data

collected during evaluation and outlines the results of the study, in terms of the effectiveness of

the architecture and whether GeNisa meets the requirements delineated in Chapter 3, together

with the potential of the architecture to be extended and reused.

Chapter 6 reflects on the design and implementation of the generic architecture. This chapter

extends and elaborates on the concepts of explicit planning and knowledge representation in the

light of the results of the study. The design choices and trade-offs available for implementing the

proposed methodology and for intermediate representations are considered. This chapter also

proposes a new methodology for ITS development and identifies requirements for the further

development of ITS. A comparison of the alternatives proposed was also provided.

Finally, Chapter 7 presents a summary of the work undertaken, and the conclusions that have

been drawn. It also describes some of the potential areas for future research that have arisen from

the research and development described in this thesis.

1.6 Summary

This chapter provides the main introduction to the issues covered by this research. Essentially. it

has identified issues such as developments, limitations and current paradigms for ITS.

This chapter has also discussed how this research was conceived. the motivations and the

research objectives. It has highlighted the areas of ITS, knowledge representation, pedagogical

A (ieneric Architecture for Interactive Intelligent Tutoring Systems T .\ . .\wlagbe

Chapter 1: Introduction 15

agents and ways of addressing the knowledge acquisition bottleneck of ITS; and discusses some

shortcomings of ITS. The chapter concludes by outlining the structure of this research.

A Generic Architecture for Interactive Intelligent Tutoring Systems T. A. Atolagbe

Chapter 2: Background Research Material 16

CHAPTER 2

BACKGROUND RESEARCH MATERIAL

2.1 Introduction

The research presented in this dissertation draws on a number of different fields of study. which

serves as a theoretical framework for this research and is subsequently conceptualised into

software design and followed by implementation. The aims are to investigate how software

engineering, cognitive psychology, AI, learning theories, and ITS field of study can be used to

enhance the development of the learning and development environment; to critically appraise the

characteristics, implementation and limitations of the reviewed systems; and to provide a critique

of issues, methods and techniques raised from reviewed literature. The requirements for the

generic architecture were derived from the reviewed publications. This was used to investigate

the potential benefits of implementing an ITS by using the generic architecture.

Appendix A provides detailed background literature survey for this research. The rest of this

chapter is organised as follows: Section 2.2 describes interactive instructional environments,

Section 2.3 describes ITS development methodologies, followed by a review of knowledge

representation methods in Section 2.4. This chapter concludes with a critique of literature and a

comparison of the generic architecture for ITS with other relevant projects, and draws

conclusions.

2.2 Interactive Instructional Environment

Interactivity is "a necessary and fundamental mechanism for knowledge acquisition and the

development of both cognitive and physical skills" (Barker et al., 1998). Interactivity is important

for the design of effective human computer interaction (Booth, 1989). (Norman and Draper.

1987), (Bunt, 1995). In the context of this research, interactivity is referred to as a method of

providing mechanisms that allow users to browse. annotate, link and manipulate components

(Ambron and Hooper, 1988). Schwier and Misanchuk (1993) introduced a detailed taxonomy of

interactivity based on three dimensions: levels (reactive. proactive, mutual), functions

(confirmation, pacing, navigation, inquiry, and elaboration) and transactions (keyboard. mouse.

and voice). The "levels of interaction are based on the instructional quality of the interaction"

,~\ Generic Architccture for Interactl\c Intelligent Tutoring Systems T :\ Atolagbe

Chapter 2: Background Research Material
17

(Schwier and Misanchuk, 1993), which reinforces the idea that the higher the level, the better the

instruction. The associated functions of interactivity include verification of learning. learner

control, learner interrogation and performance support, and knowledge construction (Dickinson.

1995), (Schwier and Misanchuk, 1993).

Interactivity is essential during ITS development, as it lays emphasis on the ways in which users

can access, manipulate and navigate through the instructional material (Brusilovsky 1996b).

(Akpinar and Hartley, 1996). The interactivity adapted in this thesis is based on Akpinar and

Hartley (1996) interactive methods. This provides a guide to different modes of communication

between computer and learner. By applying these interactive "concepts" to ITS design. the

various media elements can be integrated based on instructional decisions rather than visual

appeal, allowing more effective communication and therefore potentially more instructional

effectiveness (Jonassen, 1988), (Crawford, 1990). The following interactivity concepts were

based on Akpinar and Hartley (1996) interactive classification. This is necessary in order to

explore the potential benefits that could be realised for integration into ITS. It includes:

1. Object Interactivity. Refers to an application in which objects (buttons, icons, objects) are

activated by using a mouse. When a user "clicks" on the object, there will be some form of

audio-visual response. The functionality of such objects can be varied according to

consequential factors, such as previous objects encountered, previous encounters with the

current object or previous instructional performance/activity (Akpinar and Hartley, 1996),

(Nelson, 1994).

11. Linear Interactivity. Linear interactivity refers to applications in which the user is able to

move (forwards or backwards) through a predetermined linear sequence of instructional

material. This class of interaction does not provide response-specific feedback to learner

actions, but simply provides access to the next (or previous) display in a sequence. This

approach reduces the level of learner control (Schwier and Misanchuk, 1993), (Brusilovsky

1996b).

lll. Support Interactivity. One of the essential components of any software application is the

facility for the user to receive performance support, which may range from simple help

messages to complex tutorial systems. Support interactivity could be used to provide

context-sensitive information during instruction (Brusilovsky 1996b), (Akpinar and Hartley.

1996).

I\'. Update Interactivit\'. Relates to domain application components or events III which a

dialo{Tue is initiated between the learner and computer-generated content. Update eo

:\ (;l'ne[~IL' Architecture for Interactive Intelligent Tutoring Systems T A. Atolagbe

Chapter 2: Background Research Material 18

interactivity can range from the simple question-and-answer forms and learner feedback

(Brusilovsky, 1996b).

v. Construct Interactivity. The construct class of interactivity is an extension to update

interactivity, and requires the creation of an instructional environment in which the learner

is required to manipulate component objects to achieve specific goals. Unless the

construction was completed in the correct sequence, the task could not be completed.

Construct interactions require significantly more design and strategic effort, as many

parameters affect the successful completion of an operation (Akpinar and Hartley. 1996).

VI. Simulation Interactivity. Simulation interactivity extends the role of the learner to that of

controller or operator, where individual selections determine the training sequence. The

simulation and construct interactivity levels are closely linked, and may require the learner

to complete a specific sequence of tasks before a suitable update can be generated (Akpinar

and Hartley, 1996).

VB. Non-Immersive Contextual Interactivity. This concept combines and extends the various

interactive levels into a complete virtual training environment in which the trainee is able to

work in a meaningful, job-related context. Non-immersive contextual interactions require

significant effort in design strategy and work well with a rapid prototyping methodology

(Dickinson, 1995).

These interactive strategies provide a means for increasing the functionality of ITS and are useful

for enhancing human computer interaction and for interactive learning (Brusilovsky, 1998),

(Brusilovsky, 1996). Essentially, each interactive method should relate to the design of

instruction and didactic strategy (Brusilovsky, 1998). The interactive strategies may allow learner

to achieve the pedagogy objectives by performing one or more actions reiteratively (Bunt, 1995),

(Schofield et al., 1994), (Podmore, 1991). These interactive elements form the basis for designing

effective learning and development environments (Bunt, 1995), (Pea, 1993b).

2.3 Intelligent Tutoring Systems

Ohlsson (1987) has given a definition of ITS as a system that provides moment-by-moment

adaptation of both content and form of instruction to the changing cognitive needs of the

individual learner. ITS is used to address the deficiencies of computer aided instruction (Sleeman

and Brown. 1982), (Hartley and Sleeman, 1973). In its role as a knowledge communication

system (Wenger, 1987). ITS strives to optimise learning and problem-solving skills by means of

adaptive, individualised instruction (Wenger, 1987), (Brusilovsky, 1998). Current approaches use

-:\ Genaic Architecture for Interactive Intelligent Tutoring Systems T A Atolagoc

Chapter 2: Background Research Material
19

knowledge representation strategies and cognitive models of the student (Self, 1987), (Self.

1999), (VanLehn, 1988), (VanLehn, 1991), (Cristina et aI., 1997). What distinguishes an ITS

from a CAl system is the use of techniques such as explicit representations of knowledge,

inferencing mechanisms and natural language dialogue (Wenger, 1987), (Clancey, 1987). One

primary characteristic of ITS is using this knowledge for mUltiple purposes. For example, the

same piece of knowledge might be used for different purposes (e.g. formulating a question and

providing answer).

2.3.1 Intelligent Tutoring Systems Components

Three commonly used ITS components (Koedinger and Anderson, 1995), (Brusilovsky, 1995b)

(Burns and Capps, 1988), (Wenger, 1987), consist of an expert knowledge i.e. Expert model,

Student model which represents the student's current knowledge and experience and Pedagogy

model, which represents an instructional knowledge (Wenger, 1987). The pedagogy model

structures the interaction between the tutorial model and the student. The graphical user interface

components control communication between the student and the system (Ritter and Blessing,

1998). ITS do not only describe knowledge, but they are also able to apply and evaluate learned

knowledge (Wenger, 1987). Figure 2.1 illustrates the main components of an ITS. Various

research activities have been directed towards different aspects of these components in order to

focus on specific issues (Self, 1987), (Murray, 1996). The components of ITS are:

1. Student Model. The student model component is a representation of the student's knowledge

(VanLehn, 1988), (Self, 1987), (Ohlsson, 1987). It describes the character and performance

profile of the student's current state of knowledge and responses. Student models are

occasionally used to refer to the data structure, and for recognising student plans or solution

paths (Conati et aI., 1997).

The student model provides the basis for diagnosing learner problems and selecting appropriate

instructional mediation relating to tasks, problem-solving skills, methods and strategies (Siemer

and Angelides, 1998), (Katz et al., 1993), (Lajoie and Lesgold, 1992), (Halff, 1988). ITS uses the

student model in order to make instructional didactic decisions and diagnostic capabilities

(Brusilovsky. 1998). The structure of the student model can be derived from (i) the problem­

solving behaviour of the student, (ii) direct questions asked from the student, (iii) historical data

(based on assumptions of the student's assessment of his skill level, novice to expert. Eliot and

Woolf, 1995), (iv) the difficulty level of the content domain, and (v) constraints violated by the

student (Ohlsson, 1992). The ITS compares the student's actual performance to the student model

to determine if the student has mastered the content domain (VanLehn, 1988), (Self. 1987),

A G~nl'ric Architecture for Inter;ll'tlVe Intelligent Tutoring Systems T. A. Atolagbe

Chapter 2: Background Research Material 20

(Ohlsson, 1987), (Jameson, 1996), (Ohlsson, 1994). Advancement through the curriculum is

dependent upon the ITS assessment of the proficiency level of the student (Self, 1987). The

student model contains a database of student misconceptions and missing conceptions. This

database is known as the "bug library" (VanLehn, 1988), (Brown and Burton, 1978). "A missing

conception is an item of knowledge that the expert has but the student lacks. A misconception is

an item of knowledge that the student has but the expert does not" (VanLehn, 1988).

Different approaches have been used for the student model. Semantic networks have been used to

represent procedures and causal reasoning schemes; and for representation of the "Topic

Network" (Murray, 1998). Procedures may be embedded into the network, which can use the

semantic network to make inferences about the student model.

Domain Model

I ~;~e I
...... ----....(~(:: D Communication

--:; 1 ~t::. Module
Tutorial Model ~ -

I Didlldician I

I Diagnostic l
Model

Student
Model

Figure 2.1 ITS Components

Student

Student modelling has generally being modelled as an overlay model consisting of a subset of an

expert model (Goldstein, 1982), (VanLehn 1988). The perturbation model was proposed (Brown

and Burton, 1978) to account for students' misconceptions during instruction. These

"perturbations" correspond to a set of expert rule representations in the domain. An alternative

method for perturbation modelling uses artificial intelligence techniques to generate bugs or

errors by systematically altering the rules that have been developed (VanLehn, 1991).

Currently, student models can be categorised into two varieties: overlay. where a student's

knowledge is represented as a subset of an expert modeL and model tracing where a student's

concepts are represented as rules, and mistakes are attributed to buggy procedural rules

(Anderson et aI., 1995), (Anderson and Pelletier. 1991), (Anderson and Reiser, 1985), (Anderson.

1983). Model tracing technique may be used for comparing learners' performance with a pr~-

:\ Generic ArchitecturL' fllr Interactive Intelligent Tutoring Systems T A. Atolagbe

Chapter 2: Background Research Material
21

existing domain expert model. This approach may encourage acquisition of new knowledge and

practising the application of existing knowledge (VanLehn, 1996a).

Previous perturbation models have focused on perturbing procedural rules and attributing these to

a student's mistakes (Langley et aI., 1990), (Sleeman et aI., 1990). A problem with this approach

is that there is no deeper cognitive representation of a student's mistakes. Furthermore, fuzzy

logic (Goodkovsky et al. 1994) and Bayesian networks (Collins et aI., 1996) have been

incorporated into the overlay model.

To date, cognitive learning theories have mainly focused on computational models of skill

acquisition through the process of procedural compilation (Anderson, 1983), (Chan et aI., 1992),

(Mobus et aI., 1993) and procedural chunking (Newell, 1990). In addition, procedural skill

acquisition requires deeper cognitive structures for modelling abstract principles and concepts.

Procedural skills are necessary for representing relationships among these abstract concepts

through the use of causal links (Conati et aI., 1997), (VanLehn, 1996a). In general, tutorial tasks

may be acquired through repeated practice, which may improve performance.

Elio and Scharf (1990) and Eliot and Woolf (1995) developed a case-based student model that

could dynamically represent a novice-to-expert transition based on a shift from focusing on

surface features to abstract principles. This research work uses a similar case representation,

using a network representation of the student's knowledge with nodes representing problem

statements, surface features and abstract concepts, and annotated with appropriate case-scenarios.

Conati and VanLehn (1996) developed an extension to model-tracing (Anderson et al., 1995)

diagnostic techniques that can recognise and reason about multiple problems solving styles in an

ITS. These approaches are useful for understanding a student's overall problem-solving strategy

and to provide a more interactive tutorial session. The model-tracing framework builds on the

OLAE system (Martin and VanLehn, 1993), (Martin and VanLehn, 1995), which represents a

student's conceptual understanding of a domain with a Bayesian network of concepts. Bayesian

networks provide a probabilistic method for handling the uncertainties in student reasoning

(Pearl, 1988a), (Conati and VanLehn, 1996).

Rosenblatt and Vera (1995) developed the GOMS (Goals, Methods, Operators, and Selection

rules) framework for modelling mental states. The GOMS approach can be used to model either a

system's internal knowledge for introspective reasoning, or a user's knowledge to do plan

recognition and user modelling. Modelling the student's goals explicitly might add a useful

-A G~'ncric -Architccture fpr Interactivc Intclligent Tutoring Systems T A. Atolagbe

Chapter 2: Background Research Material 22

dimension to this research technique, by allowing this study to understand the student's

knowledge acquisition processes. For example, a student who is learning new material will

behave differently and require different types of feedback than a student who is reviewing

previously learned material for a final examination.

Fox and Leake (1994) model case-based planning strategies as a set of expectations about system

behaviour. They use failures in expectations to trigger diagnosis and repair of failures, by

identifying new indices for case retrieval. Also, Eshelman et al. (1993) describe MOLE, a system

of knowledge acquisition for heuristic problem solving. MOLE generates an initial knowledge

base interactively, then detects and corrects problems by identifying "differentiating knowledge"

that distinguishes among the SEEK system (Ginsberg et al., 1993) performs knowledge-based

refinement by using a case base to generate plausible suggestions for rule refinement.

Furthermore, case-based tutors (e.g. Schank et al., 1994), (Sherlock, 1991)) uses knowledge bases

of case scenarios for tutoring. Case based tutors provide learners with "realistic scenarios" to

support learning. This approach combines elements of traditional ITS paradigm with elements of

simulation and case-based reasoning.

Mitchell et aI. (1994) characterise a learning apprentice as an "interactive, knowledge-based

consultant" that observes the student activities and analyses the problem-solving behaviour of

users. One advantage of a learning apprentice is that it is running continuously as the system is

used by different range of users. This research uses the method of learning by observing the user's

choices during planning, which can be viewed as a learning apprentice. Thus, the evolving

knowledge base reflects a broad range of expertise. The LEAP (Mitchell et al., 1992) apprentice

uses explanation-based learning (EBL) techniques to explain and generalise cases (traces of the

user's problem-solving behaviour) in the domain of digital circuits. A similar approach was used

in DISCIPLE (Kodratoff and Tecuci, 1993), as well as similarity-based learning, to acquire

problem-solving knowledge in the domain of design for the manufacturing of loudspeakers.

Non-determinacy is a significant problem in student modelling that has recently been addressed

using probabilistic reasoning techniques (Hawkes et al., 1990), (Villano, 1992). Probabilistic

reasoning has been used to introduce and reason about uncertainty in the student model by using a

Bayesian approach (VanLehn, 1995). The design of student model depends on the domain

knowledge representation (Murray. 1999), (Nawrocki, 1987). (Pirolli and Greeno, 1988) in order

to provide appropriate student's diagnosis. It could infer that the student model component should

provide adaptive remediation of instructional material as the cognitive needs of the learner

change. This research uses Bayesian reasoning to introduce and reason about uncertainty in the

T. A. Atolagbe

Chapter 2: Background Research Material
23

student model. A Bayesian approach used in this research is discussed in Chapter 3 and an

implementation approach is described in Appendix B.

11. Pedagogy Model. The pedagogy components depict the model of instruction and the tutorial

contents, and the tutorial rules (Wenger, 1987). This model contains some simple or

complex decision rules to determine the sequence and style of presenting instruction and

feedback to the student. It also determines if the subject matter has been mastered or not.

ITS actively interacts with student's inputs and diagnoses the student's level of

understanding or misunderstanding of the knowledge domain. The tutorial exercises some

control over the selection and sequencing of information, by responding to student

questions concerning the subject domain and in determining when the student needs help

and what kind of help is needed (Halff, 1988).

An effective ITS may meet the ever changing needs of the student. ITS diagnoses the student's

characteristic weaknesses and adapts the instruction accordingly. As the student's level of

proficiency increases, ITS will ideally conform to the evolving skill level of the student. ITS

adapts as the novice evolves into a subject matter expert (Ohlsson, 1987), (Woolf and McDonald,

1985). Furthermore, ITS allow "mixed-initiative" tutorial interactions, where students can take

the initiative in a tutorial dialogue (e.g. ask questions) and have more control over their learning

(Wenger, 1987), (Cohen et al., 1998).

The pedagogy models can be designed by using ontology to represent tutorial actions and for

specification of pedagogical events, and to represent tutorial tasks classification structure,

(Mizoguchi et al., 1996), (Van Marcke, 1992), and (Murray, 1996). Pedagogy strategies may be

embedded within an ITS, and the tutoring protocol determines the tutorial dialogue between the

student and the pedagogy model.

The representation of an instructional strategy is also a vital attribute of an ITS. The instructional

strategy is responsible for choosing an effective presentation method, providing student and

instructional control, diagnosis of student's misconceptions, providing guiding remediation, user

feedback and evaluating learners input and user problem solving activities and proving hints

(Freedman and Rosenking, 1986), (Woolf and McDonald, 1984). The pedagogy knowledge has

been represented by using production rules to represent problem solving behaviours (Goldstein,

1982). These rules monitor students' errors, deviation/correction, and refinement during

instruction. The advantage of using production rules for pedagogical knowledge is that, it allows

------------ ---------------------
A Generic Architecture for Intnactive Intelligent Tutoring Systems I __ Atolagbe

Chapter 2: Background Research Material
24

rules to be easily modified as required. Pedagogy knowledge can be implemented by using a

genetic graph (Goldstein, 1982). Each node on the graph represents a basic task that must be

performed, before further refinement. The genetic graph helps ITS to make pedagogy decisions

by facilitating the process of tutorial task collection and generation of multiple explanations

(Goldstein, 1982). Also, semantic networks have been used to represent instructional tasks for

pedagogy knowledge; for example, IRIS (Arruarte, et aI., 1997), REDEEM (Major et aI., 1997),

EON (Murray, 1998). Essentially, these systems tend to have different representational schemes

and uses different teaching strategies, which can be used for authoring domain specific

knowledge.

111. Expert Model. The "expert model" (domain model), contains the knowledge base that

generates intelligent responses to the student queries during instruction. It consists of sets of

rules and procedures that belong to the domain. The expert model has a global function that

can guide the user towards an optimal response/solution to a problem (Wenger, 1987).

Anderson (1988) identifies three basic types of expert models. First, the "black box" model that

represents the domain knowledge this is necessary for learner diagnosis. For example, the SOPHIE

(Brown et. al., 1973) program provides the student with a simulation-based approach for

troubleshooting electronic circuits using the SPICE simulator. The system evaluates the student's

input and uses numerical processes to provide feedback. The second type of expert module is the

"glass box" model, which mayor may not represent human reasoning processes. Examples of these

programs are the GUIDON (Clancey, 1979) and MYCIN (Shortliffe, 1976) system. The third type

of expert module is the "cognitive model" type. The cognitive model simulates the human problem

solving processes and reasoning (VanLehn et aI., 1992), (Recker and Pirolli, 1995). In principle,

cognitive models are all attempts to use ITS to teach skills and knowledge in ways that will

facilitate the knowledge acquisition and transfer. The knowledge in these systems can take the fonn

of procedural, declarative and qualitative (Anderson, 1982), (Anderson, 1983).

Brown (1990), Anderson, (1992), and Corbett and Anderson, (1990) suggest that current theories

and architectures in ITS will have an impact upon learning theories, and vice-versa. The

implications for the design of ITS are set out in a series of necessary features of the learning

tools, which support the epistemological rationale. Brown's assertion that theories of learning and

ITS design are related is supported by Anderson (1990), who believes that there is considerable

research in cognitive psychology that can be used as a guide to the development of frS. He states

that the success of an ITS can depend on its ability to achieve "task decomposition", a process of

:\ Generic ArL'hitL'L'ture for Interactive Intelligent Tutoring Systems

Chapter 2: Background Research Material 25

simplifying learning, and the monitoring of a student's belief by generating production rules (task

analysis) for a restricted knowledge domain.

It can be inferred that instructional processes should be planned and controlled by the learner

(Bramley, 1990). Instructions must be open and should be suitable for different levels of learners. It

should cover both the theory and practice of teaching, and provide the opportunity for the learner to

practise the skills that were taught (Anderson, 1987).

IV. Communication Module. The communication module provides an interface for the learner

to interact with the other components of the ITS. This includes the presentation of

instructional materials (represented as text, graphics, speech, sound, videos, etc) and for the

student to interact with the various components.

Research from other disciplines such as the cognitive theories, usability guidelines and software­

engineering principles are applicable (e.g. (Apple, 1993), (JavaLook and Feel, 1998)), thereby

providing responsiveness, permissiveness, and consistency. This implies that user interface

guidelines should be applied across all user interface tools (Apple, 1993) and should reduce short­

term memory load where possible and augmenting their short-term memory with external

memory provided by the tool (e.g. Shneiderman, 1998). The process of knowledge

communication requires that the interface contain a discourse model to resolve ambiguities in the

student responses (Wenger, 1987). Carefully designed user interface allows the learner to

interactively control the instruction, and the learning content.

Model-based user interface generation tools has been used for ITS, e.g. HUMANOID (Szekely et

al., 1993), l\ffiCANO (Puerta et aI., 1994), and GENIUS (Janssen et aI., 1993). Each of these

systems is based on the notion of a generic inteiface that could be used across domains. These

systems provides form/menu-based interface and they support a limited range of tasks. However,

ITS researchers/developers need to reduces the risk of depending on incorrect and inappropriate

user interface components by drawing from mUltiple cognitive theories and mUltiple user

interface guidelines. Furthermore, most ITS are based on graphical or menu-based used user

interfaces, but some ITS use natural language dialogues (e.g. (Carbonell, 1970), (Brown and

Burton, 1975), (Brown et al.. 1982)). For example SCHOLAR included rich natural language

facilities that allowed it to understand most student questions and answers. The main problem

with natural language interfaces is how to ensure the coherence of the dialogues during

instruction; natural language representation is resource intensive (Anderson, 1986).

A(.ienl!ric ~.\rchitt'cture for InteractIve Intelligent Tutoring Systems T. A. AlOlagbe

Chapter 2: Background Research Material 26

The design of the user interface for an ITS should assist with knowledge management and

delivery of instructional materials, (Murray, 1999). Furthermore, it should provide components

for developers to formalise and visualise their knowledge (Murray, 1999). Simplifying input

through the use of templates, data entry forms, and pop-up menus is quite common. Furthermore.

coherence of the user interface component functionalities can be achieved by uniformity of screen

design, functionality, and conformity with the standard Macintosh or Windows for PC "Look and

Feel". Differing modes of tutorial navigation should be supported.

2.3.2 Case-Based Intelligent Tutoring Systems

Case-based reasoning (CBR) has been used to support problem solving and learning (Holodner.

1993), (Schank, 1982). CBR is based on analogical reasoning (Gentner and Stevens, 1983), and

from theories of concept formation, problem solving and experiential learning within philosophy

and psychology (Schank and Leake, 1989), (Tulving, 1977). Case-based ITS contains multiple

instructional strategies (Chu et aI., 1995), which can help a novice learner to develop expertise by

performing the tasks (Hutchins, 1995).

Case-based reasoning, such as the CYRUS system, (Kolodner, 1983) was based on dynamic

memory model and MOP theory of problem solving and learning (Schank, 1982). It was basically

a question-answering system. The case memory model developed for this system has later served

as basis for several other case-based reasoning systems including PERSUADER (Sycara, 1988),

CHEF (Hammond, 1989), JULIA (Hinrichs, 1992), CASEY (Koton, 1989).

The HYPO system (Ashley, 1990), and CABARET (Skalak and Rissland, 1992) combined case­

based and rule-based system for reasoning in legal judgement. Koton (1989) studied the use of

case-based reasoning to optimise performance in an existing knowledge-based system, where the

domain (heart failure) was represented by a deep, causal model. This resulted in the CASEY

system (Koton, 1989), in which case-based and deep model-based reasoning was combined.

Other attempts include a case-based learning apprentice system for medical diagnosis (Plaza and

L6pez de Mantaras 1990), and the use of case-based methods for strategy-level reasoning (Lopez

and Plaza, 1993). The role of episodic knowledge in cognitive models has been investigated in

the EVENTS project (Strube, 1990).

:\ (;cneri~~.\;·~l~,tl:.:ture Il1r Interactive Intelligent Tutoring Systems
T A. Atolagbe

Chapter 2: Background Research Material
27

It seems reasonable to infer that ITS can use CBR to represent internal reasoning processes and to

use those representations to monitor and to reason about user learning processing and to guide

remedial learning in order to improve the reasoning processes (Schank, 1982).

2.4 Knowledge Representation Methods

ITS uses knowledge based system for representations of subject matter (Murray, 1996),

(Anderson, 1988). The knowledge bases use different knowledge representation formalisms and

have different inferential capacities (Murray 1996), (Clancey, 1990), (Clancey, 1991); and use

different AI paradigms for knowledge representation (Reichgelt, 1991).

Knowledge-based systems enable ITS not only to solve problems like experts, but also to explain

how they have solved the problem (Chandrasekaran, 1988), (Chandrasekaran, 1986). Efforts in

this area have always been directed towards problem-solving methods and to enable knowledge

to be reusable in a plug-and-play manner (Chandrasekaran et aI., 1999), (Chandrasekaran, 1986),

(Walther et aI., 1992), (Eriksson et aI., 1996), (Wielinga et aI., 1993). The reuse of an existing

knowledge base, even if it requires adaptation, ought to lead to significant savings in

development.

Traditional ITS have poor knowledge representation methods (Murray, 1997), (Hoffman, 1987).

However, there are many standard methods for knowledge representation and knowledge sharing

(Lenat, 1995), (Gruber, 1993). Knowledge representation formalism should allow incorporating

metacognitive skills, curriculum, and domain knowledge separately (Lesgold, 1988). This

approach allows an ITS to tailor the tutorial knowledge to the aptitudes of the student (Lesgold,

1988) and facilitates the development of reasoning and cognitive capabilities.

Different systems are built with a variety of knowledge representation languages (e.g. CLIPS,

LOOM, or Pascal, LISP), and require components to be in different formats. Also, researchers

have bui It toolkits for constructing components that are interoperable (Steels, 1990). For example,

KREST (Steels. 1990), VITAL (Shadbolt et al.. 1993), and PROTEGE-II (Puerta et aI., 1992) are

all architectures for developing components. But none of these can use components built outside

of their own environment.

Knowledge engineering has been considered as technology for building expert systems

(Chandrasekaran. 1986), (Walther et al., 1992). It has been used for eliciting expertise, organising

:\ GL'neric Architecture for Interactive Intelligent Tutoring Systems T. A. Atolagbe

Chapter 2: Background Research Material 28

it into a computational structure, and building knowledge bases (Chandrasekaran et al .. 1999).

(Chandrasekaran, 1986), (Chandrasekaran, 1988), (Walther et aI., 1992). Although rule base

technology has dominated until recently (Mizoguchi et aI., 1995), a new technology based on

knowledge modelling has appeared, such as the Knowledge Analysis and Design Structure

(KADS) project (Wielinga et aI., 1992), PROTEGE (Puerta et aI., 1992), and MULTIS

(Mizoguchi et aI., 1995).

These systems are based on the idea of generic tasks (Chandrasekaran, 1986), (Chandrasekaran,

1988) and heuristic classification (Clancey, 1985). Current attempts are based on task ontology.

which serves as a theory of vocabulary/concepts used as building blocks for knowledge-based

systems (Perez and Benjamins, 1999), (Mizoguchi, 1993), (Mizoguchi et aI., 1995), (Guarino and

Giaretta, 1995). This research considers knowledge representation to consist of task ontology.

which consists of the computational architecture of knowledge-based systems and domain

ontology. Ontology representation provides a means for both analysing and synthesising

knowledge-based systems for ITS (Mizoguchi, 1993). An ontology is an explicit "specification of

a conceptualisation" (Gruber, 1994), (Gruber, 1993). An ontology for a domain describes the

underlying structure for the domain task, which defines the semantic interpretation of the

knowledge and type of tasks (Aben, 1993), (Wielinga et aI., 1992), which can be used to develop

an ITS.

The choice of knowledge representation formalism depends on both the type of knowledge and its

instructional use. Knowledge representation methods should support cognitive diagnosis of the

student tutorial activities and provide adaptive interpretation of their misconception. This implies

that knowledge representation formalism should support the instructional strategies, and different

levels of tutorial. Furthermore, an estimate of cognitive complexity for tutorial tasks should be

maintained so that the user interface and tutorial remediation can reflect the student problem

solving activities (Goldstein. 1978).

Object oriented methods have been used for knowledge representation, III order to allow

knowledge to be used on heterogeneous domains. For example, Byte-sized Tutor (Bonar et al..

1986) is an object oriented ITS architecture in which domain knowledge classes, are organised

into a hierarchical inheritance lattice. This approach allows the architecture to share its structure

and inherit the functionalities of other components. Besides, it also allows multiple representation

of various ITS components such as the user interface. inference engine and adapti ve problem

solving methods to be represented in the architecture. An important consideration for ITS

resc-archers is to inn:'stigate flexibility of developing formalisms for representing the various

-----" -
A Generic An:i1ilectllle for Interactive; IntL'lligent Tutoring Systems T A. Alolagh

Chapter 2: Background Research Material 29

components in ITS. An object oriented method is the most natural way to represent domain

knowledge and to define the complex data structure (Eooch, 1994). Nevertheless. components of

a system can be represented as a reusable collection of functions, which may enhance

productivity, reliability and quality.

2.4.1 Knowledge-Based Hypermedia

Hypermedia systems provide a rich environment within which users can interact with a wide

range of tutorial document types. Hypermedia are used in tutoring systems in many variations to

add interactivity and context to instructional systems (Angelides, 1995), (Agius and Angelides,

1997), (Woolf and Hall, 1996). Expert systems and hypermedia are successfully used in different

domains (Fontaine et aI., 1994), (Silverman, 1992), (Gloor, 1991) and both can be considered as

tools to present, influence and distribute knowledge. Examples of adaptive hypermedia systems in

education include: ANATOM-TUTOR (Beaumont, 1994), CLIBBON (Clibbon, 1995), ISIS­

TIJTOR (Brusilovsky and Pesin, 1994), HYPERTUTOR (Perez et aI., 1995), SYPROS

(Gonschorel and Herzog, 1995), HYPADAPTER (Hohl et aI., 1996), InterBook (Brusilovsky et

aI., 1996), and AST (Specht et aI., 1997). On the basis of the literature, it can be inferred that

much of the popUlarity of the hypermedia systems in educational domain may be attributed to its

capability to convey large numbers of hypermedia information to learners in structured and

cohesi ve ways.

Adaptive hypermedia textbook methodologies (such as (Brusilovsky, 1996 and 1998)) suggest

building domain models and user models for adaptive HYPERBOOKS, by using semantic nets to

describe these domain models and to index the HYPERBOOKS with the corresponding domain

nodes.

A hypermedia document can be used as a helpful part of a tutoring system or it can be the

tutoring system by itself. An example of a stand-alone hypermedia teaching system is the

Hypermedia Tutor (Gloor, 1991), based on HyperCard. The system allows the students to explore

the HyperCard stack with pictures, text, sound and videos. Furthermore, Pedro (The Spanish

Tutor) (Angelides and Gibson, 1993) also uses HyperCard for ITS. A tool for building such

special hypermedia-supported instructional systems is presented in Brusilovsky, (1998) and

Murray et al. (1999).

~- --~------

A (;eneric Architecture for Interactive Intl'lIigent Tutonng Systems T A. AlOlagbe

Chapter 2: Background Research Material
30

TRAINER (Reinhardt and Schewe, 1995) is an ITS for diagnosis and the retrieval of symptoms

of a patient. The presentation of symptoms and the links from the hypermedia information

elements (pictures, text) to the knowledge base is done in the hypertext system HITS.

ELM-ART (Brusilovsky et aI., 1997) and ELM-ART-II (Weber and Sprecht, 1997) systems teach

LISP programming by providing an intelligent interactive integrated textbook. The system is

hypermedia based and is adaptable to the student's problem-solving methods. ELM-ART

dynamically generates all the HTML pages based on the student model. These approaches allow

the systems to be able to deploy application over the Internet. Hypermedia systems are

continuously being used to Improve ITS for different domains with declarative, procedural

knowledge bases (Brusilovsky, 1998).

Other WWW-ITS includes CALAT (Nakabayashi et aI., 1997), AST (Specht et aI., 1997),

MANIC (Stem et aI., 1997), Medtec (Eliot et aI., 1997), and DCG (Vassileva, 1997). The systems

provide discourse management of instructional materials over the WWW. Furthermore, WWW­

based ITS allows component-based ITS development (Koedinger et aI., 1999), (Roschelle et al..

1999), (Ritter and Koedinger, 1997), and (Roschelle and Kaput, 1996), and can allow developers

to encapsulate, share and reuse ITS components across platforms. This approach can facilitate

and encourage collaboration learning and social interaction among students in a virtual learning

environment (Koenemann et aI., 1999), (Hoppe, 1995), (Ikeda et aI., 1997), (Dilenbourg et aI.,

1996).

Table 2 enumerates prominent WWW based ITS software and their domains. The list

demonstrates how the supporting WWW technology, which links the ITS components together,

provides the adaptive environment for instruction over the WWW. Furthermore, the structure of

the Web allows dynamic updating of tutorial material and for dynamic invocation of components

functionalities.

Table 2.1 Examples of WWW-Based ITS Authoring Software

SYSTEMS DESCRIPTIONS

ELM-ART Brusilovsky et aI. (1996) supports learning programming in LISP and provides

adaptive navigation with an individualised user model.

CALAT Nakabayashi et aI. (1997) courseware development package, supports

curriculum sequencing of WWW.

AST Specht et al. (1997) applies adaptive navigation support by sorting of student

~\ (,enL'ric Architecture for InteractivL' Intelligent Tutoring Systems T A. Atolagbe

Chapter 2: Background Research Material 31

solutions on WWW.

InterBook Brusilovsky and Schwarz (1997) uses adaptive navigational support to provide

information to the user. Development environment for tutorial pages on WWW.

Medtec Eliot et al. (1997) provides adaptive presentation by generate adaptive summary

of book chapters.

DCG Vassileva (1997) generates tutorial dynamically, according to the students'

tutorial goals and previous knowledge. Also provides adaptive sequencing of

tutorial over WWW.

WITS Okazaki et al. (1997), (1996) an ITS for differential calculations

Belvedere Suthers and Jones (1997) provides tutorial mapping environment by using node-

link graphs representing logical, and relationships between assertions. Also uses

the Java to support real interactivity.

Manic Stem et al. (1997) provides hypertext component, and supports adaptive

sequencing of instruction.

2.4.2 Knowledge Acquisition

There are growing interests in AI techniques in academia, industry and government (Barr and

Feigenbaum, 1982). Therefore, terms such as "knowledge elicitation", "knowledge

representation" and "machine reasoning" now have the same meaning (Barr and Feigenbaum,

1982).

Several researchers have developed task-specific architectures where specific problem-solving

methods, such as propose-and-revise and cover-and-differentiate, are used to solve classes of

problems, such as configuration and diagnosis (Chandrasekaran et al., 1999), (McDermott,

1988), (Chandrasekaran, 1988), (Chandrasekaran, 1986). Some model-based knowledge

acquisition (KA) tools, such as PROTEGE for the episodic skeletal-plan refinement (ESPR)

method (Musen, 1989), and ROGET for heuristic classification (Bennett, 1985), use knowledge

roles defined by these problem-solving methods as models for the domain knowledge to be

acquired from the application expert. The propose-and-revise method, for example, defines

parameters that have values, constraints on these parameter values, and fixes that modify

parameter values when constraints are violated. These tools are based on monolithic problem­

solving methods, and are difficult to extend when the domain tasks to be solved have

requirements that do not fit exactly the capabilities of the methods. Moreover, the task

requirements and their knowledge base requirements for these tools will change during the

A C;~neric Architecture for Interactive Intelligent Tutoring Systems
T. A. Atolagbe

Chapter 2: Background Research Material 32

lifecycle. Therefore, inflexible knowledge representation formalisms could make maintenance

costly and difficult.

In order to engmeer a flexible and robust toolkit, several research groups have developed

architectures in which problem-solving methods are composed from small-grained reusable

components (Birmingham and Tommelein, 1992), (Chandrasekaran et al., 1992), (Klinker et al.,

1991), (Musen, 1989), (Steels, 1992), (Wielinga et al., 1992). Although these architectures share

many similarities in their approach to composing problem-solving methods, they differ

remarkably on the degree of support they provide to the task of acquiring domain knowledge

from the application experts (Chandrasekaran et al., 1992), (Musen, 1992). The goal in the

PROTEGE-II project (Puerta, 1992) is to develop a framework for automating the generation of

knowledge-acquisition tools, based on the knowledge roles defined by the problem-solving

methods that are assembled and configured from reusable components (Musen, 1992). These

efforts have resulted in the development of an environment that promotes reusability of

problem-solving methods and their mechanisms.

To develop an application, the developer has to analyse the requirements of the problem to be

solved, and select the method and mechanisms for the task and subtasks of the problem. The

concept of developing an application from reusable ontologies is one of the primary goals for this

research. This process involves incorporating the representation requirements of the various

methods, and defines mapping relations that specify the correspondence between the knowledge

in the ontology knowledge base (Perez and Benjamins, 1999), (Gennari et al., 1994), (Eriksson et

al., 1994), (Eriksson et al., 1996) (Musen, 1992).

2.4.3 Probabilistic Reasoning

One of the fundamental gaps in the expressive power of standard knowledge representation

paradigms is their inability to represent and reason with uncertain information (VanLehn. 1996b).

Uncertainty may be unavoidable in an instructional environment and student modelling, where

learner objectives and other information sources are invariably unreliable, and the leamer's

behaviour is unpredictable (Villano, 1992), (VanLehn. 1996b), (Sime and Leitch, 1993).

Reasoning with uncertainty is a common problem in knowledge representation to which many

solutions have been proposed (Martin and VanLehn, 1995). Among these. the probabilistic

framework is unique in its clear and coherent semantics, which supports fundamental operations

T A Atolagbe

Chapter 2: Background Research Material
33

such as incorporating evidence from various sources and deciding on optimal courses of actions.

including information-gathering actions (Duncan et aI., 1994).

Traditionally, the barrier to the use of probability theory has been the complexity both of

acquiring complex numerical knowledge and of reasoning with it. However. there is an

emergence of a framework for representing probabilistic knowledge, by using Bayesian belief

networks (Pearl, 1988b), (Pearl, 1993). Bayesian networks utilise the locality of the world, i.e. the

fact that only a few attributes directly affect each other, to allow a concise and natural

specification of complex probability distributions. The same representation also supports

probabilistic inference algorithms (Pearl, 1988b). For example, probabilistic reasoning methods

have been applied to student modelling (Conati and VanLehn, 1996), (Villano. 1992), (Martin

and VanLehn, 1995), (Duncan et aI., 1994), (Gitomer et aI., 1995) to represent uncertainty in the

student model.

Expert systems and uncertainty in AI are continuously influencing ITS development (Martin and

VanLehn, 1995). Bayesian networks are one of the tools both for graphically representing the

relationships among a set of variables and for dealing with uncertainties in expert systems (PearL

1988a). (Pearl, 1993), (Castillo et aI., 1996). A key problem in Bayesian networks is attributes

propagation (Pearl, 1988a), that is, obtaining the posterior distributions of variables when some

evidence is observed. Several efficient methods for propagation of evidence in Bayesian networks

have been proposed in recent years (Jensen et aI., 1990). Each method exploits the independence

structure contained in the network to efficiently propagate uncertainty (Kim and Pearl, 1983),

(Lauritzen and Spiegelhalter, 1988), (Jensen et aI., 1990), (Shachter et aI., 1994).

However, both exact and approximate methods require that the joint probabilities of the nodes are

specified numerically, that is, all the parameters must be assigned numeric values. In practice,

exact numeric specification of these parameters may not be available, or it may happen that the

subject matter specialists can specify only ranges of values for the parameters rather than their

exact values. This research investigates the feasibility of using probabilistic representation in

order to follow the student's reasoning dynamically. This approach can be used to generate hints

and answer help requests during instruction.

T. A. Atolagbe

Chapter 2: Background Research Material
34

2.5 Critique of the Literature

Each of the reviewed literature has different approaches to ITS development methodology and

cuts across a range of domains with some commonality that could be extrapolated to as "best" or

"desirable" features of an ITS, as well as establishing some important epistemological rationale

for this study.

There is broader acceptance of ITS largely due to continuing interest in ITS research (Koedinger

et aI., 1997). This may be attributed to the use of contemporary technology such as WWW and

Java applets to support ITS development and implementation. Furthermore, the traditional

approach to learning and teaching can be counter-productive (Wenger, 1987). The main problem

with developing an ITS is expense, and a new ITS may be difficult to integrate with existing

courseware (Anderson, 1985), (Merrill, 1985). Authoring tools are required to leverage the

development cost and time (Murray, 1999). Therefore, it seems reasonable to infer that there is a

need for a shift in emphasis from a traditional development approach to a scaleable development

method.

The main criticism about ITS is that they are "directive" in nature, because they are based on a

diagnose-remediate model of tutoring (Self, 1992), (Self, 1987). ITS are also considered

omniscient, because they attempt to detect all possible errors and misconceptions (Murray et al.,

1990), (Graesser, 1993). Present research trends seem to indicate that researchers are moving

away from building such applications and research is now focused on building reusable,

intelligent learning environments that are adaptable to students needs (Dillenbourg and Self,

1992), (Murray, 1998).

There has been a lot of research into learners' behaviour and performance for example (Anderson,

1987), (Dillenbourg and Self, 1992). The majority of the reviewed literature describes the nature and

characteristics of the domain, the empirical associations among variables that characterise the

domain, the tasks and the curriculum. Some of these studies show that learning processes and

cognitive development could provide a general framework for ITS development (Anderson, 1987),

(Dillenbourg and Self. 1992), (Murray, 1998). This approach may provide several pedagogical

benefits such as development of problem-solving skills (VanLehn, 1996), and to facilitate the

development of instructional content with intrinsic interactive components.

ITS developers must put few barriers between learners and the tutorial system (Latham and Saari.

1979). Lltham and Saari (1979) argue that ITS must increase responsiveness of the learner by

------ ----
A C'L'nL'ric Architecture for IntL'ractl\"c Intelligent Tutoring Systems T A" Atolagbe

Chapter 2: Background Research Material
35

providing meaningful and context-sensitive help, video images of the tasks and learner control.

Effective performance were be enhanced if the behavioural model of the learner were considered

during the development stages. Latham and Saari (1979) suggest that behavioural role modelling

may enhance performance.

The application of psychological theories in ITS development are, in addition to being an analytical

technique (i.e. tasks classification, cognitive processes, learning styles, etc), it allows an adaptive

instructional system to be designed, and learner behaviour to be represented (Latham and Saari,

1979), (VanLehn, 1988).

There are two problems with using only an overlay model for student modelling (Ohlsson, 1993),

(VanLehn 1988). First, it assumes that the expert module is complete. However, it is possible for

the student to employ a legitimate strategy that is not in the expert module. Second, overlay

models do not address the situation where the student misuses or misunderstands information. It

assumes that information is only present or missing (Wenger, 1987).

Although some of these reviewed research publications have been marginally successfuL many ITS

continue to operate solely in their own domains without the use of other applications after

implementation (Koedinger et aI., 1997). Furthermore, this survey of literature allows the

explication of past and present ITS research perspective and to examine criteria for further

studies.

Intelligent learning environments are currently the current research trend (Koedinger et aI., 1997).

These leaning environments, however, need to have all the components of an ITS to enable them

to offer intelligent help to students and to carry out pedagogic activities. As a result, learning

environments cannot avoid the complex ITS issues, such as student modelling and diagnosis

(Ramadhan, 1992).

QUEST (White and Frederiksen, 1985), SODA (Soloway et aI., 1991), DISCOVER (Ramadhan,

1992), (Ramadhan, 2000), and VIZ (Eisenstadt et aI., 1992) are examples of such learning

environments. These systems attempt to embody human cognition, especially some cognitive

models of problem solving, such as a model of software design in mind, an explicit model of a

virtual computing machine or causal models of the domain devices that are used by humans. The

goal of supporting such "deep models" of a domain and its processes is to help learners to acquire

a better understanding of the domain, so that they learn faster and better.

:\ Generic Archltecturc for Inta3c[ivc Intelligent Tutoring Systems T. A. Atolagbe

Chapter 2: Background Research Material
36

There are ample examples from the literature showing the effects of fragmented ITS development,

and the failure to integrate the development and deployment processes. Although a multidimensional

approach is strongly present in these pUblications, the development methodology provides limited

extensibility and portability (if (Musen, 1992), (Musen et aI., 1995), (Gennari et al., 1994)).

Therefore, a common development perspective should help facilitate ITS design and implementation

across domains.

Most of the surveyed papers used pedagogy principles to guide the development and deli very of

instruction (Anderson, 1987), (Wenger, 1987). This method may be ideal for classroom teaching, but

not ideal for an individual learner (Ohlsson, 1993), because individuals may be exercising different

cognitive processes, which requires both the content and style of the instruction to be adaptive.

Both pedagogy and learner cognitive principles should be considered when designing instructional

systems and should incorporate multiple tests. The incorporation of multiple tests into tutorial tasks

could result in the development of transferable skills. Practice during instruction is important for

development of skills and it allows the learner to pursue the tutorial in depth. By using both

pedagogy and cognitive principles, different learning environments can be considered during the

design process, and can enable the instructional system to be versatile and have a wide application

area (Gagne et al., 1992).

From the preceding discussion it could be inferred that traditional learning principles applied to

modem training or instructional settings would be effective and therefore of use during the

development of the instructional system (Gagne et aI., 1992). Similarly, the learner is not

conceptualised as "passive" during training and the principles of reinforcement will "affect" learning

(Bruner, 1966). The learner actively brings to bear old and new "schema" and strategies to

understand a new task (Anderson, 1987). Consequently, instruction has to become more subtly

engineered from a cognitive perspective. Secondly, it is difficult to focus only on behaviour or

stimulus and reinforcement to explain performance. Learner feedback and knowledge of results

remains one of the most effective variables to be manipulated during instruction. Some of the

principles derived from reinforcement theory may be useful in instructional design. This research

attempts to utilise theories of instruction during courseware development. Self-efficiency has caught

the attention of the social psychologists, and there is literature on the use of this concept to link

learning with performance (Bramley, 1990). If the learner's responses were followed by a

satisfactory and immediate feedback, then the behaviour might be learned. Otherwise, if it were

followed by negative response, it will not be reinforced (VanLehn, 1986b), (VanLehn, 1988),

(Clancey, 1987).

:\ Gcneric Archiledure for Interactivc Intelligent Tutoring Systems T. A. Atolagbe

Chapter 2: Background Research Material

Skinner's theory of reinforcement is the only form of learning theory that has had any real impact on

the practice of training (Bramley, 1990). Other areas of Skinner's work include a schedule of

reinforcement and setting behavioural objectives and setting the behaviour of the learner until it

achieves the objectives. An adaptive learning environment should provide means for learners to

repeat some tasks and generate appropriate responses that are pedagogically linked to current tasks.

When situations resulting from a response increase the likelihood of a response being repeated, this

consequence is called a positive reinforcement (Skinner, 1968).

The "learner control" involves presenting the learner with a structured view of the domain that is to

be learnt (i.e. the target simulation software, satellite analysis, driver support system, etc.), and using

appropriate tutoring material (Gagne, 1970). The learner interacts directly with the instructional

environment in a structured manner. This approach of presenting a structured learning environment

to the learner is suitable for teaching different subjects.

Most of the existing systems for commercially available application software tutorials do not use any

instructional systems methodology such as student modelling, diagnosis or application model

generators. The application/animated tutorial teaches some of the functionality of the application

software and is not suitable for educational use, and the tutorial is not portable to other domains. This

approach may impede the reusability of the tutoring system for different applications.

User manuals could be used as an alternative to teach the functionality of application software. User

manuals for packages such as ProModel PC, Microsoft Windows, Lotus Smart Office use text and

graphics to illustrate the components of the software. This provides an extremely valuable input to

the teaching of software because the manual serves as reference (i.e. an application software

functionality reference) and is easier to use. Some of these software packages use templates to

provide a means of replicating common structures found within a hypermedia network. This

allows information with a well-defined structure, such as reference manuals and training material,

to be easily incorporated and linked with the system.

Finally, the learning or teaching of different tasks is done best using different methods (Gagne

1985). Bloom (1956) and Gagne (1985) suggested classifications of knowledge and learner

behaviour, and assert that different types of knowledge require different types of learning or

instructional methods. Therefore, task classification may be used to produce pedagogic

classification of the tutorial. in which commands are laid out in a sequence that is logical for the

learner.

:\ Genertc Architecture for Interac{\\e Intelligent Tutoring Systems T A. Atolagoc

Chapter 2: Background Research Material 38

The critique of the reviewed literature can be summarised as follows:

1. There has been much educational and organisational interest in finding computer-assisted

methods of optimising student learning, skill development and interactive learning systems.

11. Most of the publications give a considerable impetus to identifying ways of ensuring that

the learners fully utilise the learning aids provided by the instructional system and achieve a

positive transfer of skill. The principal emphasis is on providing the learner with skills and a

working knowledge of the basic concepts involved.

111. Some of the reviewed publications provide development environment/courseware authoring

tools (e.g. (Murray, 1999), (Murray, 1996), (Elsom-Cook, 1991), (Elsom-Cook, 1990).

These development environments are based on using a prerequisite domain network

structure. The network contains static links to the tutoring strategies. This approach may

constrain developers into using the same set of network architectures, which may be

suitable for teaching factual knowledge in related domains. Furthermore, the domain

network structure may provide a restricted adaptation of pedagogy dialogues during

instruction.

IV. Cognitive modelling may enhance the ability of an ITS to customise the tutorial dialogue

thereby providing a better leaner control during instruction. To gain a better understanding

of student activities, it may be necessary to examine the learning content as part of

engineering holistic and adaptive ITS.

v.

VI.

VB.

Vlll.

IX.

X.

Some of the research publications describe ITS that are not portable to other platforms.

There is no critical evaluation of software with the users, and some of the systems may not

be commercially viable.

There is a general mismatch between learner's cognitive skills and tutorial delivery, thereby

making learner control difficult.

Most of the research publications do not provide a cross platform choice of subject and

means of delivery. The subjects are directed towards acquiring skills and knowledge in a

specific domain.

None of the studies have a common, stable identifiable set of characters, which are portable

across different domains.

There is a definite architecture or standard benchmark for ITS. Each reviewed publication

used different models and implementation approaches.

Xl. The student misconception during instruction may be corrected through remedial tutoring,

where the system employs a number of teaching strategies appropriate to the nature of the

content and the student's current knowledge.

:\ Generic Architecture for Interactive Intelligent Tutoring Systems T A . .\tolagbe

Chapter 2: Background Research Material 39

All these issues are addressed III the development of the genenc architecture presented in

Chapters 3 and 4.

2.6 Comparison with Other Related Research

This section discusses related research publications within a context of ITS, and related

disciplines. This contrast is necessary in order to have a coherent understanding of the many

extensive research efforts on ITS. This section examines a few of these sources to compare and

contrast this research with other efforts that precede this study.

1. EON. EON (Murray, 1998) is an ITS authoring environment, which allows developers to

develop the tutoring system's interface from scratch, and to represent their instructional

strategies. EON uses a knowledge-based paradigm to support mUltiple tutoring strategies

and "meta-strategies". Eon uses semantic network to represent the "Topic Network", and

for creating presentation screens, although, no guidance is given to help the author create

effective tutoring strategies.

The EON system consists of an authoring environment that implements the standard ITS model.

The systems architecture is defined in a modular fashion, specifying which modules are required

for different applications (Murray, 1998). The Eon architecture is designed to allow developers

with limited programming experience easily to encode knowledge about misconceptions, course

design, exercises, and interfaces into each component of the Eon architecture.

n. ACQUIRE-ITS. ACQUIRE-ITS (Schaefer et aI., 1992) is an integrated environment for

developing knowledge based systems combined with an ITS authoring tool. The system

allows the developer to build knowledge base using the ACQUIRE tool, and to create an

ITS based upon content of the knowledge base. The ITS uses a case-based approach that is

based on the rules of the knowledge base to create cases. The system uses a rule-based

system to generate queries about the student's mistakes, and the tutorial presentation is

text-based.

This research is loosely related to this study. by reusing "semi-automatically" the contents of a

the knowledge base as a domain expert for an ITS. However, in contrast to this research.

ACQUIRE-ITS depends upon the structure and implementation of the knowledge base. whereas

in this research both the contents of the knowledge bases and the ITS components are reusable.

:\ Generic ArchiteL'lun: for Interactive Intelligent Tutoring Systems T A Atolagbe

Chapter 2: Background Research Material
.f0

Furthermore, ACQUIRE-ITS teaches procedural knowledge by using declarative methods. This

approach may not be effective for teaching procedural knowledge because procedural skills can

only be learned by practice (Anderson, 1987).

111. ITSIE (Intelligent Training Systems in Industrial Environments). This research investigates

the use of qualitative modelling techniques and mUltiple models of instruction (Sime and

Leitch, 1993) for industrial applications. The ITSIE study has a set of tools for developing

ITS (Sime and Leitch, 1993) and a specification methodology for a generic architecture.

The development approach supports multiple methods of knowledge representation and for

representing instructional strategies. ITSIE model of users' behaviour and knowledge is

based upon Rasmussen's (1986) information processing theory. Some aspects of this

approach have been adapted in this study during systems development and is described in a

previous section.

ITSIE research differs from this research in that it is mainly an authoring system. One advantage

of ITSIE approach is that it does not restricts the developer to any particular knowledge

representation formalism. However, it restricts the developer to one of the implemented

strategies. Also, the system requires the developer to encode knowledge (including the

simulation, domain knowledge and pedagogical knowledge) in the ITSIE format (Sime and

Leitch, 1993). The approach adopted in this research, in contrast, allows knowledge to be

represented in a formalism that can be reused across different domains, without the need for any

modification. This approach allows an upward transition of emerging knowledge about effective

pedagogical strategies for automated instruction.

This research has some similarities with the EON (Murray, 1998) research goals, i.e. the need to

reuse different component modules across platforms and for different domains. However, it

differs from this research in that Eon is primarily an authoring environment. The developer must

completely specify all exercises that are presented to the student, as well as define a complete

misconception library that is used for diagnosing the cause of student errors.

2.7 Summary

This chapter discussed the literature review of the current ITS research and history, development.

different types of ITS applications/components. It includes the identification of a list of

instructional factors, knowledge representation formalisms and limitations, thereby providing a

- -- -- - -------~:---:::---
A Generic Architecture for InteraC!l\e Intelligen! Tutoring Systems T. A. Atolagbc

Chapter 2: Background Research Material ~I

comprehensive background theory for this research. This reflects the mUltidisciplinary skill that

ITS spans. Some of the issues highlighted in this literature are identified for further investigation

during this research. This includes strategies for development and knowledge representation,

portability, reusability and selection of appropriate instructional method and hints. Various

strategies for knowledge representation, interactivity and providing instruction have been

discussed together with uncertainty representation. Areas for further investigation are identified

and further discussed in subsequent chapters.

This chapter has provided an articulation of the problems in ITS, and has listed a number of

notable ITS software applications that have been developed and their different architectures. This

reflects the propensity of researchers towards specific ITS components.

Finally, this chapter concludes with a comparison of this research with other published literature.

It can be inferred from the literature that the development of a generic architecture for ITS is

feasible and there are potential benefits that might be realised for reusing ITS components with

cross platform support. Furthermore, ITS development consists of integrated metaparadigms that

has a wide range of dynamic activities. Each of these perspectives are essential in order for ITS to

support instruction adequately and adaptively.

A GenerIc .:\rchitccturc for Interactive Intelligent Tutoring Systems T. A. Atolagbc

Chapter 3: A Generic Architecture For Intelligent Tutoring Systems

CHAPTER 3

A GENERIC ARCHITECTURE FOR INTELLIGENT TUTORING
SYSTEMS

3.1 Introduction

In view of the literature presented in the previous chapter, the initial part of the research has

concentrated on two major issues. First, an in-depth literature review on topics of direct relevance

to ITS component reuse, portability and reusability. Second, gaining familiarity with, and a

working knowledge of, the research that had previously been undertaken by various research

organisations and institutions. The literature review has focused on the architectural, design and

implementation approaches, including an evaluation of authoring tools and an investigation of

courseware metaphors. It illustrates the nature of the multidisciplinary activities involved and

some technical issues facing the development of ITS.

A critical issue addressed in this chapter is the composition of components of the genenc

architecture. This is addressed in order to define the structure of the system as a whole and the

interaction between components based on user actions. As stated earlier, this research considered

ITS as consisting of several interdependent components. Developing these ITS components

primarily involves three main tasks: the construction of the ITS framework, the engineering of the

domain-specific knowledge and the development of mechanism for controlling the

communication processes between applications. The benefit of developing the generic

architecture for an ITS is to ensure that the application area is not restricted to any single domain,

and that the ITS components are reusable and are capable of operating in a heterogeneous

environment (Cox, 1996), (Tu et aI., 1995).

Based on the literature reVIew, this chapter investigates how to design the ITS architecture

(Wenger, 1987) into an integrated, adaptable, and tailorable environment for developing an ITS.

with domain-independent components. It aims to investigate whether these systems can be

conceptualised into reusable component development and learning environments, and describes

the design of the generic architecture that addresses the problems highlighted in the previous

chapter.

--------------~------~-~--~~~-

A Ci~neric Architecture for interact\H' Intelligent Tutoring Systems T A. Atolagbe

Chapter 3: A Generic Architecture For Intelligent Tutoring Systems ~3

This chapter starts by discussing the origin of the generic architecture and proceeds to discuss

issues to be considered when designing interactive ITS. This is followed by a description of the

components of the generic architecture.

3.2 The Origin of the Generic Architecture

A comprehensive background literature search was first conducted, which involves synthesising

the reviewed literature and identifying the problem domain. During analysis of the literature, the

criteria and characteristics of the developed applications were identified and further analysed.

This synthesis formed the basis on which the generic architecture was conceptualised and the

basis for implementation discussed in Chapter 4.

The literature review discussed in Chapter 2 is indicative of the need to develop portable and

reusable ITS components (Murray, 1999), (Murray, 1998), (Sparks et al., 1999) (Ritter and

Blessing, 1998). A components-based approach allows ITS components to be reusable and

portable and independently upgrades components as required (Musen, 1998), (Musen et al.,

1995), (Cox, 1996), (Szyperski, 1998). This approach allows this research to represent each

component module of the generic architecture as a unit of independent functionality and to inter­

operate within the architecture (Szyperski, 1998). Components-based approach allows the generic

architecture to addresses the lack of compatibility of ITS components, allows cross-platform

utilisation of the components and meets different domains/platforms requirement. The design and

implementation of the generic architecture concept hinges upon the notion that a component

specification can be supported by multiple implementations (Sparks et al., 1999), (Murray, 1999)

and can be used across different platforms. Therefore, earlier ITS architecture developed during

this research (Atolagbe and Hlupic, 1996, 1997a) was re-conceptualised. A generic intelligent

tutoring systems architecture (GeNisa) was finally conceptualised as a heterogeneous collection

of modular subsystems with shared components, and carefully defined interfaces.

The generic architecture has been influenced by broader interdisciplinary research literature (i.e.

software engineering, cognitive theories and AI principles) which helped engineer an effective

system (Pea, 1993a), (Perkins, 1993). Furthermore, the Internet as the emerging technology

influenced the way generic architecture was conceptualised and developed (Brusilovsky et a1 ..

1996), (Brusilovsky et al., 1997). This resulted in conceptualisation of an architecture, which uses

client/server architecture for presenting applications over the WWW. However, the Internet based

architecture is necessary for large-scale deployment of applications across different platforms; it

:\ Gl'ner~ ~\rehitecture for Interactl\\.' Intelligent Tutoring Systems T A. Atolagbe

Chapter 3: A Generic Architecture For Intelligent Tutoring Systems

also provides the capability to use commercial services as opposed to private networks to bring

together diverse, geographically dispersed sites; use different local network topologies and

technologies (e.g. Ethernet).

The design of the generic architecture components relates to the Model-View-Controller pattern

(Buschmann et aI., 1996) and encapsulates multiple Java Class libraries (Gosling et aL 2000).

(Arnold et aI., 2(00), which consist of different modules. Each module consists of mUltiple

classes, which serve as "building blocks" for implementing different components independently

and supports the object-oriented mechanisms of encapsulation (the ability to hide the internal

structure and behaviour of the classes) and inheritance (Smaragdakis and Batory, 1998), (Booch,

1994), (Biggerstaff, 1994). However, the View and Controller are packaged into a single role

(Gamma et aI., 1995). A role embodies a separate aspect of the class's behaviour (VanHilst and

Notkin, 1996) and is reused to decompose the components into different set of classes and a set of

collaborations. A collaboration is a collection of sets of roles (VanHilst and Notkin, 1996),

(Booch, 1994). This approach has several advantages: (i) it allows different interface packages to

be layered on top of the abstract classes (classes that cannot be instantiated that is used to create

other object», (Booch, 1994), (Rumbaugh, et aI., 1991); (ii) different components classes can

inherit the behaviour and functionality of another class; and (iii) it allows the use of different API

(Application Program Interface) to implement different functionalities of the components, and

permits other applications to use the generic architecture API for different applications.

In this research, a considerable time has been devoted to designing and implementing the

software components based on the generic architecture tenets. It was in the course of the

development of this software that the following technical issues converged: component

reusability, portability, components interface, compatibility and the evolving need to deploy ITS

over the heterogeneous platforms. Some of these issues are discussed further in this chapter and

in Chapters 4 and Chapter 6.

3.2.1 Designing Users' Interactivity

Designing or participating within learning environments requires using cognitive or perceptual

skills (Clark, 1997), (Hutchins, 1995), (Kirsh, 1996). Therefore, designing interactivities is

necessary in order to reduce the user's cognitive load, which may render the tasks easier, faster,

or less error-prone. Furthermore, designing users' interactivities is important in order to

understand the dynamic of interactivities between the users' tasks and the system (Hollan et al.,

:\ (,cn:r-ic Architecture for Interactive Intelligent Tutoring Systems T ,-,\ AtoJagbe

Chapter 3: A Generic Architecture For Intelligent Tutoring Systems .+5

2000). The objective is to explore the concept of interactivity, particularly as it applies to the

design of ITS components.

Users' problem solving includes the use of mental models, together with other problem solving

techniques (Barker et aI., 1998), (Gentner and Stevens, 1983), (White and Frederiksen, 1985). A

users' mental model relates to some models of the component and the world in context (Barker et

aI., 1998). For example, mental models of a physical object are the conceptual representations of

the object that provide predictive and explanatory means to users in understanding the system and

guide their interaction with the components (Sein and Bostrom, 1989), (Young. 1983). These

approaches are sometimes referred to as normative domains (Gentner and Stevens, 1983).

because devices or objects in these domains have physical representations. As a result, users can

create an internal representation of the component. Furthermore, they can also associate structural

and functional relations among the actual devices/objects and their components (Gentner and

Stevens, 1983). Considering users' interactivities can offer a range of benefits by providing

improved flexibility and consistency and allows this research to be able to use users' interactivities

more reliably to assist in knowledge acquisition (Greeno et aI., 1998). The rest of this section

describes some relevant cognitive theories in software engineering perspectives, component

development, and the implications of the theory on application development are outlined. Some

of the theories are:

1. Decision-Making. Schoen (1993) suggests that developers make design decisions under

uncertainty, and designs are conceived partially (Schoen, 1983). The design decision is

usually made in the context of "events" (VanLehn, 1991). As the developer understands

the situation evolves, their mental model of the problem situation improved, thereby

improving the design (Guindon et aI., 1987).

Supporting a designer's decision-making process can be beneficial during application

development by using associative memory structure and access (Cofer, 1975), (Kurland and Pea,

1985). Developers can assist in making design decisions by providing tools that allows the user to

visualise their design and to readily access the design structure quickly and readily (diSessa,

1993), (Mayer, 1981), (Sebrechts et aI., 1990). For example, design aids such as checklists,

templates, may be beneficial for making design decisions.

ii. Structural Decomposition. Structural decomposition is a common strategy for designing

applications (Rumbaugh et al.. 1991). However, in practice, developers perform tasks in a

top-do\\TI, hierarchical order structure according to their cognitive loads (Guindon et al..

:\ Generic-Architecture for Interactive Intelligent Tutoring Systems T,\ :\tolagbe

Chapter 3: A Generic Architecture For Intelligent Tutoring Systems 46

1987), (Visser, 1990), (VanLehn, 1988), (Park et aI., 1987) and understanding of the

circumstances.

Therefore, the structural decomposition approach allows developers to design applications by

minimising cognitive load (Park et aI., 1987), although this approach has been challenged by the

belief that the cognitive development process is cumulative and not necessarily hierarchical

(Hoffman, 1997). The use of visual representation during design processes may help designers to

represent all their activities visually, which can minimise cognitive load.

The use of cognitive features such as cueing, or prompts may provide support during application

development (Beck, 1991). Cues also work as "perceptual organisers", and facilitate emphasising

central concepts in a domain (Ausubel et aI., 1978), (Beck, 1991). Prompting and reminding the

developer during design processes may help them to discover gaps in their knowledge and hence

find a suitable alternative.

111. Users Memory. Applications overloaded with information often render the systems

ineffective (Nelson, 1993). Therefore, the system should be designed so as to deliver

information to the user according to their needs, goals, and expectations; and it should

relate to the user's model (Allen, 1990). Application may be more effective if cognitive

overload can be minimised in components that require multiple representations (Ellis and

Hunt, 1993), (Anderson, 1996).

This theory implies that design components should provide cues that allow users to retrieve

related memories (for example, help system, examples, and error message).

IV. Information Processing. The information processmg capacity (working memory) of

human beings is limited (Lewis, 1996), (Just and Carpenter, 1992), (Miller, 1965). Byrne

and Bovair (1997) conducted an experiment that showed that increased working memory

loads caused procedural errors in conducting complex user interface tasks.

One implication of this theory is that working memory is limited, and the processmg of

information should be sequential (Just and Carpenter, 1992), (Baddeley, 1994) and the tasks

should be related. Working memory span should guide developers in making design decisions

and in forming plans for component usage i.e. developers should reduce working memory load

(Shneiderman, 1998), (Byrne and Bovair, 1997). This might involve provision of task relevant

information and of visual cues.

--~-----. ------
:\ C;eneri~' Architecture for Interactive Intdligent Tutoring Systems T A. Atolagbe

Chapter 3: A Generic Architecture For Intelligent Tutoring Systems 47

IV. Problem-Solving. Kintsch and Greeno (1995) suggest that developers must bridge the gap

between their mental model of the system and that of the user. The domain and problem­

solving mechanism within that domain relate to the users' current problem solving needs

(Pennington, 1987).

This implication of this theory is that it ensures that problem-solving activities are flexible.

Therefore, design support tools such as such as data flow diagrams can assist the developer to

identify elements and relationships in the current problem-solving activities. This approach may

facilitate comprehension and helps problem solving; context representation should be task­

dependent (Redmiles, 1993). Moreso, providing feedback in the context of a problem solving.

may be beneficial to the developer because it allows the user to respond constructively.

v. Visual Representation. Visual representations of design components are more effective

for communication. Design components that are represented visually can be quickly

recognised (Petre, 1995), (Nelson, 1993).

The implication of this theory is that design components should take the user's perspectives into

account and must follow the same notations.

VI. User Interface Guidelines. Usability guidelines are specific rules that define a given

graphical user interface and heuristic for manipulation (Nielsen and Mack, 1994),

(Nielsen, 1993), (Shneiderman, 1998).

Some of these guidelines provide the style guideline used in the development and evaluation of

some of the components in GeNisa. Detailed discussions of some of the components are provided

in Chapter 4. Therefore, based on analysis and synthesis, the following conclusions are drawn

from the above theories:

1. In general. experienced users have better understanding of the problem domain than

inexperienced users and their knowledge is better organised (diSessa, 1993). Structural

models of the problem domains are more important than functional models for program

comprehension (diSessa, 1993).

11. Users. in general, use three classes of mental models, namely the structural models, the

functional models and the distributed models, for program comprehension (diSessa,

1993). With clear understanding of the types of users' mental models the system is to

,~ Generic Architecture for Interactive Intelligent Tutoring Systems
T A Atolagbe

Chapter 3: A Generic Architecture For Intelligent Tutoring Systems .+8

support, developers can design an effective, interactive and usable system (Newman and

Lamming, 1995).

111. Users' mental models are imprecise, and are continually changing during initial learning

and during components development (Norman, 1993), (Sebrechts et aI., 1990). The

change of domain may affect the way user uses the systems, therefore, the system should

be adaptable.

IV. A software architecture design and instructional environments should provide cognitive

support for all the components.

v. Design features of all components must be consistent and easy to use (Nelson, 1993).

VI. Flexibility and visibility must be incorporated in the design and development of all

components.

Some of these elements form the basis of the interactivity requirement for the genenc

architecture.

3.2.2 Knowledge Support Components

The GeNisa learning environment provides the learner with components, which they can use

during instruction by reflecting on their own cognitive skills (Anderson et aI., 1995). This

approach can enhance instruction by involving the learner in the instructional processes and by

helping students acquire meta-cognitive and domain skills. In this research, knowledge support

components is defined as a framework consisting of "components", which consists of specific

knowledge activities. Knowledge activities are autonomous actions, events and behaviour that are

directly executed by the user. This approach allows the representation of content to be decoupled

from the design of the presentation and navigational structure, in order to facilitate modularity

and permit reusability, although the component-based approach (Ritter and Koedinger, 1997),

(Roschelle and Kaput, 1995), (Suthers and Jones, 1997) has been advocated for reusing ITS

components. However, ITS have not achieved either reuse or integration, and component reuse

may be costly (Sparks et aI., 1999), (Murray, 1996).

3.2.3 Requirements for a Generic Intelligent Architecture

This section describes the requirements for the generic architecture for ITS. The architecture is

intended to exploit a platform in which a wide variety of ITS can be easily developed. Like most

research efforts. the detailed design, implementation. and testing stages uncovered further

requirements that were not apparent during the initial analysis. These requirements were deri\'ed

:\ Cicneric Architcdurc for Interactive Intdligent Tutoring Systems T A. Atolagbe

Chapter 3: A Generic Architecture For Intelligent Tutoring Systems 49

from several ITS research publications and they are implicit in software engineering literature.

Furthermore, these requirements can be tied directly into an implementation.

These requirements were also drawn from earlier implementation and testing of the generic

architecture (Atolagbe and Hlupic, 1996), although these tests produced no significant changes to

the requirements, probably due to their relative simplicity compared to ITS architectures (e.g.

(Eriksson et aI., 1996), (Mus en et aI., 1995». However, they resulted in a re-conceptualisation of

the generic architecture (Atolagbe and Hlupic, 1997; 1998) to take advantage of constraints

identified from earlier architecture with considerable semantics checks (prudent attribute

evaluation).

The design considerations of the Generic Intelligent Tutoring System Architecture (GeNisa) were

driven primarily by the following requirements:

1. Design Architecture. One of the objectives of the genenc architectural is to exploit a

system's structure, at different levels of abstraction; also, to define different components of

the system and the interactions between them.

n. Consistency. ITS components are developed by multiple rather than single software

developers, and in the process they use various tools to produce different components

(Murray, 1999). There is also an issue of consistency violation between the modules, which

may hinder reuse. Therefore, the need arises to assist ITS developers in the production of

different ITS tools that can eliminate consistency violation and support editing of mUltiple

components modules.

111. Reducing the Developer's Effort. The basic objective of this is to develop a framework

under which one may easily build various components into the architecture. The generic

architecture should make application development easier, reduce the efforts and time

required for developing an ITS.

IV. Open and Dynamic. Facilities should exist that allow new components and systems to be

integrated into the architecture. The architecture must be transparent and it must allow for

easy modification, and it must be able to encompass changing data relatively easily and at

low cost. Authoring should be easier if it takes less time to develop and reuses existing

components. Since this objective emphasises generality and flexibility, it is also appropriate

to choose examples of graphical, semi-formaL non-knowledge representation languages to

gell(~ralise the applications. For example, Object Model Notation (Coad et al., 1995) was

used for design of the GeNisa architecture.

- ----- -~---------
T A. Atolagbe

Chapter 3: A Generic Architecture For Intelligent Tutoring Systems 50

v. Complete and Autonomous. Since this research is conceived as a framework to be used as

the basis for other ITS systems development, the structure of its design must be \'ery clear

and unambiguous. All component events and behaviour should cover as many applications

as possible. This requirement increases the chance that the component methods will be

suitable across domains. This may facilitate adaptation, since component behaviour can be

customised. Furthermore, separation of component events and methods may provide a

logically precise design that can serve as a reference point to resolve design ambiguities

(Gerhart et aI., 1994).

VI. Distribution. The architecture should permit applications modules and other resources to be

deployed over a wide area in which there is an access to resources. The system should not

be restricted to a particular domain, and should be able to integrate information from local

different repositories. The objective also exploits the use of class libraries for distributing

applications and the use of design patterns (Gamma et aI., 1995), (Pree, 1995) to provide

detailed, semi-formal documentation of design concepts. The design pattern provides a

vocabulary and starting point for design, and can be encoded as general-purpose classes in

object-oriented class libraries (Nelson, 1995), (Stepanov and Lee, 1995).

VB. Modularity. The functionality of an ITS architecture should be distinct from other processes

taking place within the architecture. Components interoperability should be domain­

independent and should consist of modular components. Therefore, little explicit encoding

of domain knowledge should be required from developers. Because little knowledge may be

available, the techniques need to be robust enough to provide a developer with "useful"

feedback during development. This requirement implicitly encompasses a clear separation

between the architectural components, and the underlining events and the user interface.

Vlll. Knowledge Acquisition. A toolkit that allows developers to augment and modify

knowledge-based systems automatically is required for acquiring knowledge from user

activities during instruction. The system should gather input from both the student activities

and from the instructional environment. The system should observe the user's activities as a

sequence of action-examples that it receives from the knowledge bases.

IX. Reusability. To support the construction and maintenance of ITS from libraries of reusable

existing components, and knowledge bases. The development language should not be

specific to a domain, in order to support developers for different domains and across

platforms.

x. Heterogeneous Support. GeNisa components should integrate seamlessly with other

applications and provide means of sharing data and knowledge. The architecture should

integrate different formalisms into a multi-paradigm representation and define the static

semantics between components so that any component specification errors can be detected.

A (iL'nc:ric ArchitL'cture for Interact!\L' Intelligent Tutoring Systems
T A. A!olagbe

Chapter 3: A Generic Architecture For Intelligent Tutoring Systems
51

By using a programming language that meets these requirements, this research can demonstrate

the feasibility of developing an ITS, by combining software engineering principles and AI

techniques. Furthermore, these requirements are used to describe the different level of the

system's granularity, and to encapsulate different parts of the system in separate, hierarchically

structured representation.

3.2.4 Software Architecture

Software architecture is an approach for developing software systems (Soni et al.. 1995),

(Kruchten, 1995), (Shaw and Garlan, 1996). Software architectures are design representations of

software systems that are based on composition of software components and their interaction

(Shaw and Garlan, 1996). This approach provides ways for selecting and developing software

components visually (Nelson, 1993). The component-based approach (Ritter and Koedinger.

1997), (Suthers and Jones, 1997) to software development is based on sharing semantics across

components and applications. This represents a framework for understanding and representing

components in the context of the system (Liebenau and Backhouse, 1990). Therefore, software

architects should support developers in making design decisions, and on application components,

together with their event processes.

It is commonly accepted that application components can be stored in a knowledge base of a

particular type (Habermann and Notkin, 1986). The knowledge bases may have been created,

accessed, updated and administered by using the functionality provided by a knowledge base

system (Habermann and Notkin, 1986). The methodology presented in this thesis aims to evolve

GeNisa into an integrated, adaptable and generic architecture with heterogeneous knowledge base

support. The GeNisa requirements delineated in the preceding section is used to determine toolkit

requirements for developers and for learners.

The premise of the generic architecture is based on providing access to collection of classes and

tools, organised into hierarchies for abstracting into an application. The architecture consists of

strategies for handling both intra and inter-component relationships. Components are therefore.

required to provide users with the means to access and update the syntactic structure of tools

incrementally (Engels et al., 1992) in order to facilitate the required components update and

associated component development.

--------------------- -- --_. --._-

A (icnt'ric Architecture for Interactivt' Intelligent Tutoring Systems T A. Atolagbe

Chapter 3: A Generic Architecture For Intelligent Tutoring Systems 52

Having established interactivity related strategies in the preceding sections, and based on the

literature, this was conceptualised into an architecture with a reusable design and instructional

environment that could be used, extended, and integrated with ITS.

ITS research is generally movmg towards the integration of a wide variety of software

components developed by different research communities (Gaines, 1994). For example.

requirements for integrating user-modelling tools have been suggested by Wenger (1987). This

approach provides means for using adaptive instruction module in an ITS (Wenger, 1987).

It is widely recognised that class hierarchies in object-oriented programming languages are used

for multiple purposes (Elson-Cook, 1990). The approach allows the separation of specification

and implementation into separate hierarchies. The main advantage of this approach is that it

allows the generic architecture to be represented in hierarchical class structure, which makes the

architecture more flexible, and it can be suited for different needs.

This research also exploits the Model-View-Controller (MVC) architecture in order to provide an

object-oriented framework for developing reusable, extensible objects by dividing the

functionality of an application into three logical objects (i.e. model, view and controller)

(Buschmann et al.. 1996), (Cox, 1996). This approach divides a user interface into three sub­

systems: model, view, and controller. A model is a fixed description and representation of the

objects being modelled, while views represent different ways of "viewing" the objects. MVC

assumes that all entities that will be modelled in the system can be anticipated. In the generic

architecture framework, classes may be both models and views at the same time. Classes

represent and present the objects created locally, and they may represent objects created in other

classes. This allows the system to evolve the model and the views at any time by separation of

data from presentation.

The generic architecture development environment implements the MVC design pattern in order

to support multiple views (Krasner and Pope, 1988), (Gamma et aI., 1995). This approach allows

the combination of object view and controller roles into the same object and processes all the

input and output of the software. Also, it is used to translate users' action into events (Gamma et

at., 1995) by accepting input from the user, and instructs the object and views class to perform

actions based on that input. This approach allows greater modularity, and allows the same design

representation to be viewed and to be easily and efficiently updated to reflect current changes.

Every component of the DesignObject (depicted in Figure 3.1) is an observer of the

corresponding component according to the Observer pattern (Gamma et al.. 1995). Layers

:\ (,enen,' :\rchitecture for Interactive Intelligent Tutoring SYSll'ms T A Atolagbe

Chapter 3: A Generic Architecture For Intelligent Tutoring Systems 53

(discussed in Chapter 4) and DesignObjects act as models for the visual properties of the diagram.

include co-ordinates, colours, etc. Underlying all components is a class library with modules that

can be reused.

Object ~ Observer
Attach(Observer)

observers
Update()

Detach(Observer)
NotifyO

t 0·-··--··-- f- for all 0 in observers {

4
o->UpdateO; }

Object
DesignObject DesignObserver
LJe[::>tateu 0···_ -.. ·

'-'1 return objectState I upoateu 0-··------------
SetStateO observerS tate
~

•• C',

Figure 3.1 Observer Pattern (Gamma et aI., 1995)

observerS tate =
subject->GetStateO

Most of the components used within a software development environment may rely on the events

provided by other components. For example, a problem-solving component directing the activity

of a user should have access to communication and execution of all related event modules if it is

to operate effectively. However, the provision of these capabilities may be provided through an

integrated environment.

3.2.5 Consistency Constraints

Different levels of details have to be considered for the specification of component consistency

constraints and their validation (Rumbaugh et aI., 1991). From a developer point of view,

consistency constraints are concerned with investigation into which set of components a

particular tool is consistent or inconsistent with. A component that is not consistent with other

similar tools may require further enhancement. Hence the generic architecture must ensure that

there are no consistency constraint violations during the lifecycle of the components modules and

their events processes. This includes static semantic constraints of the formal languages and

consistency constraints between different components. These constraints should not be confined

to tools of the same type but between tools of different types. An important factor considered by

this research is whether these constraints have been defined properly and are respected by tools

developed during the research.

------ -... ------------~

A Generic Architecture for Interac!l\e Intelligent Tutoring Systems T. A. Atolagbc

Chapter 3: A Generic Architecture For Intelligent Tutoring Systems 5.+

3.3 Methodological Assumptions

A wide spectrum of ITS development activities, ranging from the system design.

conceptualisation, sharing, and reuse (Biggerstaff and Richter, 1989), (Rumbaugh et aI., 1991).

(Eriksson et aI., 1996), (Musen et aI., 1995) are necessary during ITS development. This section

discusses the underlying assumptions for this research. These assumptions provide the context of

which this research shall address the design and implementation of the generic architecture for

ITS. They also (i) characterise the knowledge representation formalism in order to facilitate

portability and reusability, and (ii) characterise the problem solving methods for appropriate

interaction with the different components within the generic architecture. These assumptions can

be used to develop new components, or to adapt existing ones. However, these activities can be

integrated into a platform built upon a set of knowledge base toolkits for application

development.

The following methodological assumptions were derived mainly from the literature, and they

define all the properties of ITS component and their cross-platform needs. Also, it states the

major assumptions made about the generic architecture environment.

1. ITS uses varIOUS instructional strategies for effective instruction (Murray, 1997),

(Angelides and Paul, 1995), (Angelides and Tong, 1995), (Major, 1995). These strategies

have been influenced by theories of learning and skill acquisition, and it is assumed that it

is possible to identify instructional factors from the body of knowledge such as learning

theories, cognitive psychology and instructional planning (Anderson, 1993), (Shute,

1995). The aim is that these theories will provide the basis on which the instructional

module is based and a method that defines knowledge roles, which supports the different

elements of the instructional module.

II. Reducing Development Lifecycle. One of the main difficulties in designing ITS is the

time and cost required (Reinhardt and Schewe, 1995), (Murray and Woolf, 1992). ITS

development is often fragmented and less successful because of the multidisciplinary

skills involved (Murray and Woolf, 1992). Reducing development time may be realised

by promoting a degree of independence among the generic architecture components, and

therefore offers the potential of being able to share and reuse these components.

Ill. ITS Components Modularity. Simplifying ITS construction must take advantage of the

modularity of each component of the system. The modularity of components should

make easier transferring the tutoring to a new domain. The system's modularity should

also allow the transfer of general-purpose components (for example inference engines.

,.\ Gen~~i:' Architecture for Interactive Intelligent Tutoring Systems T A Atolagbe

Chapter 3: A Generic Architecture For Intelligent Tutoring Systems 55

and pedagogical agents) more easily. This should not involve developers simply reusing

their own components, but should also mean sharing components among different ITS

developers across platforms.

IV. Authoring Tool. The objective of authoring tools is to provide a development

environment for the construction of ITS (Murray, 1999). There are two main approaches

to achieving this goal: (i) to provide a simple development environment for developers to

develop their own tools, and (ii) to provide an easier means for developers to represent

the domain and design ITS components visually. This research investigates how to

extend the capabilities afforded by these approaches, in order to preserve the level of

usability and functionalities inherent in ITS components, and add additional components,

features and authoring paradigms to allow more powerful and flexible instruction to be

developed.

v. Knowledge Reuse. Many ITS researchers are seeking to reuse knowledge in new

applications and to share encoded knowledge across different domains and platforms

(Chandrasekaran et al., 1999), (Chandrasekaran, 1988), (Chandrasekaran, 1986),

(McDermott, 1988), (Breuker and van de Velde, 1994). Knowledge reuse involves many

dimensions, including the reuse of schemas, various software modules, ontologies,

diagnosis and inferences, and problem-solving methods. Reuse of knowledge is based on

the assumption that a generic intelligent architecture consists of multiple components

developed from different Java classes and other development tools.

VI. Knowledge-based Systems. The representation of knowledge ensures that the knowledge­

base contents are reusable and can easily be modified. This poses a requirement that

knowledge-based systems must have the ability to use multiple schemas describing the

contents of the same knowledge base.

Vll. Knowledge Acquisition and Reasoning. The genenc architecture learns by making

decisions on when and what to learn (as well as determining if learned knowledge should

be retained) during instruction. These decisions are made in order to maximise the utility

of acquired knowledge and for automatic knowledge acquisition from the user activity.

Vlll. Modularised Learning. These methods allow the generic architecture to be used for

exploring relationships between problem-solving and learning methods. A central

assumption to the use of these modularised learning methods is that the user interface

between different methods either does not exist or can be completely described (and thus

anticipated).

IX. Pedagogical Agent. The pedagogical agent "knows" every part of the case scenario, and

the domain knowledge associated with the scenario, and the correct problem solving

A Generic Architecture for Interactive Intelligent Tutoring Systems T. A Atolagbe

Chapter 3: A Generic Architecture For Intelligent Tutoring Systems
56

methods. It also assumed that the user interacts with the pedagogical agent during

instruction.

x. Since application would be deployed over the World Wide Web, the following

assumptions are made: (i) Application procedures are small and modular, i.e.

components' procedures are broken down into sets of small modular procedures. These

smaller units are used to develop large procedures. This assumption is used when

considering the run-time overhead of some components and algorithms. (ii) Logically­

related steps/procedures are grouped together.

These assumptions are consistent with current paradigms for developing ITS (Murray, 1999),

(Suthers and Jones, 1997), (Musen et aI., 1995), (Woolf, 1992) and provide rational justification

for the ethos of the generic architecture.

3.3.1 Knowledge Sharing and Reuse

Different varieties of representational formalisms have been used for control and strategic

knowledge in ITS shells (Murray, 1998), (Self, 1999). Some of these systems employ

sophisticated AI techniques such as goal-based planning (Russell et al., 1988), black board

architectures (Murray 1990), agents (Cheikes, 1995), task decomposition (Van Marcke, 1992),

and production rules (Anderson and Pelletier, 1991), (Major and Reichgelt, 1991). Furthermore,

no framework or visual component editor has been developed for any of these formalisms, which

increases their usability. Although, some of these representation formalisms are modular, they

may affect structure of knowledge, and make design decision complicated (Lesser, 1984).

The generic architecture uses the Unified Modelling Language (UML) (Object Management

Group, 1998) paradigm for developing ITS. The justifications for this approach are: (i) UML is

primarily graphical, with textual annotation. These notations can be used for developing ITS

components; (ii) UML models include elements such as software components, communication

mechanisms, processes, threads, components events, external systems, and source code modules

(Garlan and Shaw, 1993), (Kruchten, 1995), (Luckham and Vera, 1995), (Taylor et al.. 1996).

These elements may be instantiated during application development into different components

with different functionalities.

This research exploits the use of UML as architectural support tools for ITS. This approach

provides support that is feasible because it provides a useful and extensible set of predefined

constructs that can be extended, and it is based on more concise software engineering methods.

This approach wi II allow developers to externalise their mental model of a given problem and

:\ (;coem' Architecture fl)r loteractive Intelligent Tutoring Systems T A A(olagbe

Chapter 3: A Generic Architecture For Intelligent Tutoring Systems 57

solution (Shneiderman, 1998) and allows the model to be analysed, and communicated for

different purposes. For example, the expert model may be regarded as more advanced model

components for instructional purposes. The design environment postulated in this research

supports the ethos of the generic architecture by using:

1. Flexible data definitions for various components of the generic architecture. These data

definitions will include standard definitions for knowledge databases, design

components, inference modules, student model, and pedagogical module. These

components are used for specifying what to teach, and teaching strategies that specifies

how to teach (Wenger, 1987), (Ohlsson, 1987).

11. Transaction definitions for interaction between the components of the genenc

architecture. This would include a definition of information needed and standard

processes to be followed by the controlling module of the architecture.

Ill. Strategies and communication standards for interaction between the architecture and

other software, such as design tools, or other ITS software.

Nevertheless, the development of intelligent instruction from generic, reusable components could

benefit from standardisation of ITS components, which may provide enhanced development

tools, with improved interoperability between components. As ITS development involves

hierarchical decomposition of domain subject (Murray, 1999), the UML which supports

hierarchical decomposition maybe feasible for developing ITS.

3.3.2 Component Behaviour

ITS components are analysed as knowledge communication subsystems (Wenger, 1987). This

approach allows instruction to be individualised; allows tutorial misconception to be diagnosed

and to provide appropriate remediation (e.g. (Van Merrienboer and Krammer, 1992), (Anderson

et aI., 1990)) to the student. Therefore, pedagogical goals and sub-goals are used as the basis for

providing appropriate diagnosis during instruction.

Murray (1998) argue that there is no distinct methods to determine the composition of an ITS

component. because ITS components are bound into an implementation structure, which makes it

more difficult to reuse or extend the components behaviour independently. Therefore, this

research assumes that ITS component behaviour is based on the events within the GeNisa

architecture. Moreover, any initiated components events are declarations about component

A Genenc Architecture for Interactive Intelligent Tutoring Systems T A Atolagbe

Chapter 3: A Generic Architecture For Intelligent Tutoring Systems 58

behaviour, and not domain specific behaviour. Therefore this research assumes that a component

can be expressed as a combination of a range of component classes with different behaviour.

The component behaviour is encoded so as to provide dynamic feedback to the user during

problem solving. It is based on cognitive model of learning through problem-solving and using

case scenarios (VanLehn, 1992). This approach may facilitate real-time control of problem

solving activities by the user, and assist in structuring the presentation of tutorial. Nevertheless.

the component behaviour is specified by global constraints, which relates to the users' current

task. This constraint is implemented by a software agent, which ensures that no components event

is initialised unless it is invoked by the user. This mechanism provides support for the

implementation of control protocols in the context of open and evolving dynamic environment.

3.4 Knowledge Representation

The contents of a knowledge-based system constantly change during its life cycle (Clancey.

1992), because of the changing needs of the users. Therefore, this section discusses knowledge

representation in the context of the generic architecture, which relates to knowledge based

systems analysis, design, reuse, and/or systematic decomposition of the domain subject (Murray,

1999), (Ramachandran and Fleischer, 1996), (Frakes, 1994), (Krueger, 1992), (Neighbors, 1984).

It addresses the knowledge acquisition bottleneck (Murray, 1997), (Hoffman. 1987) by

employing: (i) a representation of knowledge structures, (ii) systematic decomposition of the

domain subject, (iii) a set of domain independent attributes, and (iv) a meta-knowledge of the

domain subject.

Figure 3.2 Knowledge Representation

:\ lic:nen~'-:\rchitecture for Intc:radiH' Intelligent Tutoring Systems T A. AtoiJgt'l<-'

Chapter 3: A Generic Architecture For Intelligent Tutoring Systems 59

Figure 3.2 depicts a schematic representation of the knowledge representation methods. The

DomainRepresentation class implements the domain representation formalism, which consists of

DomainObject and an instance of the class derived from the abstract class AbstractMap. An

abstraction map is used to store the relationship between an element's structure and the structure

of its representation. The DomainBindingsMap class is a subclass of AbstractMap used to store a

set of pairs of elements. The first element in each pair is a child of the element being represented

and the second element is contained within the subsystem inside the representation. It is used to

represent a simple mapping between "external", or more abstract, structure and "internal", or the

less abstract structure within the representation.

The knowledge representation construct are organised into a structure of classes according to

object-oriented programming methods (Booch, 1994). These classes support hierarchical

decomposition of domain tasks and methods (Chandrasekaran et aI., 1999), (Musen et aI., 1995),

(Steels, 1993), (Musen, 1992), as well as a hierarchic classification of domain subject. Moreover,

synthesis of knowledge-based applications is explored by combining domain specific and domain

independent components.

ITS use separate knowledge bases, for instructional content, and for teaching strategies (Murray,

1998), (Murray, 1996), (Clancey, 1987), (Wenger, 1987). However, the use of knowledge-based

paradigm in ITS development must conform to traditional ITS architecture (Siemer and

Angelides, 1998). This research uses a knowledge representation formalism that allows

combination of different tools and other software modules to engineer a sound pedagogical,

intelligent interactive instructional system. The core purpose of this approach is to support

component-based development, modularity, and reuse of the generic architecture components.

3.4.1 Components and Interoperability

Objects are described as entities, which are characterised by their attributes and methods (Booch,

1994), (Rumbaugh et al.. 1991). The component method defines its state and events processes,

problem-solving method and also defines its interaction with other components (Musen et aI.,

1995).

. : . : G.::t!'l 'JTle()

.. : G.::1M';!liod~,
seiN .irU,,'.1

Figure 3.3 A Component Diagram

A (IL'nL'ric Architecture for Interactive Intelligent Tutoring Systans
T. A. Atolagbc

Chapter 3: A Generic Architecture For Intelligent Tutoring Systems 60

Components interactions are defined through their interfaces (Booch, 1994), (Rumbaugh et al..

1991). An example of a component diagram is shown in Figure 3.3.

This research investigates how ITS can be modularised as object-oriented software components.

Such ITS components should encapsulate multiple classes, which can themselves be viewed as

components classes, as they support the object-oriented mechanisms of encapsulation and

inheritance (Booch, 1994). Components are often defined as pre-fabricated software components

that can be combined in a 'plug-and-play' manner (Orfali et al., 1996). As such, components can

be implemented as objects or as compositions of collaborating objects, and packaged as

independent pieces of code.

An important characteristic of a component-based approach is that individual components may

contain specialised functionality and/or knowledge and have access to the functionality of other

components in the system. This has a couple of advantages for a generic architecture for ITS.

First, this allows different components of the system to use the same event protocols during

instruction. Second, it allows all components' properties and behaviours to be easily abstracted

from the system by carefully defining their internal state and data structures through an external

interface (Stead et al. 2000), (Musen, 1999), (Booch, 1994).

The components based approach has some architectural implications. For example, the different

software components must conform to a common user interface look and feel (Nelson, 1993),

(Gosling et al., 2000), or the components need to support the use of their functionality by other

components. Moreover, the structure of the system will be implemented through the use of

different components packages, thereby allowing each package to be easily modified as required.

A package is the prototypical modularisation scheme, with well-defined static interfaces and

dependencies (Rumbaugh et al., 1991). This approach allows further issues of portability and

reusability, to be examined further in Chapter 6.

This research uses ontology (Perez and Benjamins, 1999), (Chandrasekaran et al., 1999) (Gruber,

1993), (Mizoguchi, 1993), to provide a basis for building different components of the generic

architecture and to enhance knowledge sharing and reuse (Fridman et al., 1997), (Mizoguchi et

al.. 1995), (Mizoguchi et al.. 1996). The ontology representation formalism used in this research

should remain invariant over various knowledge bases and across a range of domain (Guarino,

1997), (Guarino and Giaretta, 1995). Moreover, the ontology contains an explicit and functional

representation of components class definitions and its instances. It provides a "conceptualisation",

which can be "shared" by multiple components interacting during an event processing protocol.

-----------::---::-:----:::------:----::------ ----- - -~~~~ -----
:\ Cil'nl'rl~ Architccture for Interactivc Intelligent Tutoring Systems T. A Atolaglx'

Chapter 3: A Generic Architecture For Intelligent Tutoring Systems 61

Using ontology for describing component methods and attributes provides two advantages for

reusing ITS components. It provides means for specifying the different component and methods

in the generic architecture, with common, sharable attributes and allows its knowledge bases and

problem-solving methods to be conceptualised as hierarchically structured taxonomy levels

(Benjamins et al., 1999), (Chandrasekaran et al., 1998), (Fensel et al., 1997), (Gruber, 1995).

Therefore, it could be inferred that ontology collectively serves as a set of reusable components

for building ITS.

The following examples illustrates the various way by which this research uses ontologies for

developing ITS. Firstly, as ITS are knowledge-based tutors (Murray, 1996), therefore ontologies

provides reusable constructs, which can be utilised in the design of the knowledge bases for ITS

and to be used across different domains. This approach is similar to the GAMES methodology

(Van Heijst, 1995), (Guarino, 1997). Moreover, as ontology can be used for conceptualisation, it

provides means for conducting analysis, design and comparison of different component models.

For example, Sim and Rennels, (1995) and Visser and BenchCapon, (1996). Secondly, an

ontology may also be used to describe the structure, knowledge types, topic properties, entities,

methods and behaviour of components in a system during ITS development. An illustration of

this example includes CUE (Van Heijst and Schreiber, 1994), (Van Heijst, 1995), (Mizoguchi et

al., 1996). Therefore, an ontology allows instructional strategies, student model components,

diagnostic models, pedagogical tasks structure and interactivities with the student to be

conceptualised, designed and implemented for use across different domains (e.g. (Fridman-Noy

and Hafner, 1997), (Mizoguchi et al., 1996), (Murray, 1996».

Figure 3.4 depicts the mam modules of the GeNisa conceptualised in this research. The

architecture consists of four subsystems: the event manager that implements the interaction

between components, and implements protocol of message passing between application; the user

interface provides direct manipUlation of the components (Shneiderman, 1998), (Nelson, 1993);

the components modules are units of software modules with independent functionality (Ritter and

Koedinger, 1997); and, finally, the reasoning subsystems function as reasoning "engines" of the

system (executing a task may imply a call for reasoning service via the events manager). Each

component may comprise of an arbitrary number of processes. Object-orientated approach

(Booch, 1994) was adapted to provide high-level support for both inheritance and message

passing. This approach enables this collection of autonomous processes to operate concurrently

within the development/instructional environments, and to be represented in class libraries

thereby allowing the functionality of the components to be extended.

:\ Genefl~:\rchitccture for InteractIve Intelligent Tutoring Systems T A. Atolagbe

Chapter 3: A Generic Architecture For Intelligent Tutoring Systems 62

~J=--l L;:J L:;:-J

§ {~J
... ~ CorrpllIents

Subsystems

o

Figure 3.4 Main Modules of the Generic Architecture

Some of the properties of the GeNisa components include: (i) Autonomy. Component

implementation functions are autonomous and may depend on inputs and output from their

respective users; (ii) Communication ability. Tools should be able to interact with other systems

in order to distribute tasks for solving a problem; (iii) Reactivity. Components should response

quickly to user's requests and obtain feedback if required. This depends on the control strategy to

be applied to the component, in order to accomplish the function; (iv) Reuse. Effectiveness and

ease of use of developed components; (v) Robustness. Exceptional situations should be handled

intelligently.

Taking these general traits into account, these properties may be represented as component

features, which are properties of applications where the component might be used. This

framework allows heterogeneous group of tools to interact (Johnson and Rickel, 1999), (Johnson

et at., 1998), (Ritter and Koedinger, 1997; 1996), (Ritter and Blessing, 1998). The advantage of

this approach is that it provides a model of the component properties of the generic architecture

and the basis of interaction among different components. This approach may enhance flexibility

and reuse by allowing components to be developed independently, used on other platforms and

across domains.

3.4.2 Knowledge Base

This section outlines the possible roles of a knowledge base for use in GeNisa and in coping with

some of the sharing and reuse problems and discusses the integration of knowledge bases and

editing tools into an application development environment.

This research uses ontologies to annotate problem-solving methods and for problem

r~presentation (Mizoguchi et al.. 1995), (Musen et al.. 1995), (Fensel et al.. 1997). (Benjamins et

A Generic An:hitectllll' for Interactive Intelli~l'nt Tutoring Systems T A. Atolagbe

Chapter 3: A Generic Architecture For Intelligent Tutoring Systems 63

aI., 1999), (Chandrasekaran et aI., 1998). Knowledge modelling methodologies such as KADS

(Knowledge Analysis and Design Structure) (Wielinga et aI., 1992), (Breuker, 1990), (Wielinga

and Breuker, 1990), PROTEGE (Puerta, 1992), and MULTIS (Mizoguchi et aI., 1995) originated

from the generic tasks (Chandrasekaran, 1986) and heuristic classification (Clancey, 1985).

Currently, knowledge engineering research are directed towards task ontology, which uses

different concepts as building blocks for knowledge-based systems (Musen et al., 1995). Hence.

an ontology provide a knowledge level description (Newell, 1982) that is independent of any

representational formalism (Chandrasekaran et aI., 1999), (Mizoguchi et al.. 1996).

Task ontology (Mizoguchi et aI., 1996), (Van Marcke, 1995) provides an effective methodology

and vocabulary for both analysing and synthesising knowledge-based systems (Van Marcke,

1995). Moreover, task ontology can be use as a means for overcoming the shortcomings in

current ITS (Mizoguchi et aI., 1996) and for characterising and formalising ITS in order to

facilitate reuse.

Building knowledge systems for use in an ITS involves creating a model of a particular domain

such as simulation modelling, botany, or mathematics (Murray. 1996). This approach requires a

conceptual shift from traditional "story board" representations of tutorial content to more modular

knowledge based representations (Murray, 1996), (Murray, 1999). Such a model is usually an

abstraction of the domain under consideration (Wenger, 1987), (Murray, 1996). Moreover, this

model is concerned with which elements of the domain should be modelled by the system.

Therefore, ontology is used as specification of domain knowledge, used as building blocks for

developing an ITS, and it provides reusable components for the generic architecture (Sim and

Rennels, 1995), (Studer et aI., 1999). The framework for the specification of the generic

architecture consists of three main elements depicted in Figure 3.5. The framework consists of:

(i) Domain knowledge, which describes the structure on the domain, instructional strategies

and the problem solving methods (Top and Akkermans, 1994). It involves the

characterisation of the case scenario, domain knowledge, problem-solving strategies (for

diagnosing users activities) and the pedagogical task structure. Each of these elements of

the domain knowledge are described independently in order to foster reusability across

different domains (Breuker and van de Velde, 1994), (Top and Akkermans. 1994).

(Puppe. 1993) and to support schemas integration.

(ii) Diagnostics. which involves description of the diagnostic processes that can support

different the users' differences from different sources (including knowledge bases. and

oyer the Internet) .

. --------------------~- -

:\ (iL'nL'ric Architecture for IntL'ractivt' IntL'lligent Tutoring Systems T A. Atolagbc

Chapter 3: A Generic Architecture For Intelligent Tutoring Systems

Determine: Domain
Objective

Domain Coo,tlaius

Domain Parameter.

Detennine
Pedagogical Toskl

hutnu;tiou Reoultcmc:nU

Problem Solvin. Method.

Domain Comoonent.

Determine Diagnostic
Functions I----r

Inference Stnlc:rv

Identify Domain
Goah

Koowlcdu ElicilatioD

Determine Case
Scenarios

-o Appl~- Swp<

o ADoliclLio. SubtvillCm.

Pedaro.icalStralnV

ComOODculJ Evcut Proloc:ol

Quiz Ma:huilm

Figure 3.5 Instructional Design Process

This involves a description of the inference mechanisms, and diagnostic methods for querying

users' activities. Diagnostic description may support the use of variety of strategies to aid the

student learning. This may requires the use of temporal logic (TreuL 1994) in order to specify the

dynamic interaction between the user and the system. Finally, the navigation, which describes the

ability to present instruction dynamically across heterogeneous platforms (Weber and Specht,

1997). Navigational methods support different pedagogical techniques and instructional

sequencing, and support navigation over the Internet. It supports adaptive navigation with an

individualised user model (Weber and Specht, 1997). The navigational methods can guide the

development of tutorial contents and how to sequence the contents. It provides navigation and

information retrieval features, and information for managing the content of instruction across

different domains. This is important because knowledge of the subject matter relates to an ability

to navigate in a non-linear way through the tutorial space (Ohlsson, 1992). Each tutorial content

is linked by using contents "links", which can be encapsulated in the knowledge-based. Methods

such as ·'Submit". "Elicit", "Concepts" (describes tutorial constraints). "Remove_Tutor",

"lnserCNew_Tutor". are used to describe and modify the structure of knowledge bases and to

charactL'rise tutorial navigation methods, which are relatively independent of other components in

---- --- -------------- --- ~-.-... - . - . ----_.

:\ (ieneric Architl'cture for Interactive Intelligent Tutoring S) stems r ,-\ Atolagbe

65

the generic architecture. This may facilitate presentation of tutorials irrespective of the semantic

structure of the knowledge bases.

The knowledge base can be considered as an open knowledge based system with different levels

of conceptualisation (Chandrasekaran et aI., 1999), (Studer et aI., 1998), (Guarino, 1997). and is

classified into different levels of hierarchical structure (Wielinga et aI., 1997). The main

classification levels used in this research are:

L Domain Task. Domain knowledge defines objects and relations that express a domain

task-specific perspective on the domain knowledge, i.e. specification of a domain goal

together with some input and required output (Studer et aI., 1999), (Studer et al.. 1998) and

the reasoning behaviour of the domain. The domain task describes an ontology for a tutorial

task, for example, mathematics, which contains objects, such as lesson objectives.

instructional strategies, etc. Ontologies provide means of reusing and constructing the

knowledge bases by the definition of knowledge and data (Chandrasekaran et aI., 1998).

This allows knowledge bases to be used as building blocks for designing, sharing, and reuse

of the knowledge base development for instructional purposes (Murray, 1999), (Eriksson et

aI., 1996), (Musen et aI., 1995). Furthermore, an ontology can be used to define objects and

relations that express a method-specific perspective on the domain knowledge (a method

means a specification of how a task can be performed or a problem solving methods (Musen

et aI., 1995), (Studer et aI., 1999). This ontology contains methodologies, which specify

various tasks, and contain objects, and solutions to some problems, constraints, and value

assessment.

ii. Knowledge Sharing. Ontologies can be used as separate specification element that supports

the reusable specification of data structures and to support the combination, adaptation and

distributed execution of knowledge components from different components libraries (Fensel

et aI., 1997), (Benjamins et aI., 1998). Part of the constituents of the generic architecture is

the ability to share semantics amongst different components; therefore, it is essential that a

shared semantics is achieved. One use of these semantics is for mapping the component's

internal representation to a task that the user wants. Another use is building default

descriptions of a component that could be used with different users. The sharing of semantic

contents may be achieved by defining common ontologies for the generic architecture, and

llsing clearly defined mappings for each ontology of the system's components. This

approach helped to define an ontology allowing each system to have its own ontological

representation. for sharing task knowledge (Eriksson et aJ.. 199)) and component functions.

:\ Genl:~ll::\rchitL'cturc for InteractivL' Intelligent Tutoring Systems T A. Atlliaghc

Chapter 3: A Generic Architecture For Intelligent Tutoring Systems 66

The sharing of the individual ontologies requires mappings between the knowledge base and

problem-solving method (Eriksson et al., 1996). This approach allows the mapping of ontologies

to be implemented by specifying in advance set components, which provides a meta level method

for controlling performance and for making mapping decisions (Fensel et al., 1997).

The knowledge base contains the representation of the subject matter and is suitable for the

integration of intelligent tutoring and hypermedia systems (Murray, 1999). (Murray, 1998),

(Angelides, 1998), (Merrill, 1983), (Merrill, 1996), (Wenger, 1987) because its structure is

supposed to support the selection, sequencing, and presentation tasks of users' activity. This

approach enables mUltiple navigational communication between the student model (Brusilovsky,

1998), (Brusilovsky, 1996), (VanLehn, 1996b), (Woolf and Murray, 1994), (Ohlsson. 1986), and

it makes possible to access large quantities of tutorial material in a flexible and interactive way.

An object orientation representation scheme was used to implement various components in the

knowledge base. In this representation scheme. domain task is represented as an object, with a list

of attributes. View integration is used during conceptual design to produce a global description of

the component on the basis of mUltiple descriptions of each class. View integration reflects a

planned integration during component design, where different design problems are integrated into

one (Booch, 1994). This approach allows the same component properties to be represented by

different constructs in different component versions. For instance, the same component properties

may be represented in terms of an entity/class as well as an attribute. To ensure the knowledge

base behaves consistently with other components. this research assumes a global perspective for

all components schema. In this way it is possible to detect all dependencies that exist between

component of the architecture. This framework emphasises components modularisation and

reusability (Booch, 1994), (Rumbaugh et al., 1991), which constitutes a unified representational

formalism.

Most research on knowledge representation methods (Park et al., 1987) has concentrated on the

problem-solving domains (Wenger, 1987), (Benjamins and Fensel, 1998). In this research. more

emphasis is placed on developing "knowledge" of expertise for problem-solving tasks by using

case scenario. This approach is different from the task analysis (Durkin, 1994) methods of

instructional systems development. First, this approach can be implemented to yield a

"simulation" of the expert behaviour. Second, it emphasises the order in which domain tasks must

be performed as opposed to the order in which they must be learned (Johnson. et al. 1998),

(Gagnc and Briggs, 1979). Furthermore. this approach considers the notion of multiple \ icws of

the curriculum. According to Lesgold (1988), in some domains it is possible to \ iew the
~ ~

-~~- -- ---- --
:\ Generic Architl'cture for IntL'l;lcti\'l' Intelligent Tutoring Systems T A Atolagb.:

Chapter 3: A Generic Architecture For Intelligent Tutoring Systems 67

curriculum through different perspectives, which thereby allows combining content knowledge

from multiple sources. For example, a basic simulation modelling course can be viewed through

four different perspectives: simulation methodology, simulation software, design and analysis of

experiments, and output analysis (Atolagbe and Hlupic 1997).

Each tutorial task consists of attributes, which are used for tutorial presentation and for case

retrieval from the knowledge base. Each tutorial task represents an atomic concept in the

knowledge base and can be directly associated with content features. The matching formalism is

based on using Bayesian network inference methods to associate instructional task features and

associated case scenarios. The ability to represent any given level of knowledge within the

domain by using Bayesian methods with known properties could make the knowledge

representation methods more interactive for use with the pedagogy module. For instance,

Bayesian network has been used for automating medical diagnoses and supporting expert

decision-making (e.g. (Haddawy et aI., 1994), (Heckerman, et aI., 1992)). Moreover, the

Microsoft Office Assistant employed Bayesian network to infer a user's requirements by

considering a user's background, interactivities and queries (Horvitz et aI., 1998). Similar

approaches have been used for assessing student ability during instruction (Martin and VanLehn,

1995), (Gitomer et aI., 1995). Bayesian networks allow the knowledge-representation formalism

to reduce the degree of complexities and accuracy can be varied, allowing content-sensitive

information to be incorporated into the tutorial (Heckerman, 1997).

3.4.3 Instructional Planning

The instructional planning (Macmillan et aI., 1988) contains specifications for different

instructional methods, including how to present instructional material, what type of questions to

ask, and when to intervene (Major et aI., 1997), (Major, 1995), (Wenger, 1987), (Ohlsson, 1987).

The instructional strategies consist of the main components for effective instruction (Dick and

Carey, 1996). Self (1994) asserted that most of the currently existing ITS have little control over

how knowledge gets presented to the student. This may be attributed to the fact that some ITS

have been designed around a paradigm where instructional interactions are based on diagnostic

actions by the learner (Vassileva, 1995). Furthermore, a tutorial planner must be able to generate

tutorial plans, monitor the execution of the plans, and generate new plans (Eliot and Woolf.

1995), (Van Marcke, 1992). It must be able to adapt its plan when necessary in order to customise

tutoring plans for each student (Eliot and Woolf. 1995), (Katz et a1.. 1993), (Katz and LesgoJd.

1993).

T A Alllla~tx·

Chapter 3: A Generic Architecture For Intelligent Tutoring Systems 68

Essentially, the instructional planning should allow developers to reuse the content of an existing

courseware package and to tailor the teaching strategies to different users needs. This approach

requires the developer to provide data for use in a predefined instructional module. This research

adopted Goal Based Scenarios (GBS) (Schank, 1994), (Bell, 1998) as instructional strategy.

Essentially, GBS based approach involves instructional planning and allows students to work on

different scenarios using a predetermined framework (Bell, 1998). The GBS framework allows

the developer to provide case scenarios, tools, graphics illustrations, hints, questions and answers.

to be integrated to the instructional environment. Learner participation during instruction was

emphasised through its hands-on approach. The system ensures that users participate in all

aspects of the course and are presented with appropriate case scenarios. This strategy provides the

learner with the skills necessary to meet the pedagogical objectives of the unit (Gange, 1985).

Furthermore, this approach allows the tutor to share control during the tutorial session with the

student and also allows the planner to manage the tutorial dialogue (Major. 1993).

In the context of this research, instruction is defined as a form of structured learning experience

(Murray, 1996), (Gruber 1987), or as a systematic activity that is aimed at learning and includes

teaching (Murray, 1999), (Pontecorvo, 1993). Success in applying AI-based instructional

planning systems to ITS requires an interactive and automated method. An interactive method (to

aid the user in manipulating knowledge), and automated methods (to verify the interactivity

methods and extract new knowledge from a variety of sources) are needed, including on-line

databases, training exercises, and actual tasks. Instructional planning is concerned with delivery

and content planning (Wasson, 1996), (Wasson, 1992). Pedagogical decision making is

concerned with both the content (what goals to focus on) and the delivery (how to achieve the

goals) of instruction (Wasson, 1992), (Dijkstra et aI., 1992). This research adapted the following

instructional strategies:

l. Content Planning. Content planning entails generating and structuring instruction

according to pedagogical classification tasks and the formation of a new plan as the

student progresses (Wasson, 1996), (Wasson, 1992). The design of the content planning

module should consider the following strategies. (i) Student mental model (Self, 1999),

(Self, 1987), (Anderson, 1987), and knowledge requirements at different levels of

instruction. This is essential in order to provide coherence and continuity in the

instructional process (Wasson. 1996), (ii) Courseware material will be content specific;

identifv commonality between topics and extract new topic (Bruner. 1990). (iii) Range of

tasks must be relevant to current operation and tasks should be annotated \vith

appropriate case scenarios.

--- --------------:::::-- -----------
A Generic Architecture for Intl'ral·tl\'C~ Intl'lligent Tutl)rlDg Systems T A Atolagbe

Chapter 3: A Generic Architecture For Intelligent Tutoring Systems 69

11. Delivery Planning. Delivery planning is concerned with choosing the activities and

instructional interactions that help the learner achieve the goals (Wasson, 1996), (Merrill

et al., 1992). Delivery planning determines how to sequence explanations, tests.

presentation, exploration, and how to manage the initiative in a tutorial dialogue.

KAFITS (Murray and Woolf, 1992) uses a four-layered representation of instructional

primitives: goals, topics, presentations and responses, and a template network

representing a "dummy" teaching strategy. The developer can see it as a general delivery

plan, which can be instantiated.

111. Hierarchical Planning. Hierarchical planning is used to distinguish between goals and

actions based on degrees of importance, so that the most important problem is solved fIrst

(Yank, 1997). In hierarchical planning, the domain knowledge is divided into different

abstraction levels, so that a complex task can be structured into a set of ordered tasks and

subtasks (Yang, 1997).

These levels of planning "cannot in practice be so clearly separated" (Murray, 1988). However,

instructional planners can be represented as structured or partially structured goals, with different

levels of granularity. In this research, instructional planning adapted some of the above strategies

plus the following: (i) Default setting for novice user that will adapt to users needs. This value is

assumed at the beginning of the course except if stipulated by the developer. (ii) Providing

remedial information during instruction (Ohlsson, 1991). (iii) Tasks monitoring, the planner can

monitor the users' problem-solving activities and can dynamically adapt its plan in order to

achieve tutorial goals. These features are discussed further in Chapter 4.

3.4.4 Discourse Planner

The discourse planner implements the tutorial planning (Woolf and Cunningham, 1987) and

provides a mechanism for pedagogical decision making (Murray, 1988), (Woolf, and

Cunningham, 1987), and for controlling interactivities between the learner and the system. It

involves both tutorial content and delivery planning (Wasson, 1996), (Wasson, 1992), (Dijkstia et

al., 1992). This planning mechanism divides the decision making process into different

hierarchically organised levels. Each level successively refInes the decision making process into a

form such that a customised tutoring plan is generated for the student. This may facilitate

understanding of the student's problem solving methods, which may enable improved diagnosis

and selection of appropriate tutorial strategy. The discourse planner and the student models use a

network-based representation that includes abstract concepts and relationships as well as

---------------::---:-:-:--~--:--~------~- - ---­
A Generic Architccture for Interactl\'t~ Intelligent Tutoring Systems T. A Atolagbe

Chapter 3: A Generic Architecture For Intelligent Tutoring Systems 70

strategies for problem solving. This framework is designed to be extensible and flexible through

the effective use of object-oriented principles and Bayesian network.

Discourse planning deals with "planning communicative actions between the tutor and the student

within a lesson" (Murray, 1988). The discourse module uses a content planning mechanism to

control interaction with students by extracting information from the student's problem solving

activities.

This research employs a Bayesian network for case retrieval by using Bayesian reasoning

strategies during student's problem solving tasks (Johnson et aI., 1998), (Martin and VanLehn.

1993). Bayesian networks have been used to integrate student current activities with pnor

experiences and to update their problem solving activities via their instructional methods.

The discourse planner is responsible for selecting/or generating instructional goals, deciding how

to teach the selected goals, monitoring the student's behaviour, and determining what to do next at

each point during a tutoring session. The discourse planner makes two different types of decisions

during the tutoring session: decisions about the content of the lesson and decisions about its

presentation strategy. Although the early ITS largely focused on the delivery strategy of the

planner, some recent planning research shows the integration of both aspects in building the

planner (Murray, 1990). The discourse planner in GeNisa carries out both functions, since it is

beneficial for the learner if the system can provide a global lesson plan. The lesson planner must

update the tutorial goals dynamically as the student model changes (Wool, 1984), (Russell et aI.,

1988). Therefore, determination of an appropriate level of remediation during instruction depends

on current tutorial level and the use of an appropriate planning strategy. The discourse planner

considers factors such as the learner's current tasks, tutorial levels and type of feedback a student

prefers before remediation.

3.4.5 Teaching with Case Scenarios

Learner can acquire new skills by learning from examples (LeFevre and Dixon, 1986), (Pirolli

and Anderson, 1985), (VanLehn. 1986). However, the benefit of learning from examples strongly

depends on the student's study strategy, self-explanation, and the student's problem solving

methods (Chi, 2000). (VanLehn, 1996a). (Ferguson-Hessler and de Jong. 1990). (Pressley et al..

1992). (Chi et al.. 1994). (Renkl et al.. 1998). (Pirolli and Recker, 1994). Using self-explanation

strategy is usually a more constructive learning process because learners are generating

appropriate questions during problem solving and answering them for themselves (VanLehn.

- ---- --------.~-------------
A Generic Architecture for Interactive Intelligent Tutoring Systems T A. Atolagbe

Chapter 3: A Generic Architecture For Intelligent Tutoring Systems

1996a). This approach allows the learner to elaborate on their existing knowledge, and to use an

appropriate problem-solving strategy.

This research has investigated the benefits of integrating case-based ITS that allows the student to

use self-explanation strategies during problem solving (Bielaczyc et aI., 1995), (Ryan, 1996).

(Chi et aI., 1994). Such a system must be able to monitor the students' problem-solving methods

(Katz et aI., 1993) and to generate explanations that can improve the students' understanding. One

primary way to support learning by using self-explanation strategy is to engineer components,

which can enable the student to explore domain knowledge unintrusively. This approach can

facilitate the development of cognitive and procedural skills (VanLehn, 1996a).

Learning from examples is a necessary part of ITS because: (i) in pedagogical terms, it allows

students to participate in controlling some real world scenarios (Schank, 1994), (Bell, 1998); (ii)

it facilitates the development of procedural knowledge, which can only be gained by involving

the learning by doing (Anderson, 1983). Procedural knowledge involves manipulation of real­

world object (for example, operating a machine) also including knowing how to adapt procedures

to a given situation. Since students must learn procedural knowledge by doing, then it seems

feasible to allow learners to practice on a real world scenario.

Case-based reasoning (Kolodner, 1993) combines a cognitive model describing how experienced

users use and reason from past experience with a methodology for implementing such experience.

It provides a distinct paradigm for presenting "real world" scenarios during instruction. Case­

based reasoning provides a conceptual framework in which to store case scenarios to be used

during instruction.

Kolodner (1993) stated that a case is a contextualised piece of knowledge representing instruction

for a domain task. This approach allows students to acquire the skills of an experienced user in a

complex scenario, and minimises cognitive strain during instruction (Anderson, 1989), (Zsambok

and Klein, 1997), (Schank, 1982). The approach could encourage metacognitive activities such as

reflection and self-evaluation.

Schank (1994) suggests a case-based approach to learning. He postulates a "goal based scenario"

that can be used as a framework for the learning environment and provide the scenario context

that models real-world applications. A case scenario might have multiple perspectives and this

formalism can be organised hierarchically. This research explores the feasibility of integrating

case-based reasoning components pedagogically into the generic architecture. Each case scenario

-"--"""-"------------
A Gcncllc Architecture for Intcractive Intellig~nt Tutoring Systcms T A. AtolJgh~

Chapter 3: A Generic Architecture For Intelligent Tutoring Systems
72

can be decomposed into separate tasks, and augmented with content constraints (Kolodner, 1993)

to allow easy presentation and adaptation of cases during instruction. Furthermore, Case-based

reasoning has been applied to the tasks of explanation, planning, diagnosis, and tutoring (Fowler

et al., 1995), (Harris and Cook, 1998). Where a case for an instructional system might describe a

scene or set of events, a Case-based planner's case is likely to be a set of instructions for

achieving some goal (Fowler et al., 1995).

VanLenh et al., (1992) asserted that learners who are capable of generating appropriate questions

and answering them for themselves seem to learn more. This implies that learners can be

considered as having a set of cognitive processes, which are used during problem solving and for

generating self-explanations. A computer based approach has been used to generate explanation

and as an instructional aid (Clancey, 1990), (Moore, 1996), (Moore et al., 1996), (Woltz et aL

1990), which may support collaborative tutoring (Ploetzner and Fehse, 1998). The

implementation of the case scenario used during instruction is described in Chapter 4.

3.5 Intelligent Tutoring System Architecture

The previous sections discussed why a Case-Based-Reasoning (CBR) and knowledge base are

required for generic architecture. The following section provides details of architecture for use on

modular components developed in this research named GeNisa: Generic Intelligent Architecture

for Instructional Systems.

GeNisa's architecture is shown in Figure 3.6 GeNisa and consists of the following mam

components: the presentation system, the domain expert, the inference engine, the pedagogical

modeL the student model, the knowledge base, the scenario library and the knowledge-base.

3.5.1 Presentation System

The presentation system in GeNisa IS represented as a graphical user interface, which is

multimodal. It consists of a Java-based interface for designing and editing, and for describing

components sharing functionalities between the generic architecture, the users and various

components. Furthermore, the user interface is used to provide intelligent assistance to learners

during instruction, and to enable more interactions between different components of the system

and the user. It defines major components of the user interface data to be displayed in each part.

presentation methods. layout of the components, and behaviour for the components on the

A Generic Architecture for Interactive Intelligent Tutoring Systems T. A t\toiagtx·

Chapter 3: A Generic Architecture For Intelligent Tutoring Systems 73

interface. It allows developers to manage the information to be presented, with some indication

about the features of the information that should be displayed. This research uses Java applets to

provide all the primitives for the user interface and enables facilities for presentation of case

scenarios and courseware materials. The interface supports the execution of the byte code of the

applet and a programming interface to its internal functionality. The provision of adaptive user

interface requires adaptive mechanisms to support different needs of the users (Dieterich et al..

1993). Essentially, the requirements for the generic architecture user interface are: (i) a unique

interface is required for application development and for instructional delivery, (this will allow

the user to use suitable user interface components as required); (ii) flexibility of the user interface

control mechanisms, in order to cater for different levels of users.

~ •••••••••• 0_ •••••••••••••• _ •••••••••••••••••••••••••••••••• ~

Processes

Presentation System Instantiations

: : ... : D Subsystem

...
~ i

:.: S '" de ::"~ 0 dol T"w,'" ",,".'" 0 :0::: :~,~::," i

Planner TutOrial Structure Task Structure

............ ~

Figure 3. 6 GeNis a Architecture

3.5.2 Domain Expert

Scenario Libraryl
Knowledge Base

The domain expert is generally characterised by declarative/procedural knowledge (e.g.,

(Anderson, 1993). (Lesgold, 1988), (Shute, 1995». However, the domain expert may be

incomplete and therefore limited to instructing pedagogical tasks effectively (Anderson, 1988),

(Lesgold et al.. 1989), (Breuker 1988). Instruction requires both domain and pedagogy expertise

(Anderson. 1988), (Lcsgold et al.. 1989). The effectiveness of the domain expert may be affected

by the knowledge representation methods. Therefore, the domain expert should be represented by

tlexible knowledge representation formalisms, which are capable of effectively representing

different range of knowledge and skills.

~\ Gen~r-ll' Architecture for Interactive Intelligent Tutoring Systems T A. Atolagbe

Chapter 3: A Generic Architecture For Intelligent Tutoring Systems

The domain expert contains "the specification of the goal structure that guides the teaching of a

body of expertise" (Lesgold et al., 1989). The domain expert characterises the knowledge and

strategies needed for expert performance in a domain (Murray, 1999), (Murray, 1997). It consists

of the following types of knowledge: (i) support knowledge, which represents the general model

of a domain (Clancey, 1986), (ii) operational knowledge, which represents the problem-solving

procedure, and (iii) task specific knowledge. These knowledge types may improve interaction

with the learner during instruction. Furthermore, the domain expert is used for remediating

pedagogical task knowledge and for diagnosing learner's actions during instruction (Clancey,

1987), (Ohlsson, 1991).

The representation of domain knowledge must support different and correct diagnoses of the

learner and should contain a description of its domain (Clancey, 1986). The student model uses

the domain knowledge to build the student model (Self, 1999), (Self, 1990), (Wenger, 1987). The

domain knowledge individualises the student model with problem-specific information when the

learner selects a problem (Self, 1999). The domain knowledge also initialises the predetermined

instructional material and appropriate case scenario to be elicited during instruction. It loads the

problem-specific and case-specific information, and inputs cases and outputs strategies from the

problem knowledge base into the learning environment.

In general, a domain expert "describes what is known about the world", and is used to provide a

"description of some situation in the world." (Clancey, 1986). This description forms the basis for

representing the domain knowledge in term of domain ontology and problem-solving structure

(Van Heijst et al., 1997), (Chandreskaran et al., 1998) and may be used to specify the knowledge

types, tutorial tasks properties, and link types (Murray, 1996). In addition, the domain expert has

the ability to validate learners' problem-solving methods, compare them with pre-stored ideal

solutions, and to dynamically generate appropriate instruction from the user solution. Therefore,

the domain knowledge is used by the pedagogy expert to provide remediation for problem-

solving during instruction.

This framework is different from using an overlay-model only because the overlay model

(Ohlsson, 1993), (VanLehn 1988) assumes that the student's knowledge is a subset of the expert

knowledge (VanLehn, 1988). However, a learner during instruction may employ a tutorial

strategy that is not represented in the expert knowledge. Furthermore. overlay models do not

address the situation where the student misunderstands the tutorial contents; they assume that

tutorial content is complete or incomplete (Wenger, 1987). The domain expert can be used to

provide dynamic control of instruction based on specific difficulties encountered by the student

:\ GL'neri::\rchite~ture for Interactl\L' Intelligent Tutoring Systems
T A Atolagbe

Chapter 3: A Generic Architecture For Intelligent Tutoring Systems 75

during instruction (Shute, 1994), (Silverman, 1992), (Clancey and Soloway, 1990), (Ohlsson,

1991), and to guide knowledge elicitation.

3.5.3 Inference Engine

The contents of the knowledge base should support all logical constructs that may be needed, in

order to perform a domain related inference operation. This can be achieved by employing an

inference strategy that can invoke the appropriate inference object.

The inference engine is the supervisor for the various ITS modules during the instructional phase.

During instruction, the inference engine consults the student model to determine an area of

training that the student needs, and that is close to knowledge the student already has

demonstrated. Next, the inference engine is consulted to determine the appropriate training event

and instructional progression for the material. Based upon the training event, the inference engine

may present a case scenario from the scenario library to the student (through the case elicitation),

or may present some other instructional control module (from the expert module). However, it is

essential to structure the knowledge base with respect to the functionalities of the inference

engine, in order to satisfy requirements on efficiency and interactivity. The inference engine uses

Bayesian networks (Pearl, 1988).

Bayesian networks provides an efficient computational techniques and flexibility for representing

probabilistic dependencies, and has been used for inference, decision making, and problem

solving in situations involving uncertainty (Conati and VanLehn, 1996), (Martin and VanLehn,

1995), (Pearl, 1988a).

A Bayesian belief network is a directed, acyclic graph (Pearl, 1988a). Nodes in a typical Bayesian

network represent degrees of belief about a particular aspect of a domain, and edges in the graph

represent causal dependencies (Pearl, 1988b). Degrees of belief are computed directly from prior

probabilities using Bayesian inference. Implementation details of Bayesian network are provided

in Appendix B.

The Bayesian network was also used to define how particular beliefs are propagated through the

network through the use of probability tables. The network stores a table of probabilities for all

possible combinations for the evidence nodes. When one probability value changes. the change is

propagated through the network using the probability table at each node.

A Generic Architecture for Intcractivc Intelligent Tutoring Systems T. A. Atolagbe

Chapter 3: A Generic Architecture For Intelligent Tutoring Systems 76

3.5.4 Pedagogy Model

The pedagogy model governs the structure of the training by presenting a variety of information

from the different modules to determine the next training action dynamically. The pedagogy

model embodies domain-independent pedagogical information. The primary purpose of the tutor

module is to provide a training structure. This information is based upon Gagne's (1992)

instructional events. The instantiation of the training strategy is accomplished through the use of

domain-specific knowledge about concept complexity and relationships. For example, one part of

the pedagogical strategy is to teach simpler concepts before more complex concepts. An example

of this concept in the simulation-modelling domain might be to teach a simulation methodology

before simulation model development.

Tutorial explanations and the use of case scenarios as tutorial strategies requires the student to

continuously interact with the pedagogy model. Explanations and case scenarios may vary in the

degree of cognitive processing they require of the student. The pedagogy module contains

multiple strategies. The tutor model selects a strategy based on the current ontology/domain and

the progress of the student. Current ITS literature suggests a variety of strategies for improving

learners performance during instruction, for example (Anderson, 1990), (Ohlsson, 1993). Based

on the literature review, the following describes the six instructional strategies that constitute the

generic architecture pedagogy module.

I. Learning with Scenarios. This strategy uses a real-world scenario as the vehicle for

instruction. Presentation of a scenario should involve two processes: demonstrating the

scenario and teaching the correct operation in the situation. In demonstration mode, the

tutor can present correct operational activities for the scenario.

11. Learning by Doing. In this strategy the tutor is very active. Within the context of the

scenario, it teaches the student step-by-step to perform the appropriate activity. At each

step, the student can inquire about the purpose of the actions and activities performed.

111. Practising with Contents Feedback. The tutor is less active in this strategy. The student

performs activities without prompting by the tutor. When the tutor detects an error or

missed action, it provides immediate remediation of the problem.

IV. Hint. The user in a problem-solving situation can benefit from advice or a hint from the

tutor who continually watches the tasks and can correct the actions with in-depth

explanations. Various types of guidance (on demand, automatic, with multiple

explanations) can be obtained.

---~-- -------------=----=---------
:\ Generic :\rchitL'cturt' for Interactive Intelligent Tutoring Systems T. A. Atolagbe

Chapter 3: A Generic Architecture For Intelligent Tutoring Systems

v. Free Exploration. The user can navigate into a case scenario that reacts to his actions

without intervention or guidance of the system. The learner controls the activity (for

example, the resolution of a task) and this mode can be compared with free navigation

within a hypermedia document.

The overlay model is certainly not the most comprehensive model for representing adaptive

instruction, but it is a well-established and adequate model (Ohlsson, 1993), (VanLehn, 1988).

However, "the effectiveness of tutoring cannot be attributed to the implementation of a

sophisticated pedagogy" (Graessern, 1993). Furthermore, the learning activities are initiated by

the expert module, which can limit interactive learning activities, by the learner.

3.5.5 Student Model

The student model represents an estimate of the student's learning behaviour (Self. 1999), (Self,

1987), (VanLehn, 1988). One of the fundamental difficulties in representing a student model is

the inability to represent and reason with uncertain information (estimate of the student's learning

behaviour (Self, 1999), (Self, 1987), (VanLehn, 1999». The GeNisa's student model uses a

Bayesian network (described in Chapter 4, and implementation details are provided in Appendix

B) for inserting new cases during problem solving and for model reformation. This research used

a Bayesian network to represent the student model for the following reasons: (i) a novice learner

would prefer learning with a case-based ITS than other systems because this may increase the

system's ability to engage and motivate students, and (ii) multiple learning strategies can be

represented within the model.

Uncertainty in student modelling has recently been addressed using Bayesian techniques (Cristina

et aI., 1997), (Villano, 1992). Uncertainty is unavoidable in student models, where instructional

objectives and other information sources are unreliable, and the student's behaviour is

unpredictable. The ability to reuse student model components can enhance the flexibility and the

reuse of ITS in multiple contexts (Sparks et aI., 1999).

3.6 Knowledge Acquisition

This research considers knowledge acquisition as modelling activity, where an abstract model is

selected or developed which is then instantiated with application specific knowledge (Wielinga et

al., 1993), (Ford et al., 1993), (Gaines et al.. 1992), (Breuker and Wielinga, 1989), (Clancey,

1989). The approaches may help facilitate ways to characterise and organise the knowledge

------ ---
A (,~nl'lic Architecture for Int~rJctive Intelligent Tutoring Systems T. A_ Atolagbe

Chapter 3: A Generic Architecture For Intelligent Tutoring Systems 78

acquired from mUltiple knowledge sources, such as textbooks, manuals, WWW, and subject

expert.

Knowledge acquisition module (KAM) involves the general process of domain model formation

(knowledge that is required to perform a particular task), model instantiation and compilation.

elicitation and finally, model refinement (Chandrasekaran, 1987), (Wielinga et al., 1992).

(Musen, 1989). This involves representation of both epistemological, inference and problem­

solving knowledge about a domain are represented explicitly.

Knowledge acquisition is difficult and time-consuming (Hoffman, 1987). It is therefore difficult

to reuse domain knowledge if new system is developed. Although, both manual and software

techniques have been developed for acquiring knowledge from expert (Hoffman, 1987), (Boose

1988), (Shaw and Gaines, 1986). The development and acquisition of knowledge as well as its

efficient utilisation during instruction may help in achieving the reusability of ITS components.

The Knowledge acquisition module is implemented as software agent (Russell and Norvig. 1995)

that interacts and monitors the learners' activities during the instruction. To accomplish this task,

the KAM must be interfaced with both the learning environment and the case-based ITS. The

details of this process will be discussed in Chapter 4.

3.6.1 Integrating Pedagogical Agents

Pedagogical agents (Lester et al., 1999), (Rickel and Johnson, 1999) are used to provide richer

learning and interaction techniques in a learning environment. Pedagogical agents offer an

enhanced approach for broadening the bandwidth of tutorial communication and for increasing a

learning environment's ability to engage students during instruction (Elliott et al., 1999).

Pedagogical agents may offer advantages over conventional intelligent learning environments

because they enable closer and more natural interactions between students and the courseware.

Such an approach is in contrast with the static text documents that characterise some instructional

material.

An agent is "something that perceives and acts" (Russell and Norvig. 1995) and they are

"intelligent/autonomous" (Petrie, 1996). Within this context, the notion of agent is quite broad.

Because agents are essentially used to solve a problem. they are characterised with different

attributes and behaviour and may be used to provide support for lower level activities.

------------------ --------- -------

:\-(ienaic .:\n:hitecture for Interactive Intelligent Tutoring Systems
T A. Atolagbe

Chapter 3: A Generic Architecture For Intelligent Tutoring Systems 79

The pedagogical agents paradigm involves the interface agents (Andre, 1999), (Ball et al., 1997),

(Hayes-Roth and Doyle, 1998) and pedagogical agents (Johnson et al. 1998). The interface agents

provide an enhanced metaphor for human-computer interaction. The interface agents approach

also provides a means for adapting instruction to individual learners and communicating with

students through mixed-initiative, tutorial dialogue (Goldstein, 1976), (Burton and Brown, 1982)

or as a learning companion (Chan, 1996). Pedagogical agents can also increase the student's

motivation to perform a task (Lester et aI., 1999), (Walker et al., 1994), thereby providing a

tutorial control.

The pedagogical agent can demonstrate how to perform actions (Rickel and Johnson, 1999). It

can use locomotion, gaze, and gestures to focus the student's attention (Lester et aL 1999),

(Noma and Badler, 1997) and to provide unobtrusive feedback on the student's actions.

Furthermore, because pedagogical agents are autonomous agents (able to operate independently

from their user) (Castelfranchi, 1995), they inherit many of the same characteristics of

autonomous agents. For example, RAP (Firby, 1994), and Steve (Soar Training Expert for Virtual

Environments), (Johnson et al., 1998) have been used to create agents that can searnIessly

integrate planning and execution, and adapt to changes in their environments. They are able to

interact with other agents and collaborate with them to achieve common goals (Muller, 1996),

(Tambe, 1997). For pedagogical agents to be effective instructional aids, they must, exhibit robust

behaviour in different environments and on different platforms. Also, all the agents activities and

events must be co-ordinated in a coherent fashion. However. the need for pedagogical agents to

support instruction imposes additional requirements over conventional agents. The pedagogical

agent requires a deeper understanding of the rationales and relationships between actions than

would be needed to simply perform the task (Clancey, 1983).

Moreover, Herman the Bug (Lester et al., 1999) inhabits a Design-A-Plant learning environment.

Herman the Bug provides problem-solving advice to students as students interact with the system.

As the student builds the plant, Herman observes their actions and provides explanations and

hints. Also, PPP Persona (Andre et al., 1999) gives on-line help, and guides the learner through

Web-based materials, using pointing gestures to draw the student's attention to elements of Web

pages. and provides advice via synthesised speech. As the student interacts with the system, the

underlying PPP system generates multimedia presentation plans for the agent to present. The

agent then executes the plan adaptively and responds to the students' questions.

.. \ Generic Architecture for Interal'ti\'l~ Intelligent Tutoring Systems T A Atolagoc

Chapter 3: A Generic Architecture For Intelligent Tutoring Systems 80

Research on pedagogical agents is growing fast and spans different domains (Lester et aI., 1999),

(Rickel and Johnson, 1999), (Andre et aI., 1999). The major advantages for using pedagogical

agents in the GeNisa include the following:

1. Pedagogical agents provide multiple levels of advice and combine mUltiple modalities.

which may yield greater improvements in problem solving than less expressive agents

(Rickel and Johnson, 1999).

n. The benefits of animated pedagogical agents increase with problem-solving complexity

(Rickel and Johnson, 1999). As students are faced with more complex problems, the

positive effects of animated pedagogical agents on problem solving are more pronounced.

111. They allow explicit planning of tutoring that involves sub-goals, which can be annotated

as a solution to the current task and can indicate which plan has been achieved.

IV. They support the student's problem-solving activity by reducing working memory load

by providing hierarchical structured task plans

v. They can be used to demonstrate explicit problem-solving methods~ for example.

animated pedagogical agents can be used to demonstrate how to design a plant (Lester et

aI., 1999).

Animated pedagogical agents can provide both verbal feedback and non-verbal dialogue to the

student and to provide more varied degrees of feedback than earlier tutoring systems (Johnson et

aI., 1998).

Commercial packages are available for integrating verbal and animated characters into a learning

environment. An animated persona (Johnson et aI., 1998) was used to provide animated

characters with the GeNisa learning environment. The animated character employs the

behaviour-space approach for animation and uses speech synthesisers for voice. A behaviour

space consists of a library of "behaviour fragments" that are used to generate the agent's

behaviour. A behaviour-sequencing engine then dynamically strings these behaviour fragments

together at runtime (Johnson et aI., 1998).

3.6.2 A Web-Based Instructional Environment

The increasing use of ITS has resulted in a growing demand for ITS applications to be more

intuitive and dynamic, and have platform independence (Atolagbe and Hlupic, 1998). Current

research in ITS is indicative of the contemporary trends in using hypermedia and the Internet for

:\ Generic Architecturl' for Interactive Intelligent Tutoring Systems
T. A Atolagbe

Chapter 3: A Generic Architecture For Intelligent Tutoring Systems 81

educational purposes (for example, (Brusilovsky, 1998), (Brusilovsky et al., 1997), (Weber and

Sprecht, 1997), (Towne 1997)).

There has been considerable impetus for ITS researchers to identify methods of ensuring that

students are provided with resources for teaching and learning in a collaborative and dynamic

environment (Murray, 1999), (Brusilovsky, 1998). Hypermedia systems, such as the WWW.

Hypertext Marked Language (HTML), and Hypertext Transfer Protocol (HTTP), (Bemers-Lee.

1996), holds great promise as a medium for developing and deploying courseware applications.

The WWW approach provides the added advantage of developing and presenting instruction on

heterogeneous platforms (Brusilovsky, 1996), (Brusilovsky, 1998).

Web-based ITS are geared towards providing each of the four components of ITS (Weger. 1987)

on the WWW. For example, adaptive hypermedia textbook (hyperbook) (Brusilovsky, 1998),

(Brusilovsky, 1996), uses semantic networks to describe the domain models and to index the

hyperbook with the corresponding domain nodes. Also, the student model has also been

implemented by using HTML forms and Common Gateway Interface (CGI) (Nkambou and

Gauthier, 1996). This system uses a curriculum component, a planner, and a tutor to present

material to the student. Automatically generated tests are used to capture the student's abilities

and the results of these tests are used to construct the student model. Furthermore, a method for

adaptive presentation of instructional material on WWW has been advocated (Calvi and De Bra,

1997). This approach was used to adapt the page content of the tutorial to the users' knowledge,

goals, and tutorial needs.

The WWW adopts architecture of mUltiple servers and heterogeneous clients for distributing

application on different platforms (Brusilovsky et al., 1997). Additional flexibility for the client

can be gained through the use of proprietary mechanisms from Netscape called plug-ins, or

Internet Explorer scripting language support (Netscape, 2000), (Microsoft, 2000). Furthermore,

an Application Programming Interface (API) is supplied, which provides a greater degree of

control over the rendering of information upon the client application window. This can be

exploited to achieve a customised presentation of instructional material.

This research adapted a client server implementation for web-based ITS (Brusilovsky, 1996), in

order to use the server side for application logic and to model the communication processes

between the GeNisa components and users. The feasibility of this approach will be investigated

:\ Generic Architecture for Interactl\"e Intelligent Tutoring Systems T A Alo\agbe

Chapter 3: A Generic Architecture For Intelligent Tutoring Systems 82

further by using Java programming language, because it provides greater flexibility for

application development across platforms (Gosling et aI., 2000).

Common Gateway Interface (CGI) and Java make it possible to present the content of an ITS

through the WWW (Brusilovsky, 1996). CGI is a standard for interfacing external applications

with information servers, such as HTTP or Web servers, for execution of the program (NCSA,

1997). It is possible for a client to send information to a WWW server, whereupon a script is

executed that returns an appropriate response to the client. These scripts are typically written

using scripting languages, such as JavaScript or Perl.

In general, hypermedia links are implemented through embedded mark-up within WWW

documents. This format for WWW documents is called Hypertext Mark-up Language (HTML)

(Berners-Lee and Conolly, 1995). HTML provides the syntax for managing document

presentation and delineating link anchors together with binding them to a destination document

location. The inherent difficulty with using HTML is its general lack of capability for creating

complex interactions and dynamic screen displays over the Internet, e.g. simulation, animation,

games, click and drag. An alternative approach is to use a Java applet or an ActiveX control to

provide hypermedia features in the page. But this implies sending a large number of bytes over

the Internet connection. Java on the other hand is more suitable for developing dynamic and static

object over the Internet. Java applets are able to access databases directly through a Java-enabled

browser and it allows a sessions-oriented connection.

GeNisa uses distributed client/server architecture to enable transmission and delivery of

instructional documents over the WWW. The schematic representation of the main components

of deploying GeNisa over the WWW is shown in Figure 3.7 (adapted from Atolagbe and Hlupic,

1998). It consists of the following components:

J. Client Side. The platform provides an environment in which the users' applications are

executed. The student may use a Web browser such as Netscape Navigator or Microsoft

Internet Explorer to access the server. This employs client-side applets to provide tightly

coupled, fast response interactions. It controls the display of animation and hypermedia

objects, and co-ordinates the user's acti vi ties. It executes the user's request and

communicates with the application database server. It runs the ITS and other application

software either as a stand-alone or as a plug-in to Web browsers. It also permits the user

to access the same information available in the databases and serves as a means for

deploying applications of WWW.

:\ (;eneriL' .~;L'hite~·turl· for Interactive Intelligent Tutoring S ~ ~t<!ms T :\ Atolagbe

Chapter 3: A Generic Architecture For Intelligent Tutoring Systems 83

11. The Web Server. The HTIP server accepts requests from browsers through the lITTP

protocol (Bemers-Lee, 1996). It forwards these requests to other parts of the system to

obtain appropriate data and reply to the browsers. It also serves as temporary for

hypermedia and data storage. It consists of a Web browser plug-in that allows users to

download and run cases from the WWW. The server dynamically creates IITML pages

that the user can use, by using common gateway interlace (eGI) scripts. The server is

also responsible for managing each connected client by maintaining a log of the user's

current view, and the particular document displayed to the user. The Web server contains

the GeNisa component such as pedagogical expert, student model, and tutorial

components. This approach allows GeNisa applications to be executed in either

standalone, client-server or on server side.

GeNi,aClient

Web Browser

Web Server

Client
Side

Server
Application Side

Server

Database

Figure 3.7 Web-Based Learning Environment Components

Ill. Web Link. It provides a HTML-rendering system that provides access to Java applets

from IITML pages on the WWW. It allows clients without the WWW to plug-in and

access the system.

IV. Plug-In. A Web browser plug-in that allows the user to run an application and access the

ITS database through the WWW.

v. Databases. The databases contain a repository of case scenariOS, assessments and

planning databases used during instruction.

Navigation within the courseware is supported by scenario-based navigation. which allows

selective presentation and quick access to the HTML documents by following hyperlinks. An

HTML page can incorporate Java applets, to be retrieved during instruction. This may enhance

A G~'nC'llL' t\rchltccturc for Interactl\'L' Intelligent Tutoring Systems
T A Atolagbe

Chapter 3: A Generic Architecture For Intelligent Tutoring Systems 8.+

the extendibility of the HTML documents because the link structure can automatically adapt to

the database content.

3.7 Summary

This chapter has presented the conceptualisation of the generic architecture for an intelligent

training system. The architecture uses a components-based approach to conceptualise each

component of the architecture. The generic architecture uses the standard ITS model and

components, with the addition of a scenario library and a knowledge-acquisition module. The

architecture integrates unobtrusively with the leamer's standard learning environment, providing

most of the interaction with the users through the user interface.

Issues identified in the previous chapter were examined more closely in light of the objecti ves for

this research and the requirements for the generic architecture. The abstract design of the generic

architecture consists of a suite of interrelated abstract classes that embodies an abstract design for

each component functionalities. This framework has the advantage of allowing components reuse

and it is implementation-neutral.

---- --------

t\C;l'ncri~ .\n.:hitcl'Iure for Intcractive Intelligcnt Tutoring Systcms T :\ Atolagbc

Chapter 4: Development of the Generic Architecture for Intelligent Instructional Systems (GeNisa)

CHAPTER 4

DEVELOPMENT OF THE GENERIC INTELLIGENT
INSTRUCTIONAL SYSTEM (GeNis a)

4.1 Introduction

85

The previous chapters have presented a design framework for the development of a generic

intelligent instructional system architecture. This framework represents a systematic and

comprehensive development methodology for ITS (e.g. (Self, 1999). (Murray, 1999), (Halff,

1988), (Clancey, 1992), (Breuker, 1990), (Khuwaja et al., 1994)). This chapter describes the

design and implementation of the GeNisa generic architecture.

This research employed component-based approach (Rosche lie et al., 1999), (Ritter and

Koedinger, 1997), (Roschelle and Kaput, 1996), (Suthers and Jones, 1997) for the design and

development of the generic architecture because it may result in simpler and more concise

implementations than those possible with previous methodologies. Furthermore, component­

based approach supports the object-oriented mechanisms for encapsulation and inheritance

thereby offering a great degree of flexibility and reusability (Booch, 1998).

This chapter begins by describing the design of the GeNisa architecture and the transformation of

the conceptual model into architectural components. This is followed by description of the

GeNisa design and learning environments. Section 4.5 describes a simulation-modelling example,

and section 4.6 describes this research approach for deploying ITS over the WWW. Finally,

section 4.7 provides a summary of this chapter.

".2 Design Environment for the Generic Architecture

The GeNisa architectural consist of different elements such as software components.

communication mechanisms. states, processes, threads, events, external systems, and source code

generator (Garlan and Shaw, 1993), (Kruchten, 1995), (Taylor et al.. 1996). Interactivities

between these elements are used to address other issues such as message passing, data tlo\\.

resource usage, state transitions, and temporal orderings.

---~------~

A (;eneric Architecture for Inlcracll\l' Intelligenl Tutoring Systems T A Atoiagbe

Chapter 4: Development of the Generic Architecture for Intelligent Instructional Systems (GeNisa) 86

The key design consideration are component modularity, flexibility, ability to add component

functionality incrementally, and ability to inter-operate with commercial software and Internet

resources (Roschelle et al., 1999), (Brusilovsky et al., 1996), (Roschelle and Kaput. 1996).

(Murray, 1999), (Ritter and Koedinger, 1997). These design considerations are essential because

they address fundamental issues of adaptation and evolution of the software components.

Furthermore, the functionality of each components of the architecture has been determined in

consistency with the design principles discussed in Chapter 3, on the basis of analysis of reviewed

literature (described in Chapter 2) and object-oriented and AI methods. The justification for this

approach is to allow components modularity, reusability and to provide design and

implementation support for expressing modular designs concisely (Sommerville, 1996).

Therefore, an object-oriented software development paradigm (Booch, 1994) has been used to

separate components implementation details from the execution environment (Gamma et al..

1995), thereby supporting the integration of multiple heterogeneous component modules into an

application. For example, Microsoft Windows uses the Microsoft Foundation Classes (MFC) to

implement Graphical User Interface (GUI) components (Bugg, 1999), (Prosise, 1999) and the

Java language uses the Abstract Windows Toolkits (A WT) (Gosling and McGilton, 1995) as user

interface toolkit. Moreover, each component in the generic architecture has been implemented on

the basis of assumptions discussed in previous chapter and its configuration (e.g. algorithm and

data structure). The essence is to promote independence of reusable elements between

components by: (i) increasing the flexibility to compose those elements; (ii) focussing on

modularity of systems and on the reasoning subsystems. The rest of this section present the

method developed and used in designing the GeNisa design environment and discusses the main

components of the architecture.

4.2.1 Unified Modelling Language

UML (Rational, 1998), (OMG, 1999), (Rumbaugh et al., 1991) has been adopted in this research

because it allows the feasibility of the generic architecture to be investigated from a broader

perspective. This permit this research to explore the advantages that might be realised for

developing ITS.

UML notations consist of three main specifications (Rational, 1998), (OMG. 1999): (i) a notation

guide that specifies the visual appearance of UML diagrams, (ii) a semantics specification that

details the UML meta-model. and (iii) the OCL (Object Constraint Language) specification that

adds a first-order predicate logic language for expressing constraints on C~IL models (O~1G.

1998). Ho\\'e\,l?f, fOf UML to be effectively utilised, it needs to be used in conjunction \\ith an

T A Atolagbe

Chapter 4: Development of the Generic Architecture for Intelligent Instructional Systems (GeNisa) 87

object oriented analysis and design method (Ambler, 1998). This approach can facilitate more

concise design representation, and more flexible reasoning for developing ITS. UML allows

modelling ITS components by extending UML activity diagrams, in order to model various

aspects of typical domain activities before development. In addition, it may provide means for

synchronising development activities such as managing user interfaces and forms. This approach

provides a rich construct for visually specifying and developing architecture components.

Besides, UML provides the following advantages: (i) object orientation can be used to model

different components (Booch, 1994); (ii) it provides a generic framework for analysis and

developing components, and can also be used for documentation of the early stages of design;

(iii) UML is a recognised standard language for object oriented development (OMT, 1998),

(Rumbaugh et al., 1991), (Booch et al., 1999a).

The object oriented analysis and modelling approach used in this research involved a combination

of used cases (Jacobson et al., 1992), Object modelling (Rumbaugh et aI., 1991), Statecharts

(Rational, 1997), (Ambler, 1998), and event sequence diagrams (Rumbaugh et aI., 1991),

(Jacobson et al., 1999). The design notation is based on the UML (Booch et al., 1999b).

As stated in Chapter 3, UML elements and notations have been adapted for use in this research.

This approach allows (for example) the functional requirements of the system to be defined in

terms of use cases and actors (Rumbaugh et al., 1991); also classes can be defined in terms of

their attributes, and their relationship with other classes. Its important to note that UML is only a

standard notation. It does not describe software development processes (OMT, 1998). The

development description, or method used in this research consists of five-phase framework

outlined in subsequent sections (depicted in Figure 4.1).

Use Case Modelling ~ f' .. :. :f'lIDctii"iaJ . : ... j -+
System Decisions 14 '-----If ::: :~e~1)i~tll~lltS

~ y.--_..-Jl
H'

Components Specification 14~-~I::: ~!>I)li>QnMI$O~s,g:n • j

+ +L--_----,
,..,....,-,-,LI,....,....,...:~L-' .,....,-,-,.----,--,

Design Object Mopping 14~'-------Il :: . (.;se: 1i~C<i.iii> .j

Code Generation

Control
paths

Figure .t.l Model of GeNisa Design Environment

.. -- ~.---------~

:\ C;enen~";\rchitecture for Intcractiw Intelligent Tutoring Systems
T A. Atolagoc

Chapter 4: Development of the Generic Architecture for Intelligent Instructional Systems (GeNisa) 88

The functional model of the GeNisa design environment is based on the operational structure of

the UML processes (shown in Figure 4.1). This involves object oriented representation of the

design environment components by using UML notations through use case diagrams, and

sequence diagrams (Booch et aI., 1999a). Each phase consists of the functional model, which

involves:

1. Use Case Modelling. A use case describes the functional requirements of the system

(Rational, 1997), (Jacobson et aI., 1992), (Ambler, 2000). A use case depicts the

interaction between the user (the actor) and the system (shown as a box). An example of

use-case diagram is depicted in Figure 4.2. It depicts the actors (person, organisation, or

external system). Actors are shown as stick figures and use cases are shown as ovals. In

this example, students are logging into the courseware through the tutor. Developerffutor

inputs tutorial, and is responsible for course administration. Developerffutor and student

access the course documentation. The functional representation (shown in Figure 4.1)

serves as input into this stage. Functional Representation stage involves capturing

application goals, in addition to the functional and data related requirements of

applications.

o Use Case Jf-
-l4--------+--- A

Developerffutor Admin.

UpDate

Student '--____________________ ...-/ Developerffutor/A

Figure 4.2 Case Diagram for a Courseware

A IIs('-cose scenario (depicted in Figure 4.2) is a set of scenarios associated with each sub-process

(represented by the use case diagram). Scenarios are represented by means of sequence diagrams.

which describe the beha\'iour and interaction with other entities (actors. internal components).

:\'(iL'nL'~IL' Architecture (pr Interactive Intelligent Tutoring S \ stems
T A. Atolagbe

Chapter 4: Development of the Generic Architecture for Intelligent Instructional Systems (GeNisa) 89

ll. Event Modelling. Events required between components and to handle exceptions. It

allows events handling between different components to be made explicit and separate

from the components' definitions. It involves behavioural specification of static semantics

and inter-component consistency constraints. Moreover, the event modelling depends on

the structural model of the application. The Structural model (Rumbaugh et al., 1991),

(Ambler, 1998), (Booch 1994), defines the classes of the system and their

interrelationships (including inheritance, aggregation, and associations). Structural

models are used to define what the system will be able to do and how it will be built. It

also shows associations between classes. For example, Figure 4.3 depicts the structural

model of a computer based tutoring system.

Controlla
CounePre. rutMethod

LevdNo
CourscNum Topic-Oriented

r •• <, .

Course Domain Tutorial r .. t TUlGuide PI ... "

CourscNum Rules 1..1 TutoriaINum TaskNum 1..0 CourseNum TukNo

Subject -- CourseNum - TutoriaIUnit f--'-- CourseNum - Explain CouncNum

DellCripliOD S"otegy Description Dt.scripliOD Suggca Slrategy

TutorialUnits 1..1 Catogory Activities l..a TutorialUnit Hilll 1..0 lInitNOi

~ I ~.n
r I

Knowledge Student Quiz TutorialActioD

1 .. n

CourseNum Name 1..0 QuizNum Sclect.iooNum

SkillLcvcl I·':'mllil TutorialNum f----- HelpNum

MdhOl.b Coursc:Num Dc.a:riptiOD Quiz

LoginNum SelectionNum /wwcr

I
Infcrem;ClI

Diagnosis

Mode 1..0

SkillLevei ---I TokcNo.
Rulct Goals
Opcrlltio[l5 Cause

Figure 4.3. Structural Model Diagram of a Tutoring System

111. Component Specification. Component specification and the behaviour are designed so as to

allow objects to be mapped into an application model. The different components of the

application and relationships among them are identified. At this stage. the developer

specifies the detailed ITS components structure and its interfaces to other applications.

IV. Design Object Mappings. Represents method for defining component behaviour. They

define mappings for input and output between components and the behavioural

representation. This involves using sequence diagrams. A Sequence Diagram (RationaL

1997). (Jacobson et al.. 1992) is generally used to represent the logic for a use-case

T A. Atolagbe

Chapter 4: Development of the Generic Architecture for Intelligent Instructional Systems (GeNisa) 90

scenario. The sequence diagrams depicts (Figure 4.4.) the logic behaviour of the system in

the context of a use case scenario, which can supports component-based development. Each

box represents an object, while a line represents an event communication path.

s.

Remedial

Figure 4.4 A Sequence Diagram for a Tutor

v. Code Generation. Code generation in GeNisa is supported with a language-independent

abstract base class and Java-specific subclasses. The class Generator is an abstract base

class similar to the design pattern (Gamma et aI., 1995). Generator class (Java Class) is a

Java-specific subclass that generates Java source files. The code generation procedure

requires data that are obtained during static semantic analysis. Each entity creates

ClassType objects, which generates the bytecodes for each class.

This framework may enables developers to map different entities into application specific

components during development (Musen et aI., 1995). Furthermore, the rationale behind this

architectural design is based on design patterns, which are implementation independent

descriptions of component classes (Gamma et aI., 1995), (Pree, 1995), (Buschmann et aI., 1996).

This framework has been adopted to increase the comprehensibility of the program by other

developers, and to reuse application classes.

GeNisa is designed to run across platforms, and the mechanisms of the platform requirements

have been abstracted into class libraries to enhance GeNisa's portability. The GeNisa interface is

implemented within a Java graphic library (Gosling et aI., 2000), (Arnold et aI., 2000), which

allows the generic architecture program to be easily configured on different platforms.

The genenc architecture implementations of UML meta-model were initially generated from

Rational Rose™ model. This approach allows generic architecture to inherit UML meta-classes

and attributes. Also, the UML diagrams use the PGML (Precision Graphics Mark-up Language)

standard file format to store DesignObject (W3C. 1998). This provides the added advantage of

A (Jenell': Architecture for Interactive lntdligent Tutoring Systems T. A Atolagbe

Chapter 4: Development of the Generic Architecture for Intelligent Instructional Systems (GeNisa) 91

improved design representation and UML diagrams may be viewed on different platforms.

Furthermore, this framework represent a different approach over previous techniques such as

(Mizoguchi et aI., 1996), (Van Marcke, 1992), (Murray, 1996). The framework supports the

evolutionary nature of the components design process and may satisfy the cognitive needs of the

user (Anderson, 1990).

4.2.2 Design Environment Class Library

The GeNisa design environment offers a unified infrastructure for components development. The

overall architecture consists of a set of class libraries that provide generic support for components

design and a set of packages that provide more specialised support for domain specific

computation. Examples of the former include packages that contain math libraries, graph

algorithms, and interfaces to Internet components.

All component modules are encapsulated by Java wrapper code so that users of the class library

see a normal class structure with data structures and methods that can be extended (Booch, 1994),

(Gosling et aI., 2000), (Arnold et aI., 2000) and are unaware of the underlying low-level

implementation. Furthermore, the GeNisa design environment consists of different classes of

library that encapsulates a list of commands the user needs to create different components and

view component data. All classes implement serialisable interfaces, which can be executed on a

target application. This approach allows the developer to extend each component class library.

The key architecture class libraries is depicted in Figure 4.5. The key syntactic elements are

boxes, which represent classes, the hollow arrow, which indicates generalisation, and other lines,

which indicate association. Some lines have a small diamond, which indicates aggregation.

The class library contains a range of classes that corresponds to the entities in the design

environment. The library consists of classes for both graphical and textural representation of

component objects, assessment, design assistant, and inference engine, with a carefully defined

interface. From this library, one or several component methods can be selected in an application,

and used to drive the behaviour of a component. The Actor interface extends the capability for

transporting data through their connectors. The interface can initialise the execution of

component's methods. Other essential classes include:

I. Design Object. Represents ports, nodes, and edges. Ports are connection points on nodes.

and edges go from a source port to a destination port. Ports allow the developer to

represent the semantics of the DesignObjects types. DesignObjects (shown in Figure 4.5)

:\ Generic Architecture for Interactive Intelligent Tutoring Systems T A. Atolagbe

Chapter 4: Development of the Generic Architecture for Intelligent Instructional Systems (GeNisa) 92

are connected together by ports and can communicate with each other by sending and

receiving event objects through these ports. DesignObject from one project can be

imported into another project. The import is done by referencing the design objects only;

this allows the classes to be reused.

In&er1aceAttribu1eB Complnlef1ace

'''10 + 1\1() L-
+NnO '-0
.sk>p() .execute

'-0
.addPoI1{}
.geIpor1{}
+geIElemenl() ~

CompMode

OelaiJllAlIlIblJles
+ intO
·-0
.execute

'''10
+runQ
+8toPQ
.addO A +addPort()
+getporl() l
+geteiemenl()

LayerMg' eoq,5trudure

A
'''10 '''10

----- -_. '-0 ·-0
CompositeElelement Sirr4>leElement

+eX0CIl1e .execute

L- • "10 .. intO I- A A .add(} .addO ,. .NnO +addPort{) I I I
+gelElemenl) +getelemenl()

ComLayer !.aye'Type wort<Spooe Mu_

~ • "10 ' .. 10 + intO • .. 10
Planner DomalnEditor .addO ·-0 ·-0 .. Itdd()

+execule .. execute ."""",Ie •:ule

'- ... 10 .1n1O
+sddO .addO I· +atop .stop
+execute +exeaJte

.~"L

~ ~
.addO .adOO
+8XeoJle +execu\e f--

Conl1oner OeslgnObjecl

~ A
'~IO .. 1n10
.adOO .addO

I
.stop .. execute ModifiedTask EdifTuk

.execute .adOO
+execu&e .adOO .adOO

~
."""",", .execute

SeJectionManager

'''10
'addO ~

.adOO

+execute
.execute

A
,
A
',~

I
ComposlteOeslgnObject ComposIteSeIedion CompositeShape

~
.adOO
.execute

+ IntO • .. 10
• IntO

.addO +addU .addO

.execute 1-execute +execute

A-
I 1

SeouenoeActor

·-0 .adOO
+eX0CIl", +eXOCIJ",

Figure 4.5 Section of GeNisa Design Environment Class Library

11. Compositelnter!ace. Maintains consistency across hierarchical objects and their

relationships. An automatic change propagation facility allows developers to use a new

version of class module with an existing design.

Ill. CompositeStructure. Holds the other classes together and routes event messages among

them. It permits definition and hierarchical representation of design objects. It can also be

A Generic Architectun: for Interactive Intelligent Tutoring Systems
T :\. Atolagbe

Chapter 4: Development of the Generic Architecture for Intelligent Instructional Systems (GeNisa) 93

used to invoke other tools and for displaying tools diagram. Other view functionality is

provided by Modes and Selections classes, which also provide graphics for interaction

feedback. The Modes and Selections class libraries primarily play the role of controller;

and perform some event-handling operations.

IV. CompModel. Manages the mapping from DesignObjects (depicted in Figure 4.5) in a

diagram to application objects. GraphModels interpret existing data structures as graphs.

This approach is similar to Java's Swing user interface library for implementing tree

widgets and tables.

v. SelectionsManager. This keeps track of which DesignObjects are selected and the effect

of the event process; for example, SelectionResize allows the bounding box of a design

object to be resized.

VI. CompositeElement. This represents objects that process user input events (e.g. mouse

movement and clicks), and executes event commands to modify the DesignObjects, e.g.,

dragging in ModeSelect shows a selection rectangle.

Vll. Layer. This encapsulates the DesignObject, modifies and can extend object behaviour

and functionality.

Each class library consists of component module that have identity, a method and attributes

(Booch, 1994), (Sommerville, 1996). Also, each component encapsulates their methods and

behaviour, and interacts with each other by calling each other's method. Interactions between

components are defined through their interfaces i.e. through the names of method and their

parameters.

Whenever a component in the ComEditor changes in any way, it calls its NotifyO method, which

sends the UpdateO message to each of the CompMap components which are observing it. In this

way, the visual image of every DesignObject component is always easily and efficiently updated

to reflect state changes, even if there are multiple views (CompMap graphs) or multiple

occurrences of the image of a Constraint Graphs component on a single view .

.t.2.3 Components Events Manager

The events manager maintains knowledge about the software process, and the particular of state a

component development and instructional activities. In doing so, it can guide developers through

essential tasks that are necessary, automate particular tasks and most importantly, control the way

mUltiple components interact. Figure 4.6 depicts the generic architecture events communication

manager. The User Interface imports/exports a number of component-specific window classes,

:\ G~ncric Architecture for IntcraC!l\e Intelligent Tutoring Systems T A Atolaghc

Chapter 4: Development of the Generic Architecture for Intelligent Instructional Systems (GeNisa) 94

based on event context in response to event received from the user interface management system

(UIMS). The ToolKernel encapsulates basic functionalities such as creating new application,

openmg a file, deleting a file, keeping track of the currently opened editors, etc. The

ControlModule controls a component execution and translates various incoming events, such as

user input, into calls of operations executed by underlying components.

The key to maintaining coherent behaviour during user activities IS to maintain a rich

representation of context for each component. Therefore, each component event is designed to

run in as separate module, communicating with different components by using an inter-process

communication links.

The Tool Kernel (shown in Figure 4.6) is a library of classes and subsystems that encapsulate the

basic component functionality. One of the purposes of the Tool Kernel is for managing the set of

components that are displayed by the system. The Tool Kernel subsystem implements the

execution of design assistant, control mechanisms, "to do" list, wizards, and the user model and

offer operations to the component class that are used for reacting to user-input as well as to

service requests.

The Tool Kernel subsystem has been implemented so that it can be reused among arbitrary tools.

During execution, each component creates an object of design class and stores it in an instance

variable of the Control module. To invoke events exported by the Tool Kernel, the Control class

invokes the method from this object.

r·· .. ········1

w__ i
Comrmnd Event

ilimuJicatioo

--.Uses

........ ~ r<lll-Rack

Figure 4.6 Events Communication Subsystem

:\ Generic :\rl."M~clure for InteractiVe; Intelligent Tutoring Systems
T. A. Ato\agbe

Chapter 4: Development of the Generic Architecture for Intelligent Instructional Systems (GeNisa) 95

4.2.4 Design Components

Part of the requirement for the generic architecture is that there must be a clear separation

between the component development and instructional environment, and their underlying events.

This requirement addresses the flexibility and generality of the generic architecture by allowing

utilisation of different components classes and configurations with differing packages. through

the user interface.

In an attempt to address the issues associated with providing dynamic and greater flexibility in a

platform-neutral environment, Java programming language (Gosling et al., 2000) is used to

implement the user interface. This approach allows Java applets to run on heterogeneous

platforms. This approach allows the user interface to be customised as required by the user. For

example, a tool developer may only be interested in using the design tool in the development

environment and not in the courseware.

The class library provides Windowing and interface event in which the components class library

objects interact across platforms (Booch, 1994). It also provides high level abstractions, including

modal dialog boxes and non-modal frames, inter-application communication protocols, and the

wide range of data structures required by the different applications. This approach exemplifies the

possibility of decomposing common modules from many different applications and reusing them

in distinct implementations. The generic architecture has been designed as a Windows-based

component development/learning environment. A Windows-based user interface was chosen to

minimise "cognitive load" of learning the system and to keep information visible and easily

accessible to different levels of users (Shneiderman, 1998), (Nelson, 1996).

The design and implementation of the genenc architecture user interface are guided by the

usability guidelines from (Shneiderman, 1998), (Constantine and Lockwood, 1999), (Gosling et

aI., 2000), (Arnold et aI., 2000), (Apple 1993). The top-level functionalities of the genenc

architecture GUI are:

I. Document Management supporting the users' concept of a single document file as the

basic unit that is edited and communicated to other users.

ii. Editor Support through a simple and natural user interface. as well as maintaining the

content of the document and its annotation. also keeps track of what changes of contents

for versioning purposes.

A Generic Architecture for Inter~Ktive Intelligent Tutoring Systems T A. Atlliat,:tx'

Chapter 4: Development of the Generic Architecture for Intelligent Instructional Systems (GeNisa) 96

111. Filing Facilities that, in addition to storing the document and annotation, also store tables

of version information as separate resources in the same file as the document.

IV. Interchange Facilities that allow the import and export of components in Graphical

Interchange Format (GIF) allowing users to move files between the generic architecture

and commercial applications.

The user interface is organised around its main segments: the Main Window, Explorer, Editor,

Critique, Tasks List, Design Editors, Property Sheets, and the Output Window. This default set of

windows, Workspaces and tools can be adjusted freely to match the user's preferences. The Main

Window is the first item opened when GeNisa is launched. The Main Window can be viewed as

the "control centre" of the design environment. All important operations and actions are

accessible from this window. The Main Window can be broken into four separate groups of

controls: the menus, the toolbar, the Component Palette, and the Workspace tabs as depicted in

Figure 4.7.

Authoring process consists of the following: (i) choosing the "New" action either on the toolbar

or from the File or "New" menu. A window will appear for selecting the template from which the

user can create the new object, and (ii) in the dialog that appears, the user can enter the name of

the new object and select the folder/package in which the object should be created. Template-like

structures have been used to abstract commonality between component classes. Each of the Java­

specific classes implements methods that generate source code for design elements of a given

type automatically and contains (i) the block of variable declarations for the components on the

form, (ii) the method InitComponentsO, in which all the form initialisation is performed, and (iii)

header (and trailing closing bracket) of all event handlers.

The source code is stored in either in a Java file, which contains the (partly) generated Java

source; or an XML file, which stores the properties and layout constraints of JavaBean

components on the form. The developer can edit the Java files using external editors.

The GeNisa data model is similar to that of most ITS authoring systems (Murray, 1999). But, one

particular distinguishing feature is that multiple views upon a single object can be created,

allowing different aspects of the object to be focused on. This additional level of abstraction is

achieved through the introduction of views and by using UML.

T A. Atolagbc

Chapter 4: Development of the Generic Architecture for Intelligent Instructional Systems (GeNisa) 97

The generic architecture user interface consists of graphical development environment, which

provides a supportive environment for application development. The GUI is structured so that all

DesignObjects are edited on the upper-right pane. The upper-right pane is also used for

displaying the table of current design. The rest of the GUI is used for displaying and manipulating

design properties, a "to do" list, view source code, etc., as shown in Figure 4.7. Other essential

design components include:

1. Wizards. The class Wizard is an abstract base class for non-modal wizards. The wizard

control implements a framework for wizard-like dialogs. The framework handles the

back/next/finish buttons and the display of the wizard control's pages. Each page of the

control can be enabled or disabled. The pages of the control may be edited in a way

similar to the tab control.

n. Design Navigation. The design navigation and view tools implement the Model-View­

Controller design pattern (Krasner and Pope, 1988), (Gamma et aI, 1995) where the view

and controller roles are represented on the user interface widget, and the role of the model

is represented by a planner class. It provides task-specific views of the underlying design

representation and design properties. The planner classes observe the design

representation and react to change notifications by sending their own change notifications

that cause the view to be redrawn (Eckstein et aI., 1998). Navigation tools consist of other

user interface objects such as a tree widget, table views, etc.

Figure 4.7 Screenshot of GeNisa Development Elnironment

-A Genen~~'\I~chitecture for Interactive Intelligent Tutoring Systems
T A Atolagbe

Chapter 4: Development of the Generic Architecture for Intelligent Instructional Systems (GeNisa) 98

111. Goal-Directed Search. Class FindDialog defines the layout of the widgets in the search

window. Each widget in the top part of the window adds a predicate object that is used to

select search results. For example, the name field contributes a PredicateStringMatch

object that selects only model elements with names that match the pattern entered in the

name field. The individual predicates are combined into a PredicateFind object that

performs a logical-and to select only those model elements that satisfy all predicates.

IV. Components Design Assistant. Design Assistant components are simple agents that

continuously execute in a background thread of control (Taylor et aI, 1996) are. They

analyse the design as the developer is working and suggest possible improvements. These

suggestions range from indications of syntax errors, reminders to return to parts of the

design that need finishing, and style guidelines, to the advice of expert designers. Design

Assistant components are controlled so that their suggestions are relevant and timely to

the current user's design task, based on information in user model. Improvement

suggestions are placed in the "task list".

Design Assistant provides knowledge support to developers during design processes and provide

suggestions on alternatives to design decision. Design Assistant have been used in many domains,

such as building architecture (Chun and Lai, 1997), (Fu, 1997), user interfaces (Bonnardel and

Sumner, 1996) and medical diagnostics (Gertner and Webber, 1998). Design Assistant may guide

a novice user through the development of a complex application. Figure 4.8 depicts a design

critic's description of the user's design activities that may require further attention. The critics

advise the developer of potential errors or areas that require improvement in their design

activities. The feedback addresses issues that the developer may have overlooked.

Figure 4.8 Design Assistant

T. A. Atolagbe

Chapter 4: Development of the Generic Architecture for Intelligent Instructional Systems (GeNisa) 99

Table 4.1 summarises the advantages of GeNisa framework. Implicit in this framework is a

fundamental epistemological shift: incorporating different component functionalities

independently of other subsystems into an interactive environment. This can allow developers to

share data, which can facilitate component development.

Table 4.1 A Summary of Advantages of the GeNisa Design Environment

COMPONENTS Advantages
UML based component design Ensures that component development reflect
environment. necessary level of detail and functionality.
The design framework consists of varieties Allows flexibility to use variety of
of components (e.g. case scenario, design representational methods during design.
object Mappings, events modelling).
Each component provides unique set of Provides flexibility during design and allows
functionalities. developers to use different type of components

and modify them to meet their needs.
Object oriented based components classes. Provides extensibility, reusability, and

comprehensibility.
Flexible design environment. The framework provides a more flexible design

method, which may result in reduction of the
development time.

4.3 GeNisa Learning Environment

This section describes the GeNisa Learning environment and knowledge support components that

have been designed as domain independent tools, with the goal of making them both extendable

and reusable for heterogeneous applications. This section describes different types of knowledge

components and the context in which these tools can be used.

The main functions of GeNisa learning environments are to provide explanation, tutoring, and

diagnosis (Goodyear, 1991). GeNisa learning environments provide mechanism for building and

utilising the different agents or components within the learning environment (Baker et aI., 1994),

(Baker, 1992). This framework promotes the acquisition of problem solving skills (Goodyear,

1991) and requires the student to take the learning initiatives (Freedman, 1997) and control how

knowledge is presented during instruction. This would probably help them to build coherent

models of domain from the subject matter content, which would not only help to enhance their

understanding. It would also help to develop their problem solving skills, provide enhanced user's

interactivities, help students whenever the need arises (Dillenbourg and Self, 1992) and could

greatly increase human-computer interaction (Horvitz, 1999), (Murray, 1996), (Soloway et al..

1991).

T A AIO\agbe

Chapter 4: Development of the Generic Architecture for Intelligent Instructional Systems (GeNisa) 100

However, a leaning environment needs to have all the components of an ITS for enabling the

system to offer intelligent help to students and to carry out pedagogic activities. A leaning

environment supports procedural and declarative knowledge representation by either using

detailed cognitive models built from production rules (VanLehn, 1999), (VanLehn and Jones,

1993), (Anderson et aI., 1995), (Anderson, 1990), (Sacerdoti, 1977). Procedural and declarative

knowledge representation involves performing the domain tutorial tasks by directly executing the

rules (Anderson, 1990). The tutorial tasks are therefore represented as a network of domain tasks

(plans). Each plan consists of a set of steps, each of which is either a prerequisite action (e.g.

conducting an interview with the hypothetical client before writing the requirement) or the main

plan (e.g. model development). Also, there may be ordering constraints among the steps,

represented as a set of casual links (Horvitz, 1999), (Horvitz et aI., 1998). Each casual link

specifies that each step in the plan should achieve a goal, which is a precondition for another step

in the plan.

GeNisa learning environment uses case-based ITS approach to support learners during

instruction. This approach can help with the acquisition of procedural knowledge (VanLehn,

1996a). For example, ELM-PE (Burrow and Weber, 1996) and ELM-ART (Weber and Specht,

1997) allow the student to access relevant examples during LISP programming exercise and

provide explanations of the examples. SHERLOCK (Gott et aI., 1996), has been used to teach

expert solutions for troubleshooting problems, and provide students with a means for comparing

their solutions. These approaches may limit the learner problem exploration because the learner

focuses on acquiring the domain knowledge needed to perform the task. Also, having control over

the navigational mechanism may allow the leaner to capitalise on existing knowledge. In GeNisa,

problem-solving procedures are supported by content specific explanations. This has been

implemented by using the student's prior knowledge on the subject matter in order to generate

appropriate explanations. Figure 4.9 depicts a schematic representation of GeNisa learning

environment. It consists of the following main components:

--------~--:----:-:-:--:=----:----;:-------~ --- -~--~­

A Gen~ri~ Architecture for Intnactl\'e Intelligent Tutoring Systems T. A~ Atolagbe

: 7/12/01 140 : cspgtaa Time: 1 :35:01 PM

BruneI University

Department of Information

Systems and Computing

Chapter 4: Development of the Generic Architecture for Intelligent Instructional Systems (Ge isa)

4.3.1 User Interface

Pedagogical
Agent

Text-To-Speech
Engine

User
Interface

Inference
Engine

Remedial
Planner

Tutori.IGoa1s
:medial S""lcgy --...'------~

Goal Database

Figure 4.9 GeNisa Learning Environment

101

The user interface consists of dialog handlers, widgets, which are responsible for communicating

between the pedagogical agent, discourse module and the user. The user interface displays

messages sent to the screen from the remediation planner and it captures student inputs and sends

them to the assessment database. The user interface consists of adaptive navigation mechanisms,

which can support different needs of the learner (Dieterich et al., 1993). The user interface has

been designed to provide flexible and accessible components to the student during instruction.

This provides transparent ways for navigation and for interacting with the systems components,

which is essential for eliciting knowledge. For example, during instruction, the learner is

presented with a description of the case scenario and can navigate around the system and use

appropriate components during problem solving. The knowledge support components have been

implemented in Java (Gosling et aI. , 2000) in order to provide dynamic and greater flexibility

across platforms.

4.3.2 Remedial Planner

The remedial planner is responsible for deciding appropriate actions to be performed in order to

achieve a pedagogical task. It consists of components that elicit the domain knowledge, which i

r d in the case scenarios, assessment and planner files. The databases are repre ented in

t tlHTML format to allow for editing, portability and reusability. The databa es may be ea il

u t mi ed for a particular case- cenario. Remediation planner makes tutoring deci ion b

runining it own rule and b con ulting with the student model. It elect dom in topic.

terns 1

Chapter 4: Development of the Generic Architecture for Intelligent Instructional Systems (GeNisa) 102

determines tutoring strategies, and initiates dialogue by sending messages to the animated

persona.

The remediation module (depicted in Figure 4.10) is also used for presentation of the tutorial

knowledge, which is necessary for solving the current case. This approach offers students a

structured method by which they can use their problem-solving skill (e.g. knowledge of

simulation modelling) to solve real-life problems. Related task-specific information, such as

background information about case, operation platform, and user environment are incorporated

into the module. The goal of instruction is that the learner ultimately integrates their view of the

domain into a correct, coherent, and desired model of the domain (Ohlsson, 1991).

Student

Input

Remedial Module:
Hint, Explanation

~ Instantiation

Figure 4.10 Tutorial Remediation

If the user is unsuccessful in achieving the tutorial goals, GeNisa tries to remediate the current

solution of the student. On the other hand, if the diagnostic components fail, a default remediation

strategy is selected. The GeNisa tutorial remediation (depicted in Figure 4.10) consists of three

subsystems: (i) database consists of current beliefs and domain problem scenario, to support

current tutorial. (ii) diagnostic module, for providing appropriate intervention to the learner

misconception (Siemer and Angelides, 1998), (iii) dialogue manager use for translating student's

dialogue into appropriate remedial action: and for providing hints and explanations to the student

(Siemer and Angelides, 1998), (Canfield et al.. 1992), (Burton, 1988). The dialogue manager uses

the problem solving methods (domain database) to guide the learner learning processes. If the

diagnostics cycle fails, a default remediation is automatically invoked.

The tutorial "space" has a tutorial goal structure that constitutes a portion of the current

knowledge. The tutorial goal structure consists of a set of domain topics, connected to each other

via generic didactic links (Wenger, 1987). This approach allows topics to be quickly retrieved and

allows for a better diagnosis of the student learning activities. Didactic components are

A Generic Architecture for Interactive Intelligent Tutoring S~ stems
T. A Atolagoc

Chapter 4: Development of the Generic Architecture for Intelligent Instructional Systems (GeNisa) 103

represented as pedagogy decision-making tools and they are used for selecting tutorial tasks and

for remedial interventions. Didactic links are represented as casual relations (Bayesian network)

and may be used to set different users' learning goals (VanLehn, 1996b). To be able to respond

flexibly to the student, the remediation planner refines its plans according to the student's level

and learning activities.

4.3.3 Text-to-Speech Engine

Adding speech-enabled interfaces to the learning environment may enhance learner's

interactivities by minimising keyboard use. Furthermore, speech-enabled learning environment

may increase the usability of software to novice users who have minimum keyboard experience.

The system uses Microsoft Text-to-speech engine or synthesisers, to perform speech synthesis by

conversion of text and generating spoken language (Microsoft, 2000). Text-to-speech was

considered as an alternative to using a digital audio recording, because the latter may be too

expensi ve to record.

4.3.4 Pedagogical Agents

Pedagogical agents provide pedagogical functions: presentation, student monitoring and

feedback-probing questions, hints, and explanations (Johnson et aL 1998), (Lester et aI., 1999),

(Elliott et aI., 1999). These capabilities are coupled with an animated persona that supports

continuous multi-modal interaction with a student (Rickel and Johnson, 1999). The pedagogical

agents guide the user through the case scenario, and provide the following functionalities: (i)

instructional support by monitoring student activities and offering hints or an explanation, (ii) an

enhanced learner control by allowing the learner to decide when to get an explanation or hint, and

(iii) hierarchical presentation of a plan and provision of advice when required.

The pedagogical agent communicates with all the components in the learning environment. It also

executes the Text-to-Speech engine, which converts the input text (domain scenario) into speech.

The agent provides both visual and auditory input into the learning environment (Rickel and

Johnson, 1999), it makes the structure of the domain visible, accessible and it also helps to lead

the student through their problem-solving actions and it also tracks students' responses to quizzes.

The pedagogical agent may also employ multiple media in order to improve interactivity with the

learner. It also tracked the students' actions throughout the problem solving activities.

A Generic Architecture for Interactive Intelligent Tutoring Systems
T. A. Atolagbe

Chapter 4: Development of the Generic Architecture for Intelligent Instructional Systems (GeNisa) 104

4.3.5 Inference Engine

The inference engine communicates directly with discourse and reasoning subsystem and it

performs all monitoring and decision making. Inference engine also communicates directly with

the student model, a case scenario, to perform the requested operation by invoking the appropriate

inference tool.

Leamer's input or query during instruction is first analysed by the user-input analyser, which

extracts the inference information and the knowledge source. This information is then directed to

the inference engine, which, in response, may invoke appropriate content knowledge. This

approach provides rich information about the student's cognitive state during problem-solving,

and can more readily provide information with which to build a student model or determine the

pattern of response selection.

4.4 Knowledge Elicitation and Tutorial Management

Knowledge elicitation and tutorial management is represented in the pedagogy expert. The

pedagogy expert provides consistency, coherence, and continuity to the learner during instruction

(VanLehn and Jones, 1993), (VanLehn, 1988), (Clancey, 1987), (Wenger, 1987).

(Essentially, the pedagogy expert contains a set of specifications of what instructional material

the system should present and tutorial management). In GeNisa, the pedagogy expert provides

assistance to the student, monitors and criticises the student, and selects problems and remedial

material for the student (VanLehn, 1996a), (Halff, 1988), (Clancey, 1987), (Wenger, 1987).

GeNisa uses interactive dialogue between the learner and the system to elicit domain knowledge

from the pedagogy expert. The pedagogy expert contains a specification of the curriculum

knowledge (Lesgold et al., 1989), stored independently from the tutor, and loaded during

instruction. However, the domain expert alone may be inadequate to perform pedagogical tasks

effectively (Lesgold et al.. 1989), (Anderson, 1988), (Breuker, 1988), because it lacks the

knowledge required for pedagogy expertise (Wenger, 1988). Therefore, the GeNisa learning

environment uses both domain and pedagogy expert (Murray, 1999), (Wenger. 1988) to support

instruction.

The nature of the learning activities that the student is required to perform is goal-oriented

(Rubtsov, 1993), (Davydov. 1988), which may help the learner to develop meta-cognitive skills

:\ Generic Architl'ctun: for InteradiVt' Intelligent Tutl1ring Systems
T A Ato\a~tx·

Chapter 4: Development of the Generic Architecture for Intelligent Instructional Systems (GeNisa) 105

(Margolis, 1993). Furthermore, goal-oriented learning may increase the students' problem­

solving skills, because cognitive skill can be acquired by performing the actual tasks (VanLehn.

1996a).

Wasson (1996) proposed planning of tutorial content and delivery based on explicit

representation of the target knowledge concept structure, i.e. curriculum to be performed at

different levels of granularity. GeNisa uses domain independent heuristics to structure the

presentation of particular concepts. Examples of domain-independent heuristics are: (i) solving

basic problem before complex problems, (ii) annotating each problem-solving task with an

appropriate component, and (iii) proving appropriate and meaningful hints or help messages.

Task complexity can be measured by the number and entry of preconditions in the heuristic rule.

Additionally, simpler concepts may be proper subsets of more complex concepts; this represents a

prerequisite for the more complex concept. The progression from simpler to more complex

concepts defines a hierarchical structuring of the overall concept space. It is important to note that

the curriculum extraction process develops a baseline curriculum; the actual curriculum will be

customised during the training session by the student model and the actions of the student.

4.4.1 Pedagogical Technique

Pedagogical technique provides scaffolding of domain knowledge in order to accommodate for

the leamer' problem solving methods and for self-explanation (Conati et al., 1997). The

representation of the knowledge base and pedagogical tasks as "plans" allows the pedagogical

techniques to be provided for individual learners during instruction. Essentially, it consists of

didactic processes, which incorporates adaptive instructional strategies. This permits the

provision of pedagogical intervention to support the learner activities, which can facilitate the

development of skills and knowledge of the domain task.

The generation of pedagogical explanations elicited by the system is based on: (i) transformation

of the pedagogical knowledge (structured knowledge of the domain tasks) into functional

knowledge and components (Atolagbe and Hlupic, 1996), and (ii) by using knowledge of the

students' problem solving methods. This approach allows students to make their own planning

decisions, and self-explain the pedagogical tasks (Chi et aI., 1994).

In order to provide appropriate pedagogical intervention. GeNisa uses the information obtained

from the student model with reference to the followings: (i) the pedagogical model used for the

A Generic ~\rchitecture for Interactive Intelligent Tutoring Systems T. A Atolagbc

Chapter 4: Development of the Generic Architecture for Intelligent Instructional Systems (GeNisa) 106

tutorial (in order to guide the learner on how to accomplish the tasks), eii) the current student

problem solving method, and (iii) the dialogue mode, (where the tutor allows the learner either

confirm or to explain his/her tutorial activities), which is used to provide appropriate remediation.

This information is used to support the learner's problem solving methods during instruction and

to adjust the parameters for the appropriate pedagogical intervention. Furthermore, this approach

allows the student to explore the "problem space" by applying rules in the student model until the

learner encounters a problem. This form of pedagogical interventions requires the learner to

articulate his/her reasoning, which is used for monitoring and for generating explanation.

The instantiation of the pedagogical task structure is accomplished through the use of domain­

specific knowledge about concept complexity and relationships. Essentially, the system targets

the student's misconceptions as the students analyse problem scenario and plan their solutions.

The pedagogic model has been designed to encourage students to follow their own problem­

solving strategies. Therefore, instead of teaching theoretical aspects of the subject matter, the

learner can exploit the analogies found in other domains during problem solving. An illustration

of this approach is described in the next section.

Implicit in the pedagogical model depicted in Figure 4.11 is a fundamental epistemological

consideration, which relates to domain tasks processes and cognitive skill formation. This can

help to engineer a pedagogical task focus instruction by relating models to conceptual knowledge

formation and tutorial activity. Furthermore, it serves to organise the knowledge so as to account

for different levels of tutorial outcomes and remediation. Therefore pedagogical activities should

support and accommodate differences in the ways students construct their knowledge and should

facilitate creative problem solving (Atolagbe et aI., 1997).

Pedagogical intervention (implicit within the GeNisa learning environment), can guide the learner

problem solving activities and allow the student to self-explain the pedagogical tasks (Conati et

aI., 1997). The number of intervention provided by the system varies with the users' problem

solving tasks. The pedagogy module contains multiple strategies and selects appropriate strategy

based on the current problem solving methods and the progress of the student. This approach can

improve the learner's performance during problem solving (Anderson, 1990), (Ohlsson, 1993).

T. A. Atolagbe

Chapter 4: Development of the Generic Architecture for Intelligent Instructional Systems (GeNisa)
107

Figure 4.11 Pedagogical Model

The following pedagogical strategies were implemented in order to facilitate the acquisition of

domain knowledge. It includes:

1. Learning with Scenarios. This strategy uses a real-world scenano as the vehicle for

instruction. Presentation of a scenario involves demonstrating the operational activities

and teaching the correct methods required to solve the problem.

ll. Learning by Doing. Within the context of the scenario, it coaches the student step-by-step

operation required to perform the task.

Ill. Practising with Content Feedback. The student performs activities without prompting by

the tutor. When the tutor detects an error or misconception, it provides immediate

remediation of the problem.

IV. Free Exploration. The user can navigate around a case scenario, without intervention for

the system. The learner controls the learning activities.

This approach provides a flexible way of organising tutorial activities, which can improve the

students' interactivities. Also, the learner is assumed to initiate problem-solving activities during

instruction. This implies that the learner has to generate appropriate questions, answers and

explaining the case scenario. This can facilitate the development of higher-level cognitive skills

(VanLenh et al.. 1992), (Scardamalia and Bereiter 1993), (Scardamalia and Bereiter, 1996).

Furthermore, the learner can be considered as having a set of cognitive processes, which are used

during problem solving and for generating self-explanations. Hence, the learners would vary the

effort they expend on a cognitive process in accordance with their motivations (Chi, 2000), (Chi

ct aI., 1994) and complexity of the problem. By using a pedagogical structure that is guided by

A Gl'n~ric Architt'cture for InteraCli\'~ Intellig~nt Tutoring S\sterns T. A. Atolagbe

Chapter 4: Development of the Generic Architecture for Intelligent Instructional Systems (GeNisa) 108

cognitive theory within an interactive learning environment. this can permit simulation modelling

knowledge to be developed and to be shared in a collaborative environment.

The tutorial task is represented as a probabilistic model of the domain (VanLehn, 1996a), that is

the current domain task, an initial state distribution, a set of available actions, and a utili ty

function "sequence of state". The tutorial task is represented as a set of attributes (variables) with

associated probability distributions. This is based on the assumption that a tutorial task consists of

sequences of actions. A tutorial action takes place under certain conditions with a given

probability and this can influence the type of tutorial content to elicit.

4.4.2 Student Model Components

The control behaviour of the student model is encapsulated as a pedagogical decision-making

mechanism. This serves as diagnostic tool for identifying learning problem, and for

acknowledging learners' input during instruction. The student model components can adaptively

control the tutorial based on the learner problem solving methods (VanLehn, 1996a), which may

promote more effective instructional interactions between the student and an ITS. The student

model components include:

1. Character Profile. Refers to level of tutorial intervention and performance profile of the

learner. It relates to the sequence of tutorial actions and assessment of users problem

solving activities. The scaffolding actions are determined by the learners' interaction with

the components of the navigational mechanisms. The character profile is used to focus the

learners' tutorial activities towards most relevant aspects of their ability and can be used to

predict the effects of their actions.

11. Diagnosis. It is used for diagnosing student's misconceptions about the subject matter, and

providing feedback as required. It encapsulates mechanisms for reviewing the learner's

actions and the elicitation of content specific information. It is responsible for interpreting

the external data through users mouse actions and generating appropriate responses. It

selects an appropriate action based on a repertoire of pedagogical actions such as Show,

Hint and Explanation.

111. Learning Goals. A utility functions that guides tutorial actions III order to attain fixed

tutorial objectives, but flexible to allow other tutorial interventions. Essentially, the implicit

goal is to help the student complete all tasks. Also. the background knowledge (abstract

preconditions represented in the knowledge base) is used to select learning biases

automatically.

~~----.----------------.---~--------~~~-----

:\(;~nl';-ic An:hltl'l'turc for interal'tlYl' Intclligent Tutoring Systems T. A. Atolagbe

Chapter 4: Development of the Generic Architecture for Intelligent Instructional Systems (GeNisa) 109

IV. Management of Tutorial Tasks. It involves a global representation of the learner in terms of

their character profile, diagnosis and learning goals. This approach allows the learner to

modify the pedagogical task structure during problem solving, by their sequence of actions

and generating appropriate questions and answering it by themselves. The user's actions are

recorded through the mouse and the keyboard. Allowing the learner to enhance the

pedagogical task has been incorporated into the student model by using a representation of

problem solving strategies (represented in the case scenario) and domain specific concepts.

This approach allows the learner to adapt their problem-solving methods at different levels

of instruction and to modify their decisions in relation to the current problem.

The student model uses probabilistic reasoning to maintain a model of the student's level of

competence, and the student's preferred methods of problem solving and learning (VanLehn,

1996a), (Collins et al., 1996), (Martin and VanLehn, 1995), (Conati and VanLehn, 1996). This

approach allows GeNisa to use the information in the probabilistic student model to guide a real­

time tutorial dialogue and to handle uncertainty in the student model (Pearl, 1988a), (Martin and

VanLehn, 1995).

The Bayesian network model provides a probabilistic method for handling the uncertainties in

student reasoning (Carbonaro et al., 1995), (Kambouri et al., 1995). It allows the degree of

complexity of the domain tasks to be varied, thereby allowing content-sensitive information to be

incorporated into the task (Heckerman, 1997).

The structure of the Bayesian network used in this research is depicted in Figure 4.12. The

network parameters are derived from probabilities describing the student's domain knowledge,

pedagogy task, case scenario, and current problem solving method. These probabilities provide

priors for rule nodes and parameters that automatically define the conditional probabilities in the

network (Conati et al., 1997).

The students' interactivities during problem solving are used to update Bayesian network with

nodes and conditional probabilities representing how these actions influence the probability that

the student is performing the task and utilising the knowledge components correctly.

A Gl.'nem: Archite(!ure for Interactivl.' Intelligent Tutoring Systems
----------------------------- T. A Atolagbe

Chapter 4: Development of the Generic Architecture for Intelligent Instructional Systems (GeNisa)

01aracter Profile

Leamer's
Background

PeIforrmnce

Rules

UpdatedBN

Tutorial Task

Strategic Knowledge

Sn.xlents Acticn

Goals

Knowledge changes

Posterior probability
of student mxlel

Hints Explanaticn

Figure 4.12 Structure of GeNisa Student Model

110

Nodes representing pedagogical tasks directly influence the probability that the student is

deviating from the case scenario (rule-case node) in the student model. Nodes representing case

scenario activities are performed through the user interface, which may influence the probability

that the student is applying a correct analogy. Therefore, during the student's interaction with

GeNisa, the system assesses the student's knowledge and understanding of the case scenario.

Furthermore, the probabilities associated with rule-application nodes demonstrate that the student

has correctly executed the case scenario without major derivations. Rule-case nodes with

probability below a given performance level require immediate interventions. At the end of the

tutorial session, the student's probabilistic rules are used to update the student model.

4.4.3 Tutorial Hints

The student's input and methods of problem solving are used to assess student actions and

provide appropriate feedback and hints. The student model uses the pedagogical tasks to construct

hints and explanations. GeNisa uses a hinting process (Hume et aI., 1996) so that the student

discovers knowledge by him/herself. Hinting is used to provide the student with a piece of

information (Anderson, 1990), that can facilitate the recall of the facts needed to answer the

question or complete an exercise (Gertner et aI., 2000).

The student model is used for determining when and how to hint, and student responses to hints

are used to update the knowledge acquisition module. Since there may be more than one

pedagogical plan for tutoring a domain concept. the hinting strategy is closely related to the

:\ GL'neric Architecture for Interactive Intelligent Tutoring Systems T A. Atolagbc

Chapter 4: Development of the Generic Architecture for Intelligent Instructional Systems (GeNisa) III

pedagogical task or tutorial plan. Provision of hints may facilitate self-explanation, explicating

the learner's line of thought, although, real-time interpretation of the learners' actions is essential

for interactivity and for appropriate, and meaningful responses to the learner's needs. In order to

facilitate hinting and to ensure interactivity, this research used a set of autonomous agent

components for responding to different range of users' behaviours. Each agent can respond

according to the context of interaction.

4.4.4 Reference Library

A reference library (depicted in Figure 4.13) is provided as part of the learning environment. This

is used to provide references to materials that are relevant to the current domain and for

enhancing the learner's domain knowledge. The reference library is represented as a Web-based

reference library and spans the different area of simulation modelling and consists of examples of

simulation modelling.

Exploring the tutorial task involves using a case scenario, which consists of a description of a

hypothetical client's business and a problem area. A case-scenario-based approach is highly

intuitive and can improve instructional quality. Students can solve the problems by either working

in the "Practice", or in the "Tutor" mode. Furthermore, in the "Practice" mode, the agent monitors

the student's sequence of problem-solving actions and interrupts only if a violation takes place.

The practice mode allows the learner to take all the "learning initiatives" (Horvitz, 1999). This

approach allows the system to behave more interactively with learners and provide the learner

with direct control of the tutorial. Furthermore, it provides the learner with freedom to use hisfher

knowledge to practise problem solving.

The fundamental epistemological concept underlying this approach is that it is more beneficial for

learners to "develop and debug their own theories than to teach them" (Wenger, 1987). In the

"Tutor" mode, GeNisa guides the learner through the case and directs the learner through the

essential task domain that must be performed. One advantage of this approach is that if the user

cannot provide appropriate responses, the learner cannot proceed in attempting to solve the

problem. Depending upon the instructional goals, GeNisa may highlight aspects of the case,

suggest correct actions, provide hints and rationales for particular actions, reference relevant

background material, and provide a contextual assessment. These actions are domain independent

and can be llsed in most tutoring methods, e.g. coaching (Breuker, 1990).

A Generic Architecture for Interactih' Intelligent Tutoring Systems T A. Atolagbc

Chapter 4: Development of the Generic Architecture for Intelligent Instructional Systems (GeNisa)

Lf . ~ 3 ~ ~ ~ d ~ ~
Barl:... __ ForwwJ Reload Home Search Guide Print Security Sop

~. Bookmarks .. & Location: fil;/data/case/ scene~mulation.ref.html
J),lnstant Message @J Netscape On~ne @J Help @l Add-ons @J Getting Started

GeNisa Library I Tips for Using GeNisa

GeNisa ~imulation modelling library, contains reference material that you might find helpful for a course in simulation. It also
contain links to other databases, and examples of simulaton modelling.

~ Simulation Methodo logy: What is Simulation

~ Why Use Simulation?

• Advantages and Disadvantages of Simulation Modelling

~ Guideline for Writing Discrete Event Simulation Models

~ Developing Simulation Models

~ Selecting Simulation Software

~ Simulation Vendors

• Validation and Verification

• Design of Simu lation Mode lling Experiments

• Simulation Modelling Exercises

~ Examples

~ Further Reading

~ List of References

Figure 4.13 GeNisa Reference Library

112

Each tutorial task implements a Dynamic I-ITML interface and references a file as a resource.

This approach allows each HTML page to be embedded in an EXE or, DLL, or even to be located

on a server.

4.4.5 Knowledge Acquisition Module

The Knowledge Acquisition Module (KAM) uses user inputs, knowledge bases, and other

information sources to guide during knowledge acquisition. The KAM is encoded as probabilistic

rules and Bayesian networks (Pearl, 1988b), (Pearl, 1993), (Heckerman et al. , 1992). They

provide a methodology for capturing uncertainty in domain knowledge. Bayesian networks

provide a graphical, intuitive, and computationally tractable means of capturing prepositional

relationships in a domain, and can be used for such diverse applications as situation assessment,

plan evaluation, and diagnosis (Friedman et al. , 1997). This aspect of the research is grounded in

previous work in AI and probabilistic rule induction from data (Friedman et al. 1997).

In order to enable a domain expert to build domain-specific probabilistic models. GeNi a' .KAM

u es Bayesian induction methods that permit the user to provide aery ba ic specification of th

mod I that i cIo e to his or her objectives and expertise. This specification (u er input ill

T.

Chapter 4: Development of the Generic Architecture for Intelligent Instructional Systems (GeNisa) 113

include partial models (subnetworks and rule sets), relevance statements about input/output

events, and explanations (inference chains associated with specific scenarios). The key to this

framework is the utilisation of knowledge obtained from user interactions, the case scenarios and

the domain knowledge (Heckerman, 1997), (Heckerman et aI., 1992), (Friedman et aI., 1997).

This approach allows the user to interact directly with the knowledge acquisition tool, providing

inputs into the KAM system (tutorial interactions and explanations associated with the user's

inference process). These inputs are used as constraints on a learning process that gathers

evidence from the knowledge base and other information sources, to discover probabilistic

models characterising the application domain. Training data are gathered from the foundation

knowledge base and other on-line information sources. Learned rules are also used to guide

Bayesian network discoveries by means of an extension of the knowledge-based model

construction methods. The system then formulates queries to refine the models in an active

learning process.

Explanations of a user's inference process for previously observed or hypothetical situations will

permit the user to train the system through learning by demonstration. Expert models that are

explicitly made for the purpose of training the system could construct the explanations.

4.5 A Tutorial for Simulation Modelling: An Example

Simulation modelling learning environment was designed and implemented in order to

investigate the feasibility of the generic architecture learning environment. Simulation modelling

domain was chosen because it consists of curriculum-based tasks that can be explored for

computer-based tutoring or ITS (Paul et aI., 1998). Furthermore, simulation modelling is

particularly suitable for case-based ITS as it involves analysis, diagnosis and, it allows the learner

to work interactively with real-life simulation scenarios (Atolagbe and Hlupic, 1998).

The simulation case scenario was implemented by using SimTutor class library, a discrete event­

simulation modelling class library. SimTutor builds on the SimJava (Howell, 1997) class library.

The SimTutor builds on the fundamental abstraction of the subsystem in SimJava to provide

additional abstractions for simulation modelling tutorial (e.g. parts. workstations, conveyors, and

routers). SimTutor class library includes classes for representing graphs, and animation and basic

statistical analysis. All simulation classes were implemented in Java, and consist of essential

classes for developing simulation for instructional purposes. This framework is similar to

A Gennle Architecture fllr Interactive Intelligent Tutoring Systems T A. Atolagbc:

Chapter 4: Development of the Generic Architecture for Intelligent Instructional Systems (GeNisa)
1I~

SimJava (Howell, 1997), Simkit (Buss and Stork, 1997), JavaSim (Little, 1997), and DEVS-Java

(Zeigler, 1997). All these packages are based on object-oriented programming (OOP) (Adiga and

Glassey, 1991). OOP paradigm is suitable for the discrete-event world-view formalism (OKeefe,

1986), (Burns and Morgeson, 1988) because it facilitates modular design and simulation software

reusability (Zeigler, 1991), (Mize et aI., 1992). This approach allows simulation model to be

developed without using a simulation package. Furthermore, the SimTutor package has been

implemented in Java in order to support deploying application over the Internet. This approach

allows simulation applets to be integrated within the instructional environment, and to support

pedagogical activities.

Simulation model classes are directly instantiated against the "entities" they represent, or extend

their classes. Entities were used as the main building block for simulation model development.

The behaviour of an entity over time during a simulation is implemented through events. All

events are represented procedurally as methods of classes and encapsulate the behaviour of the

entities. The class library also contains several classes to represent various simulation activities,

exhibiting different behaviours. Different entities are used for building the simulation case

scenario and all entities are linked together by using a "port". The SimTutor package consists of

the following class libraries:

Animation. Animation package consists of classes that can be used to illustrate a concept, for

example, to illustrate an aircraft stability control or network of computer animation etc, which can

illustrate the potential problem. Each animation class consists of parameter variables that can be

manipulated by the use. Each frame can hold a piece of data from memory, with an associated

address tag. Text boxes and buttons allow the user to control the simulation and change initial

parameters. Entities and ports have their own icons loaded from graphical interchange files. The

icons can be changed to represent the current state of the entity, and other entity parameters can

be displayed as text. Messages passing between entities are displayed as squares, which travel

along the connecting lines; the number attached to the square is the message tag.

Statistical Distributions. SimTutor statistical package can be used for generating Gaussian

Normal and the Uniform distributions (U (0,1», (Law and Kelton, 1991). The statistical package

uses Java random number variate (mathematical function class) to generate different type of

statistical distributions. For example, the statistical package can periodically collect data about

every different entity, the maximum number of entities during the simulation, the mean. the

standard deviation, and the variance of different entities.

A Generic Architecture tor Interactive Intelligent Tutoring Systems T A. Atolagbe

' -----------------------~----------------------------------

Chapter 4: Development of the Generic Architecture for Intelligent Instructional Systems (GeNisa) 115

The simulation example consists of three main subsystems: geographical service area, modelling

and analysis module, and output analysis subsystems. Each of these subsystems consists of

multiple components for graphical and data management. The execution flow of the simulation

example is shown in Figure 4.14 (A). Each city sends and receives data (stored in the array) from

across the network through the communication bus.

OulDllloath'"

Arrivals

~~r-----~ _______ ~I. ·1~_T_r~_D~_~L_~~ D----.!
Orders

(A) (B)

Figure 4.14 Scenario Events Modell Operations

Figure 4.14 (B) depicts the operational scenarios, which offer students an interactive environment

characterised by a range of scenarios that exemplify the general factory logistics problems. Bulk

shipments are processed at the docking area, and are pre-sorted into different product groups, by

destination (local or national), or stored in the warehouse. After the pre-sorting stages, products

are sorted again (secondary sorting) according to the haulage requirements and product type (e.g.

finished products or components). Products are picked within a flow rack, and by pick-to-belt

operation in the sorting area.

The communication bus is used for handling interactions between different cities and for

transmitting events. The simulation engine controls the length of simulation and simulation time.

At the end of each simulation cycle, statistics on the different parameters of the network, such as

the cycle time, costs, transportation costs and service area traffic are generated.

An illustration of the simulation modelling applets is depicted in Figure 4.15. The system allows

the learner to address some manufacturing distribution problems such as determining the ideal

number and location of suppliers, transportation time, resource utilisation and foreca t demand

acro the ervice area, as well as distribution methods.

Chapter 4: Development of the Generic Architecture for Intelligent Instructional Systems (GeNisa) 116

~~.
G1tsf_

[M]
SeW.,,,

I~I
Dublin -.

I ~I~I ~ lruJJ~I !!1 IXI S,.emStrito -k ='':\:Li" -
.... d<#'f_ Uact!t.r Sbulatloa: ~ •-ar _

-Ntwc.utt~ 1IItao.Jr 24J Ho ...

SbulatloaC\ocJc

Nwnller .rN ... "

''"'I~I Slm.Jatlon I'nIpto
Nowch

• 11 ''1

Sb""lati ... s,.et

(A)

27

20

R-;j A"1O ~""
f5 ~ 1002 •

- / _ I'::

" Rod-A"1O

19 IIU! Is. 40

_ m:

CI ... DodUng

~ _ «:>; _ _ / _ 1~

- / -

RodA~ -

J9 ~[QO
• n
long Dw.nc. D....,., ...

J

~ 172 [100 rm III2QBJ Is.sos

>(' local Freight Anival -- " _ / ___ m.

Rod- AVO "' ..

legend ----, --..­..,..-..._-
...... - -

Figure 4.15 Simulation Applets
(B)

Applet (A) depicts the system simulation, serVIce areas/locations, and the current simulation

states, and Applet (B) depicts statistical distribution of a factory. Applet (B) represents other

components that can be used to assign and edit parameters for each factory within the

hypothetical service areas.

Each factory contains subsystems for estimating resource processes distribution (Rod) and

components for local shop floor analysis. Consignment may be passed from one location to

another. When a consignment is passed to the next location, it will either be held in a queue at the

new location, or the centre will process the work according to predefined production floor

parameters. The parameters can be customised for different simulation by means of lists and

controls. Furthermore, consignments are presumed to be generated in uniformly distributed

(U(O,I)) (Law and Kelton, 2000), (Pidd, 1998), (Paul and Balmer, 1992) manner due to

fluctuation in demand. After each simulation, the system produces different statistical output for

data analysis. For example a factory may produce the following outputs: number of consignments

arrivals, number of goods dispatched, number of consignment being processed, average number

of consignments in the queue and queues processing time.

On of the main outputs of the simulation is the cost of transportation. This research used a co t

function (Daganzo, 1996), which expresses the total cost (in pounds per day) of the di tanc

trav \led by the trucks and the freight operations. This is based on the assumption that the time

unit of th co t function is the day. The cost function i computed from:

T. lolagbc

Chapter 4: Development of the Generic Architecture for Intelligent Instructional Systems (GeNisa) 117

Where S is the number of service area, Ztd is the truck cost per unit-distance; ~ is the multiple­

drops cost per day; Zw is the truck-waiting cost per day; d is the average distance travelled per

truck; k is the local distance; q is the quantity of freight delivered in weight unit-freight in tons

per day; and St is the capacity of the truck in tons.

These parameters accentuate the importance of production costs, which relate closely to the

distance travelled by the trucks per day. Moreover, the cost function allows the user to learn how

to manage the factory operations so as to maximise throughput and lower costs, with

consideration for the demand and distribution capabilities.

This approach may enable learners to learn simulation adequately and efficiently by applying

theoretical knowledge, and making comparisons, and by investigating the simulation model more

of a real world problem (Paul and Balmer, 1993), (Davies and O'Keefe, 1992). This approach

may also help the student to develop an understanding of a number of fundamental concepts in

operational management such as transport and shop floor utilisation.

4.5.1 Student Activities During Instruction

During instruction, GeNisa uses the pedagogical agent to guide the learner dynamically through

the case scenario, and refines the tutorial plans according to the student's needs and pedagogical

activities. This approach allows users to use self-explanation in order to elucidate the case

scenario, which enables them to question and repair their understanding (Chi, 2000), although,

using self-explanation strategy may result in different levels of instructional outcomes. However.

GeNisa has different levels of knowledge and components that can support different learning

outcomes. Some of these components include:

1. Conversation. This component allows the student to interview the client by asking a series

of questions on current and business practices. The client provides an immediate reply to all

questions. The purpose of this is to teach the student the knowledge required for conducting

analysis of simulation. and the needs to identify the client requirements before commencing

analysis. Figure 4.16 depicts the screenshot for the conversation components and the

client's responses.

:\ (ienaic Architecture for Interactive Intelligent Tutoring Systems
T A AtnlJ!:!Ix'

Chapter 4: Development of the Generic Architecture for Intelligent Instructional Systems (GeNisa) 11

IAre there any safet,' and ergonomics factors to be considered?

The ergunornlc& of design should wold an ImptaCiic,,1 reach orlln by emplOy"es
· 4T:·::::~·:::·;·;'5~f!~~~:\~·:. -.-~. '-c""'z-'-r"'-'- -- -.. - -- . - - -----. -

! What are the issues Involved in deciding whether to use simulation modelling? And Why?
•
~ I What are the benefits fo r uSing simulalton in your firm?

: Tell me more about stalring resource problems?
IAre there any safety and ergonomics factors to be considered?

-

~ -",""",--, -
, The sources of the firms competitive advantages and disadvantages. now and potenlially in the future.
, Are you using any simulation software package or have used Simulation In the past?
! Do yo u expect any preservatlon of Investment by Introducing Simulation?

Do you have preferences for a specific simulation technique?
What parameters do you consider essential for simUlation experiments?
Do you have any platform requirements? -;-

1 ?.~r.r.:~~.~.r.~_cti.C..e. J ~.u_s i n e_s :..p !~:.e.~_:.:: __ . .1

I Strategic Plans I

Figure 4.16 Client Interview

11. Case Diagnostics Tools. Results obtained during the interview with the client are used to

obtain the requirement and to further analyse the business problem area. This is shown in

Figure 4.17. These applets provide detailed theoretical knowledge, which may be necessary

before implementation. Furthermore, the case diagnostic tools allows the user to make

instructional decisions and to self-explain some instructional tasks.

_IDI XI ase Diagnostics I!!II!J
lanagement Questionnaire MlllUIgement Questionnaire l ign ActiVities Chart I.U\ ~l'ncI\tM

Client: Galaxy Ltd
SSIt.
Current Practice:

Components Manufsctllrin&lAssembling

Reason for Consultation:
Gain Economic Advantages and Improve Competitic

All items not included below were marked as 'Yes" by client

Tentatm Time·Frame for Implementation:
8 Weeks

Requirements Clearly Identifltd:
Basic SpecifICation Document

4 I

(A)

I ~ I

Figure 4.17 Case Diagnostic Tools

'-='::0&)
0;_01) ,. , ...
,,-.:-: ...)

I naUALS"N.C.AT"'Of'Jo«al. J -.~...... =l
C~tr"'''. ",,,,,,,,,,,,,,,,

I '~~T'D"J«aL J
V""_)

y- v_)

I CP£R"n::ttAt.SNJUn::tt~ J , ,..~)
-~--

(B)

111. Performan.ce Model. The performance model uses the student model to compute and

maintain an assessment of the learner's competence level of each peri <;l CTnCT;cal task. It
(8)

interprets the s (A) s problem-solving action in the context of the CUI roblem and

determines the type of feedback to provide. The performance model then updates the

tud nt model. When the problem-solving task is completed, the a module

analy

pr id

the tudent' record and pro ide appropriate feedback. For e ample, Ge

two t pe of p dagogical ta k asse sment: (i) an e aluation of the tud nt'

T. lol3gbe

Chapter 4: Development of the Generic Architecture for Intelligent Instructional Systems (GeNisa) 119

analysis of the case scenario, and (ii) evaluation of the procedures taken by the student. The

performance model uses information about differential analyses, such as conformance to

standard guidelines, and may comment on the users ' analysis, or may compare an incorrect

response to the correct one. Different domains will require different assessment modules,

and feedback will differ accordingly. Figure 4.18 shows the quiz tool for testing student's

knowledge during instruction. Immediate feedback and explanation is provided if a learner

chooses a wrong response, and he/she may be directed to the reference library (discussed in

this section).

~Quiz I!lliIEi
Select the most appropriate answer.

In a discrete event simulation. variables change in steps at specified
time. Which of the following statementis not true:

During the investigation of queues in petrol station
Material handling system in manufa cturing

Performance of a military weapon
Training an aircraft pilot

I Submit

Figure 4.18 Quiz Tool

The epistemological rationale for the design of these tools is based on the premise that knowledge

acquisition processes may be facilitated by providing the learner with detailed knowledge about

the domain and problem solving methods (VanLehn, 1996a).

4.6 Deploying Applications over the World Wide Web

The architecture described in Chapter 3 was implemented for application deployment over the

Internet. The process of deploying applications over the WWW involves the following: (i) the

application to be deployed over the WWW is implemented as a Java-enabled applet, and (ii) it

insures that users who want to run the application have the Uniform Resource Locator (URL) to

access the proper HTML file, and the appropriate Web browser plug-in. The Web browser plug­

in communicates with the Web-server by sending user requests through its HTML page.

The Web HTTP server communicates the user's requests to the Web-enabled applet on the

application server. The Web-enabled applet communicates with the database for the data it need

on the application server. When the application is fully developed and ready to be built and

d Li r d, it can b deplo ed a an applet for users to acces ia the WWW. The applet re ide on

th appli ation r r. When the u er reque ts an applet, it file are retrie ed from the erver nd

pIa d in th t mp rar dir ctor of the client's machine.

T.

Chapter 4: Development of the Generic Architecture fo r Intelligent Instructional Systems (GeNisa) 120

The general architecture has components (for example, client-side components) responsible for

integrating with Java enabled browser and for communication with the server. The applet

provides an interface to the server functionality and supports HTTP protocol. All anchors

returned from the link to Web pages are encapsulated in J avaScript and inserted into HTML,

causing the browser to call back the applet when a link is followed. Although this solution is

platform-independent, current implementation is browser dependent, as the implementation

requires the use of specific Netscape API to facilitate communication between JavaScript and

Java applets.

Figure 4.19 shows the GeNisa client user interface and the main tutorial components. The GeNisa

client permits multiple clients to communicate through an API with the server. The server

manages each client connected to the system and maintains records of the application the user

executed. This approach may allow a high degree of component independence as both the client

and the server applications need to execute only the appropriate platform protocol in order to

deploy application on heterogeneous environments.

tl"=, nU1UUV\I

~ !iii ' • .-. , •• 'n ~~~---, ... 1
~ --'

~ "Velcolne to GeNisa!
TutOli~1

Case
scenarios

Index

PalametelS

Exelcises

-
SolutIon

Genisa is part of on-going research in applying Arblicial Intelligence techniques and Object-Oriented
methodology for developing ITS. Genisa architecture consists of reusable class hbraries that extends

the W llldows Foundation Classes. Genisa lllcludes:

• Many inte ractive visual controls
• Printing and full-fea tured print preview support
• A data manager component to make AOO programming easy and reliable (query by example-feature,

easy-to-use master-detail interface for realty sophisticated applications, type-safe record field access
etc,)

• User Interfaces for graphically oriented applications (scrolling, view movement, rotation, object
selection, movement and resizing)

• Full e-mail support
• Useful utility functions

All controls are real WFC controls coded in Java (no MFC-ports or VB controls) , All controls (except the
MessageBox and the popu pT ext) appear on the form designer's toolbox and have their special properties and
events tha t can be edited Inside the form designer's property or event editor,
Most parameters to modify the controls' appearance and behaviour refer to the controls' properties, so usually
you do not need any programming to customize your controls ,

The Evaluation Program!

-

-=J ~e evaluatlon program ~as develope~ ~s~ 00; reusable, cla;s hbr~e,s and cO~fonn:nts The class .:J

Figure 4.19 WWW Interface

4.7 Summary

Thi ch pt r has de cribed the development and implementation of the GeNisa. Th

imp\ m ntation of GeNi a wa ba ed on the conceptualisation of the generic archite ture

T. Atolagbe

Chapter 4: Development of the Generic Architecture for Intelligent Instructional Systems (GeNisa) 121

described in the previous chapter. Object-oriented class libraries are used to manage the large

quantity of code developed during the development of GeNisa. This chapter has analysed the

structure of such class libraries that support the different range of ITS components. The overall

systems architecture has been presented in terms of a heterogeneous collection of systems

providing a wide range of application functionalities.

This chapter has also described an example of learning environment of the generic architecture

for teaching simulation modelling. The tutorial uses a case scenario to guide the user through the

instruction. The example also makes use of an animated pedagogical agent to enhance the

interface within the learning environment. Different components that constitute the learning

environment are discussed.

A<.;L'nel~C An:hiteL"lure for Interactive Intelligent Tutoring S),tems T. A. Atolagbe

Chapter 5: Evaluation of the Generic Intelligent Tutoring System Architecture (GeNisa)

CHAPTERS

EV ALUATION OF THE GENERIC INTELLIGENT TUTORING
SYSTEM ARCHITECTURE (GeNisa)

5.1 Introduction

122

This chapter presents evaluation of the design and implementation of the generic architecture

discussed in the previous chapters. The evaluation is conducted by using formative evaluation

(Mark and Greer, 1993), (Murray, 1993), (Legree et ai., 1993), (McGraw and Harbison-Briggs,

1989), which is characterised by cycles of design, implementation, and evaluation (McGraw and

Harbison-Briggs, 1989). The objective of this chapter is to appraise critically the work carried out

in this study and to provide theoretical and empirical constructs for justification of the study, and

to establish the significant benefits derived from GeNisa.

A questionnaire was used to evaluate the characteristics and performance of the genenc

architecture (Osgood et ai., 1957). The questionnaire consists of bipolar adjectival pairs of

opposite meaning and is associated with a particular construct on a five-point scale (Osgood et

ai., 1957). The construct used in this study were obtained from reviewed ITS and 00 literature,

usability guidelines (e.g. Nielson, 1993) and experience gained during the design and

implementation of the GeNisa. This framework appears to be the most useful for measuring

"affective" attitudes (Osgood et ai., 1957) for the use of the components. It also offers the user

flexibility and, according to Heise (1969), has been shown to be both reliable and valid.

A significant number of methodologies for evaluating ITS are currently available (Murray, 1993),

(Self. 1992). (Self. 1999), (Twidale, 1992), (Mark and Greer, 1993), (Shute and Glaser, 1990),

(Shute and Regian, 1993), (Siemer and Angelides, 1995). A variety of these methodologies and

their respective studies were critically examined in order to identify the most effective paradigm

for evaluating GeNisa. Furthermore, all these studies outlined a methodological approach for

evaluating an ITS. However. none of these studies provides a list of criteria for the evaluation of

ITS components. Also. McGraw and HarbisonBriggs (1989) argue that it is difficult to develop

specific measurable criteria for knowledge-based systems. and criteria based evaluation is suited

A CiencIlc Architecturl' for Interactive Intelligent Tutoring Systems T .\ :\t()lagbe

Chapter 5: Evaluation of the Generic Intelligent Tutoring System Architecture (GeNis a) 123

for evaluating specific aspects of a system, where criteria can be specified and measured (Mark

and Greer, 1993).

The evaluation framework developed consists of a list of component features, which covers core

capabilities of the components in GeNisa. The component features were based on object-oriented

software engineering and AI literature. This evaluation framework was used by evaluators for the

assessment of each component and its functionalities. Some of the specific features which the

criteria examine are: content, usability, effectiveness, navigation, portability, reusability,

modularity, impact, effective use of media, and degree of difficulty/ease of use etc. The

development of the questionnaire is based on the list of criteria. An example of the questionnaire

is shown in Appendix D. The evaluation criteria provide a systematic and practical means for

critically evaluating the effectiveness of the components features in GeNisa, because

multidisciplinary, methods for evaluating ITS are inherently problematic (Hlupic et aI., 1999),

(Mark and Greer, 1993), (Shute and Regian, 1993). The generic architecture is also examined in

by using style guidelines and usability heuristics (Nielsen, 1994), to evaluate performances of

GeNisa, and to highlight potential usability problems (Nielsen, 1993).

The design and implementation of the generic architecture has been evaluated theoretically, by

using a software engineering approach (Sommerville, 1996), (Booch, 1994). This involves

considering the requirements of all other possible applications, and by establishing appropriate

relationships between the architecture's heterogeneous component properties.

The rest of this chapter is organised as follows. First, evaluation objectives are presented,

followed by detailed discussion of formative evaluation of GeNisa. Finally, an analysis of the

evaluation results is presented.

5.2 Conducting Evaluation of the Generic Architecture

This section will evaluate the design, implementation and performance of the genenc

architecture. The aim is to highlight problems that may arise from this study and to describe

different issues and benefits of the GeNisa architecture. The performance and evaluation of

various components of the generic architecture also provides a source of data used to analyse

GeNisa and its components. Furthermore, it is also used to identify a set of components, which

form the basis for the improvement proposals for further development of ITS (discussed in

Chapter 6). This section firstly discusses the evaluation objectives of this research, which is

--------------------------------------~

.\ Gl'neric :\rcilltccture for Interactive Intdligent Tutoring Systems T A Atolagbe

Chapter 5: Evaluation of the Generic Intelligent Tutoring System Architecture (GeNisa) 12.+

followed by conceptual evaluation of the generic architecture. The evaluation of the generic

architecture may help identify some limitations of the design and implementation of GeNisa

discussed in previous chapters.

5.2.1 Evaluation Objectives

Within the evaluation objectives this research will endeavour to appraise each component of the

generic architecture critically and to examine the design and implementation framework

discussed in Chapter 4. This will illustrate how the requirements for the generic architecture

discussed in Chapter 3 are supported by the implementation formalism. The objectives are: (i) to

evaluate the usability of GeNisa components and to identify problems that might affect portability

and reusability; (ii) to examine research findings which could form the basis for the proposed

methodology for ITS (discussed in Chapter 6); (iii) to critically appraise the design and

implementation of different components of the generic architecture, and their functionalities. This

is done by comparing GeNisa to traditional ITS, and by identifying possible areas for

enhancement of the components. This is important because the more generic component features

can be made, the easier it will be for use in different domains without any decrease in components

interactivity/functionalities; and (iv) to examine the usability of the user interface (Nielsen and

Mack, 1994) and to ensure that the various interactivity requirements (discussed in Chapter 3) are

adhered to and are consistent (e.g. the use of appropriate metaphors and direct manipulation for

intra/inter component navigation). Each of these objectives is explicit in the evaluation of the

generic architecture and its components.

5.2.2 Evaluating the Generic Architecture

GeNisa combines an object-oriented approach with AI techniques to enhance the creation of

interactive ITS and an automated method to aid users in managing the knowledge development

processes. As discussed in Chapter 4, GeNisa utilises case-based reasoning techniques, which

provides users with means of sharing, exploring and adapting different cases during instruction

(Atolagbe and Hlupic, 1998).

Most of the components used within the GeNisa architecture rely on the behaviour and contents

of other components. Therefore. the integration of different components may introduce bugs into

the software (Szyperski, 1998). It may be tedious to test all possible combinations between

components of the GeNisa architecture. However, interoperability problems are inevitable. It is

--------- ------
A Generic Architecture for lnteracti\'l~ Intelligent Tutoring Systems T A Atolaghc

Chapter 5: Evaluation of the Generic Intelligent Tutoring System Architecture (GeNis a) 125

unfeasible for applications that can be independently extended by the end-user, and of course for

a generic architecture.

It is to be expected that an object-oriented approach alone will not make a major difference to the

knowledge acquisition problems in ITS development. The object-oriented programming paradigm

provides developers with the capabilities for managing large bodies of code through structured

modular decomposition that simplifies code generation and maximises the possibilities for reuse

(Booch, 1991). However, the effectiveness of the paradigm in providing support for large-scale

software development through modularity and reuse has not yet been proven (B iggerstaff and

Perlis, 1989).

Numerous inter-component consistency constraints exist between different components used for

the implementation of the GeNisa. These are checked and preserved by the components contained

in the development environment. Each class, in all the tools, must be refined in terms of a class

definition and an implementation method. If a relationship between classes is changed, the

respective methods and constructor declaration are consistently changed in the class definition.

Similarly, the integration of the X:ML tools allows component attributes to be easily retrieved and

edited. Furthermore, the matching of method signatures of the class definition and their

corresponding definitions in the implementation is ensured. The GeNisa environment preserves

the inter-component consistency constraints that exist between its classes and class interface

definitions. For example, when a developer creates a new project, a respective class definition is

automatically created. Moreover, inheritance relationships are introduced depending on the kind

of project or tool.

5.2.3 Interoperability and Reusability - An Appraisal

At the conceptual level, interoperability and reusability are aided by shared ontologies

representation (Musen et aI., 1995). (Gennari et al. 1994). Ontologies are presented as task

structures, e.g. task hierarchies that define abstract concepts and the relationships between them.

The essential features of each component are abstracted into their constituent features, which may

be shared with other components and reused.

The events communication manager implementation is reusable with other components, although.

in order to implement component-specific functionality, additional event process classes may

have to he added. The component event communication processes are essential for

:\ (icncric :\Il'hitc((ure for Interadi\'c Intelligent Tutoring Systems T A, Atolagbe

Chapter 5: Evaluation of the Generic Intelligent Tutoring System Architecture (GeNis a) 126

interoperability and reusability. Therefore the implementation of events communication manager

may facilitate the data interchange, addition of new components modules, and reuse of

components across platform (Sommerville, 1998).

The object oriented paradigm used for the design and implementation not only contributes to the

reusability of components (Booch, 1994), (Sommerville, 1998), but also allows the developers to

extend components classes as required. This framework allows a complex component

specification to be structured into manageable modules according to their classes. Furthermore,

the component structure is supported not only for their classes, but also on a more coarse-grained

level for subsystems in the entity relationship notation (Booch, 1994).

5.2.4 Evaluating the User Interface

Different components of the development and instructional environment reflect the general

systems functionality. The design and implementation of the user interface is based on (i)

identification of interactive strategies features for use in both authoring and instructional

environments (discussed in Chapter 3), (ii) development of suitable case scenarios, pedagogical

and tutorial strategy and Bayesian inference rules, and (iii) implementation of interactive features

for each component. Interactivity is based on direct manipUlation dialogue (Shneiderman, 1998).

Each component executes a set of possible tool commands that are applicable to the current user

activities and presents the components in a context-sensitive menu to the user.

The importance of providing good user interfaces for interactive ITS systems is widely

recognised (Brusilovsky, 1996b), (Akpinar and Hartley, 1996), (Schwier and Misanchuk, 1993),

(Waterworth, 1992), (Cawsey 1992). A quality user interface must provide consistency,

reliability, self-sufficiency, ease-of-use and interaction flexibility (Nielsen, 1994), (Shneiderman,

1998). The design and implementation of the GeNisa is based on these studies, which are used to

provide consistency of the GUI components such as icons, buttons, menus etc. Also, components

event parameters are passed to other components in the same way during execution

(Sommerville, 1998). The GUI is examined by employing heuristic evaluation (Nielsen, 1994)

and questionnaire methods. Interaction flexibility (Sim, 1994) provides the means for addressing

the multiplicity of ways the user and system exchange data. This will help to examine the

consistency of the user interface, to appraise the usefulness of the metaphors used in GeNisa. and,

finally. to postulate recommendations for enhancing the quality of the user interface in ITS.

A Generic Architecture fl)r Interactive Intelligent Tutoring Systems T. A. Atolag~

Chapter 5: Evaluation of the Generic Intelligent Tutoring System Architecture (GeNisa) 127

5.2.5 Evaluating the Implementation

The objective is to examine the processes used during the implementation of GeNisa. The

implementation of GeNisa prototype (described in Chapter 4) is based on the class library,

abstracted into different packages to enhance its portability. Each component is organised

according to its composite elements, and templates (parameterised classes) have been used to

abstract commonality between similar classes. It has a very distinct separation between different

component modules and with a very defined interface between them. Each of these components

implements a high-level functionality (e.g. student's diagnosis, proving hints, critiquing user,

etc.). All actions invoked by the user are accomplished through an interface, which invokes the

required application. The class library implementation framework allows GeNisa components to

be reusable across the domain, which may shorten component development time and support

evolving component development. When GeNisa class libraries and its interface are used

together, the two components may be configured to run on different machines - due to the

carefully defined interface between the two. Moreover, the graphical user interface is

implemented within Java Abstract Windows Toolkit (AWT) library, which allows GeNisa to be

configured as a stand-alone program, as a network environment, and as a plug-in component to

World Wide Web. All classes have been designed to conform to object-oriented programming

and design patterns paradigms (Gamma et aI., 1995), (Pree, 1995), (Buschmann et aI., 1996) to

increase the comprehensibility of the program.

The language implementation and design used object -oriented paradigm. Besides, the class

library approach has explicit specifications for the syntactic and semantic connections between

entities in the architectural and components method (Liebernau and Backhouse, 1990). This

framework helps separation of the system's functionality into small modules, and helps

decomposition and implementation processes (Booch, 1994), (Sommerville, 1998).

5.2.6 Assessing the Design of the Generic Architecture

The design of the generic architecture requires that the software and hardware are addressed for

scalability, reusability and portability. The assessment of the generic architecture is presented in

terms of existing technologies and how issues of portability and reusability have been addressed.

Neveltheless, this assessment is based on comparative examination of the generic architecture

based on contemporary literature.

The design of the generic architecture drawn on standard ITS architectural (Wenger. 1988),

(Ohlsson. 1987). AI and object-oriented approach (Booch. 1994). This approach supports rapid

A Generic Architecture for Intcractive Intelligent Tutoring Systems T A. Atolagbe

Chapter 5: Evaluation of the Generic Intelligent Tutoring System Architecture (GeNisa) 118

development of wide range of components of the architecture (Murray, 1999). However, the

overall generic architecture is presented as a heterogeneous collection of components providing a

wide range of application functionalities. The detailed design of each component of the

architecture is analysed with cognisant views of domain and platform requirements, and the

underlying theoretical principles that lead to an effective object-oriented implementation. The

design pattern (Gamma et aI., 1995), (Pree, 1995) has been used to design components

framework for the architecture. The design patterns provide implementation-independent reusable

design descriptions of the components (Gamma et aI., 1995), (Pree, 1995), (Buschmann et aI.,

1996). They also allow components to have unique names, attributes and methods, which

describes the components behaviour. This framework provides components' modularity, fosters

heterogeneous reuse by allowing components to be replaced by newer ones without modifying

the other components. Also, each component can be developed separately. The modularity of

components should make transferring the tutoring environment to a different domain easier.

The rationale behind this evaluation is to examine the generic architecture conceptually, in order

to highlight the main ideas underlying the design approach; also, to examine the constructs used

for implementation of the generic architecture with respect to components-based development

and reusability.

The methods represented in the class libraries conform to the Component Object Model (COM)

(Box, 1998) approach, which allows the components to be run on any virtual machine. COM

framework allows a language-independent binary standard for component-interoperability and

allows components to be used for different applications and across platforms (Box, 1998).

The generic architecture provides design alternatives and default components for applications

development. critiquing mechanism, visual design of components, and a wide range of event

processes required by different components.

Each class method that has been defined in a class interface has been implemented in the

respective class. Since components class libraries are developed for component reuse, they must

be accompanied by components that enable users to reuse classes from the library. Apart from the

design that identifies the different dependencies of classes, developers require an Application

Programming Interface (API) of the functionality provided by the public methods of a class

(Gosling et at.. 2000), (Arnold et al.. 2000). This API is defined in the Java documentation and it

includes a description of each method and the fields.

:\ GL'neric An:llItl'L'ture for Interactl\C Intelligent Tutoring Systems T A. Alolagbe

Chapter 5: Evaluation of the Generic Intelligent Tutoring System Architecture (GeNisa) 129

5.2.7 Informal Evaluation

Informal evaluation was used to complement other evaluation methods discussed in this chapter.

This approach was used to obtain assessment of the overall architecture from ITS developers and

learners. Informal evaluation provides incremental enhancement of the architecture and provides

ways of testing the functionality of the components before development (Twindale et aI., 1992).

This informal evaluation is generated mainly from enquires and from feedback obtained from

different conferences and published papers (Atolagbe and Illupic, 1996; 1997a; 1997c; 1998).

Some informal enquiries are presented in Appendix G. This evaluation suggests positive evidence

for the effectiveness of GeNisa architecture.

5.3 User Trial

Eighteen users representing four groups participated in the evaluation (depicted in Table 5.l). The

groups of users were used to elicit feedback from GeNisa development and instructional

environments, and to examine GeNisa's performance, usability, portability and to illustrate some

functionalities of these components. The evaluators tried out GeNisa within a group of users

(Tessmer, 1993), (Monk et aI., 1986) and completed an evaluation questionnaire (copies of the

questionnaires are provided in Appendix D). This feedback provides usability assessment and

helps to identify areas for further improvements of the GeNisa. This evaluation does not seek to

evaluate users competency in using GeNisa, but to verify that the components suggested are

beneficial for both development and instructional activities.

5.3.1 Questionnaire

A questionnaire was developed to assess user perceptions of the usefulness of the GeNisa, to

determine the users' usability assessment, and to measure the effectiveness of components in

GeNisa in terms of implicit criteria. This approach helps identify areas of improvement of the

components, and ensures that all the different tools in the generic architecture are adequately

suitable for the domain and match the needs of the users. The questionnaire was based on

evaluation criteria (described in Appendix C). Returned questionnaires were collated and

analysed. The results of the evaluation are discussed in Section 5.3.5.

The questionnaire included two types of questions: Likert scale questions, and open-ended

questions. The Likert scale questions asked evaluators to rate different aspects of the GeNisa 011 a

five point scale. The points on the scale included strongly disagree. disagree, undecided, agree,

------ ------------- ---------------------- .-----
A Generic Architecture for Interacti\e Intelligent Tutoring Systems T A Atolagbe

Chapter 5: Evaluation of the Generic Intelligent Tutoring System Architecture (GeNisa) 130

and strongly agree. The short answer section contained questions about positive features of

GeNisa, and other questions addressing the GeNisa's effectiveness.

5.3.2 Evaluation Criteria

The majority of the evaluation criteria were drawn from different ITS literature, usability

guidelines (e.g. (Nielsen, 1993), (Shneiderman, 1998), (Constantine and Lockwood, 1999)), 00

and AI literature (e.g. (Steels, 1993), (Steels, 1990), (Drenth and Morris, 1992), (Chandrasekaran,

1988), and experience gained at various stages of the design and implementation of GeNisa.

Some of these guidelines are specific rules that define a given window system (look and feel),

others are more general-purpose heuristics. These guidelines were used in the development of the

evaluation criteria (shown in Appendix C).

Based on the literature, this research proposed a taxonomy of criteria for evaluating ITS. The

evaluation criteria centres on a coherent approach to evaluation that attempts to unify disparate

evaluation techniques for ITS (Mark and Greer, 1993), (Shute and Regian. 1993). Instead of

advocating a methodological technique, this research uses evaluation criteria to yield unification.

This approach may allow ITS evaluation to be conducted so that it intuitively fits a given context.

and is applicable to a broad range of domains. This is important in order to examine component

functionalities in a wider context (Steels, 1993). Furthermore, the evaluation criteria may be used

for explicit formalisation of reusable components and their underlying data structures.

5.3.3 Evaluators

Eighteen users representing four groups participated in the evaluation. The four groups and the

percentage of users are shown in Table 5.1. Students with different backgrounds and levels of

education (undergraduate students, MSc students and research students) and institutions (ITS

research centres at other universities, ITS interest groups, and corporate organisations) were

involved in the evaluation. The participants were randomly selected according to the following

criteria: (i) for groups A and B subjects had to have experience of using ITS, (ii) the company has

an information technology development department with permanent employees (this helped to

eliminate temporary/agency staff, who may not be familiar with ITS development), (iii) staff have

experience of developing either ITS or CBT, (iv) sufficient time had to be allocated for staff to

conduct the evaluation.

-- --- -- -------------
A Generic Architecture for Interactive Intelligent Tutoring Systems

T A Atolag!x'

Chapter 5: Evaluation of the Generic Intelligent Tutoring System Architecture (GeNisa) 131

Table 5.1 Description of Evaluation Groups

GROUP DESCRIPTION NUMBER OF PERCENTAGE
EVALUATORS (%)

A Final year undergraduate students 8 44.4.+
and MSc students

B Research assistants and research 4 22.22
students

C Academic Staff and HCI Experts 3 16.67
D ITS/Software Developers 3 16.67

Total 18 100

The evaluators with different backgrounds were chosen to increase the sample size and to obtain

more diverse subject viewpoints and enhance validity of the findings. It is expected that this

approach will help highlight the usability of the tools provided in the GeNisa and to identify any

potential problems and design faults. Evaluators were given 90 minutes to complete the tutorial

and a further 60 minutes to complete the evaluation questionnaire. Instructions were given to

ensure that subjects knew how to use a GeNisa environment before beginning the experiments.

Learners were also surveyed to elicit feedback about using GeNisa. The participants were asked

to fill out the questionnaire after reviewing GeNisa, and to return the questionnaire and their

written comments to the researcher.

5.3.4 Results and Interpretation of the Questionnaire

Evaluation criteria were quantified using a Likert-type scale, and items were tested for readability

using an internal consistency method (Cronbach's Alpha coefficient, 1990), which yielded

reliability coefficients of 0.99 and 0.96 for negative and positive items, respectively. These values

were higher than the 0.80 criterion, which is regarded as internally reliable (Bryman and

Crammer, 1997). An estimate of concurrent validity was measured using Pearson's product­

moment-correlation coefficient, which yield a Pearson's correlation value of 0.92. The purpose is

to ensure that scores obtained from one group of criteria are independent (not influenced by

scores from other criteria) and thereby improve the validity of the scores. The results of the

overall performance scores are show in Table 5.2, which illustrates the percentage score for each

evaluation criteria. The percentage score was obtained from the analysis of questionnaire returned

by evaluators. The mean percentage score shows that 84.45 % of evaluators think that GeNisa

provided all the functionalies and components for ITS, and satisfies the need for portability and

reusability. Several features score a very high response, which indicate that the feature is

adequately represented and satisfies the evaluator's need. For example, suitability for courseware

authoring/development scored a 88.88% response. More detailed evaluation results are provided

--
A Gencl'll' Architecturc for Interactivc Intelligent Tutoring Systems T A Atolagbe

Chapter 5: Evaluation of the Generic Intelligent Tutoring System Architecture (GeNisa) 132

in Appendix E. Also, the domain-independent student model, the inference engine, the use of case

scenarios, and the ability to deploy courseware on heterogeneous platforms scored very highly

amongst participants.

It was noted that none of the responses suggested a lack of satisfaction with any of the

components in either the development or instructional environments. The only comment that

touched on this was "they're the same as CAl", which could be interpreted as a reflection of a role

overlap between other components/or CAL

As evaluators were not asked to contextualise their experience of ITS development, the source of

their views may be assumed to be a result of direct experience with using GeNisa. A positive

comment might reflect satisfaction with GeNisa and conversely, it is possible that their comments

might relate to an idea of how they would like the component to be, rather than being a reflection

of the actual functionality.

Table 5.2 Performance Score

Evaluation Criteria SCORE(%)

Suitability for courseware authoring/development 88.88

Components implementation methods 84.67

Unique features and functionality 84.05

Module representation 77.64

Difficulties encountered 93.33

Overall design and look of the user interface 86.66

GeNisa performance 86.66

Components representation 83.77

Error tolerance 83.33

Reuse and portability 85.74

Learning environment 84.18

Mean Score 84.45

Evaluators could not clearly identify a problem area in GeNisa, this is indicative of a low

weighted score. It could be inferred that the evaluators might not have fully exploited all the

components in GeNisa, and were only able to suggest vaguely their experiences in ITS

development. The lack of clarity mirrors the difficulty experienced by ITS developers themselves

in articulating their roles and functions by using ITS components (Self, 1990), (Murray. 1999).

A (lcnc~·ic :·\n:hitecture fnr InteractlVt' Intelligent Tutoring Systems T A. Atolagbe

Chapter 5: Evaluation of the Generic Intelligent Tutoring System Architecture (GeNisa) 133

It was assumed that some respondents (developers) thought that GeNisa only worked in a

domain. It is also recognised that participants have an ever present risk of bias, with them

replying to questions in a way that they think the researcher wishes to hear (Borg, 1981).

In an attempt to reduce bias, the subjects were randomly chosen and were reassured that there

was no risk involved to their equipment and confidentiality would be maintained. Also,

evaluation was conducted at different sites with a group of three to four participants. Three sites

were visited but the other companies declined to participate or had no staff with experience in

developing ITS. However, some companies indicated that they were very interested in the

evaluation, but could not commit the time.

It is, therefore, interesting that there were many similar responses, suggesting some consensus

among the subjects about the functionalties provided in GeNisa, for example, the number of

references to automated student model, student assignment, quizzes, hints, courseware generation

and so on.

The evaluation emphasised a number of design principles, which provides a key to the usability

of GeNisa. These include:

I. Consistency. The components should check for consistency between components of the

same and different types, be able to visualise inconsistencies or even automatically preserve

consistency during changes. Too many of the windows looked alike. This may create

confusion about which menu was being viewed and about the functionality of different

menus. Therefore, menu options should appear only if they are selectable. Also, there is a

need for good screen management. The majority of the participants believe that consistency

is an essential requirement of ITS.

11. Components Implementation. Navigation mechanisms, and dialogue components permit a

user to select displayed components by pointing and by using direct manipulation. Also,

clearly marked "help" facilities, pop-up menus, etc., which are applicable to the user's

current activity may improve usability. Reusable components such as Wizard, Design

Assistant. Pedagogical Agents are modular and portable. About 84.67% of users believed

that components implemented in GeNisa were good for authoring processes.

111. interactivity. Users goals, preferences and knowledge of their activities should be used

throughout; the system should be easily adaptable to the needs of the user (Brusilovsky,

1996). Therefore, the system should provide good error messages for different tools at

different levels of user. For example, error message such as "no class found", does not help

:\ Generic Architecture !"lll Interactive Intelligent Tutoring Systems T A Atolagbe

Chapter 5: Evaluation of the Generic Intelligent Tutoring System Architecture (GeNis a) 13.+

the user. The error message should be linked to a help file. Also, an indication that a

selectable mode is active should be clearly displayed to the user.

Sellen and Nicol (1990) explained that the users make mental maps to help them navigate.

Therefore, the system should make these maps explicit, thereby reducing memory load (Sellen

and Nicul, 1990). Also, the system must provide the user with facilities to navigate through the

system without getting lost. Participants overwhelmingly supported the interactive features and

overall design and look of the interface. A sample size of 86.66% of participants agreed that

GeNisa was very interactive. The sample also indicated that participates would reuse GeNisa.

IV. Learning Environment. Overall, the participants were positive about the components

provided in the learning environment. They found the system easy to use and the pedagogy

content was appropriate. Participants overwhelmingly indicated (84.18%) that the hints,

quizzes and case scenarios were helpful during instructional activities.

By separating contents knowledge into domain knowledge and problem solving methods with a

different reasoning subsystem, reusability and shareability of the components is promoted (Musen

et aI., 1995). The quizzes provide means for monitoring and assessing students' learning activities

and are used to evaluate progress during instruction. This approach may help to direct users

learning. Self-explanatory feedback and self-pacing provides added support for an inexperienced

user. Anderson (1990) postulates that learners need to have immediate feedback in order to learn

efficiently. GeNisa provides immediate domain-specific feedback based on user activities.

v. General Comments. The evaluation was designed to evaluate aspects of the design and

evaluation criteria. Therefore, user responses were focused purely from the user's point of

view. User comments and ratings were grouped as shown in Table 5.2. The lack of criticism

evident in the users' responses showed that much of the system components were

transparent. In general, some users stated that they found GeNisa as potentially helpful in

their development activities. The questionnaire provided a range of knowledge and beliefs

about the roles and functions of GeNisa. Analysis of these responses also suggests that the

feedback reflected a more positive set of perceptions of GeNisa than might have been

anticipated.

It was notable that none of the responses suggested a lack of satisfaction with any of the

component functionalities that were offered. This may be attributed to the ease of using the

components in GeNisa.

A G~neric Architecture for Interactm: Intelligent Tutoring Systems T A. Atolagbe

Chapter 5: Evaluation of the Generic Intelligent Tutoring System Architecture (GeNisa) 135

The generic architecture consists of a number of relatively independent component modules that

can operate across platforms. Each component of the architecture, together with its class library.

can be reused with different applications. For example the user interface components, the

instructional environment and the inference engine, can be reused on heterogeneous platforms.

and were perceived by the users to represent a fairly accurate representation of the components

required for developing an ITS.

5.4 Heuristic Evaluation

In addition to the formative evaluation, heuristic-usability evaluation (Nielsen, 1994) was also

conducted. Kantner and Rosenbaum (1997) postulated utilising heuristic evaluation during

formative evaluations to avoid making errors. Heuristic evaluation was also carried out in order

re-examine the usability of GeNisa, and to generate specific recommendations for improvements.

Heuristic Evaluation (Nielsen, 1994) is a framework of usability evaluation, where an expert

finds usability problems (Nielsen, 1993), by checking the user interface against a set of supplied

heuristics (Nielsen, 1994) and make recommendations. The output of this evaluation will

complement the formative evaluation and may provide more specific proposals for improving

usability of GeNisa.

Many different types of user interface guidelines have been proposed, such as (Mayhew, 1992),

(Brown 1988), (Apple. 1993). Some of these guidelines are too vague, and difficult to apply

(Mosier and Smith, 1986). However, there is an increasing literature on different usability

guidelines such as (Constantine and Lockwood, 1999). However, this research employed usability

heuristics developed by Nielsen (1994) because the evaluator assesses usability problems by

following a set of supplied heuristics. Usability inspection is a theory-based user-interface

usability evaluation that breaks down an interaction into detailed steps and evaluates each step

according to the Nielsen (1994) criteria. This evaluation process is generally concerned with

usability of GeNisa, and helps to identify component's features that need to be improved.

The ten guidelines, suggested by Nielsen (1994), used for the heuristic evaluations are: (i)

visibility of system status, (ii) match between system and the real world. (iii) user control and

freedom. (iv) consistency and standards, (v) error prevention, (vi) recognition rather than recall.

(vii) flexibility and efficiency of use. (viii) aesthetic and minimalist design. (ix) help that users

recognise. and diagnose. and which enables them to recover from errors and (x) help and

documentation.

- ------------
A Genen~' Architecture for Interactive Intdligent Tutoring Systems T A Atolagbe

Chapter 5: Evaluation of the Generic Intelligent Tutoring System Architecture (GeNis a) 136

5.4.1 Procedure Used

Participants were chosen from groups B, C, and D, as shown in Table 5.1. These groups \\ere

chosen because of their expertise, and it was believed that they could be able to provide more

detailed feedback. Participants were familiar with software engineering toolkits (e.g. UML) and

had object-oriented design experience. Participants had to have experience in using desktop

applications and had to be familiar with using standard user interface elements such as dialogue,

standard Wizards, tool bars, tree widgets, and direct-manipulation. Questions used for the

heuristic evaluation and observation log are provided in Appendix F.

The evaluators were gIVen guidelines for usmg both the development and instructional

environments before performing evaluation. This approach was chosen to ensure that the

participants could carry out different activities that required manipulating the graphical user

interface. The participants were asked to carry out the tasks in the exercise (shown in Appendix

F) and comment on the usability of the different components used. Participants were asked to

evaluate the usability in accordance with the principles set out in Nielsen's heuristic evaluation

(1994), and to comment on both the positive and negative aspects of the usability of the design.

Participants were urged to write down any situation encountered such as shortcomings in the user

interface and suggest ways for improvement. Participants were given a predefined form to write

down any observations/suggestions for analysis and discussion (Preece, 1994).

5.4.2 Results of Heuristic Evaluation

The ten guidelines postulated by Nielsen (1994), described in Section 5.4 provide a framework

for the usability heuristic evaluation. The participants reported twenty points that are unique to

GeNisa. The essential points were fed back to the original design. The results of the evaluation

can be summarised and classified under the ten guidelines suggested by Nielsen (1994). The

results are:

I. Visibility of System Status. GeNisa keeps all option menus and components for a given task

visible, and allows direct manipulation (Shneiderman, 1998). For example. the system

greys-out menultoolbar component options that are not required for specific applications.

The system uses visual indicators to give cues on how to use the tool.

II. Match Betwecn System and the Real World. Unfamiliar phrases must not be used in window

titles and buttons. The system's careful choice of icons provides a quick way on how to use

----- ---- ---------------------------------------
A Genenc Architecture for IntaaCtl\'e Intelligent Tutoring Systems T A, Atolagoc

Chapter 5: Evaluation of the Generic Intelligent Tutoring System Architecture (GeNisa) 137

a tool. The users may misinterpret some icons; therefore, all the system's icons relate to the

selected tool.

111. User Control and Freedom. The user should initiate and control actions of all components.

GeNisa uses a modeless (Dialogue or Windows function that do not require the user to take

an action before switching focus) dialogue to provide an "escape route" and clearly marked

"redo" and "undo" tools for frequently used components.

IV. Consistency and Standards. All the components, pop-menus, toolbar, buttons, are

consistent. The system provides good screen management for all applications. The system's

use of colour and the active/inactive buttons, control bars, etc., are consistent.

v. Error Prevention. An indication that a component is selectable is clearly indicated. Active

mode is provided for relevant tasks and the icons are clearly displayed to the user.

VI. Recognition Rather than Recall. GeNisa used prompts appropriately and the prompts are

relevant to current task. The Design Assistant and the learning environments provide

appropriate prompts on current task and at different levels of the system. This approach

supports recognition and allows users to recall completed tasks, thereby reducing the

"memory load" of using the components (Shneiderman, 1998).

VB. Flexibility and Efficiency of Use. GeNisa provides shortcut menus and direct access to

essential tools on the toolbar, and on the graphical user interface. GeNisa allows users to

tailor frequent actions and is customisable for different use.

V111. Aesthetic and Minimalist Design. The system uses only descriptive titles in buttons.

toolbars, images/icons and dialog boxes. Each icon is used for a specific task only. There

are no technical terms that may confuse the user or that could easily be misinterpreted.

IX. Help that Users Recognise, Diagnose, and Enables them to Recover from Errors. The error

messages provided by the system are meaningful and content specific. Current

implementation of system does not provide error codes.

x. Help and Documentation. Basic help and documentation is provided. GeNisa is intuitive

and can be used without documentation. The help documents are easy to follow and relate

to specific component.

5.4.3 Observations and Comments

Evaluators were asked to record their observations and comments in the log form (Appendix F).

which was reviewed and served as a form of detente between the formative and heuristic

evaluation. The following observations and comments were made.

A Generic Archltl'cture for Interactive Intelligent Tutoring Systems T A Atoiagbe

Chapter 5: Evaluation of the Generic Intelligent Tutoring System Architecture (GeNisa) 138

1. User Interfaces. The desktop metaphor used for the Gill is helpful, but should support

different levels of users, with different skills. Different levels of users will require different

levels of information and use different components. The result of the heuristic evaluation

showed that the Gill was fairly intuitive.

11. Development/Learning Environment. The advantage of a fixed window layout in the

developmentlleaming environment is that it ensures that appropriate components are

displayed, and allows an enhanced intra-screen navigation management. It allows text and

graphics, applets, and other tools to be placed in pre-defined areas of the screen. Due to the

modular nature of the GeNisa, different tools (viewer, toolbar, or dialogue box) can be

displayed on the screen at the same time without overlapping. Novice users may have

problems with basic screen management such as inadvertently moving windows off the

screen, inability to restore a minimised window, etc (Nielsen, 1994), (Shneiderman, 1998).

Therefore, a fixed window layout is the preferred method for displaying information in

developmentlleaming environment, where users tend to be novice users and where a

sequence of events are to be followed. Although multiple windows may be preferable when

used with predefined procedures, such as in Wizards, this should be used with care and

attention.

lll. The system should provide some form of Focus and Context (Stuart et aI., 1998), which

may enhance interactivity. The user interface components and instructional strategies

should guide the users through a specific instructional goal.

IV. Use of the Toolbar enables ease of navigation by providing short cuts to the underlying

components. This distinction is necessary so that users are not confused with an option they

would not require.

v. Screen Management. Screen management provides the ability to navigate through the

different windows. This approach allows selective display and control of windows for

displaying specific information and for manipulating information. It also gives the user

control over screen sizes and allows his/her to navigate through different instructional

components.

5.4.4 Heuristic Evaluation: Concluding Remarks

Heuristic evaluation provides supplementary information to support the questionnaire evaluation

conducted in the preceding section. The questionnaire evaluation did not find any major

problems. and also showed the use of the direct manipulation user interface to be an effective

method of enhancing interactivity. The following conclusions were drawn from the heuristic

evaluation:

A Genefl(An:hite(ture for Intera(tive Intelligent Tutoring Systems

Chapter 5: Evaluation of the Generic Intelligent Tutoring System Architecture (GeNis a) 139

1. The usability inspection method is a quick and cost-effective solution for conductino c

usability evaluation (Nielsen, 1994).

11. The lessons learnt from the evaluation methods can be applied to the proposed methodology

(Chapter 6), both in the user interface design and in component development.

111. The traditional fixed-page screen format, as the only method of displaying the information,

may be too restrictive for ITS user interface because users have different levels of needs and

interactivity requirements. Also, dialogues, toolbars, scroll-windows should be visible on

the screen, and should be consistent across applications and platforms.

IV. A rigid windows framework can be used to support novice users, but it allows more

experienced users to by-pass the windows management system and may be beneficial in

providing a more flexible development and instructional environment. Also, the developer

should also be able to predefine windows, and set the windows accordingly.

v. A configurable user interface should take account of different user groups. Different tool

bars can be used to support the different user groups with different tasks. Certain tools

should be associated with the certain applications and should be designed to reflect the

different users' requirements.

VI. Use as many forcing functions as possible. A forcing function (Normal, 1988) prevents a

user from performing actions that are unwanted in a given context.

Nielsen's usability heuristic provides an approach to which GeNisa usability and systems

functionalities is measured (Nielsen, 1994). The guidelines helped identify possible usability of

the user interface and the effectiveness of the other components, although some of the

conclusions drawn from the heuristic evaluation are similar to the conclusions drawn from the

formative evaluation. Based on these evaluation results, it is feasible to infer that instead of

providing the users (developments and learners) with a predefined problem-solving environment.

the generic architecture should provide a flexible work environment for users to manipulate tools

interactively.

5.5 Critique and Synthesis of Evaluation Results

Most of the components of the genenc architecture were evaluated by usmg formative

(questionnaire) and heuristic evaluation. The rationale for using formative evaluation is to

examine GeNisa by using different user groups, which helped examine the components of GeNisa

hased on set of evaluation criteria. However, heuristic evaluation was used to complement the

A G~nt:ric Architecture for Interactive Intelligent Tutoring Systems

Chapter 5: Evaluation of the Generic Intelligent Tutoring System Architecture (GeNisa)
I~O

formative evaluation, and it helped in identifying many usability problems that were not

identified by the former.

The most important concern of this study was that there was no proposal for how to structure the

evaluation criteria, in order to facilitate selection of range of component characteristics.

Nevertheless, it could be said that the number of samples used for this study is limited, but.

according to Monk et aI., (1993) even three or four in a sample may be adequate. Also, besides

the limitations inherent in a direct manipUlation interface (Cohen, 1992), the generic architecture

use of direct manipUlation device (i.e. mouse) may limit interactivity on different platform and on

different domains.

The design and implementation approach followed the use of object-orientated (00) software

engineering methods and synthesising knowledge-based methods for engineering reusable,

coherent and maintainable components (Booch, 1994), (Sommerville, 1996).

The genenc architecture uses a class library and a components-oriented approach to foster

components reuse, design and sharing (Eriksson et aI., 1996), (Musen et aI., 1995). This approach

may allow components to be used and developed in a uniform and centralised method. Moreover,

components can be used as COM objects, which promotes platform independence, encapsulation

and reusability (Microsoft, 1998). For example, a component functionality can be contained in

COM wrappers (an operation that encapsulates a call to other library routine) and reused with

different application and across platforms (Microsoft, 1998), (Rumbaugh et aI. 1991). Each

component uniformity is centred on its class definition, attribute relations and cardinality of reuse

(Booch, 1994). This approach provides the following advantages: (i) components may use

uniform events communication processes, (ii) when a component module is changed, the

interfaces to other components do not have to be modified (Booch, 1994), (iii) components

modules may be easily modified to use new types of knowledge or event processes. Nevertheless,

this approach may eliminate duplication of effort required during development by: (i) promoting

inter-component consistency preservation, especially across component boundaries, (ii)

conceptual component schema may be simplified, (iii) cross platform utilisation of component

functionalities and event processes, (iv) and unrestricted enhancement to components as required.

These may promote implementation autonomy on multiple platforms.

If component reuse and sharing is to be fostered, components must use the same conceptual

schema and maintain an appropriate view mechanism (Booch, 1994). However, the mechanism

must allow for viewing different schema definitions and component attributes. ITS development

A Generic Architecture for lnteractiw Intelligent Tutoring Systems T A Atolagbc

Chapter 5: Evaluation of the Generic Intelligent Tutoring System Architecture (GeNisa) 141

is often fragmented and less successful because of the different software tools and de\'elopment

methodologies involved (Murray, 1999), (Self, 1999). Therefore, GeNisa architecture provides

numerous new capabilities that interoperability and reusability can bring to ITS research and

development. Some of these capabilities include allowing ITS systems to take advantage of

compatible commercial products, improving the cost-effectiveness and reusability of the

components of ITS in diverse domains, and increasing the level of interaction between related

ITS. These capabilities can lead to important benefits, such as increased efficiency of the

development of courseware for different domains and using sets of teaching strategies.

Reusability in GeNisa is supported by the modular design of its components and implementation

method. The approach may allow not only reusability, but also shareability and portability.

Since most of the components are not tied to any domain-specific content area, this approach

allows each component and its class library implementation to be easily customised. Component

development could also be facilitated by the use of automated design and a class library definition

interface. For example, an ITS component could easily be developed by importing existing class

representation modules with their respective implementation methods.

The evaluation results suggested that class library approach may contain components that are too

specific and vague and which lack component version management, i.e. components required for

managing different versions of components. Also, components of the architecture may share the

same events processes. Therefore, the components use facilities provided by the operating

system, such as shared memory, message queues etc. for their inter-application process

communication. The disadvantage is that all components must be executed on the same host, i.e.

in the virtual machine (Gosling et al., 2000), (Arnold et aI., 2000). Thereby, they have to share

the host's resources such as virtual memory. The performance of each component will decrease as

the number of concurrent component increases. Hence, the performance will deteriorate as more

concurrent component processes are utilised. These issues form the basis for the enhancement

proposals discussed in Chapter 6.

5.6 Summary

This chapter has discussed the evaluation of the generic architecture and has explored the various

facilities that the GeNisa offers. Formative (questionnaire) and heuristic evaluation methods have

been carried out, and the generic architecture has also been evaluated conceptually, by examining

the system's component behaviour and functionalies. This framework has helped to examine the

GeNisa prototype, as to how well it supports user activities, and to appraise usability, portability

:\ Generic :\r~'hitl'cture for Interactive Intelligent Tutoring Systems T A Alolagbe

Chapter 5: Evaluation of the Generic Intelligent Tutoring System Architecture (GeNis a) 142

and reusability. The evaluation has also examined the implementation of GeNisa, which has

provided vital information that enabled this research to refine the development approach

continuously and it has served as a form of detente between evaluation methods.

The results of the questionnaire dominantly confirm most of the generic architecture claims and

demonstrate that users overwhelmingly found the GeNisa development and learning environment

helpful, and that it provides appropriate tools for development and instructional use. Other

interesting issues raised by the questionnaire included its suitability for courseware authoring,

component implementation methods, unique features and functionality, module representation,

reusability and portability, and general performance. Based on quantitative data obtained from

evaluation results, participants indicated that GeNisa was reusable and portable. Also, the

feedback from the heuristic evaluation indicated that GeNisa performance was good, the system

is reusable, and evaluators found the system is flexible and that it supported their development

activities.

From the qualitative data it is apparent that most users expressed positive attitudes toward

GeNisa, by stating it was self-explanatory, interactive, reusable, and cost-effective. Also, the

informal evaluation method seems to be applicable to ITS, although perhaps not ideal.

On the basis of the evaluation results, it seems feasible to infer that there are development

benefits for developing ITS along the framework outlined in this research and may result in

improved performance and reusability of ITS components.

:\ (ieneric.\rchitectUI"c fllr Interactive Intelligent Tutoring Systems
T A Atolagbe

Chapter 6: Intelligent Tutoring Systems: A Methodology and Requirements for Future Developments l·B

CHAPTER 6

REFLECTION

6.1 Introduction

This chapter presents some practical solutions and theoretical approaches to address problems

uncovered during this study and evaluation of the GeNisa (discussed in Chapter 5). The

evaluation of GeNisa revealed a number of limitations in GeNisa. These particular limitations can

be addressed by revising and extending the design and implementation concepts used in GeNisa.

These refinements and improvement proposals have to be engineered so as not to introduce new

difficulties to ITS development. This chapter proposes a theoretical approach and computational

methods that address these limitations, and they are domain neutral and independent of

applications. The proposals are drawn entirely from the experience gained during the design and

implementation of the generic architecture and from reviewed literature.

The proposed refinements and improvement activities occur at two levels. Firstly, at a practical

level, some elements of the GeNisa architecture are re-designed by exploiting additional features

of the target platform used in the implementation of GeNisa. Secondly, at a more theoretical

level, some proposals are put forward for ways to improve the theoretical tools available to help

with building generic ITS components in general.

This chapter starts by reviewing the design and implementation processes described in Chapter 3

and 4, and the results of the evaluation presented in Chapter 5. This is followed by a detailed

discussion of the proposed methodology for ITS development. Finally, based on the literature

review and issues identified in the previous chapters, requirements for developing ITS and

improvement proposals for ITS are discussed.

6.2 The Generic Architecture

This section highlights .. ill area of the generic architecture that needs to be re-designed. The

evaluation of GeNisa is confounded by several problems, which will be identified. Refinement

A Generic Architecture for Interactive Intelligent Tutoring Systems T A Atolagbe

Chapter 6: Intelligent Tutoring Systems: A Methodology and Requirements for Future Developments 144

proposals to address these shortcomings will be provided. The refinement activities will support

cross-platform utilisation as well as software modularity by using up-to-date technologies.

As GeNisa applications evolve, the components and their attributes may evolve due to (i) the

need to support new component events, or problem solving methods; (ii) changes in domain

knowledge/instructional contents; and (iii) the need to provide additional function or extensions

to existing functionality. Furthermore, developmental activities are presented graphically to the

user. However when building a large application with a small number of classes, the structures

can become rather confusing. More so, different component modules have been implemented to

separate component behaviour and their attributes so as to facilitate program compilation.

However, experience of this research shows that component module compilation may limit

abstractions for organising the program. The components-based approach as currently

implemented in GeNisa could place demands on both the compilation and abstraction properties

of the development language. Developing applications by using units of component modules

requires defining a final compound unit that links the modules together. Therefore, in order to

overcome these difficulties, the generic architecture should be re-designed so as to incorporate a

mechanism that addresses these problems.

This reflective analysis requires re-design of some existing components in order to address these

limitations. Therefore, refinement proposals are provided in order to improve the components

functionalities in a more efficient manner. This section will identify fundamentally new ways of

enhancing these component processes by leveraging current technology. The rest of this section

reflects on some sections of the generic architecture that requires further refinement that

uncovered during this study.

6.2.1 Generic Architecture for Intelligent Tutoring Systems

GeNisa has been designed and implemented on a PC to demonstrate the feasibility of a generic

architecture for ITS, and to fulfil the this research objectives discussed in Chapter 1. The generic

development framework is based on two perspectives: (i) development of sets of components and

software models that are continuously enhanced during the development lifecycle; and (ii)

abstracting the components into a class library. However, the following shortcomings are

identified from retrospective analysis of the design and implementation methods and from

evaluation results discussed in the previous chapter. This area of improvement revolves around

:\ Generic Architecture for Interactive Intelligent TutOrIng Systems
T :\ .\toiaghe

Chapter 6: Intelligent Tutoring Systems: A Methodology and Requirements for Future Developments 1.+5

the components-based method and components class libraries. This includes the follwoing:

1. Developing a components class library is hard. For ITS to fully utilise a class library

implementation method, it is necessary to understand a very wide range of problem

characteristics and how to use component libraries to address these problem. This research

has design each component class to be highly modularised so as to provide a solution for a

specific problem or component behaviour. This requires the establishment of a prerequisite

relationship between components in order to preserve component dependencies.

11. Class library implementation of different components of the system has been used in order

to foster reusability and portability (Booch, 1994). Therefore, a class library may contain a

number of classes and nested modules. As different tools may have different composite

schemas, which may be an event-dependent module, the class library approach may causes

problems such as potential name clashes and interface structure.

111. Inheritance relationships between components modules may, for instance, be public,

protected or private (Booch, 1994). Therefore, the inheritance relationship between

component classes imposes a very strong use relationship between classes. Hence, the

export of the super class may result in the export of the subclass. Therefore, the inheritance

relationship must be used very carefully, so that only the required super classes are

exported.

IV. In general, component module instances can be partitioned into compound units, but these

partitions must not overlap. Therefore, linking component modules are based on the library

dependencies and linking hierarchy. This may increase the size of linking expression during

development and the size of imported interfaces for an intermediate compound module.

However, this approach may propagate the library dependencies, which may result in

inconsistency in the software module.

v. The component libraries are based on a specific framework, for representation and for the

kinds of component behaviour that can be initiated or stored in the library. Therefore, the

component behaviour could be difficult to tailor for a new application.

Some of these issues will be addressed in the proposed methodology discussed in Section 6.3.

6.2.2 Reusable Components for Intelligent Tutoring System

During the design and implementation of the generic architecture, there was a clear emphasis on

for the logical separation of the component content and behaviour from the main body of the

architecturL:. This is because tightly coupled architecture may not be suitable for heterogeneous

:\. Generic Architedure for Interactivt' Intelligent Tutoring Systems T A. Atolaghc

Chapter 6: Intelligent Tutoring Systems: A Methodology and Requirements for Future Developments 1~6

utilisation, which may render reuse difficult. The GeNisa architecture framework allows the

modification to be made to components without disruption of the operation, design and structure

of the architecture (Booch, 1994), (Sommerville, 1996). The separation of the event processes

from the rest of the architecture is possible because of the use of a separate event communication

subsystem. This approach allows the events to be independent of the rest of the system. The

architecture supports autonomy between the components such that different tools can be built

from different sources. However, during the implementation of GeNisa, component-based

approach was found not to adequately provide diagnostic reasoning capabilities. Also, because

component interactions are bound towards an implementation, it may be difficult to reuse

high-level design prescriptions for other applications. The component composition when used to

develop applications may result in poor performances (Biggerstaff and Richter. 1987).

Furthermore, some component functionality may not be required for new application or needs to

be adapted to match the requirements of the application. This may be attributed to structural and

semantic differences in the diverse sources of the component methods. Therefore, component

evolution should be an integral part of components' reusability for ITS.

The flexibility of the generic architecture is partly realised through the events communication

processes between the individual components (described in Chapters 3 and 4). The versatility of

such an approach depends on the event-processing methods used during implementation (Booch,

1994), (Gamma et aI., 1995). For example, if the event-processing system implements an

inefficient protocol, the effect will be transferred to tools that use the same protocol. Another

disadvantage of this approach is the lack of appropriate component version management as stated

in the previous chapter. Furthermore, a component functionality may not be applicable in a

specific situation as it is currently implemented. Therefore. it may need to be adapted, which can

be done either by modifying the component's source code or by using wrapper (Box, 1998).

Furthermore, both approaches have inherent disadvantages that may affect reusability.

Although an object-oriented and component-based approach constitutes a means for design, reuse

and sharing of data (Ritter and Koedinger, 1997), (Roschelle and Kaput, 1996). (Suthers and

Jones, 1997), as some component functionality in the generic architecture evolves, this may result

in semantic conflicts between different components. Furthermore, each component attribute may

be characterised by a certain number of different implementation approaches. different

software/operating system versions. and implementation platforms. These characteristics may

lead to the following. First. the developed applications must be incrementally updateable and

compatible. Updating is necessary because the model must be able to accommodate the steady

stream of new incoming data. Incrementality and compatibility are needed. otherwise the system

A Generic Architecture for InteractIve Intelligent Tutoring Systems

Chapter 6: Intelligent Tutoring Systems: A Methodology and Requirements for Future Developments I·n

will have to reprocess all previous data each time new data is received and therefore will be slow

and costly to use. Second, all developed components must be traceable in all phases from design

stages to implementation, and reasoning subsystems. The requirement for tractability may be

difficult in a constantly evolving environment. Finally, the potential for inadequate current

application events indicates that the system should be robust and reliable when an unpredictable

event occurs.

Another area for improvement revolves around the World Wide Web (WWW). The WWW

approach facilitates deploying instruction across platforms (Brusilovsky, 1998). However, The

WWW framework has an inherent dependence on network reliability and performance, which

renders maintaining network integrity and security risks a challenge. Furthermore. deploying an

application on a heterogeneous environment with different platforms (e.g. (Gosling et aL 2000),

requires balancing the load of all applications across the platforms. As currently implemented,

GeNisa does not handle the dynamic setting of ITS on different platforms. Furthermore, the user's

environment is constantly changing during its life cycle (Clancey, 1992), because of the changing

needs of the users. Therefore ITS developers must deal intelligently with a steady stream of

incoming information/data.

The generic architecture adhere to Components Object Model (COM) paradigm (Box, 1998),

(Cox, 1996). COM classes have unique tags (eLS/D, a 128-bit descriptor), which has been found

difficult to use. However, some proprietary software does not support COM e.g. Java language

from Sun (Gosling et aI., 2000), (Arnold et aI., 2000), which may affect portability. Furthermore,

COM approach may be inhibited by the use of programming languages that make the task more

arduous. Therefore, additional flexibility can be gained through the use of proprietary

mechanisms such as plug-ins, although, the disadvantage of plug-ins is that they are platform

specific and must first be downloaded and installed prior to use. However, some proprietary

software provides Application Programming Interface (API) to manage new protocols

dynamically.

6.2.3 Knowledge Base

As currently implemented, component objects roles represent characteristics of components that

may be independently referenced, or shared (Musen et al.. 1995). This allows reuse of knowledge

from different types of problem representation methods and organisation of the contents

according to their inheritance characteristics. Also, the knowledge base has been developed so as

:\ (ienaic Architecture for Interadive Intelligent Tutoring Systems T. A. Awbgt'<.:

Chapter 6: Intelligent Tutoring Systems: A Methodology and Requirements for Future Developments 1.+8

to support different courseware needs. As domain requirements change, knowledge can be added.

or refined.

However, there are two factors that may hamper the effectiveness of the knowledge bases across

domains and tasks: (i) the interaction problem (Bylander and Chandrasekaran, 1988) that is

domain knowledge cannot be represented without knowing for what instructional task it will be

used; and (ii) as currently implemented, the domain task provides prescriptions between content

structure elements and instructional strategies. But domain task does not adequately account for

different levels of instructional outcomes. Moreover, the tutorial remediation is largely driven by

choice of tasks performed by the user. As currently implemented, tutorial remediations are chosen

by the pedagogical agent. Therefore, a poorly chosen set of tasks may yield less effective tutorial

delivery. This may result in poor interaction between the learner and the instructional system,

which could result in a poor approximation of learner's knowledge (Salomon and Perkins, 1998).

In addition, Sweller (1989) asserted that poorly supported problem solving activities might force

the learner to rely on weak methods for problem solving. This implies that provision of

appropriate remediation and tutorial structure makes learning activities more efficient (Vygotsky,

1978).

6.2.4 Automated Knowledge Acquisition Module

As currently implemented the GeNisa architecture uses knowledge acquisition process, which

consists of the development of a domain knowledge level model of the expertise required for

solving the domain problem. The knowledge acquisition module works by combining statistical

inferences (Bayesian network) and database systems to acquire knowledge from both stored data

and the user's interaction during instruction. During the development, it was decided to employ

algorithms to extract knowledge according to the criteria presented in Appendix B. This in turn

limited the number of domain behaviour that has to be instantiated. Therefore. content knowledge

may be "shallow", which may require additional knowledge in order to support instruction. The

prescription for domain hierarchical tasks strategies may be superficial.

This shortcoming raises the question whether it is possible to increase the reuse scope of some

components of the generic architecture across a different domain. The rest of this chapter will

address some of these issues and propose a methodology that is drawn entirely from the

expenence gained during the design and implementation of GeNisa and from current ITS

literature.

A Generil' Architecture for Interal'tiw Intelligent Tutoring SystL'ms T. A Ato\Jgtx-

Chapter 6: Intelligent Tutoring Systems: A Methodology and Requirements for Future Developments 1.+9

6.3 A Methodology for Intelligent Tutoring System Development

Based on the experience gained during this research and on evidence obtained from literature

(e.g. (Murray, 1999), (Bell, 1998), (Shute and Regian, 1990), (Koedinger et aI., 1995), (Vanlehn,

1996b)), this section proposes a methodology for ITS development that seeks to address some of

the shortcomings identified in the preceding sections and issues that were identified during the

evaluation of GeNisa. The proposed methodology does not suggest re-implementation of the

system, but it suggests some conceptual design and implementation strategies that could serve as

guidelines for developing ITS, and is not committed to a single domain/platform. Furthermore,

the proposed methodology provides logically coherent design processes that could serve as a

reference "tool" in other to resolve design difficulties that characterises early stages of ITS

development.

The proposed methodology seeks to address issues raised by usmg object-oriented and

component-based approach for implementation of GeNisa architecture. The refinement proposals

herein are structured with respect to ITS development tasks, in order to satisfy requirements on

efficiency and improve interaction.

The methodology focuses on integration of independently developed components schema by

enhancing developed classes with abstract data types to help in understanding and integrating the

event-communication parts of different classes. This methodology provides an approach by which

ITS can be developed from sets of existing schema classes and integration of existing ones. This

approach is also concerned with reusing and sharing already developed schema (Musen at aI.,

1995) and in finding commonalities between the classes to be integrated. This section starts with

a brief overview of the concept used to develop the methodology, and is followed by a proposed

methodology for ITS development.

6.3.1 The Concept

There are two major schools of thought regarding development methodologies: (i) the scientific

method, as represented by Dixon (1987), and (ii) the engineering method, as represented by Koen

(1985). In the former, prescriptive methodologies are only developed following the development

of accurate descriptive methodologies that lead to testable theories of a development. The latter

prescribes that the prescriptive methodology be put forth based on the best available information.

and then modified as necessary.

,\ Generic Architecture for Interactive Intelligent Tutoring Systems
T A, Atolagbc

Chapter 6: Intelligent Tutoring Systems: A Methodology and Requirements for Future Developments 150

This proposed methodology is based on software engineering principles rather than in an analytic

approach because engineering principles involves reuse of already existing solutions

(Sommerville, 1996). Furthermore, engineering methods may support development and transition

into active use of tools and techniques needed across platforms and domains. The objectives are:

to identify the strengths and weaknesses of the design and implementation of GeNisa; to propose

improved software components which may address the issues identified during evaluation; to

develop components, techniques, and systems that can be used across platforms/domains. This

approach might provide a useful methodology for considering strategies and mechanisms that are

most beneficial from the perspectives of software engineering in general and reuse in particular.

Methodology in general "refers not only to (research) techniques or to inferential procedures, but

also to the epistemological reasons for their choice" (Gebhardt, 1978). It can be inferred that

methodology is a "prescriptive" procedure that allows research to be justified by recourse to

identifying the strengths and the weaknesses of the development processes involved.

Methodology provides "a very useful distinction between what is to be done next, who is to do it,

and how" (A vgerou and Cornford, 1998). The methodology developed in this research consists of

a structured approach with a clear and logical progression. It embraces both the independence and

unified ITS development on heterogeneous platforms. The proposed methodology is independent

of the development paradigm, and comprises a strategy for developing ITS from analysis of the

domain and its contents to obtain the logical abstraction that represents different schema classes.

There are many advantages of this approach, the most important of which is that developers

already familiar with development tools can leverage development time and skills requirements.

This is possible because many of the features in proposed methodology fit well into existing

frameworks, and developers can reuse knowledge in new domains and share encoded knowledge

across different environments. Facilitation of reuse of components was identified as a

fundamental requirement during the evaluation of GeNisa.

There are a wide variety of approaches to knowledge representation (Musen et aI., 1995), (Musen,

1993), and knowledge that is expressed in one formalism cannot directly be incorporated into

another formalism. Thus, in many cases, sharing and reusing knowledge will involve translating

from one representation to another. As currently implemented, the only way to do this translation

is by manually transforming knowledge from one representation to another (Musen et aI., 1995).

As stated earlier. the proposed methodology draws on the generic architecture framework and

relates to the findings discussed in Chapter 5. The proposed methodology consists mainly of five

:\ llcneric Architecture for Interactive Intelligent Tutoring Systems T A. Atolagbe

Chapter 6: Intelligent Tutoring Systems: A Methodology and Requirements for Future Developments 151

steps that may help ITS developers collect, analyse, and present information, III a highly

interactive and iterative way.

6.3.2 The Proposed Methodology for Developing Intelligent Tutoring Systems

The main advantage of the generic architecture framework is its tenets for reusability and

portability. Implicit in this approach is interactivity, shareability and modularity issues that could

affect the functionality of a component. A methodology for ITS development, with stages

representing steps for the natural and intuitive authoring process, is postulated. The main virtue of

the proposed methodology for ITS is that it could serve as a theoretical foundation and a method

that provides procedures for developing ITS.

Essentially, the proposed methodology consists of five steps: knowledge modelling, design of

knowledge support tools, knowledge activities development, evaluation, and implementation

phase. Figure 6.1. illustrates the major steps of the approach. Effectively, these phases represent

how components classes may be structured during ITS development.

Knowledge t-
Modelling

Design of

I
Instructional

I
.. Knowledge

Support Tools 1-
Space

I I
Instructional Knowledge

I I
Strategy

Lt Activities t-Domllin
Annlysis Development

I I I I Domain Student Model Evaluation

I I
knowledge .. Verificlllion

I I
I I

Reactions

I I
Knowledge

Scenarios Elicitation

Library

I I
Version

I I
Man_sc:menl -

Inference
Engine

I I Benchmark .. Implementation

Figure 6.1 Schematic Representation of the Proposed Methodology

The output of each phase consists of a senes of fully functional models of different ITS

components. A more detailed description of this methodology is depicted in Figure 6.2. Each step

divides the development processes into manageable phases and allows integration and extension

of different classes. This may help to reduce the complexity of ITS development, by allowing

different levels of abstraction about the systems' components. More so, this may increase the

independence of the system's components. permitting component events and platform

requirements to be localised as required.

A Generic ArchitL'cture for Interactl\L' Intelligent Tutoring Systems T A Atolagbe

Chapter 6: Intelligent Tutoring Systems: A Methodology and Requirements for Future Developments 152

These steps are depicted in a spiral-like model, which provides an efficient approach for

transformation of development activities between different steps. The horizontal arrows

extending from each box represent the expected outcomes of that step. Each step encapsulates

operational activities, such as schema modifications, and component enhancement. The following

sections provide a detailed description of steps defined for the proposed methodology.

Step I: Knowledge Modelling

This step involves preliminary operations to assist the developer to identify and formulate the

general domain knowledge and define the semantics of the knowledge bases in relation to their

domain (Chandrasekaran et al., 1992). Knowledge modelling involves modelling all aspects of

system at different "levels" of abstraction. It involves a "systematic elicitation" of objects and

their classes and the conceptual structure of the domain. It seeks to establish the core

requirements for the system and to provide a model of the component's behaviour. This stage is

open and its implementation is neutral. It may help a developer to delineate the domain specific

components from existing/different sources. The knowledge modelling may be used as a

guideline for decomposing complex tasks into subtasks. Furthermore, it can be used to provide

flexible reasoning and problem solving methods (Benjamins, 1995), (Breuker and Van de Velde,

1994), (Chandrasekaran et aI., 1992). The following issues are identified and addressed at this

stage: components of the system, events and their distinct behaviour, problem solving methods

and adaptability with regards to domain and possible changes as the result of user's actions.

This stage involves analysis of domain requirements and identification of component

functionalities and events. This stage primarily involves the transformation of the domain tasks

into hierarchical classification and lays emphasis on the events underlying the behaviour of the

components.

An essential consideration at this stage is the analysis and design of the domain expert, discourse

strategies, student model, and communication process. The knowledge-modelling phase helps to

identify the major facets of the development and the sequence of activities and components

events, with their degree of abstraction. The degree of abstraction may help to establish the

component boundary and communication protocol.

All functional and non-functional requirements must be identified and specified at this phase. In

general, knowledge modelling involves conceptualising and formalising the instructional "space".

As currently implemented, GeNisa instructional space representation may not be optimal.

A Generic Architecturl" for Interactive Intelligent Tutoring Systems
T A Atolagbe

Chapter 6: Intelligent Tutoring Systems: A Methodology and Requirements for Future Developments 153

Therefore, by defining functional and non-functional requirements at this phase, an objects

schema could be reused, which may reduce the development time and help to maintain

consistency.

The educational, instructional strategies and pedagogical requirements constitute the instructional

space. The instructional space involves the cognitive analysis, interactivity, structure and

organisation of instruction components. It involves the production of a cognitively guided

instruction, and dialogue that would bring about an improved learning with enhanced

interactivity. The instructional space can be used to articulate an abstract tutorial structure, and

ensure that domain knowledge is not limited to procedures for executing a tutorial task, but

includes other instructional aids and case scenarios.

The instructional space is the user's first contact with an ITS, and involves different activities

such as user-interface design, knowledge-elicitation methods, instructional strategies and

navigational strategies. These are characterised by the following:

1. Openness. Instructional component may need to integrate information from different

component repositories. This should allow developer to be able to define and customise

components and view their schemas in a consistent way. Data and instructional events

should be defined in a platform that is independent and language neutral, and is running

efficiently.

11. Uniform didactic style between different modules in order to provide a potential guidance

for students, which may support the navigation over and through the knowledge corpus.

lll. Support diverse domain and pedagogy development and pedagogy by ordering of domain

tasks into a tutorial sequence.

IV. Extendibility. Allows the developer to extend and customise the domain knowledge.

These characteristics partly establish the contents of the tutorial and discourse module. Once a

target domain is identified, the instructional-space analysis is conducted based on these

characteristics. The knowledge model is then transformed into domain-specific semantics. These

semantics should capture the relationships between the relevant elements and describe how the

elements interact.

Step II: Design of Knowledge Support Tools

The design of knowledge support tools involves the establishment of a non-dependency and

unified representation of the data obtained from Step I. Step I helps to produce sets of models that

A Generic ArchitL'L'lure for Interactive Intelligent Tutoring Systems
1'. A. Atolagbe

Chapter 6: Intelligent Tutoring Systems: A Methodology and Requirements for Future Developments 15.+

can be represented as domain component schemas. The design of knowledge support tools allows

the developer to specify different component models, or create new ones by merging new/existing

components schemas. It helps to establish mappings and maintain the consistency of the new and

existing objects and the characteristics of the target platform for executing the system are made

explicit.

The object-oriented paradigm is believed to reflect naturally the behaviour and structure of

complex applications (Geller et aI., 1991). It allows object schemas that consist of a collection of

classes to be organised into hierarchies with their abstractions of the domain represented. All

objects encapsulate data and reflect the dynamic nature of current domain objects, which may

evolve over time.

A component class describes abstractions over common behaviour and structure between

attributes of similar classes (Runbaugh at aI., 1991). Therefore, component classes may be

classified into categories in accordance to their functionality and content. This will allow the

developer to identify common component functionality and to specify a common structure and

behaviour in one component and reuse it for similar components.

The object-oriented paradigm can be used to structure the overall knowledge-modelling phase

into component classes, and to define inheritance relationships, plus to reuse properties in

subclasses. Each component class and their inheritance relationships may help to propagate

structure and can be integrated together during development. Also, it automatically inherits the

characteristics of this super class (Booch, 1994). This approach allows the developer to share

commands and events processes between different, but similar classes types, and thereby foster

reuse. This framework allows multiple versions of the component classes and attributes to be

utilised during development. Furthermore, this will require a shared database to be maintained

and supports Object Linking and Embedding (OLE) (Box, 1998), (Cox, 1996).

Components class integration requires the integration of the classes' behaviour and attributes.

Component classes may be classified according to their schema entities (Ostertag et al.. 1992).

and integrated by using the predefined set of attributes for each class. This approach requires each

class to be classified according to their problem-solving methods (Musen et at., 1995) before they

are integrated. It is generally advantageous to perform this classification during the knowledge

modelling phase and not retrospectively (Hoydalsvik et al.. 1991). A developer may initiate

component development process by identifying and selecting a domain classes from the problem

class and instantiating them. For example the solution class allows the developer to define

A Generic Architecture for IntL'fal'tl\'t~ Intl'lligent Tutoring Systems T A. AtoIagbe

Chapter 6: Intelligent Tutoring Systems: A Methodology and Requirements for Future Developments 155

solution and instances of the classes. This may involve a set of high level decisions on how to

solve a problem.

Step I' Knowledge Modelling

\-11lS_truc_ti_Ollal_s_pace--lH Do:':=~C H'---_::_pin_tl~_l necds_and_--J

Step 2: Design of Knowledge Support Tools

Step 3: Knowledge Activities Development

Knowledge Support
Components

Evaluation

Events CuxIUnurucation
Manller

Figure 6.2 Proposed Methodology for ITS Development

This phase involves explicit representation of the domain knowledge, problem-solving methods

(Musen et aL 1995), and case scenario into their representative component classes. This approach

provides a basic building block, which developers can build on and provides powerful capabilities

to express semantic dependencies between any different range of components. Furthermore, the

representation formalisms may allow the developer to compare and validate independently

developed components classes, problem-solving methods, and detect any conflicts in between

different classes. A component might be defined to inherit (through inheritance links) behaviour

from several other components. This research represented the component hierarchies as a directed

acyclic graphs (DAG) (Pearl, 1988a), (Pearl. 1993), (Friedman et al.. 1997), where the vertex

corresponds to components and the edges correspond to inheritance links. This research assumes

-- ----------------------
A Generic :\rchilL'clure for Interactive Intelligent Tutoring Systems T. A Atolagbe

Chapter 6: Intelligent Tutoring Systems: A Methodology and Requirements for Future Developments 156

that a component will behave in the same manner if it inherits all the properties of the parent

component.

Therefore, a component propagation link is a direct connection between the two component

classes. A class existing in one component can be propagated to all other components. The

resulting class attributes will be a set of possible overlapping between different components

attributes. The problem with this approach is that two or more components attributes may

semantically overlap. This may be addressed by introducing real-world entity objects (Kurt,

1992). Therefore, a component integration is based on the relationships between the components

objects (Sheth et aI., 1988), their contents, and behaviour.

The design of knowledge support tools in this framework consists of connecting two directed

acyclic graphs (Pearl, 1988a). New classes with different functionalities may be produced as a

result of this connection. The main construct for allowing this is to connect component and

application class attributes. Figure 6.3 depicts a DAG for abstracting different user-defined

components into a Java code.

As domain requirements evolve over time, component contents and behaviour must be

incrementally update able in order to maintain efficiency. This ability to modify the components

behaviour and contents "on-the-fly" provides developers with the option of making data structure

changes to meet their changing requirements. The schematic diagram illustrates a method for

abstracting a domain-specific application. The developer selects a component that needs

modification. Based on the component contents attributes, the component may be abstracted into

a new class by using a Bayesian network. Domain - specific attributes are applied or modified

during abstraction to improve performance.

Tools
Behaviour

PenomuJCe

Schema
Definition

Corrwnents:

lliaBa.se. Ul

Inference Engine

Attributes. ...

Qlerntions:

Search. Update.

Add, lJixIate,

Arucll.

IXtach. ...

Figure 6. 3 Abstraction Method for a Domain-Specific Application

:\ Generic Architecture for Interactive Intelligent Tutoring Systems

T. A. Atolagbc

Chapter 6: Intelligent Tutoring Systems: A Methodology and Requirements for Future Developments 157

Step III: Knowledge Activities Development

This stage IS concerned with the further development of different component classes into a

functional component, with unique behaviour and contents. Steps 1 and 2 provide the input for

deriving the component content and behaviour to be complemented as the representation of the

domain features and required functionality.

As component class may have mUltiple VIews, VIews instances may intersect with different

classes. Component instances become members of a view instance when created in the current

context or by explicitly "joining" an existing object with the view instance. Each object must be

created in the context of one view instance.

This phase involves component validation, as a component attribute and behaviour may have

been poorly defined and implemented, but still function correctly at the interface level. This

validation process helps to identify sources of conflict from the component classes and may help

the developer to detect and resolve inconsistencies.

Instructional events communication is conducted by a software subsystem to provide applications

with a separate communication module for sending events to other ITS components and receiving

responses or requests from there. The subsystem is concerned with co-ordinating concurrent

activities that might violate the consistency of the current tasks. These activities share the same

objects and, most importantly, share the same component library.

This approach allows several components event processes to be run at the same time and

communicate with each other by exchanging event messages. This enables components

communication to be defined at a much higher level of abstraction and allows the user message­

routing processes to be embedded in the architecture. It also provides a dedicated and application

specific subsystem for communicating between other ITS components. Each module has a

reference to an object of class, which provides the means for all communications between ITS

modules and their processes.

User interaction and events could be represented as messages. During the construction of a

message that represents a service request, the parameters of the service request are obtained from

the communication subsystem and stored in instance variables of the respective message

components. Most of the components developed could provide a COM and/or DCOM

:\ G~nenc Architecture for Int~ractiVt: Int~lligent Tutoring Systems

Chapter 6: Intelligent Tutoring Systems: A Methodology and Requirements for Future Developments 158

(Distributed Common Object Model) interface that allows them to be used on heterogeneous

platforms and with other applications.

Step IV: Evaluation

The steps in the prevIOUS sections describe the design processes characterised by domain

specification and instructional design needs. This is followed by construction of a code unit for

each component module. The above framework promotes evolutionary programming in a way

that allows new classes to be added, which refines the behaviour of existing classes, rather than

having to modify the existing code. This is an important feature, which allows for polymorphic

programming; that is, the same code may be used for objects of different classes (Booch, 1994).

Dynamic binding is often combined with a redefinition of operations in subclasses; that is, a

subclass provides a new implementation for an operation, which is defined in one of its

superclasses.

The fundamental advantage of this methodology is that a single modelling paradigm (objects,

classes and hierarchies) is applied throughout the process of steps (steps I-III), as discussed in

preceding sections. This approach closes the semantic gap between ITS components and their

representation formalism, and reflects on the component contents, structures and functionality.

This stage allows further enhancement and changes to be implemented through successive

refinement, and manages post-delivery evolution.

The evaluation phase allows the developer to check the functionalities of the systems'

components and to: (i) ensure that optimum performance is met consistently; (ii) test the

efficiency of the system; (iii) help to identify future enhancements, (iv) ensure that non-functional

requirements, such as, extensibility, interactivity and usability are satisfied consistently.

However. these are more general GeNisa attributes that are applicable to any ITS development.

Evaluation of ITS can be measured on the following levels:

I. Reaction. Test the application of the domain knowledge and the use of the instructional

strategies.

II. Learning. Suitability for educational use?

III. Application. To what extent does the domain knowledge apply to real-world problems?

IV. Impact. What impacts have any of the instructional strategies and components on its

development and deployment?

A 1I1'nenc Architecture for InteractiVl' Intelligent Tuturing Systems T A. Atolagbe

Chapter 6: Intelligent Tutoring Systems: A Methodology and Requirements for Future Developments 159

v. Suitability of the components. Developers must select components and methods that are

considered most applicable to the domain knowledge and the environment.

VI. Quality Assurance. What quality assurance measures are provided? This should provide

answers to the above questions and the analysis of static semantics. Quality assurance

processes must also help improve reuse capabilities by means of identifying obsolete

variable declarations and the use of uninitialised variables.

Vll. BenchMark. Development of a set of criteria functionalities that will allow benchmarked

comparison of ITS components. Activity will involve comparison of the following: (i)

effecti veness of ITS components against sets of other AI components (Murray, 1999), (Self,

1999), (Wenger, 1987); (ii) effectiveness of intersectional intervention and discourse

strategies; (iii) interaction processes; (iv) cognitive load "balancing" with the user's task; (v)

knowledge representation formalism; and (vi) dynamic load balancing on the network.

Measuring execution times is based on operating system primitives can be given in different

terms. For an ITS performance evaluation, the most important execution time is the elapsed

"real-time" of an operation. This time will indicate how long a user interacting with a

component will have to wait for the operation to complete before starting another operation.

Therefore, it is feasible to infer that ITS that are implemented on different platforms ((Murray,

1996); 1997), (Anderson et al., 1990), (i.e. operating systems and programming languages), may

differ significantly with respect to the functionality provided. However, components developed

by this methodology may overcome the brittleness inherent in conventional ITS development

methods by reusing existing components and using baseline architecture for implementation (e.g.

(Sparks et al.. 1999), (Murray, 1998».

Components developed must be tested against each of the standard criteria on a benchmark before

implementation. This approach will ensure that ITS components are consistent with industry

standards and provide a uniform approach to which performance can be tested. This ensures that

consistent design of components will foster reuse and ease of learning.

The evaluation approach should ensure the system's effectiveness, aspects of user interactions and

the deployment environment. As application environment may dynamically evolve, it should

involve unanticipated change in the user's environment. This is particularly useful for delivering

instruction over the Internet. Hardware and software considerations must include system support

for inter-operability in a heterogeneous distributed environment (Blair, 1994).

------- - ------------------ T A At()\agbe
A Genenc Architcl"ture for Interactive Intelligent Tutonng Systems

Chapter 6: Intelligent Tutoring Systems: A Methodology and Requirements for Future Developments 160

Step V: Implementation

Implementation depends on application area and underlying design perspectives. However, the

proposed methodology delineated in this Chapter is an implementation independent framework.

As such, components can be implemented as objects or compositions of components and

packaged as independent pieces of ITS tools. Furthermore, components should be capable of

offering a range of services across a variety of platforms. Implementation level delineates

architectural tools and communication between these tools, including software modules, such as

inference engine, event managers, etc., and communication protocol between them.

The class library and the Component Object Module (COM) approaches described in this section

may provide all ITS components functionality and hence support the provision of a uniform style

of access to all applications. The developed components should be tested and different kinds of

components produced, including a technical components (e.g. Application Program Interface

(API) and a user manual). Implementing the proposed methodology in a strictly sequential order

is less feasible (Boe, 1988). Instead, the tasks should be carried out simultaneously.

6.3.3 Usability of the Proposed Methodology

The methodological framework has to satisfy many functional and fun-functional requirements

posed by different platform requirements and users. Many of the reviewed ITS development

methods are too slow, not portable and not flexible (Murray, 1998; 1999). The methodology

outlined in this section may provide cost-effective approach for developing ITS by integrating

components in many forms. The proposed methodology offers guidelines for interoperability and

reusability of ITS components, which is aided by shared ontology representation (Musen et al.,

1995), (Ikeda and Mizoguchi, 1994). Shared ontologies help developers communicate the

contents and functionalities of their components and implementation strategies (Ikeda and

Mizoguchi, 1994). It also provides tools to facilitate the authoring process and minimise the effort

and resources required for development. Furthermore, domain requirements may be stated in

terms of needed functionality, and non-functional requirements such as extensibility, portability.

or scalability. The proposed methodology provides developers with the means of making design

choices based on knowledge of available software components and their functionalities. Also, the

multiple levels of abstraction inherent in the proposed framework will allow developers to choose

to reuse the design at one or more levels as required. The proposed methodology, if adopted, may

provide the following benefits:

:\ Generic Architecture for Interactive Intelligent Tutoring Systems T A. Atolagbe

Chapter 6: Intelligent Tutoring Systems: A Methodology and Requirements for Future Developments 161

1. Improved maintenance of components, contents and behaviour, by allowing compatible

applications to be integrated during development, thereby reducing duplication of effort.

which could be costly. Replacing existing software by new software may also be expensive.

Therefore, existing systems should be evolved (i.e. adapted and/or enhanced) to keep up

with new and existing requirements.

11. Components may function as COM objects (Box, 1998). COM objects allow application

objects (or class libraries) to be transferred to different platforms without the need for

programming and promote encapSUlation and object reuse. GeNisa class libraries are COM­

compliant, which provides platform-independence.

111. Robustness against software and hardware failures, as components are represented as

classes and as COM libraries. A components class library can be developed by different

developers, and be independent of the domain contents, and provide a high degree of

flexibility in development. This approach also allows components to be incrementally

developed and integrated.

IV. Openness, and modular design for developing ITS components allows not only reusability,

but also shareability and transportability (Booch, 1994) on different applications and

knowledge to be used on heterogeneous platforms. ITS components may utilise different

processes and data that are physically located in different places. It is important to strive

towards location transparency, and present the user with a unified view of the system.

v. Increased reusability of the components of ITS in diverse domains, with increased levels of

interaction between related modules. These capabilities can lead to increased efficiency of

ITS development for different domains by using a set of domain-independent components.

VI. The framework allows ITS components to be structured into different independent, modular

perspectives. Separation of components, as to content and behaviour from the rest of the

architecture provides an enhanced-events processing mechanism between components by

separating tutorial events from other activities. It allows the possibility of identifying

components that are similar in structure and behaviour. The approach allows ITS

components to be easily instantiated and reused. This approach strives to preserve the

transparency of each class library. so the components of the system remain unaffected by

changes in domain or hardware platforms.

Vll. Consistency and Standardisation. The proposed framework promotes consistency and

standardisation. ITS has consistently changed over the past years (Shute. 1994), and the

issue of consistency and standardisation in design, development and deployment

methodologies has become more paramount. Consistency and standardisation in ITS

components functionality should cut across different platforms and domains. Consistency

and standardisation should not involve a trade-off between non-AI and AI features. It is also

A GcnerIl: Architecture for Interactive Intelligent Tutoring Systems T A. Atnlagbe

Chapter 6: Intelligent Tutoring Systems: A Methodology and Requirements for Future Developments 162

important to ensure that development standards are set and met consistently. Furthermore.

all components will have standardised interfaces so that ITS tools are easily portable

between different hardware and operating-system platforms.

Vlll. Application Integration. The application integration should allow the integration of third­

party applications for instructional use. Application integration consists of management and

editing facilities, knowledge acquisition, problem-solving methodologies and management

tools embedded into an integrated environment. Also, integration almost involves an

interactive process whereby attributes of existing components are tuned to allow new

concepts to be integrated.

In addition to these levels of interoperability and reusability, the proposed methodology provides

an evolvable environment for ITS development and deployment. Furthermore, the core of the

proposed framework is the hierarchical software-engineering viewpoint, and the nature of

separation of the design and implementation approach, which allows for class hierarchies to be

evolved in different directions.

6.3.4 Trade-offs Between Traditional and Proposed Methodology

The development of ITS that combines aspects of AI and object-oriented techniques requires a

methodology that provides easy techniques for manipulating each component class and attributes.

This approach is based on the selection of a representation that is isomorphic to other classes.

Cox (1996) argues that modular architectures are required for encapsulation and management of

difficulties inherent in software. This viewpoint emphasises the need for a generic architecture

that allows software to be flexibly adapted and extended to meet diverse needs.

The sets of trade-offs presented in Table 6.1 are drawn from experience gained during design and

implementation of GeNisa and from reviewed object oriented and AI literature. The hierarchical

nature of the methodology creates a gradual transition between the design processes and software

development. It provides an explicit "road map" for separating the different design concerns that

need to be addressed in different ITS components.

The first stage allows the developer to analyse the instructional activities and the tasks. problems

and corresponding knowledge needed. Many of the trade-offs have emphasise component reuse.

portability and interactivity. which satisfy some of the objectives of this research. This stage also

identifies low-level representations that are difficult to specify during the early phases of ITS

development.

A (it:neric Architecture for Interactive Intelligent Tutoring Systems T A. Atolagbe

Chapter 6: Intelligent Tutoring Systems: A Methodology and Requirements for Future Developments 163

The trade-off of the proposed methodology (shown in Table 6.1.) contrasts attributes such as

representation approaches, analysis methods, ITS components, interactivity, reusability.

portability, and representation methods and techniques. Also, each of the attributes is to bridge

the void between the features offered by traditional ITS and those required by multi-platform

applications. Furthermore, the hard coded approach inherent in traditional ITS development may

limits the reusability of the components and introduces implicit assumptions into the system

architecture that make it difficult to combine components behaviour in a new application.

Table 6.1 summanses the trade-offs between the ITS development methods, conventional

approaches and proposed methodology. The table shows that the proposed approach supports

incremental ITS development and reuse, making it suitable for building different components,

and provides dynamic interaction between different modules. This allows developers to leverage

existing tools or classes easily without the need to change the source code, thereby enabling easy

extension to the tool or the ITS that uses the same architecture.

The hierarchical nature of the proposed methodology may allow ITS developers to become more

flexible in their development by identifing an alternative approach for component development

and code reuse ability. Moreover, it recognises the similarities that exist in an ITS system's

structure and behaviour. While making the distinctions between various ITS development

methods, the complexity of ITS development can be reduced. Similarly, it increases the ability of

the developer to analyse and manipulate the system's components at different stages of

development.

In the context of component class integration, it has been recognised that separating the structural

and semantic dimensions of classes allows integrating classes that are structurally similar, but

semantically different (Gellar et aI., 1991). Classes are considered semantically similar if they

model the same objects in the application domain (Gellar et aI., 1991).

The methodology supports a coherent approach to ITS development and flexible implementation

strategies. The approach is different from a conventional approach that allows the developer to

reuse and modify existing component attributes, in a highly interactive and iterative way. Other

main advantages are summarised as follows:

A Generic Architecture fur InterJL'lI\,e Intelligent Tutoring Systems

Chapter 6: Intelligent Tutoring Systems: A Methodology and Requirements for Future Developments 164

Table 6. 1 Summary of the Trade-offs between Traditional and Proposed Methodology

,-;:;;:;:;;;::::;;::Z::::::::::==- --- -- --,

ITS Development Conventional i: Proposed Methodology
-i Methods/ Features

Flexibility with different Objects as well as relationships can Highly flexible with different objects
!
,

objects be inflexible I
I

Knowledge consistency Partial Consistent I
I

Knowledge representation Frame/node level Whole object and attributes

Inference mechanism Rule-based Quantitative

Authoring environment Domain specific Integrated environment

Domain knowledge Deterministic, structured, goal Task-based, free exploration,
based evolvable

Tutorial discourse Consistent Customisable and consistent

Schema evolution Partial, relational Schema reconstruction

Development language Procedural, e.g. Lisp Object-oriented, 4GL

Instruction Abstract, reactive Cognitively guided, interactive !

Knowledge base Domain-specific, semantic Reusable knowledge bases, object- :
network oriented

Platform Single platform Multi-platform support.

Reasoning methods Bug library, overlay Cognitively guided responses.

Development time Comparably high Relatively small, leveraging existing
objects and writing code only as
necessary.

Knowledge acquisition Manual Automated

Modularity Minimum High

Inter application events Pre-defined Mixed initiative, dynamic

Reuse Low High

Enhancement potentials Costly and timely Can be extended with minimum cost

Semantic cohesion Low due to development Maximised during development
methodology

Version management Minimum High
-- -- -- - ---

1. The knowledge about the system behaviour is general and can be reused because all objects

are developed from the same class library and may share the same event-processing

protocol.

Il. The methodology can easily be extended, i.e. the baseline architecture reqUIres less

programming and domain analysis effort. This may also reduce the development costs.

Ill. The reasoning mechanism functions as a dynamic diagnostic agent during development and

continuously checks the design for potential errors and incomplete solutions.

:\ GenerIc Architecture for Interactl\L" Intelligent Tutoring SYSlL"Yl1S
T. A At,)\agbe

!

:1

I

!

I

Chapter 6: Intelligent Tutoring Systems: A Methodology and Requirements for Future Developments
165

By using AI and object-oriented techniques, the abstraction of each component class can easily be

achieved by using the class definition and instances of the objects. Inheritance of the class

attributes is fostered by the hierarchical class representation. These properties make the proposed

methodology a highly viable development paradigm in various ITS domains.

6.3.5 Evaluation of the Proposed Methodology

Evaluation of the proposed methodology cannot be done without considering other external

factors such as the developers' experience, the characteristics of the problem space (Monarchi

and Puhr, 1992) and the broad spectrum of other technical and non-technical requirements.

Some components of the proposed framework vary widely in purpose, and use. However, this

evaluation compares the various options for implementing some of these components. For

example, a typical ITS may consists of the following components: user interface, database,

inference engine, and discourse strategies. The user interface is often a combination of buttons,

menus, and toolbars. Therefore, using the proposed framework may help produce a more usable

and consistently better user interface.

Table 6.2 evaluates the benefits for implementing the proposed methodology by comparmg

features of the generic architecture presented in Chapter 3, the implementation approach

(described in Chapter 4) and the conclusions in Chapter 5 with the Standard User Interface

Guideline (Nelson, 1993) and design concepts of ITS development (Self, 1992). It is assumed that

applications are developed on the basis of the steps outlined in the proposed methodology. Also,

unless the design requirements of target application are extremely limited and specific,

developmental activities in ITS cannot be considered without the combination of the different

methods outlined in the proposed methodology.

Table 6. 2 Evaluation of the Proposed Methodology

r= ~
~~

Criteria Remarks

Instructional Flexibility Very flexible. Tutorial strategies are represented as probabi listie
inference, which can be readily adapted.

User Interface Flexibility Very flexible. Since the VI is developed in Java, which can easily be
extended.

Data Volume Through selection of an appropriate database, any data volume can be
addressed.

Multi-User Since the data is stored in a database, multi-user applications can be
built.

l:'cl~lri ~ g Data with Other The use of database, and class libraries (e.g. COM componentS)it~

A Generil' Architl'cture for Interactive Intelligent Tutoring Systems T A. Atolagbc

Chapter 6: Intelligent Tutoring Systems: A Methodology and Requirements for Future Developments 166

Applications readily available to other applications. I

InstallationIDistribution Supports dynamic link libraries, COM objects and custom controls. :!

I

II Portability Portable. Multi-platform support, e.g. Windows and Unix ,
! environment ,

'I

Developer Skills Knowledge of Java and data connectivity, and OLE ii
I

Must have good knowledge of the database being used. Ii
Development Time The development time for this approach may be typically comparable

low.

View Management Component objects are organised according to their view types.

Interactivity Enhances interactivity, cognitively guided support functions

Object -oriented Supports object-orientation, with enhanced interactivity and
inheritance.

= --

6.4 Improvement Proposals for Intelligent Tutoring Systems

This section addresses possible methods for enhancing ITS development. These improvement

proposals are based on the experience gained during the design and implementation of the GeNisa

as stated earlier. The improvement proposals are based on the features that have been

implemented in GeNisa (described in Chapter 4) and ITS features that should be enhanced.

This research has identified the following requirements for ITS development that are largely

elicited by a retrospective analysis of the development processes used in the research and

requirements for generic architecture presented in Chapter 3, plus reviewed ITS literature. Some

of the GeNisa architecture requirements were examined in order to identify specific effect on

portability and reusability. Essentially, these improvement proposals must satisfy two general

requirements: (i) it must easily be mapped onto the epistemological model in order to support

knowledge acquisition (e.g. (VanLehn, 1996b), (Half, 1988» and for defining associations

between interrelated pieces of knowledge and (ii) it must allow the use of various knowledge

representations and reasoning techniques. More specific requirements are:

I. Reuse. It should be possible to use existing components classes and import new ones,

without any limitation to the size of the objects, decrease in functionality or to the

maximum number of such objects that the system may contain, being imposed by the

system. This approach will allow the system to be scaleable i.e. the ability of the system to

manage effectively large numbers of users, components and class libraries (Booch, 1994).

II. Platfonlls. The system should support multiple and distributed platforms. This approach

will provide the ability to integrate application across platforms and support WWW.

:\ Generic Architecture for Interactive InteIligent Tutoring Systems
T A Atolagbe

Chapter 6: Intelligent Tutoring Systems: A Methodology and Requirements for Future Developments 167

111. Authoring. ITS authoring environment must exhibit a flexible structure, accommodating

objects of varying types and their relationships. Authoring environment should allow

developers to create new objects with different semantics, and develop its refinement by

allowing more complex functionality and providing wider choice for the user's

interacti vities.

IV. User Interface. There must be a domain-independent user interface for courseware

deployment and development. This is necessary if the design representation is to be

integrated with legacy systems, such as editing tools and application software.

v. Version Management. Components version management support is needed. This approach

is based on automatically maintaining changes when component classes are modified, such

that existing application program and their components are not affected.

These requirement proposals are in contrast of the requirements for the generic architecture

(discussed in Chapter 3). These proposal may allow an ITS developer to satisfy as many

application requirements as possible, which may be difficult to identify during the early stages of

ITS development. Besides, the requirements for the generic architecture as manifested in the

implementation of GeNisa, may be limited in the approach used to develop the system. These

observations require examining the practical feasibility of the component-based method for

developing ITS, the knowledge requirements for executing the behaviour of the components and

some fundamental constraints in shaping the representation of the domain knowledge for use

during instruction.

As a result, this research proposes an improvement to the shortcoming that are attributed to the

design and implemented methodology used for this study. This research adopted an object modeL

which allows storage of different components, and can be structured into different views, thereby

allowing the creation of relationships between them. This approach will encourage rapid

application development through the reuse of components and their classes. Further areas for

improving GeNisa architecture have been described in Chapter 5.4 and in Sections 6 ... L 1- 6..+.5. in

this chapter.

6A.l Architecture Requirements

This subsection proposes features that could be enhanced in GeNisa ~md in ITS in general. It

identifies a possible set of functional requirements that should be supported and provided by an

ITS de\'elopment environment in the various stages of its lifecycle.

A Generic Architecture for Interactive IntL'iligenl Tutonng Systems

Chapter 6: Intelligent Tutoring Systems: A Methodology and Requirements for Future Developments 168

Architectural requirements are based on factors that may affect the development processes and

knowledge representation formalism. This stage requires the employment of the combination of

different tools with different tasks. This includes:

1. Schema Management. This represents the ability to manage the contents of the knowledge

bases. It includes support for modifying the contents and their classes in the knowledge

bases, and integrating new ones. Schema management for ITS would allow dynamic

changes of data, and supports merging new and old schemas. Schema management would

provide an approach to add, remove and change attributes of the schema definition,

automatically or dynamically at run-time.

n. Dynamics. Dynamic requirement involves intelligent characteristics of the ITS modules and

their events to change procedure and routines. The goal is to allow instructional events that

dynamically adapt to users' behaviour and needs. It will allow the developer to plan a

tutorial discourse and combine appropriate case-base scenarios, and dynamically adapt the

tutorial goal.

111. Portability. This specifies the need for developers to build applications and deploy them

easily across the Internet or Intranets. This allows the architecture and the courseware to be

accessed from anYWhere, through a multi-platform environment. It should allow the use of a

wide array of class libraries developed by other vendors. This will leverage tremendous

extensibility to broaden the scope of the development. The fundamental requirement is the

ability for the courseware to be developed and deployed on heterogeneous platforms.

IV. Extensibility. The schema consists of a collection of classes, organised into hierarchies,

which represents abstractions of the domain. Objects are created as instances of classes,

encapsulating data. An extensibility characteristic is the support for evolutionary

programming so that existing programs may be extended with new classes without affecting

other parts of the system.

v. Knowledge Representation. The knowledge representation formalism involves the use of

common data formats, schema reconstruction, reusability, and allowing the data to be easily

extended and modified. The knowledge base should represent an interrelated set of different

instructional strategies, problem-solving methods and different case scenarios. Knowledge

representation must be specified with multiple perspectives and should focus on global

definition of objects and reuse of components.

VI. Validation. Integrated provisioning of functionalities for the validation and verification of

the correctness of a component should be considered as a mandatory aspect to be supported.

It could be conducted according to the domain and implementation environment. This

should consider issues such as global requirements and resource constraints.

A Generic Architecture for Interactive Intelligent Tutoring Systems T A. Atolagbe

Chapter 6: Intelligent Tutoring Systems: A Methodology and Requirements for Future Developments 169

Knowledge representation language should support transparent data exchange and integration.

This would allow the encapsulation of the components between heterogeneous data repositories

and applications that need access these repositories. Besides, this may enable access to the

knowledge bases from applications written in different programming languages. Also, the

architecture requirement emphasises the logical separation of the event and application

communication components from the main body of the architecture. This approach will allow

modifications to be made to any parts of the system without disruption of the operation, or

structure of the architecture.

6.4.2 Implementation Requirements

On the basis of experience gained in this study, it is reasonable to infer that the design and

implementation of the generic architecture does not address matters of implementation efficiency.

However, it is desirable to keep the step from design to implementation short, without sacrificing

the component functionality and behaviour. This is essential in order to reduce the effort required

to ensure consistency between components functionalities, during implementation.

Implementation requirements are cross-functional and specialised requirements that address

current and emerging ITS implementation and platforms needs. These include:

1. lnteroperability. This is to ensure interoperability between different ITS. Interoperability

becomes more important in performing functions such as data transfer, knowledge base

management, etc. Interoperability is essential if there are differences in platforms, operating

environment, and knowledge representation formalism. The use of standard protocols will

facilitate the interchange, addition, or reuse of components. Interoperability and reusability

may be aided by shared schema definition and allow the export, import and use of any data

format from different sources.

11. Robustness. Developers should easily build applications that meet their domain activities.

by combining ITS modules with their appropriate event-binding processes into a coherent

method. This approach allows developers to quickly develop and refine current applications

by assembling the components into the application.

Ill. Integrated Development Environment. Consists of an authoring environment with an

extensive library of multimedia classes, case-scenarios. images. animations, sounds. and

application software. Other components includes: intelligent aids to help in the development

of using objects. defining properties and behaviour, specifying user interaction. and setting

up integration with the database, a visual. point-and-click facilities for class definition. and

:\ Genaic Architecture for InteraclI Yl' Intelligent Tutoring Systems T A. Atolagbe

Chapter 6: Intelligent Tutoring Systems: A Methodology and Requirements for Future Developments 170

object-editing facilities. All ITS functions, which should be integrated in a cohesive and

graphical environment. This may significantly increase productivity. It would support the

development of ITS without programming.

IV. Object-Oriented Approach. Object-oriented technology is particularly well suited to

handling the complex data structures and large data volumes required for current ITS

applications. This would provide the robust foundation needed for including hypermedia.

and its integrity, security, transaction management, and performance. Implementation of the

system should be platform-independent.

v. Navigation. The behaviour of an object, I.e. how it responds to user interaction,

instructional events, database messages, and other events, should be defined in terms of a

simple event-action metaphor, requiring no scripting.

VI. Instructional Document Repository. The ability to integrate databases of documents from

different sources requires a mechanism for document integration, retrieving facilities and

refinement processes. This would allow instructional documents to be stored in a set of

heterogeneous databases. The schema of such database changes is often caused by changes

to the domain knowledge, changes in the database structure, or in the operating environment

and platforms. This also provides support for schema evolution in the databases so that their

contents can be improved without having to change any tutorial contents, and representation

formalism. It must be consistent in design and presentation regardless of platforms.

Vll. Incremental Development. Reusing existing architecture could serve as an underlining

platform for further development. This provides an experimental platform for testing

various concepts and methodologies. It also allows the functional architecture to be

enhanced to satisfy current requirements.

Vlll. Data Models. Multiple-object model perspective as opposed to single-object views. The

data model should be configurable and extensible so that new objects and data model may

be incorporated.

IX. Components Integration. ITS development environment must interface with other graphic

packages, applications software and databases. Component integration provides the ability

to automatically exchange data with other applications and across platforms. It must support

encapsulation and integration of different packages.

x. Location Transparency allows applications to be developed without knowledge of the

location of data. This requirement is necessary if the developer is working from different

sites.

A Generic Architecture for InteractivL" Intelligent TutOrIng Systems T. A Atolagoc

Chapter 6: Intelligent Tutoring Systems: A Methodology and Requirements for Future Developments 171

The choice of development language is also a vital consideration because some programming

languages have inherent technical and conceptual constrains that may affect the development

processes.

6.4.3 Security and Constrained Execution

Providing a secure environment for developers/users to access application on heterogeneous

platforms and networks imposes some security implications. Only password security was

implemented in GeNisa. Security violation can be prevented by:

1. Algorithms. Encryption algorithms, self-verification programs can be employed to ensure

that application programs are not compromised.

11. Code Verification. Applications should employ an authenticated code mechanism for

verification and constrained execution of programs. This should provide functionality to

perform a global syntax and type check of the specified components. This involves

checking all the constructs and declarations. This could also involve a global check to detect

errors.

lll. Execution Restriction. A small number of memory and duration is allowed during execution

and the program should terminate automatically.

These implementation requirements provide a comprehensive and flexible method to guarantee

the integrity of data and to monitor database operations across platforms. Furthermore, the

improvement proposal involves every aspect of ITS development (including design and

implementation, coding and documentation) and object oriented software engineering is implicit

in the proposal.

The issue of generic architecture involves not just representation of a particular method but also

epistemological questions. These involve instructional relationships between knowledge-based

systems, ITS components and issues that relate to reusability and portability.

6AA Dynamically Programmable Student Model

Most object models only allow for operations to be dynamically bound, whereas attributes are

statically bound and are often only available internally to the objects operation.

However, each object in the student model may inherit features of a super-object if they are

represented in an object hierarchy. The hierarchy should encapsulate the behaviour for the

:\ Generic Architecture fur Interactive Intelligent Tutoring Systems T. A. Atolagb-..-

Chapter 6: Intelligent Tutoring Systems: A Methodology and Requirements for Future Developments IT')

classes, and each of the objects in the structure should have different roles. The object hierarchies

may dynamically change by adding and removing objects to an existing hierarchy. This technique

may be used to separates problem-solving methods, diagnostic and didactic decisions from the

student's actions. This approach can facilitate the use of specific characteristic of the student

model during implementation rather than hard-coding a reference to a particular implementation.

Some existing objects may be programmed to extend a specific object hierarchy by extending a

specific feature or attribute.

This approach in contrast to the GeNisa student model (discussed in Chapter 3 and 4) would

allow the student model to be used as COM objects, and can be used across different. The ability

to assign both static and dynamic variables actively into the student model will extend the

functionality of the student model from a basic "perturbations" method to a dynamic model. Also,

the exact functionality of the student model does not have to be determined during development.

6.4.5 Reasoning with Multiple Diagnostic Components

This addresses issues of how to deal with the simultaneous presence of multiple events during

instruction and for content diagnosis. For instance, the student model might detect that the user is

incorrectly applying an analogy, and simultaneously requesting an advanced course unit and

provide a content scenario.

Consequently, if the two situations represent an ambiguous event, the reasoning system should

propose an appropriate discourse. An adaptive heuristic can be developed to guide the user during

instruction and should be incorporated into the student model. Reasoning with multiple diagnosis

should also include the enhanced precision with context-sensitivity of user needs, and alteration

of the reasoning process to avoid reoccurrence of a similar failure.

The proposed development methodology could integrate these tools and techniques to provide a

comprehensive ITS development, validation, and maintenance environment. Each of the

requirements can be influenced by different factors including operating platforms and

environment. It may not be sufficient to combine a couple of these requirements in order to

conduct an ITS research or development. ITS development processes have to be carried out in

parallel and all development sequences must be carefully synchronised.

These improvement proposals were drawn from the literature review, requirements for generic

architecture and the experience gained in developing GeNisa. Table 6.3 provides the summary

A Gl'neric Architecture for Intcr;l(tive Intelligent Tutoring Systems T. A A!(1IJ~tx'

Chapter 6: Intelligent Tutoring Systems: A Methodology and Requirements for Future Developments 173

and comparison of the proposed improvement with conventional ITS. The table illustrates design

issues, which characterise ITS development, and identifies the key elements that are most

important for ITS development (Self, 1999), (Murray, 1999), (Clancey, 1992), (Breuker. 1990).

Table 6. 3 Summary of Proposals for Improvement of ITS

,;::::::=~:=;:;=:;-...:;:.:;:;:::;=:;;:;:;:::::.--::=:;;=:::::;::;:;::::;--=.::::=::::;::===-...::-=.:::;;;::;::;:::;;::,;;::::::::;;-...::::;:- - - - -
I! CRITERIA CHARACTERISTICS FEATURES TO BE INCLUDEDIIMPROVED

I' Architecture Domain and platfonn specific. Factors that may affect the development processes
and knowledge representation fonnalism.

-

Schema Series of models at different Multiple perspecti ves and global definition of •
management levels of abstraction, e.g. KADS. objects and reuse, and incremental I y updating

classes.

Dynamics Epistemological structures of Encompassing dynamic changes of data, and the
expert model (Wielinga and ability to merge new and old schemas with
Breuker et aI., 1990); exploring domain knowledge.
and modifying a repertoire of
models (Linn et aI., 1994). I

I Portability Semantic networks/rule-based Object-oriented class libraries, heuristic methods, I
i! representation (e.g. SOPHIE, and COM support.
I

Brown et aI., 1982).

Extensibility Minimal - rule-based, e.g., Supporting evolutionary programming, eXistmg
GUIDON (Clancey, 1982) component may be extended with new classes.

Validation Minimal - e.g. PROTEGE-II Integrated environment for the validation and
(Puerta et aI., 1992), KADS verification component.
(Breuker, 1994).

Development Minimal - e.g. KADS (Breuker, Cross-functional and specialised requirements and
1994). platfonn needs.

Interoperability Minimal - e.g. PROTEGE-II Interoperability and reusability is aided by shared
(Puerta et aI., 1992), KADS schema definition and allow the export, import
(Breuker, 1994). and use of any data fonnat from different sources. I

Robustness Minimal - KADS, KIT (Linn et Continuous refinement and extendibility with new
al.,1995). requirements.

Integrated Toolkits implementation, e.g., All development activities to be integrated in a
development PROTEGE-II (Puerta et al., cohesive, visual platfonn and to facilitate reuse of I
environment 1992), VITAL (Shadbolt et al., code and simplify maintenance. Support !

I

1993), KREST (Steels, 1990) development without programming.
and KIT (Linn et al., 1995). i

I

Navigation Minimal e.g. PROTEGE-II User interaction and events should be defined in
(Puerta, et al. 1992), KADS tenns of a simple event -action metaphor.

(Breuker, 1994) and KIT (Linn, requiring no scripting.
et al. 1995). Ii

I

Incremental Partial, e.g. KIT (Linn et al., It also allows the functional architecture to be II
development 1995), KADS (Breuker, 1994). enhanced to satisfy current requirements. il

I

Data models PartiaL e.g. KADS (B reuker et The data model should be configurable and II

ai., 1994). extensible so that new objects and data model may II
be incorporated. II

Components PartiaL e.g. KIT (Linn et ai., Provides the ability to automatically exchange

integration 1995), KADS (Breuker. 1994). data with other applications and across platfonns i

I (location transparent and external interfaces data
I

exchange).
- ~ - ..--.-~ -- --- - ~

-~----. - --~

:\ Generic :\rdlltl'llUre for Intcradin' Intelligent Tutoring Systems T :\ Atolagbe

Chapter 6: Intelligent Tutoring Systems: A Methodology and Requirements for Future Developments 174

-
1\ security

--
and Partial, e.g. PROTEGE-II Providing a secure envIronment to access

I

i constrained (puerta et al., 1992 application on heterogeneous platform and
; execution security implications.

"

Code Minimal, e.g. PROTEGE-II Applications should employ authenticated code!
mechanism. Ii ;! verification (puerta et aI., 1992)

Dynamically Proof-tracking (Py, 1989). Ability to actively assign both static and dynamic il
programmable variable into the student model.
student model

Reasoning with Multiple expert metaphor, e.g. Dealing with simultaneous presence of multiple
multiple (Breuker, 1990; Self, 1988; events during instruction and diagnosis.
diagnoses Wenger, 1987).

- --

6.S Summary

This chapter has discussed issues raised during the evaluation of GeNisa and the deficiencies

inherent in ITS development methods. It has described a methodology and some of the design

choices available to developers by postulating explicit theoretical and practical framework to

address these problems and it has discussed the trade-offs involved. These trade-offs may be

reconciled by the provision of improvement proposals, whose use may be governed by behaviour

and contents. The methodology draws on experience gained during the design and

implementation of GeNisa, and reviewed ITS and object oriented software engineering literature.

Design requirements for developing ITS are also proposed. These design requirements are

specified at different levels to corresponding to the standard ITS architectures.

However, the importance of this chapter goes beyond providing implementation approaches and

guidelines for developing ITS. The main research point was to assert the approach for ITS

development from reusable components models.

i
I ,
,

.\ Gt:neric Architecture for IntL'racti\"t: Intelligent Tutoring Systems T A. Atolagbe

Chapter 7: Summary and Conclusions 175

CHAPTER 7

SUMMARY AND CONCLUSIONS

7.1 Introduction

This chapter presents a summary of this research and provides a review and findings of this

thesis. It draws out the main conclusions learnt during this study and approaches taken for the

design and implementation of the generic architecture. Finally, directions for future research are

proposed.

The next two sections provide a brief summary of each chapter, and present the major

accomplishments of this research. This chapter concludes by discussing summary of contributions

and the potential for future research arising from this study.

7.2 Summary of Chapter Contents

This thesis has investigated the design, implementation and evaluation of an intelligent

architecture that provides a generic environment for ITS authoring and deployment. The aim was

to investigate the feasibility of identifying and developing a set of components that can be reused

in developing ITS, and to achieve components, modularity and portability. The research

endeavour was investigated by combination of literature review, prototype development and

empirical software evaluation. The focus of this research was the development of GeNisa, a

generic environment for ITS development.

Chapter 1 introduces the motivation for this research and discusses standard ITS components

followed by a discussion of the objectives for generic ITS. This chapter describes the ITS

components and discusses them in the context of evolving application areas, and technology.

Chapter :2 presents reviewed research material and highlights particular limitations arising from

the reviewed literature, with a particular focus on ITS component reusability and portability. The

main ITS architectures are examined, and issues restricting reusability and portability are

A (,encric Architccture for Interactive Intelligent Tutoring Systems T A Atolaglx'

Chapter 7: Summary and Conclusions 176

identified for further investigation. This is followed by a critique of reviewed literature. Research

material in related disciplines is presented to broaden the context of this research.

Chapter 3 introduces the research assumptions and discusses the theoretical aspects of generic

architecture, and addresses limitations arising from the reviewed literature. Issues identified in

Chapter 2 are examined and a perspective of the generic architecture is described. It is noted that

generic ITS must provide for common authoring and interactive learning environment that are

domain-independent and are reusable in different domains and across platforms. This chapter also

discusses the requirements for GeNisa and the knowledge representation approach. It discusses

the conceptualisation of components of the generic architecture including knowledge

representation, interactive strategies and an automated knowledge acquisition. This chapter also

discusses abstract implementation of the generic architecture, and issues such as portability and

reusability are addressed.

Chapter 4 discusses the detailed architecture, design and implementation of GeNisa. It describes

the composition of the system modules that this research has arrived at from the abstract design

described in Chapter 3. An object-oriented class library has been developed in order to satisfy the

requirements for the generic architecture discussed in Chapter 3. The class library also serves as a

template to abstract commonality between similar components' classes, and implements the

interactive features discussed in Chapter 2 and Chapter 3. This chapter also discusses contents

and behaviour of the components of GeNisa application development and learning environments.

This demonstrates the feasibility of a generic architecture that addresses the issues identified in

Chapter 2 and the objectives of this research. A case-based tutorial for simulation modelling has

been developed, to demonstrate how the theoretical descriptions discussed in Chapter 3 may be

realised. The development and the learning environments have been implemented in Java.

Chapter 5 critically exammes the design, implementation and evaluation of the GeNisa

architecture, and further identifies strengths and weaknesses of this research. GeNisa has been

evaluated on both Windows and Unix operating systems by means of formative and heuristic

evaluation. The generic architecture has also been examined theoretically, and according to

software engineering principles. The implementation (discussed in Chapter 4) has been appraised

in order to examine if it poses any barrier to reusability and portability. Issues identified during

evaluation were analysed to identify areas where specific functionality may be required.

Chapter 6 reflects on the journey through this study and discusses theoretical solutions to issues

identified during e\'aluation (discussed in Chapter 5). On the basis of this research findings. this

:\ Generic Architecture for Intcractivc Intelligent Tutoring Systems T A Atolagbe

Chapter 7: Summary and Conclusions 177

chapter proposes a methodology for ITS development. The proposed methodology addresses the

shortcomings identified from the evaluation of the generic architecture in Chapter 5. Furthermore.

the original requirements for the generic architecture are reviewed and synthesised to identify

areas for further improvement. This chapter concludes with improvement proposals for ITS. It is

believed that these improvement proposals will bring about the much-needed development of

shareable and reusable ITS components.

7.3 Conclusions

This research began by establishing a comprehensive background theory involving ITS

(described in Chapter 2), which helped to identify problems and issues that are feasible for further

investigation.

The reviewed literature has been critically examined in order to identify the problems addressed

by published literature, design and implementation difficulties, platform limitations and

components reuse capabilities. Particular focus has been placed on issues such as portability and

reusability of ITS components. Based on a literature review, this study has first contrasted the

different implementation methodology and application domains in order to identify the criteria

that could be used to investigate the feasibility of ITS component reusability and portability.

The basic ITS architecture (Wenger, 1987) has been examined in some depth to elicit various

strategies for improving modular construction and classifying interdependencies among

components of the architecture. Each component of the architecture has been partitioned along

the dimensions of context and behaviour in an attempt to make it more amenable to both

portability and reusability. Therefore, it seems feasible to investigate the potential advantages of a

generic architecture for ITS in order to reduce the time and the effort required for development.

The following sections summarise the major conclusions drawn from this study and examine the

key issues investigated by this research. These conclusions relate to the research objectives

described in Chapter 1.

7.3.1 Components Portability and Reusability

Based on a literature review (discussed in Chapter 2), a consolidated list of elements that are

often integral features of ITS components were identified and analysed. Each ITS component was

:\ Generic ArL'hitecture for Interactive Intelligent Tutoring Systems r A Atolagbe

Chapter 7: Summary and Conclusions 178

taken in tum to identify reusable features. Each component feature has special attributes, which

characterises its reusability and portability.

The literature reVIew has also demonstrated that varIOUS ITS have employed techniques to

increase reusability and portability of ITS components. These techniques have been helpful in the

conceptualisation of the generic architecture (described in Chapter 3). The main purpose of

generic architecture is to allow reusability and portability of ITS components by making explicit

those properties and reasoning subsystems. The description of the GeNisa system in Chapter -l

illustrates the adaptive functionalities of the components of the developmentlleaming

environment. Furthermore, components class libraries have been used to address the issues of

portability and reusability of ITS. This approach contrasts with much of the published literature in

this area, where emphasis is often on instructional contents and pedagogical activities instead of

reusability and portability (Murray, 1997). Although component portability and reusability has

been the main focus of this research. There are two principal ways to address these issues: firstly,

development of better class libraries that can reduce the need for developing new

components/classes and requires less adaptation; secondly, the use of an architecture that is based

on a formal, abstract model of system behaviour can provide a practical means of describing and

analysing components, and interaction within the system. Both frameworks have been pursued in

this research.

GeNisa architecture has been implemented in Java (Arnold et aI., 2000). Some procedures were

implemented (discussed in Chapter 4) to isolate platform dependence; for example all system­

dependent calls have been abstracted to platform-independent procedures, and are contained in a

class library, which can be accessed indirectly by different range of the programs. This

framework allows this study to accomplish most of the work on portability of the framework to

another platform by simply replacing the platform-dependent library. Furthermore, GeNisa

components have a high level of abstraction, which allows each component to be considered as a

self-contained, modular and shareable object, thereby allowing GeNisa class libraries to be

utilised as COM compliance. COM provides enormous flexibility for cross-platform utilisation of

different range of components, and allows other tools to be integrated irrespective of the domain

and knowledge representation formalism. Templates (discussed in Chapter 4) have been used to

abstract commonality between similar classes, content and interactions. Furthermore. developing

components class libraries is a process of making increasingly detailed components behaviour

and interactions. To facilitate this process, an ontological representation of the component model

should be formulated explicitly. This approach may promote reuse because existing components

A G~neric Architecture for Interactive Intelligent Tutoring Systems T A Alolngh-..-

Chapter 7: Summary and Conclusions 179

(contents and behaviour) can be used as components of larger application. This could improve

scalability because it may require less effort by a developer to modify and maintain.

7.3.2 Knowledge Representation

The generic architecture has a particular underlying representational framework, and therefore

includes its own assumptions about ITS components, and it embodies constraints on the types of

components that it can build.

An abstract design of the knowledge base is discussed in Chapter 3. This knowledge

representation formalism uses ontology for conceptualising the objects and relationships in a

domain (Chandrasekaran et aI., 1999), (Gruber, 1993), (Gruber, 1995) and to represent its

problem-solving methods (Musen et aI., 1995). As currently implemented, ontology has been

used to specify component types, link types, properties, and behaviour. This framework may

enable domain experts to construct, test, and modify application-specific knowledge rapidly. The

key to this approach is that it permits the developer to utilise knowledge in a variety of formats,

and allows them to transform the knowledge expressed in these different formats into constraints

to be utilised during instruction.

On the basis of the discussion in Chapter 3 and 4, it seems feasible to infer that using a flexible

knowledge representation formalism developers can create a range of ITS with minimal cost

(Murray, 1999). The GeNisa architecture has been designed and implemented using appropriate

knowledge representation formalism in order to achieve both scope and usability of ITS (Murray,

1998).

Furthermore, in order to maximise the leverage of the knowledge representation formalisms, it is

important that the knowledge representation method help the student integrate hislher knowledge

into a coherent model of the domain and solve problems in the domain. The key feature of this

approach is that the developer could use multiple models of the domain in order to facilitate

knowledge acquisition. Also, the use of predefined model of knowledge for prototypical tasks.

and the dynamic invocation of these tasks can guide ITS development of process. This may lead

to a reduction in the number of parameters that has to be instantiated during implementation.

This formalism of knowledge abstraction may promote a degree of independence among a range

of components, and therefore offers the possibility of being able to share and reuse these

components.

----- --------------------- T. A Atolaghc A GeneTIC Architecture for Interactive Intelligent Tutoring Systems

Chapter 7: Summary and Conclusions 180

7.3.3 The Generic Architecture

In general, the purpose of developing genenc system architectures is to discover high-level

frameworks for reusing ITS components, their subsystems, and their interactions with related

systems. The generic architecture is not a blue print for designing a single system, but a

framework for designing a range of systems over time, and for the analysis and comparison of

these systems. By revealing the shared components of different systems at the right level of

generality, the generic architecture may promote the design and implementation of components

and subsystems that are reusable, cost-effective and adaptable. Furthermore. the main goal of an

ITS authoring system is to make the process of building an ITS easier (Murray, 1998). This ease

should translate into reduced cost, development life cycle and decrease in the skill required for

potential developers.

This research has focused on synthesising component-based approach, object oriented method

and AI by combining independent components to support modularity. portability, and

extendibility. The outcome of the abstract design (discussed in Chapter 3) is a GeNisa

architecture for ITS, consisting of design and learning environments (discussed in Chapters .t).

Each environment consists of modular components. Each component is divided into two major

subsystems i.e. contents and behaviour. Component contents are active processes that

communicate and co-ordinate users' activities in order to create the required intelligent

behaviour. The behaviour subsystem co-ordinates all components' events processes.

The generIC architecture has demonstrated, in Chapter 4, a well-structured and transparent

implementation of conceptually complex AI components and reasoning processes. Courseware

developed with this framework can be adapted by modifying their component library and

elaborating functionality of each of the component subsystem. Also, the choice of development

language, operating system, and knowledge representation formalism may affect reusability and

portability. This should translate into development life cycle and decrease in the skills required

for developers.

To satisfy requirements for heterogeneous platforms (discussed in Chapter 3), the genenc

architecture has been implemented to enable usage over the Internet and Intranets. This was

exemplified in Chapter 4. The generic architecture components may be utilised across a variety of

platforms. with a portable source code. This approach precludes the use of platform-specific

methodologies and provides a more flexible, cost-effective and scalable solution to ITS

development. Besides the expected extensibility that comes with the object oriented programmin~

A GL'nl'rlC ArchitecturL' for Interactive Intelligent Tutoring Systems 1'. A AtlllJ "

Chapter 7: Summary and Conclusions
181

paradigm, the generic architecture is easily extensible by using component constraints and library

pattern.

Component constraints have been implemented as instances of an abstract class. Arbitrary

constraints may be easily added to the system by sub-classing and adding an instance of the new

component class to the global library. Thus, it is relatively easy to extend the system using the

abstract class with very minimal disruption to the program code.

Based on the literature review (Chapter 2), design and implementation of GeNisa (Chapter 3 and

4) and evaluation in Chapter 5, if could be inferred that the GeNisa architecture design is flexible

in its implementation of its intrinsic model. The model is very easy to modify because most of the

components of the architecture, such as user interface, inference engine, design assistant, wizards.

etc, have component consistency constraints, which can easily be modified as required. These

constraints exist as part of the component library and are added to the base type objects (menus.

dialogue and toolbars, scrollbar) during program initialisation. This framework makes it easy to

remove or replace these constraints, thereby promoting reusability.

The genenc architecture design and implementation framework used for this research. has

demonstrated the feasibility for a generic architecture for ITS. There are two major advantages of

this framework. First, since it is based on a component-based approach and object oriented

software-engineering methodologies, the framework provides a systematic approach that can be

used to develop a range of ITS components for real world utilisation. Second, contents of the

learning environment can be used across domain and across platforms.

Integrating the components of the genenc architecture and the knowledge bases reqUires

consideration of the behaviour and functionalities of each component. Sharing knowledge

structures, interaction mechanism and using common interfaces among the different components

may help to maintain modularity and flexibility, thereby, simplifying system maintenance and

development.

7.3,4 Facilitating Design Processes

One of the tenets of this research is that all conceptual and structural elements of a

representational formalism must be represented graphically using appropriate visual components.

This approach is essential if an ITS development environment is to be used by non-programmers

without the need for a knowledge engineering expertise (i\ lurray, 1998). This approach is

------_.- ---.------------------ T A. Atolagtx· :\ (Ienl'fle Architl'l'IlliC for IntCfactive Intelligent Tutoring Systems

Chapter 7: Summary and Conclusions 182

different from approaches discussed in Chapter 2 because reuse of existing components, even if

they require adaptation, can reduce the overall costs of ITS development. Furthermore. the

components representation formalism outlined in this study has a deeper and more general

representation of the task, which are reusable and portable across platforms.

This research has demonstrated (Chapter 3 and 4) that ITS are complex systems containing

embedded models of several components such as domain models, inference engine, pedagogical

and student models. The authoring processes investigated in this research may reduce the design

process to a sequence of tasks. This approach is feasible by separating component contents and

their behaviour, plus decomposing content in a way that maintains coherence and consistence

when it is reconstructed and use during instruction. This approach enables the architecture to be

flexible and modular. The generic architecture framework has the potential to increase the

efficiency of building ITS by reusing common components elements (Murray, 1999). The

implementation methods (discussed in Chapter 4) and subsequent evaluation in Chapter 5.

illustrated the object-oriented and component-based approach used for implementation.

The class libraries and separation of components contents and their underlying behaviour may

allow components to be organised into different levels of abstraction. This framework may help

identify several "refinement" layers between component behaviour and their events. Furthermore,

it also allows the generic architecture to be represented as a heterogeneous integration of

subsystems providing a wide range of components functionalities. Although the GeNisa

development environment can scaffold both the underlying representational structure and the

design process itself, the developer will need to have some understanding of both the

representational structure and the design process. Some degree of object-oriented modelling skills

will be helpful.

Chapter 6 highlights some practical issues associated with the design and implementation of the

GeNisa prototype, and proposes a methodology to address these difficulties. The proposed

methodology defines approaches and protocols for design and implementation of ITS. However,

the framework does not prescribe how developers must implement the base component

functionality that is suggested. This proposal may serve as a starting point for ITS development

and researchers can consult the proposal in order to derive specific design rules appropriate for a

particular system, irrespective of their implementation platforms. This approach may make ITS

design processes more efficient. Furthermore, the proposed framework may be used for designing

a range of ITS components and reusing existing ones.

A Gcncric :\Ichitccture for InteraCI1YC Intelligent Tutonng Systems T A. Atolagbc

Chapter 7: Summary and Conclusions 183

The key issues highlighted during evaluation of GeNisa are component reusability and cross­

platform support. On the basis of the experience gained in this research, and on current ITS

literature, this research has delineated improvement proposals and requirements for enhancing

ITS development. The requirement proposals can help establish fIrmer rules for co-ordinating

individual ITS design activities and implementation. They can also help to make design decisions

quicker and they facilitate defIning detailed design requirements. The improvement proposal

allow for: (i) a more efficient implementation of the ITS because the common components and

interfaces are only implemented once and have been abstracted into a class library, (ii) the system

to adapt to new hardware and software changes because the adaptation is only incremental when

viewed at the right level of abstraction. Theoretically, each of these elements can exist as a

portable autonomous component, and can be reused across platforms. Furthermore, the major

advantage of the improvement proposal is that it allows the developer to integrate new knowledge

into a coherent object-oriented model of the domain, and thereby facilitate knowledge integration

and reuse.

There is an effIciency cost associated with maintaining the implementation of the methods

outlined III this research. Reducing computational complexity could reduce the overall

development lifecycle signifIcantly, and this may be necessary in the future if the framework is

applied to a larger domain or is extended to different kinds of platforms. Furthermore, the

framework could accelerate the development of ITS by utilising an existing reusable library and

support the delivery of a tutorial on different platforms.

Based on the above discussion and on issues articulated in prevIOUS Chapters, the malO

conclusions of this research are synthesised and are summaries in the Table 7.1. The table also

relates aspects of the research objectives to the conclusions drawn.

7.3.5 Summary of Conclusions/Contributions

The major contributions of this research are shown in Table 7.1. The objectives (i) to (xi) are

those given in Chapter 1 on page 15.

A GenL'rIL' Architecture for Interactive Intelligent Tutoring Systems

Chapter 7: Summary and Conclusions
18~

Table 7.1 Research Objectives and Outcomes/Contributions

RESEARCH OBJECTIVES
1.

11.

111.

To reVIew critically ITS
published literature, with a
particular focus on ITS
components, reusability
issues and interactivities.

To propose a methodology for
Intelligent Tutoring Systems
Development.

To develop a prototype of a

CONCLUSIONS
Continuing research in the design and implementation of ITS has
produced a large collection of ITS, which may improve instruction.
However, some of these systems exist as domain specific. This
research shows that ITS has not yet achieved widespread availability
and use, nor impact on mainstream teaching and learning. This rna;
be attributed to the lack of a skilled intelligent component developer;
and ITS IS closed and monolithic, which may prevent reuse,
extension, or modification of the system except by its original
developers.
ITS development requires expensive programming skills. To address
these problems, the research has investigated and demonstrated the
feasibility of developing modular and reusable techniques for
developing ITS. Using such techniques, a unit of ITS component
functionality can be expressed independently of the application in
which it is used. In this approach, component entities become
reusable In multiple environments without having to be re­
implemented. The GeNisa framework demonstrates an attempt
towards a more unified view of developing ITS.
This research shows that literature on the ITS components portability
and reusability is limited and sometimes characterised by anecdotal
evidence from a variety of less formal development
methodology/methodologies.
This research shows that there are developmental advantages to be
realised by usmg shared content, including media, pedagogical
strategies, and intelligent behaviour. In particular, components should
be defined in such a way that they check inter and intra type
inter-component consistency constraints across application.
Components may embed automatic constraint preservation in terms of
change propagation, if appropriate. The proposed methodology
should ensure persistence of changes made during execution of the
system. This approach could preserve user effort against hardware
and software failures. Also, it makes changes visible to concurrent
users as soon as tool commands have been completed. Each
component of the proposed methodology, therefore, offers a set of
well-defined generic behaviour that the event process manager can
use to perform certain interactive activities across platforms.
Incorporating component reuse into ITS development may provide
programming leverage, because such components source code can
easily be scaled beyond the component threshold. Conventional
technology such as ActiveX, DCOM, CORBA and lavaBeans offers a
platform that contains the needed mechanism m the form of
component-based architecture, which has the potential to provide
reusability, and portability of ITS.
GeNisa facilitates design of ITS by using appropriate interactive
features and careful utilisation of graphical objects. Furthermore. it
will be useful to have some ITS authoring tools providing fcatures,
which allow a smooth transition from traditional authoring paradigms
to authoring more powerful intelligent components.
This research show that, as demonstrated in Chapter 4. separation of
authoring and development environment can improve compatibility
between components because of interface conventions. which can
assist in the integration process. This may also result in programs
which have improved designs, are bettcr understood, have better
interactivities and are more robust.
On the basis of the experience gained during this research, it seem:..

A Generic Architt'L'ture for InteractI\l' Intelligent Tutoring Systems T A. Atolagbe

Chapter 7: Summary and Conclusions

multi-platform learning and
authoring environment,
reusable for different
scenarios and applicable to
other domains.

IV. To investigate how ITS can
use case-based reasoning to
represent knowledge and use
those representations to
monitor and reason about
user learning processing and
to guide remedial learning in
order to Improve the
instructional processes.

v. To evaluate critically, and
empirically. the effectiveness
of the authoring and learning
environments implemented.

185

feasible to infer that the advantages of a generic architecture will
become increasingly attractive to ITS developers and researchers.
This is because ITS needs to be able to reuse its components in order
to address the issues discussed in Chapter 1. ITS component reuse
across domains and platforms may result in considerable efficiencies
and a more useful components development.
This research has demonstrated that the principles of software
engineering, object oriented methods may be used to address the
issues of knowledge acquisition bottleneck in ITS. However, the
principles of software engineering and object-oriented methods alone
do not cover the whole of ITS development; principles from cognitive
psychology, expert systems, instructional system development
theories, case-based reasoning must be included. Object-oriented
class libraries offer the potential developers an approach to manage
range of components and to be used for a range of purposes. This
approach allows the system's components to be represented in terms
of a heterogeneous collection of components providing a wide range
of application functionalities.
This study showed that the integration between case-based approach
and ITS can be explained in terms of knowledge structures. Case­
based approach is to help the student integrate hislher knowledge into
a coherent qualitative causal model of the domain and solve problems
in the domain. The key feature of this model is that the tutor may use
multiple models of the domain in order to facilitate knowledge
integration. Furthermore, using both rules for retrieving cases during
instruction might help achieve a higher accuracy level than using
cases alone. This shows that the combination of rule-based and case­
based reasoning can Improve the learning with a case-based
reasonmg.
This research has demonstrated that component-based approach and
AI techniques can be applied to the design and implementation of
simulation modelling courseware (discussed m Chapter 4). The
instructional components of the courseware are modular and are
reusable across domains. Furthermore, the development of adaptive
courseware should accommodate users with very different
backgrounds, prior knowledge of the subject and learning objectives
and should guide the user adaptively through the course; and must
include the necessary instructional factors.
This research has demonstrated that usmg case scenarios may
enhance the acquisition of simulation knowledge and the development
for different problem-solving skill. Specifically, usmg self­
explanation strategies during instruction could stimulate and scaffold
the acquisition of domain knowledge.
As demonstrated in previous chapters, components-based approach
offers several advantages compared to conventional ITS development.
The design and implementation of the GeNisa architecture
demonstrates that this framework may result m much simpler
implementations than other existing techniques and it can offer
greater degree of reusability. This research shows that component­
based approach is a useful software engineering technique, and has
the potential to greatly facilitate rapid application devel?pment ~nd
code reusability. It should promote components modulanty .by .usmg,
an object-oriented approach for developing ITS and standardisation ot
components development processes.
The conceptual and structural elements of a representational
formalism should be depicted graphically with high visual objects .\1

ITS authoring systems are to be used by non-progr~mrners. T.hls
approach may relieve working memory load hy provldmg explIcit

---------------------------~~----~~------~ r .\. :\[Qlag~
A Generic Architecture for Interactive Intelligent Tutoring Systems

Chapter 7: Summary and Conclusions

VI. To identify required future
developments in ITS.

7A Further Research

186

sub-goals, plans, rules and to understand about the underlvino
structu:~ of the domain problems. To achieve greater flexibility,' and
reusabIlIty, ITS should include the ability to customise the
representational formalism as required. Furthermore, the empirical
study revealed that courseware should support learning at different
stages of instruction and must include the necessary instructional
factors. The results of this evaluation indicated that ITS should foster
students engagement and learning and allow students to develop a
constructive approach to their learning. GeNisa may facilitate the
design of ITS by using appropriate interactive features and careful
utilisation of graphical objects. As demonstrated in Chapter -+.
separation of authoring and development environments can improve
compatibility between components because of interface conventions,
which can assist in the integration process. This may also result in
program which have improved designs, are better understood, better
interactivities and are more robust.
This research has demonstrated that interactivity factors should
discriminate between good and bad quality component contents and
behaviour. Essentially, a balance of emphasis for both components
and instruction should be emphasised at various stages of ITS
development. This balance may be difficult to realise because of
limited expertise for instructional/component development.
Instructional content should be represented and authored by using
knowledge representation formalisms so that it can be reused across
domains. This research has demonstrated that formal specification
and requirements of ITS may provide an approach for establishing
ontological formalisms for formalising ITS components development
processes.
On the basis of discussion in Chapter 3 and 4, it can be inferred that
incorporating intelligent components into instructional environment
should enable a greatly improved student model and may provide a
better pedagogical expert, plus a more effecti ve remedial advice.
A variety of component functionalities and methods should be
employed by developers in order to support the development of
interactive instruction and allow them to be more widely available.
The further developmental requirements identified in Chapter 6 may
leverage ITS development by defining components In smaller
contexts, which may maximise abstraction, reusability and semantic
coherence. This proposals as shown that the elicitation of the intrinsic
components functionalities, the use of 00 and AI methodologies may
help to define common mechanisms, which could be used to elicit and
orgamse knowledge In a reusable and "transparent" way.
Furthermore, the proposal places particular emphasis on modularity,
and flexibility, which may facilitate code reuse. While these attributes
may be required in any application, it could be used as a model for
creating reusable authoring tools for ITS.

The research reported in this thesis can be continued in several directions. The following areas for

further research have been identified:

:\ Generic Architecture for Interactive Intelligent Tutoring Systems T. A Atolagbl:

Chapter 7: Summary and Conclusions 187

7.4.1 Instructional Factors

Further investigations can be carried out to test whether instructional factors used in GeNisa

should be applied in empirical research to enable the comparison of findings and results between

related studies.

Further research should also attempt to identify any other basic instructional factors that could

enhance the approach developed in this thesis. Only subsets of behaviours of the learner during

instruction have been considered for the expert model. It would be extremely advantageous to

model other complex behaviours for GeNisa. For example, a study to investigate the nature of the

integration between the domain and the pedagogy expert could further enhance the instructional

environment.

7.4.2 Development Environment

This research has proposed a methodology for ITS development. Further research could be

directed to investigate the generality of this approach to develop Bayesian models (developers

problem solving methods) in other domains (such as electronic circuit design). The domain expert

uses multiple models of the domain. It is believed that the models developed during this research

are only a small set of the possible ones that the instructional module uses while performing

reasoning in the domain. A definite research direction is to investigate other possible domain

models and their usage during instruction.

One advantage of the generic architecture paradigm is that it has the potential for reuse and

allows changes to be made easily. Future work in this area should include a reassessment of

Common Object Request Broker Architecture (CORBA) to determine the extent to which this de

facto framework for distributed object technology can benefit the field of ITS.

Object-oriented approaches to ITS development must be investigated further. Many features from

the areas of object-oriented analysis, design and implementation can be extended to the ITS

model. Integrating an object-oriented data model with ITS can greatly improve the information

retrieval process. This can be accomplished by redirecting ITS functionality from the application

level to the database level using object-oriented database systems.

The design of student modelling for GeNisa is based on qualitative reasoning. The student model

assesses the student globally. This opinion may increase or decrease during tutoring. \Vhat

A GL'l1lTic ArchltL'cture for InteractlVL' Intelligent Tutoring Systems T A Atolagbc

Chapter 7: Summary and Conclusions 188

aspects of their behaviour are responsible for this? What aspects of their behaviour limit the

effectiveness of tutoring? A fully implemented ITS architecture may help provide some answers

to these questions.

The prototype implements the knowledge acquisition components of GeNisa, and develops the

knowledge required to use a standard training model. An implementation of a complete

instructional environment, covering the span from knowledge acquisition to final training. could

provide a valuable insight as to the methodology used in GeNisa. Because of the magnitude of

this task, a smaller domain could be used, or pre-existing knowledge components could be used if

they were available. Additionally, the complete prototype could be implemented in other

languages, allowing efficiency issues to be more fully explored. Authoring tools to support this

type of knowledge sharing must be useable in heterogeneous platforms.

The study presented in this thesis, the conclusions drawn, and the recommendations stated.

focused on the development and evaluation of GeNisa. The research assumptions and the

objectives as outlined in the introductory chapters provided the starting-point for this

investigation.

With further development, the design and implementation methodology postulated in this

research could provide a promising method for augmenting a software engineering toolkit with a

new technique for application in instructional development.

r\ Generic Architecture fllr Intcractlvc Intelligent Tutoring Systems
T A Atolagbe

References 189

REFERENCES

Aamodt, A. and Plaza, E. (1994). Case-Based Reasoning: Foundational issues, Methodological

Variations, and System Approaches. Artificial Intelligence Communications, 7 (1), pp.39-

59.

Aben, M. (1993). Formally Specifying Reusable Knowledge Model Components. Knowledge

Acquisition, 5, pp. 119 - 141.

Adiga, S. and Glassey, C. R. (1991). Object-oriented Simulation to Support Research in

Manufacturing Systems. International Journal of Production Research, 29 (12), pp. 2529-

2542.

Agius, H.W. and Angelides, M.C. (1997). Integrating Logical Video and Audio Segments with

Content-related Information in Instructional Multimedia Systems. Information and

Software Technology. 39 (10), pp. 679-694.

Akpinar, Y. and Hartley, J.R. (1996). Designing Interactive Learning Environments. Journal of

Computer Assisted Learning, 12, pp. 33-46.

Allen, R. B. (1990). User Models: Theory, Method, and Practice. International Journal of Mall

Machine Studies, 32, pp. 511-543.

Ambler, S. W. (1998). Building Object Applications That Work - Your Step-by-Step Handbook

for Developing Robust Systems With Object Technology. New York: Cambridge University

Press.

Ambron, S. and Hooper, K. (1988). Interactive Multimedia. Microsoft Press, Redmond, W A.

Anania, J. (1983). The Influence of Instructional Conditions on Student Learning and

Achievement. Evaluation in Education, 7, pp. 1-92.

Anderson, 1. R. (1993). Problem Solving and Learning. American Psychologist, 48, pp. 35-44.

Anderson, 1. R. (1992). Intelligent Tutoring and High School Mathematics. Frasson, c.. Gauthier.

G. and McCalla, G. 1. (Eds.), Intelligent Tlltoring Systems: Second International

Conference. Springer-Verlag, Berlin, pp. 1-10.

Anderson, 1. R. (1991). The Place of Cognitive Architectures in a Rational Analysis VanLehn.

K., (Ed), Architectures for Intelligence, Lawrence Erlbaum. Hillsdale, NJ, pp. 1-2'+.

Anderson, 1. R. (1990). Analysis of Student Performance with the LISP Tutor. Fredericksen, N.

Glaser. 1. Lesgold, A. and Shafto, M. (Eds.), Diagnostic Monitoring of Skill and Kllmvledge

Acquisition. Lawrence Erlbaum, Hillsdale, NJ. pp. 27-50.

Anderson. 1. R. (1988). The Expert Module. Polson. M. C. and Richardson, 1. 1. (Eds.).

Foundations of Intelligent Tutoring Systems. Lawrence Erlbaum. Hillsdale. Nl. pp. 21-53.

-~-~~-- ------------------- T A AtoIJgh~:
A (Jeneflc Architecture for Interactl\e Intelligent Tutoring Systems

References 190

Anderson, J. R. (1987). Skill Acquisition: Compilation of Weak-Method Problem Solutions.

Psychological Review, 94, pp. 192-210.

Anderson, J. R. (1983). The Architecture of Cognition. Harvard University Press. Cambridge.

MA.

Anderson, J. R., Boyle, C., and Reiser, B. (1985). Intelligent Tutoring Systems. Science, 228. pp.

456-462.

Anderson, J. R., Conrad, F. G., and Corbett, A. T. (1989). Skill Acquisition and the LISP Tutor.

Cognitive Science, 13 (4), pp. 467-505.

Anderson, J. R., Corbett, A., Fincham, 1., Hoffman, D., and Pelletier. R. (1992). General

Principles for an Intelligent Tutoring Architecture. In Shute, V. and Regian, W. (Eds.),

Cognitive Approaches to Automated Instruction, Lawrence Erlbaum, Hillsdale, NJ. pp. 81-

106.

Anderson, 1. R., Corbett, A.T., Koedinger, K. R. and Pelletier, R. (1995). Cognitive Tutors:

Lessons Learned. The Journal of the Learning Sciences, 4, pp.167-207.

Anderson, 1. R., Corbett, A. T., Koedinger, K. R., and Pelletier, R. (1995). Cognitive Tutors:

Lessons Learned. The Journal of the Learning Sciences. 4 (2), pp. 167-207.

Anderson, J. R. and Pelletier, R. (1991). A Development System for Model-Tracing Tutors. In

Proceedings of the International Conference of the Learning Sciences, Evanston, IL, pp. 1-

8.

Anderson, 1. R., and Reiser, B.1. (1985). The LISP tutor. Byte, 10, pp.159-l75.

Andre, E .. Rist, T., and Muller, J. (1999). Employing AI Methods to Control the Behaviour of

Animated Interface Agents. Applied Artificial Intelligence, 13, pp. 415-448.

Anglin, G. (Ed.) (1995). Instructional Technology, Past, Present, Future. Co., Libraries

Unlimited, Englewood.

Angelides M. C. and Gibson G. (1993). Pedro - The Spanish Tutor: A Hypertext-based Intelligent

Tutoring System for Foreign Language Learning. Hypermedia,S (3), pp. 205-230.

Angelides, M.C. and Paul, R.J. (1993). Developing an Intelligent Tutoring System for a Business

Simulation Game. Simulation Practice and Theory, 1 (3), pp.109-135.

Angelides, M.C and Paul, R.J. (1995). Providing Intelligent Tutoring Systems within a Gaming­

Simulation Environment for Learning. Journal of Intelligent Systems 5 (2-4), pp. 319-350.

Angelides, M.C. and Stanley. A. (1994). Towards a New Dimensions in CBT. Thoughts in the

Retail Industry. Brunnsteinand, K. and Raubold, E., (Eds.). Applications and Impacts.

Information Processing. Elsevier Science, North Holland. pp. 639-64-L

Angelides. M.C. and Tong. A.K.Y. (1995). Implementing Multiple Tutoring Strategies in an

Intelligent Tutoring System for Music Learning. JOllmai of Infomzatioll Technology, 10

(l). pp. 52-62.

A Generic Architecture for Intcractin: Intelligent Tutoring Systems T A Atolagbe

References 191

Apple Computer Inc. (1997). Macintosh HyperCard User's Guide. Apple Corporation.

Apple Computer Inc. (1993). Macintosh Human Interface Guidelines. Addison-Wesley, Reading.

MA.

Arnold, K., Gosling, l, Holmes, D. (2000). The Java Programming Language. Third Edition.

Addison-Wesley, Reading, MA.

Arruarte, A., Fernandez-Castro, 1., Ferrero, B. and Greer, l (1997). The IRIS shell: How to Build

ITS from Pedagogical and Design requisites. International Journal of Artificial Intelligence

in Education, 8 (3-4), pp. 341-381.

Arshad, EN and Kelleher, G. (1990). Learning with Computer-Based Advisor. Psychological

Research Review, 9, pp. 130-139.

Ashley, K. (1991). Reasoning with Cases and Hypothetical in HYPO. International Journal of

Man-Machine Studies, 34, pp. 753-796.

Atolagbe, T. and Hlupic, V. (1998). A Conceptual Model for An Internet Based Intelligent Tutoring

System for Simulation Modelling. In Proceedings of 1 (Jh European Simulation Symposium

and Exhibition. Bargiela, A. and Kerckhoffs, E. (Eels.), Nottingham, pp. 692-694.

Atolagbe, T. (1997). A Generic Architecture for Intelligent Instruction for Simulation Modelling

Software Packages, Infonnatica, 21, pp. 643-650.

Atolagbe. A. T. and Hlupic, V. (1997). A Reusable Architecture for Intelligent Tutoring Systems

for Teaching Simulation Modelling. In the Proceedings of the 9'h European Symposium on

Simulation in Industry Conference. Kaylan, A.R. and Lehmann, A. (Eds.) Passau, pp. 187-

192.

Atolagbe, T. and Hlupic, V. (1997). A Generic Architecture for Intelligent Instruction for Simulation

Modelling Software Packages, In the Proceedings of Winter Simulation Conference,

Chames, lM, Morrice, D.l, Brunner, D.T., and Swain, J.1., (Eds.), pp. 856-863.

Atolagbe, T. and Hlupic, V. (1997). SimTutor: A Multimedia Intelligent Tutoring Systems for

Simulation Modelling. In the Proceeding of the Winter Simulation Conference. Andradottir.

S., Healy, K. 1.. Withers, D. H and Nelson, B. L. (Eds.), Georgia, pp. 504-509.

Atolagbe, T. and Hlupic, V. (1997). Interactive Strategies for Developing Intuitive knowledge as

Basis for Simulation Modelling Education. In the Proceeding of the Winter Simulation

Conference. Andradottir, S .. Healy. K. 1., Withers, D. H .. and Nelson, B. L. (Eels.), Georgia,

pp. 1394-1402.

Atolagbe, T. and Hlupic, V. (1997). Intelligent Multimedia Tutoring for Simulation Modelling

Education. Proceeding of the European Simulation Symposium. Istanbul. Turkey. Kaylan.

A.R. and Lehmann, A. (Eds.), pp. 280-284.

A Generic Architecture for Interactive Intelligent Tutoring Systems

References 192

Atolagbe, T and Hlupic, V. (1996). A Generic Architecture for Intelligent Instruction for Simulation

Modelling Software Packages, Proceedings of Winter Simulation Conference, Charnes, 1. M,

Morrice, D. l, Brunner, D. T, and Swain, l l, (Eds.), pp. 856-863.

Atolagbe, T and Hlupic, V. A Generic Architecture for Instructional Systems for Simulation

Modelling. (1996). Proceedings of European International Conference on Simulation

Modelling, Javor, A., Lehmann, A., and Molnar, I. (Eds.). Budapest, pp. 389-393.

Ausubel, D. (1978). In Defense of Advance Organisers: A Reply to the Critics. Review of

Educational Research, 48, pp. 251-257.

Ausubel, D., Novak, l, and Hanesian, H. (1978). Educational Psychology: A Cognitive View

(Second Edition). Rinehart and Winston, New York.

Avgerou, C. and Comford, T (1998). Developing Information Systems - Concepts, Issues and

Practice, Second edition, Macmillan Press, Basingstoke, UK.

Ball, G., Ling, D., Kurlander, D., Miller, l, Pugh, D., Skelly, T, Stankosky, A., Thiel, D., van

Dantzich, M., and Wax, T. (1997). Lifelike Computer Characters: The Persona Project at

Microsoft. In Bradshaw, l, (Ed.), Software Agents. AAAIIMIT Press, Menlo Park, CA.

Baddeley, A. D. (1994). Working Memory. In M. S. Gazzaniga (Ed), The Cognitive

Neurosciences, Cambridge, Mass.: MIT Press. pp. 755-764.

Bareiss, R. (1989). Exemplar-Based Knowledge Acquisition: A Unified Approach to Concept

Representation, Classification, and Learning. Academic Press, Boston.

Barker, P.G., van Schaik, P. and Hudson, S.R.G., (1998). Mental Models and Lifelong Learning,

Innovations in Education and Training International, 35 (4), pp. 310-318.

Barr, A. and Feigenbaum, E. A. (1982). Applications-Oriented AI Research: Education.

Handbook of Artificial Intelligence, Vol. II. Addison-Wesley, Reading, MA.

Barrett, S. E., and Shepp, B. (1988). Developmental Changes in Attentional Skills: The Effect of

Irrelevant Variations on Encoding and Response Selection. Journal of Experimental Child

Psychology, 45, pp. 382-399.

Batini, C., Lenzerini, M. and Navathe, S. B.(1986). A Comparative Analysis of Methodologies

for Database Schema Integration, ACM Computing Surveys, 18 (4), pp.323 - 364.

Beaumont I (1994) User modelling in the Interactive Anatomy Tutoring System: ANATOM­

TUTOR. User Models and User Adapted Interaction, 4 0), pp. 21-45.

Beeson, M.l (1990). Mathpert: A Computerised Learning Environment for Algebra,

Trigonometry, and Calculus, International Journal of Artificial Intelligence in Education, 1

(-+), pp.65-76.

Bell, B. (1998). Investigate and Decide Learning Environments: Specialising Task Models for

Authoring Tools Design. Journal of the Learning Sciences, Lawrence Erlbaum, Hillsdale,

NJ, 7 (1), pp. 65-106.

A (icncric Architecture for Interactive Intelligent Tutoring Systems T A. Atolagbe

References 193

Benedikt, M. (1991). Cyberspace: First Steps. The MIT Press, Cambridge, MA.

Benjamins, V. R. (1995). Problem Solving Methods for Diagnosis And Their Role in Knowledge

Acquisition. In International Journal of Expert Systems: Research and Application, 8 (2).

pp.93-120.

Benjamins, V. R. and Fensel, D. (1998). The Ontological Engineering Initiative (KA)2. In

Guarino, N. (Ed.), Formal Ontology, Information Systems, lOS Press, pp. 287-301.

Benjamins, V. R., Fensel, D., Decker, S., and Perez, A. (1999). (KA)2: Building Ontologies for

the Internet: A Mid Term Report. In the International Journal of Human-Computer Studies.

51, pp. 687-712.

Bennett, lS. (1989). ROGET: A Knowledge-Based System for Acquiring the Conceptual

Structure of a Diagnostic Expert system. Automated Reasoning, 1, pp. 49-74.

Benysh, D. V., Koubek, R. l, and Calvez, V. (1993). A Comparative Review of Knowledge

Structure Measurement Techniques for Interface Design. International Journal of Human­

Computer Interaction,S (3), pp. 211-237.

Bemers-Lee, T. (1996). HTTP: A Protocol for Networked Information.

http://sunsite.doc.ic.ac.uklrfc/rfc 1945. txt

Bemers-Lee, T. and Conolly, D. (1995). Hypertext Mark-up Language Specification 2.0.

http://sunsite.doc.ic.ac.uklrfc/rfcI866.txt.

Bielaczyc, K., Pirolli, P., and Brown, A. L. (1995). Training in Self-Explanation and Self­

Regulation Strategies: Investigating the Effects of Knowledge Acquisition Activities on

Problem-Solving. Cognition and Instruction, 13(2), pp.221-252.

Biggerstaff, T. l and Perlis, A. J. (1989), Software Reusability, Volumes 1 and 2, Addision

Wesley/ACM Frontier Series, Reading, MA.

Biggerstaff, T. J. and Richter, C. (1987). Reusability Framework, Assessment, and Directions,

IEEE Software, 4 (2), pp. 41-49.

Bloom, B. (1956). Taxonomy of Educational Objectives. Mackay Publishing, New York.

Bloom, B. S. (1984). The 2 Sigma Problem: The Search for Methods of Group Instruction as

Effective as One-to-One Tutoring. Educational Researcher, 13 (6), pp. 4-16.

Boehm, B.W. (1988). A Spiral Model of Software Development and Enhancement. IEEE

Computer. pp. 61-72.

Bonnardel, N. and Sumner. T. (1996). Supporting Evaluation in Design: The Impact of Critiquing

Systems on Designers of Different Skill Levels. Acta Phychologica, 91, pp. 221-2-+-+.

Booth, P. (1989). An Introduction to Human-Computer Interaction. Lawrence Erlbaum. London.

Booch, G., Rumbaugh. l and Jacobson, L (1999a). The Unified Modelling Language User

Guide. Addison Wesley, Reading, Mass.

A Generic Architecture for Interactive Intl'lligent Tutoring Systems
T A Atolagbe

References 19.+

Booch, G., Rumbaugh, J. and Jacobson, I., (1999b). The Unified Modelling Language Reference

Manual. Addison Wesley, Reading, Mass.

Booch, G., (1998). Architecture Patterns. Rational Software User's Group, Orlando, FL. 1998.

Booch, G. (1994). Object-Oriented Analysis and Design with Applications. Benjamin-Cummings.

Redwood City, CA.

Borko, H, Livingstone, C., MacCaleb, J. and Mauro, L. (1988). Calderhead Teachers'

Professional Knowledge. Farmer Press.

Box, D. (1998). Essential COM. Addison Wesley.

Brachman, R. J. and Levesque, H. J. (1985). Readings in Knowledge Representation. Los Altos,

CA: Morgan Kaufmann Publishers, Inc.

Breuker, J.A. (1994). A Suite of Problem Types. In Breuker, J. and Van de Velde, W. (Eds.),

CommonKADS Library for Expertise Modeling: Reusable Problem Solving Components.

lOS Press, Amsterdam, pp. 57-87.

Breuker, J. (1990). Conceptual Model of Intelligent Help System. Breuker, J. (Ed.), EUROHELP:

Developing Intelligent Help Systems. Copenhagen, pp. 41-67.

Breuker, l (1988). Coaching in Help Systems. In Self, J. (Ed.), Artificial Intelligence and Human

Learning. Chapman and Hall Computing, London, pp. 310-337.

Breuker, lA., and van de Velde, W. (1994). CommonKADS Library for Expertise Modelling:

Reusable Problem Solving Components, lOS Press, Amsterdam.

Brooks, J. G. (1993). Search of Understanding: The Case for Constructivist Classrooms.

Association for Supervision and Curriculum Development, Alexandria, VA.

Brown, J. S. (1990). Towards a New Epistemology of Learning. Frasson, C. and Gauthier, G.

(Eds.), Intelligent Tutoring Systems: At the Crossroads of Artificial Intelligence and

Education, Ablex Publishing, Norwood, NJ, pp. 266-282.

Brown, l S. and Burton, R.R. (1978). Diagnostic Models For Procedural Bugs III Basic

Mathematical Skills. Cognitive Science, 2, pp.155-191.

Brown, l S., and Burton, R. R. (1975). Multiple Representations of Knowledge for Tutorial

Reasoning. Bobrow D. G. and Collins, A. (Editors.), Representation and Understanding.

Academic Press, New York, pp. 311-349.

Brown, l S., Burton, R. R. and deKleer, J. (1982). Pedagogical Natural Language, and

Knowledge Engineering Techniques in SOPHIE I, II. and III. Sleeman, D. and Brown. 1.S.

(Eds.), Intelligent Tutoring Systems. Academic Press, New York, pp. 227-282.

Brown, l S., Collins, A., and Duguid, P. (1989). Situated Cognition and the Culture of Learning.

Educational Researcher, 18 (1), pp. 32-42.

Brown, S. I. and Walter. M. 1. (1990). Problem Posing. Lawrence Erlbaum, Hillsdale, NJ.

A Generic Architecture for Interactive Intelligent Tutoring Systems
T A. :\Iolagbe

References 195

Bruffee, K. (1993). Collaborative Learning. Higher Education, Interdependence, and the

Authority of Knowledge. The Johns Hopkins University Press, Baltimore.

Bruner, J. (1990). Acts of Meaning. Harvard UniversityPress, Cambridge, MA.

Bruner, J. S. (1966). Towards a Theory of Instruction. Norton and Co., New York.

Bruner, J. S. (1961). The Act of Discovery. Harvard Educational Review, 31 (1), pp.21-32.

Brusilovsky, P. (1995a). Intelligent Learning Environments for Programming: The Case for

Integration and Adaptation. Greer, J. (Eds.), Proceedings of Seventh World Conference on

Artificial Intelligence in Education, Washington, DC. pp. 1-8.

Brusilovsky, P. (1995b) Intelligent tutoring systems for World-Wide Web. In. Holzapfel, R (Ed.)

Proceedings of Third International WWW Conference, Darmstadt, Darmstadt, Fraunhofer

Institute for Computer Graphics, pp. 42-45.

Brusilovsky, P. (1998). Methods and Techniques of Adaptive Hypermedia. Brusilovsky, P.

Kobsa, A. and Vassileva, J. (Eds.). Adaptive Hypertext and Hypermedia Kluwer Academic

Publishers, Dordrecht, pp. 1-43.

Brusilovsky, P. (1997a) Efficient Techniques for Adaptive Hypermedia. Nicholas. C. and

Mayfield, J. (Eds.), Intelligent Hypertext: Advanced Techniques for the World Wide Web.

Lecture Notes in Computer Science, Springer-Verlag, Berlin, 1326, pp. 12-30.

Brusilovsky, P. (1997b). Integrating Hypermedia and Intelligent Tutoring Technologies: From

Systems to Authoring Tools. Kommers, P., Dovgiallo, A., Petrushin, V. and Brusilovsky, P.

(Eds.) New Media and Telematic Technologies for Education in Eastern European

Countries. University Press, Twente Enschede, pp. 129-140.

Brusilovsky, P. (1996b). Methods and Techniques of Adaptive Hypermedia. User Modelling and

User-Adapted Interaction. 6 (2-3), pp.87-129.

Brusilovsky, P. and Cooper, D. W. (1999). ADAPTS: Adaptive Hypermedia for a Web-Based

Performance Support System. Brusilovsky' P. and De Bra, P. (Eds.). Proceedings of Second

Workshop on Adaptive Systems and User Modelling on Word Wide Web Conference,

Toronto and Banff, Canada, pp. 23-24.

Brusilovsky, P. and Pesin, L. (1994). ISIS-Tutor: An adaptive hypertext learning environment. In:

H. Ueno and V. Stefanuk (Eds.) Proceedings Symposium on Knowledge-Based Software

Engineering. Pereslavl-Zalesski. Russia, EIC, pp. 83-87.

Brusilovsky. P. and Schwarz. E. (1997c). User as Student: Towards an Adaptive Interface for

Advanced Web-based Applications. In Jameson, A., Paris, C. and Tasso, C. (Eds.).

Proceedings of61h International Conference on User Modeling. Chia, Springer-Verlag. pp.

177-188.

Brusilovsky. P .. Schwarz, E. and Weber, G. (l996a). ELM-ART: An Intelligent Tutoring S~ stem

on World Wide Web. Frasson. C .. Gauthier, G. and Lesgold. A. (Eds.). Proceedings of 3
rd

----~---

------~--
A Generic :\Ichllccture for Interactl\e Intelligent Tutoring Systems

References 196

International Conference on Intelligent Tutoring Systems, (Lecture Notes in Computer

Science, Springer-Verlag, Berlin, 1086, pp. 261-269.

Bryman, A. and Cramer, D. (1997). Quantitative Data Analysis. London, Routledge.

Bunt, H.C. (1995). Dialogue Control Functions and Interaction Design. In Beun, R.J. Baker. M.

Reiner, M. (Eds.), Dialogue and Instruction, Modeling Interaction in Intelligent Tutoring

Systems. Proceedings of the NATO Advanced Research Workshop on Natural Dialogue

and Interactive Student Modeling, Springer-Verlag, Berlin, pp. 197-214.

Bums, J. R. and Morgeson, J. D. (1988). An Object-Oriented World-View for Intelligent

Discrete, Next-Event Simulation. Management Science, 34 (12), pp. 1425-1440.

Bums, H. L., and Capps, C. G. (1988). Foundations of intelligent tutoring systems: An

introduction. In Polson, M. C., and Richardson, J.J. (Eds.), Foundations of Intelligent

Tutoring Systems, Lawrence Erlbaum, Hillsdale, NJ, pp. 1-19.

Burton, R.R. (1988). The Environment Module of Intelligent Tutoring Systems. Polson, M.C. and

Richardson, J. J. (Eds.) Foundations of Intelligent Tutoring Systems, Lawrence Erlbaum.

Hillsdale, N.Y., pp. 109-142.

Burton, R. R., and Brown, J. S. (1982). An Investigation of Computer Coaching. Sleeman. D. H.

and Brown, J. S. (Eds.), Intelligent Tutoring Systems. Academic Press, New York, pp. 79-

98.

Burton, R. R. and Brown, J. S. (1979). An Investigation of Computer Coaching for Informal

Learning Activities. International Journal of Man-Machine Studies, 11, pp. 5-24.

Burton, R. R. (1982). Diagnosing bugs in a Simple Procedural Skill. In Sleeman, D. and

Brown, J. S. (Eds.), Intelligent Tutoring Systems, Academic Press, London, pp. 157-183.

Burton, R. R., and Brown, J. S. (1982). An Investigation of Computer Coaching for Informal

Learning Activities. Sleeman, D. and Brown. J. S. (Eds.), Intelligent Tutoring Systems.

Academic Press, London, pp. 79-98.

Buschmann, F.. Meunier. R .. Rohnert, H., Sommerlad, P. and Stal, M. (1996). A System of

Patterns: Pattern-Oriented Software Architecture. John Wiley. West Sussex. UK.

Buss, A.H. and Stork, K.A. (1997). Simkit User Manual.

Buss, A.H. and Stork, K.A. (1996). Discrete Event Simulation on the World Wide Web Using

Java. Proceedings of the Winter Simulation Conference. Morrice, D. and Charnes. 1. (Eds.).

Coronado. CA .. pp. 780-785.

Bylander, T. and Chandrasekaran, B. (1988). Generic Tasks in Knowledge Based Reasoning: The

Right Level of Abstraction for Knowledge Acquisition. In Gaines, B. and Boose. 1. (Eds.).

Kllml'li'dge Acquisition for Knowledge Based Systems, Academic Press. London. I. pp. 65-

77.

A Genenc Architecture for Interactive Intelligent Tutoring Systems
T :\ :\to\agbe

References 197

Byrne, M. D. and Bovair, S. (1997). A Working Memory Model of Common Procedural Error.

Cognitive science, 21 (1), pp. 31-61.

Calvi, L. and De Bra, P. (1997). Using Dynamic Hypertext to Create Multi-purpose Textbooks. In

Mtildner, T., and Reeves, T. C. (Eds.), Proceedings of World Conference on Educational

Multimedia/Hypermedia and World Conference on Educational Telecommullications,

Calgary, Canada. AACE, Charlottesville, VA., pp. 130-135.

Canfield, A.M., Schwab, S., Merrill, M.D., Li, Z. and Jones, M.K. (1992). Instructional

Transaction Theory: Resource Mediation. In Giardin, M. (Ed.) Interactive Multimedia

Learning Environment - Human factors and Technical Consideration on Design Issues,

Springer-Verlag, Heideberg, pp. 75-81.

Carbonaro, A., Maniezzo, V., Roccetti, M., and Salomoni, P. (1995). Modelling the Student in

Pitagora 2.0. User Modeling and User-Adapted Interaction 4(4), pp.233-251.

Carbonell, J. R. (1970). AI in CAl: An Artificial Intelligence Approach to Computer-Assisted

Instruction. IEEE Transactions on Man-Machine Systems, 11 (4), pp. 190-202.

Carbonell, l (1986) Derivational Analogy; A Theory of Reconstructive Problem Solving and

Expertise Acquisition. Michalski, R.S., Carbonell, lG., Mitchell, T.M. (Eds.), Machine

Learning - An Artificial Intelligence Approach, Vol. II, Morgan Kaufmann, Los Altos, CA,

pp. 371-392.

Carroll, lM. (1992). The Numberg Funnel: Designing Minimalist Instruction for Practical

Computer Skill. MIT Press, Cambridge, MA.

Carroll, l, Aaronson, A. Learning by Doing with Simulated Intelligent Help. (1988).

Communications of ACM, 31 (9), pp. 1064-1079.

Castelfranchi, C. (1995). Garanties for Autonomy in Cognitive Agent Architecture. Wooldridge,

M. and Jennings, N.R. (Eds.) Intelligent Agents: Theories, Architectures and Languages.

Artificial Intelligence . Springer-Verlag, Berlin, 890, pp. 56-70.

Cawsey, A. (1992). Explanation and Interaction. Cambridge, MA, MIT Press.

Chan, T. W. (1996). Learning Companion Systems, Social Learning Systems, and the Global

Social Learning Club. Journal of Artificial Intelligence in Education, 7 (2), pp. 125-159.

Chan, T., Chee, Y.S. and Lim, E.L. (1992). COGNITIO: An Extended Computational Theory of

Cognition. In Frasson, C., Gauthier, G., McCalla, G.!. (Eds). In Proceedings of the Second

International Conference on Intelligent Tutoring Systems, Springier-Verlag, Berlin, pp.

244-251.

Chandrasekaran, B. (1988). Generic Tasks as Building Blocks for Knowledge Based Systems:

The Diagnosis and Routine Design Examples. The Knowledge Engineering Review, 3 (3),

pp.83-210.

~-.-------"-1----1-11-' -T--·-S-:--------------------:-·1r· ~A-:. A~{o~la~gt;be
A (,eneric Architecture lor nteractlve nte 1gent utonng ystt.'ms

References 198

Chandrasekaran, B. (1986). Generic Tasks for Knowledge-Based Reasoning: The Right Level of

Abstraction for Knowledge Acquisition, IEEE Expert,!, pp.23-30.

Chandrasekaran, B., Josephson, lR. and Benjamins, V.R. (1999). What are Ontologies, and W11\'

do we need them? IEEE Intelligent Systems, pp. 20-26.

Chandrasekaran, B., Josephson, lR. and Benjamins, V.R. (1998) The Ontology of Tasks and

Methods. In Gaines, B.R. and Musen, M. (Eds.) Proceedings of the Eleventh Banff

Knowledge Acquisition for Knowledge-Based Systems Workshop, Banff, Canada. pp. 6-21.

Chandrasekaran, B., Johnson, T.R, and Smith, lW. (1992). Task-Structure Analysis for

Knowledge Modelling, Communications of the ACM, 35, pp. 124-137.

Chi, M. T. H. (2000). Self-Explaining: The Dual Process of Generating Inferences and Repairing

Mental Models. In Glaser, R. (Ed.). Advances in Instructional Psychology. Mahwah, NJ,

Lawrence Erlbaum Associates, pp. 161-238.

Chi, M. T. H., De Leeuw, N.,Chiu, M.H. and LaVancher, C. (1994). Eliciting Self-Explanations

Improves Understanding. Cognitive Science, 18, pp. 439-477.

Chipman, S.P. (1993). Gazing Once More into the Silicon Chip: Who's Revolutionary Now?

Lajoie, S.P. and Derry, S.J. (Eds.). Computers as Cognitive Tools. Lawrence Erlbaum,

Hillsdale, NW, pp. 341-367.

Chun, H. W. and Lai, E.M.K. (1997). Intelligent Critic System for Architectural Design. IEEE

Transactions on Knowledge and Data Engineering, 9 (4), pp. 625-639.

Chu, R. W., Mitchell, C. M. and Jones, P. M. (1995). Using the Operator Function Model and

OFMspert as the Basis for an Intelligent Tutoring System: Towards the Tutor/Aid

Paradigm for Operators of Supervisory Control Systems. IEEE Transactions on System,

Man, and Cybernetics, 25 (7), pp. 1054-1075.

Clancey, W. J. (1993). GUIDON-MANAGE Revisited: A Socio-Technical Systems Approach,

Journal of Artificial Intelligence in Education, 4, pp. 5-34.

Clancey, W. J. (1992). Representation of Knowing: Defense of Cognitive Apprenticeship.

Journal of Artificial Intelligence in Education, 3, pp. 139-168.

Clancey, W.J. (1991). The Knowledge Level Reinterpreted: Modeling how Systems Interact.

Machine Learning, 4(3/4), pp. 285-291.

Clancey W.J. (1990). Knowledge-Based Tutoring - The GUIDON Program. MIT Press

Cambridge.

Clancey. W. (1987). Methodology for Building Intelligent Tutoring Systems. In Greg. P.

Kearsley, (Eds.). Artificial Intelligence and Instnlction Applications and Methods.

Addison-Wesley, Reading. MA. pp. 193-227.

:\ Generic Architecture for Intl'facl1\'e Intelligent Tutoring Systems

References 199

Clancey, W. J. (1986). Qualitative Student Models. Annual Review of Computer Science. 1. pp.

391 - 450.

Clancey, W. J. (1985). Heuristic Classification. Artificial Intelligence, 27 (3), pp. 289 - 350.

Clancey, W.J. (1983). The Epistemology of a Rule-Based Expert System a Framework for

Explanation. Artificial intelligence, 20, pp. 215-225.

Clancey, W.J. (1982) Tutoring Rules for Guiding a Case Method Dialogue. In Intelligent

Tutoring Systems, Academic Press, London, pp. 201-225.

Clancey, W. J. (1979). Tutoring Rules for Guiding a Case Method Dialogue. International

Journal of Man-Machine Studies, 11 (9), pp. 25-49.

Clancey W.J., and Soloway E. (1991) Artificial Intelligence and Learning Environments. MIT

Press, Reading, MA.

Clark, A. (1997). Being There: Putting Body, Brain, and World Together Again. MIT: MA.

Cambridge Press.

Clibbon, K. (1995). Conceptually Adapted Hypertext for Learning. In Katz, 1.. Mack, R., and

Marks, L. (Eds.), Proceedings of Computer Human Interaction. Denver, ACM. pp.224-225.

Coad, P., North, D. and Mayfield, M. (1995). Object Models: Strategies, Patterns, and

Applications, Yourdon Press, Inglewood Cliffs, N.J.

Cofer, C. N. (1975). The Structure of Human Memory. Freeman, W. H. and Company. San

Francisco, CA.

Collins, A. (1977). Processes III Acquiring Knowledge. Anderson, R. C. Spiro, R. 1. and

Montague, W. E. (Eds.), Schooling and the Acquisition of Knowledge. Lawrence Erlbaum,

Hillsdale, NJ, pp. 339-363.

Collins, J. A., Greer, J. E., and Huang, S. X. (1996). Adaptive Assessment Using Granularity

Hierarchies and Bayesian Nets. Frasson, C., Gauthier, G., and Lesgold, A .. (Eds.).

Proceedings of the Third International Conference on Intelligent Tutoring Systems.

Springer-Verlag, Berlin, pp. 569-577.

Collins, A .. Warnock, E. H. and Passafiume, J. J. (1975). Analysis and Synthesis of Tutorial

Dialogues. In Bower, G. H. (Ed.), The Psychology of Learning and Motivation, Academic

Press, 9, pp. 49-87.

Conati, C., Gertner. A .. VanLehn, K., and Druzdzel, M., (1997). On-line Student Modeling for

Coached Problem Solving Using Bayesian Networks. Proceedings of Sixth International

Conference on User Modelling. pp. 231-242.

Conati. C. and VanLehn, K. (1996). POLA: A Student Modelling Framework for Probabilistic

online Assessment of Problem Solving Performance. In Chin, D. N .. Crosby. ~1.. Carberry.

S. and Zukerman. 1. (Eds.). Proceedings of the Fifth International Conference 011 User

Modelling. KailuaKona. User Modelling. Inc .. Hawaii. pp. 75-82.

:\ (icneric Architl'cture for Interactive Intelligent Tutoring Systems

References 200

Constantine, L. L. and Lockwood, L. A. (1999). Software for Use. Addison-Wesley. Reading.

MA.

Coolican, H. (1990). Research Methods and Statistics in Psychology. Hodder and Stoughton,

London.

Corbett, A. T., Anderson, J. R., and OBrien, A. T. (1995). Student Modelling in the ACT

Programming Tutor. In Nichols, P. D., Chipman, S. F., and Brennan, R. L., (Eds.),

Cognitively Diagnostic Assessment, Lawrence Erlbaum, Hillsdale, N1., pp. 19-42.

Cortina, lM. (1993). What is Coefficient Alpha? An Examination of Theory and Applications.

Journal of Applied Psychology, 78 (1), pp. 98-104.

Cowan, N., Wood, N. L., and Borne, D. N. (1994). Reconfirmation of the Short-Term Storage

Concept. Psychological Science, 5 (2), pp. 103-106.

Cox, B. J. (1996). Object-Oriented Programming: An Evolutionary Approach. Addison-Wesley.

Reading, MA.

Cristina, C, Abigail S. Gertner, VanLehn, K, and Druzdzel, M. (1997). On-Line Student

Modeling for Coached Problem Solving Using Bayesian Networks. Jameson, A., Paris. C.,

and Tasso, C. (Eds.). Proceedings of Sixth International Conference on User Modelling.

Vienna, Springer-Verlag, New York, pp. 231-242.

Cronbach, L. J. (1990). Essentials of Psychological Testing. Harper and Row, New York.

Cronbach, L. 1. and Snow R. E. (1977). Aptitudes and Instructional Methods: A Handbook for

Research on Interactions. Irvington, New York.

Daganzo, C. (1996). Logistics Systems Analysis, Springer-Verlag.

Davis, R., Buchanan, B. and Shortliffe, E. (1985). Production Rules as a Representation for a

Knowledge Based Consultation Program. In Brachman, R. J. and Levesque, H. 1. (Eds.).

Readings in Knowledge Representation, Los Altos, CA: Morgan Kaufmann Publishers. Inc.

pp. 371-387.

Davies, R. and O'keefe, R. (1992). Simulation Modelling with Pascal. Prentice Hall. London.

U.K.

Davydov, V.V. (1988). Learning Activity: The Main Problems Needing Further Research.

Activity Theory, 1 (1-2), pp. 29-36.

deKleer, J. Doyle, 1., Steele, G. L. Jr. and Sussman, G. 1. (1985). AMORD: Explicit Control of

Reasoning. In Brachman, R. 1. and Levesque, H. J. (Eds.). Readings on KnoH'ledge

Representation. Los Altos, CA: Morgan Kaufmann Publishers, Inc. pp. 345-.355.

DeMarco. T. (1982). Controlling Software Projects: Management, Measurement and Estimation.

Y ourdon Press, Inglewood Cliffs, N.J.

Dick, W. (1995). Instructional Design and Creativity: A Response to the Critics. Educational

Technology, 35 (40), pp. 5-11.

:\ Generic Architecture for Interactive Intelligent Tutoring SyslL'ms T. A Alolagbc

References 201

Dick, W., and Carey, L.M. (1990). The Systematic Design of Instruction. Harper Collins.

Glenview, n...
Dickinson, D. (1995). Multimedia Myths. Australian Personal Computer, 16 (10), pp. 1-1--1--1-1-5.

Dickinson, D. (1995). Multimedia Myths. Australian Personal Computer, 16 (10). pp. 1-1--1--145.

Dieterich, H., Malinowski, U., Klihme, T. and SchneiderHufschmidt, M. (1993). State of the Art

in Adaptive User Interfaces. In SchneiderHufschmidt, M., Klihme T. and Malinowski. U.

(Eds.), Adaptive User Interfaces: Principles and Practice. Amsterdam, pp. 13-48.

Dillenbourg, P. and Self, J. (1992). A Framework for Learner Modelling. Interactive Learning

Environments, 2 (2), pp.III-137.

diSessa, A. (1993). Toward an Epistemology of Physics. Cognition and Instruction, 10 (2-3), pp.

105-225.

Dixon, J. R. (1987). On Research Methodology Towards a Scientific Theory of Engineering

Design, Artificial Intelligence in Engineering, Design, Analysis and Manufacturing,

Academic Press, 1 (3), pp. 145-157.

Doukidis, I. and Angelides, M. (1994). A Framework for Integration Artificial Intelligence and

Simulation. Artificial Intelligence Review, 8, pp. 55-85.

Du Boulay, B., O'Shea, T. and Monk, J. (1981). The Black Box Inside the Glass Box.

International Journal of Man-Machine Studies, 14, pp. 237-249.

Durkin, J. (1994). Knowledge Acquisition. Durkin, J. (Ed.), Expert Systems: Design and

Development, pp. 518-599.

Eckstein, R., Loy, M., and Wood, D. (1998). Java Swing. O'Reilly and Associates. Sebastopol,

CA.

Eisenstadt, M., Price, B. A., and Domingue, J. (1992). Software Visualisation: Redressing

Intelligent Tutoring Systems Fallacies. Proceedings of the NATO Advanced Research

Workshop on Cognitive Models and Intelligent Environments for Learning Programming,

Margherita, S. (Ed.), Genova, Italy, pp. 123-135.

Ellis, H. C. and Hunt, R. R. (1993). Fundamentals of Cognitive Psychology. Fifth Edition.

Brown and BenchmarklBrown, C., Publishers. Madison, WI.

Eliot, C, Neiman, D., and Lamar, M. (1997). Medtec: A Web-based Intelligent Tutor for Basic

Anatomy. In: Lobodzinski S. and Tomek. I. (Eds.), Proceedings of World Conference of the

WWW.InternetandIntranet.Toronto.Canada.AACE.Charlottesville.VA .. pp. 161-165.

Eliott. C., Rickel, J. and Lester. J. (1999). Lifelike Pedagogical Agents and Affective Computing:

An Exploratory Synthesis. In Wooldridge, M. and Veloso, M. (Eds.), Artificial Intelligence

Today, Lecture Notes in Computer Science 1600, Springer-Verlag, pp. 195-212.

Elio, R. and Scharf. P.B. (1990). Modelling Novice-to-Expert Shifts in Problem Solving Strategy

and Knowledge Representation. Cognitive Science. 14, pp. 579-639.

A Generic Architecture fllr Interactiw Intelligent Tutoring Systems
T A Atolagbc

References

Eliot, C. and Woolf, B. (1995). An Adaptive Student Centred Curriculum for and Intelligent

Training System, Woolf, B. (Ed.), Kluwer Academic Publishers, pp. 1-20.

Elsom-Cook, M. T. (1991). Dialogue and Teaching Styles. In Elson-Cook, M. (Ed.). Teaching

Knowledge and Intelligence, Paul Chapman Publishing, London, pp. 61-84.

Elsom-Cook, M. (1990). Guided Discovery Tutoring. In Elson-Cook, M. (Ed.). Guided Discovery

Tutoring, Paul Chapman Publishing, London, pp. 3-23.

Ely, D., Januszewski, A. and Le Blanc. G. (1988). Trends and Issues in Educational Technology.

Syracuse University Press.

Engels, G., Lewerentz, C., Nagl, M., Schafer, W. and Schurr. A. (1992). Building Integrated

Software Development Environments, Part 1: Tool Specification. ACM Transactions on

Software Engineering and Methodology, 1 (2), pp.135-167.

Eriksson, H., Shahar, Y., Tu, S.W., Puerta, A.R., and Musen, M.A. (1996). Task Modelling with

Reusable Problem-Solving Methods. Artificial Intelligence, 79 (2), pp. 293-326.

Eriksson, H., Puerta, R. and Musen, A. (1994). Generation of Knowledge-Acquisition Tools from

Domain Ontologies. International Journal of Human-Computer Studies, 41, pp. 425-453.

Fensel, D., Motta, E., Decker, S., and Zdrahal, Z. (1997). Using Ontologies for Defining Tasks,

Problem-Solving Methods and their Mappings. In Plaza, E. and Benjamins, V. R .. (Eds.),

Knowledge Acquisition, Modeling and Management, Springer-Verlag, Berlin. pp. 113-128.

Fensel, D. (1994). A Comparison of Languages which Operationalise and Formalise KADS

Models of Expertise. The Knowledge Engineering Review, 9 (2), pp. 105-146.

Ferguson-Hessler, M. G. M., and Jong, T. d. (1990). Studying Physics Texts: Differences in

Study Processes Between Good and Poor Solvers. Cognition and Instruction, 7, pp. 41-54.

Frakes, W.E, (1994). Success Factors of Systems Reuse. In IEEE Software 11 (5), pp.15-19.

Friedman, N., Goldszmidt, M., Heckerman, D., and Russell, S.l (1997). Challenge: What is the

Impact of Bayesian Networks on Learning? International Journal of Computers Artificial

Intelligence, 1, pp. 10-15.

Fontatine, D., Le Beux P., Riou, C., Jacue1inet, C. (1994). An Intelligent Computer-Assisted

Instructional system for Clinical Case Teaching. Methods of Information in Medicine, pp.

433-445.

Ford, K. M .. Bradshaw, l M .. Adamswebber, l R., and Agnew, N. M. (1993). Knowledge

Acquisition as a Constructive Modelling Activity. International Journal of Intelligent

Systems. 8 (1), pp. 9-32.

Fowler, N .. Cross, S .. and Owens, C. (1995). The ARPA: Rome Knowledge Based Planning

Initiative. IEEE Expert, 10 (1),4-9.

:\ Generic Architecture for Interactive Intelligent Tutoring Systems T A Atolagbe

References 203

Fox, S. and Leake, D. (1994). Using Introspective Reasoning to Guide Index Refinement in

Case-Based Reasoning. In Proceedings of the Sixteenth Annual Conference of the

Cognitive Science Society, Lawrence Erlbaum, Atlanta, GA, pp. 324-329.

Fox, B. A. (1993). The Human Tutorial Dialogue Project: Issues in the Design of Instructional

Systems. Lawrence Erlbaum Associates, Hillsdale, N1.

Fu, M. C., Hayes, C. C., and East, E. W. (1997). SEDAR: Expert Critiquing System for Flat and

Low-Slope Roof Design and Review. Journal of Computing in Civil Engineering. 11 0),

pp.60-68.

Gaines, B.R. (1994). Class Library Implementation of an Open Architecture Knowledge Support

System. International Journal of Human-Computer Studies, 41 0/2), pp. 59-107.

Gagne, R.M. (1985). The Conditions of Learning and the Theory of Instruction CBS College

Publishing, New York.

Gagne, R. M. and Briggs, L. 1. (1979). Principles of Instructional Design. Secnd Edition, Rinehart

and Winston, New York.

Gagne, R., Briggs, L. and Wenger, W. (992). Principles of Instructional Design. Fourth Edition,

RBJ College Publishers, Fort Worth, TX.

Gaines, B.R., Rappaport, A. and Shaw, M.L.G. (1992). Combining Paradigms in Knowledge

Engineering. Data and Knowledge Engineering, 9, pp. 1-18.

Galliers, R. D. (1992). Information Systems Research: Issues, Methods and Practical Guidelines,

Blackwell Scientific Publications, Oxford.

Galliers, R.D. (1991). Choosing Appropriate Information Systems Research Approaches: A

Revised Taxonomy. In Nissen, H.E., Klein, H.K., and Hirschheim, R. (Eds.), Information

Systems Research: Contemporary Approaches and Emergent Traditions. Holland

Amsterdam, pp. 327-345.

Galliers, R. D. and F. F. Land (1987). Choosing an Appropriate Information Systems Research

Methodology, Communications of the ACM, 30 (11), pp. 900-902.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley, Reading, MA.

Gardner, M., Greeno, J. G., Reif, F., Schoenfeld, A. H., diSessa, A., and Stage. E. (1990). Tmmrd

the Scientific Practice of Science Education. Lawrence Erlbaum, Hillsdale.

Garlan, D. and Shaw, M. (1993). An Introduction to Software Architecture. In Ambriola. V. and

Tortora, G. (Eds.). Advances in Software Engineering and Knowledge Engineering,

Singapore, 1993. World Scientific Publishing Company. pp. 1-39.

Gebhardt, E. (1978). A Critique of Methodology: Introduction. Aranto. A. and Gebhardt. E.

(Eds). The Essential Frankfurt School Reader. Basil Blackwell. Oxford. pp. 371-.+06.

:\ Genaic Architecture for Interactiw Intelligent Tutoring Systems
T A. Atolagbe

References 20.+

Geller, 1., Perl, Y and Neuhold, EJ. (1991). Structural Schema Integration in Heterogeneous

Multi-Database Systems Using the Dual Model. Kambayashi, Y. Rusinkiewicz. M. and

Sheth, A. (Eds.), First International Workshop on Interoperability in Multidatabase

Systems, Kyoto, IEEE Computer Society Press, pp. 200-203.

Gennari, J. H., Tu, S. W., Rothenfluh, T. E., and Musen, M. A. (1994). Mapping Domains to

Methods in Support of Reuse. International Journal of Human-Computer Studies. 41. pp.

399-424.

Gentner, D.R. and Stevens, A.L. (1983). Mental Models. Lawrence Erlbaum, Hillsdale, NY.

Gertner, A. and VanLehn, K (2000). Andes: A Coached Problem Solving Environment for

Physics. In Gauthier, G., Frasson, C. and VanLehn, K. (Eds.) Proceedings of 5th

International Conference on Intelligent Tutoring Systems, Berlin: Springer, pp. 131-142.

Gertner A. S. and Webber B. L. (1998). TraumaTIQ: On-Line Decision Support for Trauma

Management. IEEE Intelligent Systems, pp. 32-39.

Gibbs, G. (1995). Research into Student Learning. Research, Teaching and Learning. In Smith.

B., and Brown, S. (Eds.). Higher Education. Kogan Page Ltd., London, pp. 17-29.

Ginsberg M.L. (1991). Knowledge Interchange Format: The KIF of Death. Artificial Intelligence

Magazine, 12 (3), pp. 57-63.

Gitomer, D., Steinberg, H., S., L., and Mislevy, R. J. (1995). Diagnostic Assessment of

Troubleshooting Skill in an Intelligent Tutoring System. In Nichols, P .. Chipman, S .. and

Brennan, R., L., (Eds.), Cognitively Diagnostic Assessment. Erlbaum, Hillsdale, NJ., pp.

43-71.

Glaser, R. and Bassok, M. (1989). Learning Theory and the Study of Instruction. Annual Review

of Psychology, 40:631-636.

Goldstein, I. P. (1979). The Genetic Graph: A Representation for the Evolution of Procedural

Knowledge. International Journal of Man-Machine Studies, 11, pp. 51-77.

Good, I. 1. (1983). Good Thinking. University of Minnesota Press.

Goodkovsky, V.A, Kirjustin, E.V, Bulekov. A.A. (1994). Shell, Tool, and Technology for Pop

Class ITS production. Brusilovsky, P., Dikareve, S., Greer J. and Pertrushin. V. (Eds).

Proceedings of East- West International Conference on Computer Technology in Education.

Crimea, Ukraine. Part 1. pp. 87-92.

Goodyear, P. (1991). Teaching Knowledge and Intelligent Tutoring. Ablex Publishing, Norwood.

NJ.

Gosling, 1.. Joy. B., Steele, G., (2000). The Java Language Specification. Second Edition.

Addison-Wesley. Reading, MA.

------ -------
A Generic Archihxture for Interactiye Intelligent Tutoring Systems T A. Atolagbe

References
205

Greeno, 1. G., & the Middle School Mathematics Through Applications Projects Group. (1998).

The Situativity of Knowing, Learning, and Research. American Psychologist. 53 (1), pp. 5-

26.

Gruber, T. (1995). Ontolingua Overview. http://www-sl.stanford.edulkstJontolingua.html.

Gruber, T. (1993). A Translation Approach to Portable Ontology Specifications. Knowledge

Acquisition, 5 (2), pp.199-220.

Goldstein, P.I. (1982). The Genetic Graph: A Representation for the Evolution of Procedural

Knowledge. Sleeman, D. H. and Brown, 1. S. (Eds.), Intelligent Tutoring Systems, London.

Academic Press, pp. 51-77.

Gonschorek, M. and Herzog, C. (1995). Using Hypertext for an Adaptive Help System in an

Intelligent Tutoring System. In Greer, 1. (Eds.), Proceedings of t h World Conference 011

Artificial Intelligence in Education, Washington, DC., AACE, Charlottesville, VA., pp. 274-

281.

Graesser, A. C. and Clark, L. F. (1985). Structures and Procedures of Implicit Knowledge, Ablex

Publishing, NJ.

Guarino, N., and P. Giaretta (1995). Ontologies and Knowledge Bases, Towards a Terminological

Clarification. Mars, I. (Ed.), Towards Very Large Knowledge Bases, lOS Press, NJ, pp.25-

32.

Guarino N. (1997). Understanding, Building and Using Ontologies. A Commentary to Using

Explicit Ontologies in Knowledge Based Systems, by van Heijst, Schreiber, and Wielinga.

International Journal of Human and Computer Studies 46 (2/3), pp. 293-310.

Guindon, R., Krasner, H., and Curtis, W. (1987). Breakdown and Processes During Early

Activities of Software Design by Professionals. Olson, G. M. and Sheppard S., (Eds.).

Proceedings of Second Workshop on Empirical Studies of Programmers, Ablex Publishing,

Norwood, NJ, pp. 65-82.

Habermann, A. N. and Notkin. D. (1986). Gandalf: Software Development Environments. IEEE

Transactions on Software Engineering. 12 (12), pp. 1117-1127.

Haddawy, P., Kahn, C.E., and Butarbutar. M. (1994). A Bayesian Network Model for

Radiological Diagnosis and Procedure Selection: Workshop of Suspected Gallbladder

Disease. Medical Physics, 21, pp. 1185 - 1192.

Halff, H. M. (1988). Curriculum and Instruction in Automated Tutors. Polson. M. C. and

Richardson, 1. 1. (Eds.). Foundations of Intelligent Tutoring Systems, Lawrence Erlbaum.

Hillsdale. NJ, pp. 79-108.

Hammond. K. (1989). Case-Based Planning. Academic Press.

A Generic ArchitL'cture for Interactive InteJligent Tutoring Systems T A Ato\agbe

References 206

Harris, B. and Cook, D. (1998). Integrating Hierarchical and Analogical Planning. Cook. J. C.

(Ed.), Proceedings of the Eleventh International Florida Artificial Intelligence Research

Symposium, Sanibel Island, FL, pp. 126-130.

Hartley, J. R., and Sleeman, D. H. (1973). Towards More Intelligent Teaching Systems.

International Journal of Man-Machine Studies, 2, pp. 215-236.

Hayes-Roth, B. (1985). A Blackboard Architecture for Control. Artificial Intelligence. 26, pp.

251-321.

Hayes-Roth, B., and Doyle, P. (1998). Animate Characters. Autonomous Agents and Multi-Agent

Systems, 1 (2), pp.195-230.

Hayes-Roth, F., Waterman, D. A., and Lenat, D.B. (1983). Building Expert Systems. Reading.

MA, Addison-Wesley.

Hawkes, L. W., Derry, S. J., and Rundensteiner, E. A. (1990). Individualised Tutoring Using an

intelligent Fuzzy Temporal Relational Database. Journal of Artificial Intelligence in

Education, 1, pp. 43-56.

Heckerman. D. (1997). Bayesian Networks for Data Mining. Data Mining and Knowledge

Discovery, 1 (1), pp. 79-119.

Heckerman, D., Horvitz, E. and Nathwani, B. (1992). Toward Normative Expert Systems: Part I.

The Pathfinder Project. Methods of Information in Medicine, 31, pp. 90-105.

Heise, D.R. (1969). Methodology of the Semantics Differential. Psychological Bulletin, 72, pp.

93-95.

Hinrichs, T. (1992). Problem Solving in Open Worlds: A Case Study in Design. Lawrence

Erlbaum Associates, Hillsdale, NJ.

Hlupic, V. (1993). Simulation Modelling Software Approaches to Manufacturing Problems.

London School of Economics and Political Science, University of London. Unpublished

Ph.D. Thesis.

Hlupic, V., Paul, R.J. and Z, Irani. (1999). Evaluation Framework for Simulation Software.

International Journal of Advanced Manufacturing Technology, 15, pp. 336-382.

Hodson, D. (1988). Towards a Philosophically More Valid Science Curriculum Science

Education, 72 (1). pp. 19-40.

Hoffman, R.R. (1987). The Problem of Extracting the Knowledge of Experts from the

Perspective of Experimental Psychology. Artificial Intelligence Maga:ine, 8 (2). pp. 53-67.

Hoh!, H., Bocker, H., and Gunzenhauser. R. (1996). Hypadapter: An Adaptive Hypertext System

for Exploratory Learning and Programming. User Modelling and user Adapted Interaction.

6 (1-3). pp. 131-156.

.\ l;cneric Architecture for Interactive Intelligent Tutoring Systems T .\ At'llagbe

References 207

Hollan, J., Hutchins, E., and Kirsh, D. (2000). Distributed Cognition: Towards a New Foundation

for Human-Computer Interaction Research. ACM Transactions of Computer-Human

Interaction, 7(2), pp. 174-196.

Horvitz, E. (1999). Uncertainty, Action, and Interaction: In Pursuit of Mixed-Initiative

Computing, Intelligent Systems, IEEE Computer Society, pp. 17-20.

Horvitz, E., Breese, J., Heckerman, D., Hovel, D., and Rommelse, R. (1998). The Lumiere

Project: Bayesian User Modeling for Inferring the Goals and Needs of Software Users.

Cooper, G.F. and Moral, S. (Eds), Proceedings of the Fourteenth Conference on

Uncertainty in Artificial Intelligence, Morgan Kaufmann, San Francisco, pp. 256-265.

Howell, F.W. (1997). The Simjava User Manual. University of Edinburg.

Hume, G., Michael, J., Rovick, A., and Evens, M. (1996). Hinting as a Tactic in One-on-One

Tutoring. The Journal of Learning Sciences, Lawrence Erlbaum, Hillsdale, NJ., 5 0), pp.

23-47.

Hutchins, E. L. (1995). Cognition in the Wild. Cambridge, MA: The MIT Press.

Ikeda, M., Go, S., and Mizoguchi, R. (1997). Opportunistic group formation. In Boulay, B. d. and

Mizoguchi, R. (Eds.) Proceedings of 8th World on Artificial Intelligence in Education:

Knowledge and Media in Learning Systems, Kobe, Japan, Amsterdam: lOS, pp. 167-174.

Ikeda, M and R. Mizoguchi. (1994). FITS: A Framework for ITS - A Computational Model of

Tutoring, Journal of Artifical Intelligence in Education, 5 (3), pp.319-348.

Jacobson, 1., Booch, G., and Rumbaugh, J. (1999). The Unified Software Development Process.

Addison Wesley, Reading, Mass.

Jacobson, 1., Christerson, M., Jonsson, P., Overgaard, G. (1992). Object-Oriented Software

Engineering - A Use Case Driven Approach. ACM Press.

Jacobson, I, Griss, M. and Jonsson, P. (1997). Software Reuse, Addison Wesley, Reading. MA.

Jameson, A. (1996). Numerical Uncertainty Management in User and Student Modelling: An

Overview of Systems and Issues. User Modelling and User-Adapted Interaction, 5, pp.

193-251.

Jonassen, D., Shute, V. J., Willis, R. E., and Torreano, L. A. (1999). Decompose, Network,

Assess (DNA). In Jonassen. D. H., Tessmer, M. and Hannum. W. H. (Eds.), Task Analysis

Methods for Instructional Design. Lawrence Erlbaum, Mahwah, NJ. pp. 131-138.

Jansson, D. and Smith, S. M. (1991). Design Fixation. Design Studies. 12. pp. 3-11.

Johnson, W.L., RickeL J.W. and Lester. lC. (2000). Animated Pedagogical Agents: Face-to-Face

Interaction in Interactive Learning Environments. Intemational Journal of Artificial

Intelligence ill Education. 11, pp. 47 -78.

A Generic Architccture for Interactive Intelligent Tutoring Systems T A Atolagbe

References 208

Johnson, W. L., Rickel, J., Stiles, R., and Munro, A. (1998). Integrating Pedagogical Agents into

Virtual Environments. Presence, Teleoperators and Virtual Environments 7 (6), pp.523-

546.

Johnson, W. L., and Rickel, J. (1998). Steve: An Animated Pedagogical Agent for Procedural

Training in Virtual Environments. SIGART Bulletin, 8, pp. 16-21.

Jonassen, D. (1988). Instructional Designs for Microcomputer CoursewareLawrence Erlbaum,

Hillsdale, NJ.

Kantner, L. and Rosenbaum, S. (1997). Usability Testing of WWW Sites: Heuristic Evaluation

vs. Laboratory Testing. In Proceeding of the Fiventh Annual International Conference on

Computer Documentation, Association for Computing Machinery. New York, pp. 153-160.

Katz, S., and Lesgold, A. (1993). The Role of the Tutor in Computer-Based Collaborative

Learning Situations. Lajoie, S. P., Derry, S. J. (Eds.), Computers as Cogniti\'e Tools,

Lawrence Erlbaum, Hillsdale, NY, pp. 289-318.

Katz, S., Lesgold, A., Eggan, G., and Gordin, M. (1993). Modelling the Student in SHERLOCK

II. Journal of Artificial Intelligence and Education (Special Issue on Student Modeling), 3

(4), pp. 495-518.

Kaye, A. R. (1991). Collaborative Learning through Computer Conferencing. Springer-Verlag,

Berlin.

Kambouri, M., Koppen, M., Villano, M. and Falmagne, J. C. (1994). Knowledge Assessment:

Tapping Human Expertise by the QUERY Routine. International Journal of Human­

Computer Studies, 40, pp. 119-151.

Kerninghan, B.W. and Lesk, M.E. (1979). LEARN: Computer Aided Instruction on Unix. (Second

Edition). Bell Laboratories.

Kintsch, W. and Greeno, J. G. (1995). Understanding and Solving Word Arithmetic Problems.

Psychological Review. 92, pp. 109-129.

Klein, H.K., Hirschheim, R., and Nissen, H.E. (1991). A Pluralist Perspective of the Information

Systems Research Arena. In Information Systems Research: Contemporary Approaches

and Emergent Traditions. Nissen, H.E., Klein, H.K., and Hirschheim, R. (Eds.) Holland

Amsterdam, pp. 1-20.

Klemm, W. R. (1994). Using a Formal Collaborative Learning Paradigm for Veterinary Medical

Education. Journal of Veterinary Medicine Education. 21, pp. 2-6.

Kline, P. (1993). The Handbook of Psychological Testing. London, Rouledge.

Klinker G, Bhola C, Dallemagne G. Marques D, McDermott J. (1991). Usable and Reusable

Programming Constructs. Knowledge Acquisition, 3 (3), pp. 117-135.

Kirsh, D. (1996). Adapting the Environment Instead of Oneself. Adaptive Behavior, 4, 415-452.

A Genei'll' ArchllL'l.:ture for Interactive Intelligent Tutoring Systems T A. Atolagbe

References 209

Kintsch, W. and Greeno, J. G. (1995). Understanding and Solving Word Arithmetic Problems.

Psychological Review. 92, pp. 109-129.

Koedinger, K., and Anderson, J. (1995). Intelligent Tutoring Goes to the Big City. In Greer. J.

(Ed). Proceedings of the International Conference on Artificial Intelligence in Education,

AACE: Charlottesville, VA., pp.421-428.

Koedinger, K., Anderson, J.R., Hadley, W.H., and Mark, M. A. (1997). Intelligent Tutoring goes

to School in the Big City. International Journal of Artificial Intelligence in Education, 8.

pp.30-43.

Koedinger, K. R., Anderson, J.R., Hadley, W.H., and Mark, M. A. (1995). Intelligent Tutoring

Goes to School in the Big City. In Greer, J. (Ed.), Proceedings of the 1h World Conference

on Artificial Intelligence and Education, AACE, Charlottesville, VA., pp . .+21-428.

Koedinger, K., Suthers, D., and Forbus, K. (1999). Component-Based Construction of a Science

Learning Space. International Journal of Artificial Intelligence in Education, 10, pp. 292-

313.

Koedinger, K., Shuthers, D., and Forbus, K. (1998). Component Based Construction of a Science

Learning Space. Goettl, B., Halff, H., Redfield, C., and Shute, V., (Eds.), Fourth

International Conference on Intelligent Tutoring Systems, San Antonio, Texas, Springer­

Verlag, Berlin, pp. 166-175.

Koen, B.V. (1985). The Definition of the Engineering Method. American Society of Engineering

Education, Washington, D.C.

Kolodner, J. L. (1993). Case-Based Reasoning. Morgan Kaufamann, San Mateo, CA.

Kolodner, J. (1983). Maintaining Organisation in a Dynamic Long-Term Memory. Cognitive

Science, 7, pp. 243-280.

Koton, P. (1989). Smartplan: A Case-Based Resource Allocation and Scheduling System. In

Hammond, K. (Ed.), Proceedings of the Case-Based Reasoning Workshop, Morgan

Kaufmann, San Mateo, DARPA, pp. 290-294.

Krasner, G. E. and Pope, S. T. A. (1988). A Cookbook for Using the Model ViewController User

Interface Paradigm in Smalltalk80. Journal of Object Oriented Programming, 1 (3), pp. 26-

49.

Kruchten, P. B. (1995). The 4+1 View Model of Architecture. IEEE Software, pp. 42-50.

Krueger, C. W. (1992). Software Reuse. ACM Computing Surveys, 24, pp. 131-183.

Kurland, D. M. and Pea, R. D. (1985). Children's Mental Models of Recursive LOGO

Programming. Journal of Educational Computing Research, 1 (2), pp. 235-2'+3.

Laird, D. (1985). Approaches to Training and Development. Addison- Wesley, Reading, MA.

Laird, J.E., Newell, A., and Rosenbloom, P.S. (1987). Soar: An Architecture for Genaal

Intelligence. Artificial Intelligence, 33 (1). pp.I-64.

A (it:ncric Architecture for Interactin: Intelligent Tutoring Systems

T A_ Atolagbe

References 210

Lajoie, S. P., Lesgold, A. M. (1992). Dynamic Assessment of Proficiency for Solving Procedural

Knowledge Tasks. Educational Psychologist, 27 (3), pp. 365-384.

Langley, P., Wogulis, J. and Ohlsson, S. (1990). Rules and Principles in Cognitive Diagnosis.

Frederiksen, N., Glaser, R., Lesgold, A. and Shafto, M. (Eds.), Diagnostic Monitoring of

Skill and Knowledge Acquisition, Lawrence Erlbaum, Hillsdale, NJ, pp. 217-250.

Latham, G.P. and Saari, L.M. (1979). Application of Social-Learning Theory to Training

Supervisors through Behavioural Modelling. Journal of Applied Psychology. 64, pp. 239-

246.

Lauritzen, S. L. and Spiegelhalter, D. J. (1988). Local Computations with Probabilities on

Graphical Structures and Their Application to Expert Systems. Journal of the Royal

Statistical Society, 50, pp. 157-224.

Law, A.N., and Kelton, W.D. (2000). Simulation Modeling and Analysis. (Third Edition).

McGraw Hill, New York.

Lazonder, A.W., and Van der Meij, H. (1995). Error-information in Tutorial Documentation:

Supporting Users' Errors to Facilitate Initial Skill Learning. International Journal of

Human-Computer Studies, 42, pp. 185 - 206.

LeFevre, J. and Dixon, P. (1986). Do Written Instructions Need Examples? Cognition and

Instruction, 3, pp. 1-30.

Legree, P.J., Gillis, P.D. and Orey, M. (1993). The Quantitative Evaluation of Intelligent

Tutoring System Applications: Product and Process Criteria. Journal of Artificial

Intelligence in Education, 4 (2/3), pp. 209-226.

Lenat, D. B. (1995). CYC: A Large-Scale Investment III Knowledge Infrastructure.

Communications of the ACM , 38 (11), pp. 33-43.

Lesgold, A. (1988). Towards a Theory of Curriculum for Use in Designing Intelligent

Instructional Systems. In Mandl, H. and Lesgold, A. (Eds.), Learning Issues for Intelligent

Tutoring Systems. Springer-Verlag, New York, pp. 114-137.

Lesgold, A. M., Lajoie, S. P., Bunzo, M., and Eggan, G. (1993). SHERLOCK: A Coached

Practice Environment for an Electronics Troubleshooting Job. Larkin, J. Chabay, R. and

Scheftic, C. (Eds.). Computer Assisted Instruction and Intelligent Tutoring systems:

Establishing communication and Collaboration, Lawrence Erlbaum. Hillsdale, NJ, pp. 201-

238.

Lesgold. A .. IvillFrieL J. and Bonar, J. (1989). Toward Intelligent Tutoring Systems for Testing.

In Resnick, L. B. (Ed.). Knowing, Learning and Instruction: Essays in Honor of Robert

Glaser. Lawrence Erlbaum, Hillsdale, NJ. pp. 337-360.

A Generic Architecture for Interactin' Intelligent Tutoring Systems

References 211

Lester, 1. C., Stone, B. A., and Stelling, G. D. (1999). Lifelike Pedagogical Agents for Mixed­

Initiative Problem Solving in Constructivist Learning Environments. User Modelling and

User-Adapted Interaction 9, pp.1-44.

Lewis, R. L. (1996). Interference in Short-Term Memory: The Magical Number Two (or Three)

in Sentence Processing. The Journal of Psycholinguistic Research 25, pp.93-115.

Liebenau,1. and Backhouse, 1. (1990). Understanding Information: An Introduction. Macmillan.

Likert, R. (1932). A Technique for the Measurement of Attitudes. Colombia University Press.

New York.

Little, M.C. (1997). http://cxxsim.ncl.ac.uk.

Livingstone, C., and Borko, N. (1989). Expert-Novice Differences in Teaching: A Cognitive

Analysis and Implications for Teachers Education. Journal of Teacher Education, "'0 ('+).

pp.36-42.

Lopez, B., and Plaza, E. (1993). Case-Based Planning for Medical Diagnosis, Komorowski, 1.,

Ras, Z. W. (Eds.) Methodologies for Intelligent Systems: Lecture Notes in Artificial

Intelligence, Springer-Verlag, Berlin, 689, pp. 96-105.

Luckham, D. C., and Vera, 1. (1995). An Event Based Architecture Definition Language. IEEE

Transactions on Software Engineering, 21 (9), pp. 717-734.

Macmillan, S. A., Emme, D. and Berkowitz, M. (1988). Instructional Planners: Lessons learned.

In Psotka, J., Massey, L. D. and Mutter, S. A. (Eds.), Intelligent Tutoring Systems: Lessons

learned, Lawrence Erlbaum, Hillsdale, NJ, pp. 229-256.

Macromedia Inc. (1997). Authorware at http://www.macromedia.comlindex.html.

Macrelle, M., Desmoulins, C., (1998). Macro Definitions, a Basic Component for Interoperability

between ILEs at the Knowledge Level: Application to Geometry. Goettl, B., Halff, H.,

Redfield, C., and Shute, V., (Eds.), Fourth International Conference on Intelligent Tutoring

Systems, San Antonio, Texas. Springer Verlag, Berlin, pp. 46-55.

Major, N. (1995). Modelling Teaching Strategies. International Journal of Artificial Intelligence

in Education, 6 (2-3), pp. 117-152.

Major, N., Ainsworth, S. and Wood, D. (1997). REDEEM: Exploiting Symbiosis Between

Psychology and Authoring Environments. International Journal of Artiftciallntelligence in

Education, 8 (3-4), pp. 317-340.

Major. N. and Reichgelt. H. (1991). Using COCA to Build an Intelligent Tutoring System in

Simple Algebra. Intelligent Tutoring Media, 2 (3-4), pp.159-169.

Margolis, A.A. (1993). Vygotskian Ideas in Computer Assisted Instruction (CAl). Activity

Theory, 13/1.+,9-13.

Mark, M. A. and Greer, 1. E. (1995). The VCR Tutor: Effective Instruction for Device Operation.

The Journal of the Learning Sciences, 4 (2) pp. 209-2'+6.

:\ Generic Architecture for Interactive Intelligent Tutoring Systems T A. Ato\aglx'

References 212

Mark, M. A. and Greer, 1. E. (1993). Evaluation Methodologies for Intelligent Tutoring Systems,

Journal of Artificial Intelligence in Education, 4, pp. 129-153.

Martin, 1., and VanLehn, K. (1995). Student Assessment Using Bayesian Networks. International

Journal of Human-Computer Studies, 42, pp. 575-59l.

Martin, 1. and VanLehn, K. (1993). OLAE: Progress Toward a Multiactivity, Bayesian Student

Modeller. In Brna, S. P., Ohlsson, S. and Pain, H. (Eds.), Proceedings of the World

Conference on Artificial Intelligence in Education, Association for the Advancement of

Computing in Education, Charlottesville, VA, pp. 426-432.

Mayer, R. (1981). The Psychology of How Novices Learn Computer Programming. Computing

Surveys, 13 (1), pp. 121-14l.

McGraw, K.L. and Harbison-Briggs, K. (1989). Knowledge Acquisition: Principles and

Guidelines. Prentice Hall, Englewood Cliffs, N1.

McKendree, 1. (1990). Effective Feedback Content for Tutoring Complex Skills. Human­

Computer Interaction, 5, pp. 381-413.

McDermott, J. (1988). Preliminary Steps Toward a Taxonomy of Problem Solving Methods.

Marcus, S. (Ed). Automating Knowledge Acquisition for Expert Systems, Kluwer

Academic, Boston, pp. 225-256.

McLellan, H. (1992). Hyper Stories: Some Guidelines for Instructional Designers. Journal of

Research on Computing in Education, 2S (1), pp. 28-48.

Merrill, D. (1996). Instructional Transaction Theory: Instructional Design Based on Knowledge

Objects. Educational Technology, pp. 30-37.

Merrill, M. D. (1985). Where is the Authoring in Authoring Systems? Journal of Computer­

Based Instruction, 12, pp. 90-96.

Merrill, M. D. (1983). Component Display Theory. In Reigeluth, C. M. (Ed.), Instructional

Design Theories and Models: An Overview of their Current Status, Lawrence Erlbaum,

Hillsdale, NJ, pp. 279-333.

MerrilL D. C., Reiser, B. J., Ranney, M. and Trafton, J. G. (1992). Effective Tutoring

Techniques: A Comparison of Human Tutors and Intelligent Tutoring Systems. Journal of

the Learning Sciences, 2, pp. 277-305.

Microsoft (2000). Microsoft Office 2000. Redmond, Washington. Microsoft Press, Richmond.

Microsoft (1998). Text-To-Speech Engine. User Documentation. Microsoft Press, Richmond.

Miller, G. A. (1965). The Magical Number Seven, Plus or Minus Two: Some Limits on our

Capacity for Processing Information. Psychological Review. 63 (2), pp. 81-97.

Minton. S. (1990). Quantitative Results Concerning the Utility of Explanation Based Learning.

Artificial Intelligence, 42. pp.363-391.

:\ Generic Architel'lure for Interacti\'e Intelligent Tutoring Systems T A AlOlagbe

References
~13

Mitchell, T.M., Caruana, R.,. Freitag, D., McDermott, 1. and Zabowski, D. (1994). Experience

with a Learning Personal Assistant, Communications of the A CM, 37 (7). pp. 81-91.

Mitchell, T. M., Mabadevan, S., and Louis I. Steinberg. (1990). LEAP: A Learning Apprentice

for VLSI Design. In Machine Learning: An Artificial Intelligence Approach, Volume III.

Morgan Kaufmann, San Mateo, CA., pp. 271-289.

Mize, 1. H., Bhuskute, H. C., Pratt, D. B. and Kamath, M. (1992). Modelling of Integrated

Manufacturing Systems Using an Object-Oriented Approach. IEEE Transactions, 24 (3),

pp. 14-26.

Mizoguchi, R. (1993). Knowledge Acquisition and Ontology. In Proceeding of Knowledge Based

and Knowledge Systems Conference, Tokyo, pp.121-128.

Mizoguchi, R., Sinitsa, K., and Ikeda, M. (1996). Task Ontology Design for Intelligent

Educational/Training Systems. Frasson, S., Gauthier, G., and Lesgold, A. (Eds.), In the

Proceedings of Third International Conference on Intelligent Tutoring Systems, Montreal.

pp.12-14,

Mizoguchi, R., Tijerino, Y., M. Ikeda, M. (1995) Task Analysis Interview Based on Task

Ontology. Journal of Expert Systems with Applications, 9, (1), pp.15-25.

Mabus, C., Schroder, O. and Thole, H.1. (1993). A model of the Acquisition and Improvement of

Domain Knowledge for Functional Programming. Journal of Artificial Intelligence in

Education, 3 (4), pp. 449-476.

Monarchi, D. E., Puhr, G. I. (1992). A Research Typology for Object-Oriented Analysis and

Design. Communications of the ACM, 35 (9), pp. 35-47.

Moore, 1. D. (1996). Discourse generation for instructional applications: Making computer-based

tutors more like humans. Journal of Artificial Intelligence in Education, 7(2), 181-124.

Moore, 1. D., Lemaire, B., and Rosenblum, 1. A. (1996). Discourse Generation for Instructional

Applications: Identifying and Exploiting Relevant Prior Explanations. Journal of the

Learning Sciences, 5 (1), pp.49-94.

Mosier, 1. and Smith, S. (1986). Applications of Guidelines for Designing User Interface

Software. Behaviour and Infonnation Technology, 5 (1), pp. 39-46.

Murray, T. (1999). Authoring Intelligent Tutoring Systems: An Analysis of the State of the Art.

International Journal of Artificial Intelligence in Education, 10 (1), pp. 98-129.

Murray, T. (1998). Authoring Knowledge Based Tutors: Tools for Content, Instructional

Strategy, Student Model. and Interface Design. Journal of the Learning Sciences, 7, (l), pp.

5-64.

Murray, T. (1997). Expanding the Knowledge Acquisition Bottleneck for Intelligent Tutoring

Systems. International Journal of Artificial Intelligence in Education, 8 (3-4), pp. 222-232.

A Generic Architecture for Interactive Intelligent Tutoring Systems T. A Atolagbe

References 21.+

Murray, T. (1996). Having it All, Maybe: Design Trade-offs in ITS Authoring Tools. Frasson, C ..

Gauthier, G., and Lesgold, A., (Eds.), Proceedings of the Third International Conference

on Intelligent Tutoring Systems, Springer-Verlag, Berlin, pp. 93-101.

Murray, T (1993). Formative Qualitative Evaluation for "Exploratory" ITS Research.

International Journal of Artificial Intelligence in Education, 4 (2-3), pp. 179-207.

Murray, T, Condit, C., Piemonte, 1. Shen, T., and Kahn, Samia (1999). MetaLinks-A Framework

and Authoring Tools for Adaptive Hypermedia. In Lajoie, S. (Ed.), Proceedings of the 9th

World Conference on Artificial Intelligence in Education, lOS Press, Amsterdam, pp. 744-

746.

Murray, T and Woolf, B. P. (1992). Tools for Teacher Participation in ITS Design. Frasson. C ..

Gauthier, G. and McCalla, G.!. (Eds.), Intelligent Tutoring Systems. Springer-Verlag,

Berlin, pp. 593-600.

Musen, M. A. (1999). Scalable Software Architectures for Decision Support. Methods of

Information in Medicine, 38, pp. 229-238.

Musen. M. (1998). Modem Architectures for Intelligent Systems: Reusable Ontologies and

Problem-Solving Methods. In Chute, C.G. (Ed.), AMIA Annual Symposium, Orlando, FL,

pp.46-52.

Musen. M.A. (1993). An Overview of Knowledge Acquisition. In David, 1. M. Krivine, 1. P. and

Simmons, R. (Eds.). Second Generation Expert Systems, Berlin, Springer-Verlag, ppA05-

427.

Musen, M.A. (1992). Dimensions of Knowledge Sharing and Reuse. Computers and Biomedical

Research, 25 pp. 435-467.

Musen, M.A. (1989). Automated Support for Building and Extending Expert Models, Machine

Learning, 4, pp. 349-377.

Musen, M., Gennari, 1. H., Eriksson, H., Tu, S. W. and Puerta, A. R. (1995). PROTEGE II:

Computer Support For Development Of Intelligent Systems From Libraries Of

Components. Proceedings of The Eighth World Congress on Medical Informatics,

Vancouver, B.C., Canada, 766-770.

Musen, M. and Schreiber, A. T. (1995). Architectures for Intelligent Systems Based on Reusable

Components. Artificial Intelligence in Medicine 7, pp. 189-199.

Nakabayashi. K., Maruyama, M., Kato, Y., Touhei. H., and Fukuhara, Y. (1997). Architecture of

an Intelligent Tutoring System on the WWW. In Boulay B. d. and Mizoguchi, R. (Eds.).

Proceedings of World Conference on Artificial Intelligence in Education on Artificial

Intelligence in Education: Knowledge and Media in Learning Systems Kobe. Japan.

Amsterdam, lOS, pp. 39-46.

:\ Generic Architecture for Interactive Intelligent Tutoring Systems T A. Atolagbc

References 215

National Centre for Supercomputing Applications (NCSA). (1997). The Common Gaten'(lV

Interface. http://hoohoo.ncsa. uiuc.edulcgiJ

Neighbors, 1. M. (1992). The Evolution from Software Components to Domain Analysis,

International Journal of Software Engineering and Knowledge Engineering, 2 (3). pp. 325-

354.

Neighbors, 1. M. (1984). The Draco Approach to Constructing Software from Reusable

Components, IEEE Transactions on Software Engineering 10, pp. 564-574.

Nelson, M. (1995). C++ Programmer's Guide to the Standard Template Library. IDG Books

Worldwide Inc., Foster City, CA.

Newell, A. (1990). Unified Theory of Cognition. Harvard University Press.

Newell, A. (1982). The Knowledge Level. Artificial Intelligence, 18, pp.87-127.

Newman, W. M. and Lamming, M. G. (1995). Interactive System Design. Addison-Wesley,

Reading, MA.

Nielsen, 1. (1994). Heuristic Evaluation. Nielsen, 1., and Mack, R. L. (Eds.), Usability Inspection

Methods. John Wiley, New York, pp. 25-64.

Nielson, J. (1993). Usability Engineering. Academic Press, Boston, MA.

Nielsen, 1. and Mack, R.L. (1994). Usability Inspection Methods, John Wiley, New York, NY.

pp.49.

Nkambou, R. and Gauthier, G. (1996). Use of WWW Resources by an Intelligent Tutoring

System. In Educational Multimedia and Hypermedia, pp. 527-532.

Noma, T., and Badler, N. I. (1997). A Virtual Human Presenter. Proceedings of the International

Journal of Computer in Artificial Intelligence Workshop on Animated Interface Agents:

Making Them Intelligent, pp.45-51.

Norman, D. (1993). Cognition in the Head and in the World: An Introduction to the Special Issue

on Situated Action. Cognitive Science, 17 (1), pp. 1-6.

Norman, D. and Draper, S. (1987). User Centred System Design, Lawrence Erlbaum, Hillsdale,

N1.

Object Management Group (OMG). (1999). UML Specification V1.3: Object Management

Group Document. http://www.omg.org.

Object Management Group (OMG). (1998). XML Metadata Interchange (XMI): Object

Management Group Document. http://www.omg.org.

Object Management Group. (1997). UML Semantics. Object Management Group Document.

http://www.omg.org.

OKeefe, R. (1986). Simulation and Expert Systems: A Taxonomy and Some Examples.

Simulation, ~6 (1), pp. 10-16.

:\ Genaic Architecture for Interactive Intelligent Tutoring Systems
T :\ Alolagbc:

References
216

Ohlsson, S. (1994). Constrained-Based Student Modelling. In Greer, E.1. and McCalla, G.I.

(Eds.). Student Modelling: The Key to Individualised Knowledge-Based Instruction, NATO

ASI Series F: Computer and Systems Sciences, Special Programme: Advanced Educational

Technology, Springer, Berlin, 125, pp. 167-189.

Ohlsson, S. (1993). Impact of Cognitive Theory on the Practice of Courseware Authoring.

Journal of Computer Assisted Learning, 9 (4), pp. 194-221.

Ohlsson, S. (1992). Constraint Based Student Modelling, Artificial Intelligence in Education, 3

(4), pp. 429-447.

Ohlsson, S. (1991). Knowledge Requirements for Teaching: The Case of Fractions. In Goodyear.

P. (Ed.), Teaching Knowledge and Intelligent Tutoring. Ablex Publishing, Norwood, NJ.

pp.25-59.

Ohlsson, S. (1987). Some Principles of Intelligent Tutoring. Lawler, R.W., and Yazdani. M ..

(Eds.), Artificial Intelligence and Education, Vol. I, Learning Environments and Tutoring

Systems. Norwood, Ablex Publishing, New York, pp. 203- 237.

Ohlsson, S. (1986). Some Principles of Intelligent Tutoring, Instructional Science, 14, pp. 293-

326.

Okazaki, Y., Watanabe, K., and Kondo, H. (1996). An Implementation of an Intelligent Tutoring

System (ITS) on the World-Wide Web (WWW). Educational Technology Research 19 (1),

pp.35-44.

Okazaki, Y., Watanabe, K., and Kondo, H. (1997). An Implementation of the WWW Based ITS

for Guiding Differential Calculations. In Brusilovsky, P., Nakabayashi, K. and Ritter, S.

(Eds.), Proceedings of World Conference on Artificial Intelligence in Education Workshop

on Intelligent Educational Systems on the World Wide Web, 8th Kobe, Japan, ISIR, pp. 18-

25.

Orfali. R., Harkey, D. and Edwards, 1. (1996). The Essential Distributed Objects: Survival Guide.

John Wiley, New York.

Orey, M.A., Trent, A., and Young, 1. (1993). Development Efficiency and Effectiveness of

Alternative Platforms for Intelligent Tutoring. Brna, P., Ohlsson, S., and Pain. H., (Eds.).

Proceedings of the World Conference on Artificial Intelligence in Education, Association

for the Advancement of Computing in Education, Charlottesville, VA, pp. 42-49.

O'Shea, T. (1982). A Self-Improving Quadratic Tutor. Sleeman, D and Brown, 1.S. (Eds.).

International Tutoring Systems, Academic Press, Boston, MA, pp. 309-336.

O' Shea, T and Self, J. (1983). Learning and Teaching with Computers-Artificial Intelligence in

Education. Prentice Hall, Englewood Cliffs. N1.

Osgood. C. E.. Suci. G. 1.. and Tannenbaum. P. H. (1957). The Measurement of Meaning.

University of Illinois Press. Urbana. IL.

:\ Genenc Architecture for Interactive Intelligent Tutoring Systems T A Alolagbe

References 217

Ostertag, E., Hendler, l, PrietoDiaz, R., and Braun, C. (1992). Computing Similarity in a Reuse

Library System: An Artificial Intelligence Based Approach. ACM Transactions on

Software Engineering and Methodology, 1 (3), pp.205-228.

Park, 0., Perez, R. and Seidel, R. (1987). Intelligent CAl: Old Wine in New Bottles, or a New

Vintage? In Kearsley, G. (Ed.) Artificial Instruction and Instruction Applications and

Methods, Addison Wesley, Reading. MA, pp. 11-46.

Patrick, l (1992). Training: Practice and Research. Academic Press, London.

Patton, M. Q. (1990). Qualitative Evaluation and Research Methods, SAGE, Publications, Inc.

Paul, R. and Balmer, D. (1993). Simulation Modelling. Chartwell Bratt. London. U.K.

Paul, R. and Hlupic, V. (1994). Designing and Managing a Degree Course in Simulation

Modelling. Proceedings of the Winter Simulation Conference, Tew, lD. Manivannan, S ..

Sadowski, D.A. and Seila, A.F. (Eds.), ACM Press, Orlando, pp. 1393-1398.

Paul, R.J., Taylor, S.lE., Hlupic, V., and Baldwin, L.P. (1998). A Methodology for the

Integration of Computer-Based Training into Simulation Modelling Courses. Proceedings

of European Simulation Conference, Bargiela, A and Kerckhoffs, E. (Eds.), Nottingham,

pp.709-714.

Pea, R. D., (1993a) Learning Scientific Concepts Through Material and Social Activities:

Conversational Analysis Meets Conceptual Change. Educational Psychologist, 28 (3), pp.

265-277.

Pea, R. D. (1993b). Distributed Multimedia Learning Environments: The Collaborative

Visualisation Project, Communications of the ACM, 36, pp. 60-63.

Pearl, l (1993). Belief Networks Revisited. Artificial Intelligence, 59, pp. 49-56.

Pearl, l (1988a). On Probability Intervals. International Journal of Approximate Reasoning. 2,

pp.211-216.

Pearl, l (1988b). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference, (Second Edition), Morgan Kaufman, San Mateo.

Pennington, N. (1987). Stimulus Structures and Mental Representations in Expert Comprehension

of Computer Programs. Cognitive Psychology, 19, pp. 295-341.

Perez, A.G .. Benjamins, R.V. (1999). Applications of Ontologies and Problem-Solving Methods.

In AI Magazine, 20 (1), pp.119-122.

Perez. T.. Gutierrez. J. and Lopisteguy, P. (1995). An Adaptive Hypermedia System. Greer. 1.

(Es.) Proceedings of 1h World Conference on Artificial Intelligence in Education.

Washington, DC. pp. 351-358.

Perkins, D. N .. (1993). Person-Plus: A Distributed View of Thinking and Learning. In Salomon.

G. (Ed.) Distributed Cognitions: Psychological and Educational Considerations.

Cambridge Press. Cambridge University Press, pp. 88-111.

A Generic Architecture for Interactlw Intelligent Tutoring Systems T :\. Atolagbe

References ~18

Petre, M. (1995). Why Looking isn t always Seeing: Readership Skills and Graphical

Programming. Communications of the ACM, 38 (6), pp. 33-44.

Petrie, C.J. (1996). Agent Based Engineering, The Web, and Intelligence. IEEE Expert, 11 (6).

pp. 24- 29.

Piaget, 1. (1954). The Construction of Reality in the Child. Ballentine Books, New York.

Piaget, 1. (1970). The Science of Education and the Psychology of the Child. Grossman. New

York.

Piaget,1. (1972). The Principles of Genetic Epistemology. Basic Books, New York.

Pirolli, P. and Anderson, 1. (1985). The Role of Learning from Examples in the Acquisition of

Recursive Programming Skills. Canadian Journal of Psychology, 39, pp. 240-272.

Pirolli, P. L. and Greeno, 1. G. (1988). The Problem Space of Instructional Design. In Psotka, 1..

Massey, L. D. and Mutter, S. A. (Eds.), Intelligent Tutoring Systems: Lessons Learned,

Lawrence Erlbaum Associates Publishers, Hillsdale, NJ., pp. 181-201.

Pirolli, P., and Recker, M. (1994). Learning Strategies and Transfer III the Domain of

Programming. Cognition and Instruction, 12 (3), pp. 235-275.

Plaza, E., and L6pez de Mantaras, R. (1990). A Case-Based Apprentice that Learns from Fuzzy

Examples. Ras, Z., Zemankova, M., Emrich, M.L. (Eds.) Methodologies for Intelligent

System. 5, pp. 420-427.

Plaza, E. and Arcos J. L., (1993). Reflection and Analogy in Memory-based Learning,

Proceedings of Multistrategy Learning Workshop, pp. 42-49.

Ploetzner, R., and Fehse, E. (1998). Learning from Explanations: Extending one's own

Knowledge during Collaborative Problem Solving by Attempting to Understand

Explanations Received from Others. International Journal of Artificial Intelligence in

Education, 9(3-4), pp. 193-218.

Pod more , V.N. (1991). 4-Year-Olds, and 6-Year-Olds, and Microcomputers: A Study of

Perceptions and Social Behaviours. Journal of Applied Development Psychology, 12 (1),

pp. 87-101.

Pontecorvo, C. (1993). Developing Literacy Skills Through Co-operative Computer Use: Issues

for Learning and Instruction. Duffy. T.M., Lowyck, J., Jonassen, D.H. (Eds.) Designing

Environments for Constructive Learning. Springer-Verlag, Berlin, pp. 139-160.

Pree, W. 1995. Design Patterns for Object-Oriented Software Development. Addison-Wesley.

Reading. MA.

Preece 1.. Rogers, Y .. Sharp, H .. Benyon. D .. Holland, S., and Carey, T. (1994). Hllman-

Computer Interaction. Addison-Wesley. Reading, MA.

,\ Generic Architecture for Interacti,'e Intelligent Tutoring S~stems
T A Atolagbe

References ~19

Pressley, M., Wood, E., Woloshyn, V., Martin, V., King, A., and Menke, D. (1992). Encouraging

Mindful use of Prior Knowledge: Attempting to Construct Explanatory Answers Facilitates

Learning. Educational Psychologist, 27, pp. 91-109.

Puerta, A.R., Egar, 1.W., Tu, S.W., and Musen, M.A. (1992). A Multiple-Method Knowledge

Acquisition Shell for the Automatic generation of Knowledge-Acquisition Tools.

Knowledge Acquisition, 4 (2), pp.171-196.

Puppe, F. (1990). Systematic Introduction to Expert Systems. Springer-Verlag, Berlin.

Putnam, R. T., Lampert, M., and Peterson, P. L. (1990). Alternative Perspectives on Knowing

Mathematics in Elementary Schools. Cazden, C.B. (Ed.), Review of Research in Education.

American Educational Research Association, Washington, DC., pp. 57-150.

Py, D. (1989). MENTONIEZH: An Intelligent Tutoring System in Geometry. Bierman, D.,

Breuker, 1. and Sandberg, J. (Eds). Artificial intelligence in Education: Proceedings of the

fourth International Conference on Artificial Intelligence in Education, lOS Press,

Amsterdam, pp. 24-26.

Ramadhan, H. (2000). DISCOVER: An Intelligent System for Discovery Programming, Journal

of Cybernetics and Systems, 31 (1), pp 87-114.

Ramadhan, H. (1992). An Intelligent Discovery Programming System. Proceedings of ACM

Symposium on Applied Computing, Special Track on Visuality in Computing, pp. 526-532.

Rasmussen,1. (1986). Information Processing and Human-Machine Interaction. Elsevier Science

Publishing, New York.

Recker, M. M. and Pirolli, P. (1995). Modelling Individual Differences in Students' Learning

Strategies. The Journal of the Learning Sciences, 4 (1), pp.I-38.

Reigeluth, C. M., & Stein, R. (1983). Elaboration theory. In C. M. Reigeluth (Ed.), Instructional­

design theories and models: An overview of their current status. Hillsdale NJ: Erlbaum.

Reinhardt, B., and Schewe, S. (1995). A Shell for Intelligent Tutoring Systems. Greer, 1. (Ed),

Proceedings of International Conference on Artificial Intelligence in Education,

Association for the Advancement of Computing in Education, Charlottesville, V A, pp. 83-

90.

Rickel, J., and Johnson, W. L. (1999). Animated Agents for Procedural Training in Virtual

Reality: Perception, Cognition, and Motor Control. Applied Artificial Intelligence. 13, pp.

343-382.

Renkl. A., Stark, R., Gruber. H .. and Mandl, H. (1998). Learning from worked-out examples: the

effects of example variability and elicited self-explanation. Contemporary Educational

Psychology, 23. pp. 90-108.

A Generic Archill'cture for Interactive Intelligent Tutoring Systems
T A Atolagbc

References 220

Richter, A.M. and Weiss, S. (1991). Similarity, Uncertainty and Case-Based Reasoning in

PATDEX. Boyer, R.S. (Eds.), Automated Reasoning, Essays in Honour of Woody Bledsoe.

Kluwer, pp. 249-265.

Ritter, S. (1997). Communication, Cooperation, and Competition Among Multiple Tutor Agents.

In du Boulay, B. and Mizoguchi, R. (Eds.), Artificial Intelligence in Education, pp. 31-38.

Ritter, S. and Blessing, S. (1998). Authoring Tools for Component-Based Learning

Environments. Journal of the Learning Sciences, 7 (1), pp. 107-132.

Roschelle, J., DiGiano, C., Koutlis, M., Repenning, A., Phillips, J., Jackiw, N., and Suthers. D.

(1999). Developing Educational Software Components. lEEE Computer Society,

Piscataway, NJ., Computer, 32 (9), pp. 50-58.

Ritter, S. and Koedinger, K. R. (1997). An Architecture for Plug-in Tutoring Agents. Journal of

Artificial Intelligence in Education. Association for the Advancement of Computing in

Education, Charlottesville, VA, 7 (3/4), pp. 315-347.

Roschelle, J. and Kaput, J. (1996). Educational Software Architecture and Systemic Impact: The

Promise of Component Software, Journal of Educational Computing Research, 14 (3), pp.

217-228.

Roschelle, J., Kaput, J., Stroup, W. and Kahn, T.M. (1998). Scaleable Integration of Educational

Software: Exploring The Promise of Component Architectures. Journal of Interactive

Media in Education. <http://www-jime.open.ac.ukl98/6/>

Rowland, G. (1992). Problem Solving in Instructional Design. Duffy, T.M., and Jonassen, D.H.

(Eds.), Constructivism and the Technology of Instruction: A Conversation. Hillsdale, NJ:

Lawrence Erlbaum, pp. 45-55.

Rubtsov. V. (1993). Computer and Learning Activity. Psychological Foundations. Activity

Theory, 13/14, pp. 4-8.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W. (1991). Object-Oriented

Modelling and Design. Prentice Hall, Englewood Cliffs, NJ.

RusselL S. and Norvig, P. (1995). Artificial Intelligence: A Modem Approach. Prentice HalL

Englewood Cliffs, NJ.

Ryan, R. (1996). Self-Explanation and Adaptation. University of Pittsburgh, Pittsburgh.

Sacerdoti, E. (1977). A Structure for Plans and Behaviour. New York, Elsevier North-Holland.

Saljo, R. (1996). Mental and Physical Artifacts in Cognitive Practices. In Reimann, P. and Spada,

H. (Eds.). Learning in Humans and Machines. Towards an Interdisciplinary Leaming

Science, London, Pergamon, pp. 83-96.

Salomon, G .. and Perkins, D. N. (1998). Individual lmd Social Aspects of Learning. In Pearson,

P. D. and Iran-Nejad. A. (Eds.). Review of Research in Education. 23. pp. 1-24.

A (il!neric Architecture for Interactive Intdligent Tutoring Systems
T. A. Atolagbe

References
221

Schank, R.C. (1994). Tractor Factories and Research in Software Design. Communications of

ACM, 37, pp.19-21.

Schank, R. C. (1982). Dynamic Memory: A Theory of Learning in Computers and People.

Cambridge University Press, Cambridge, MA.

Schank, R. C., Fano, A., Bell, B., and Jona, M. (1994). The Design of Goal-Based Scenarios. The

Journal of the Learning Sciences, 3 (4), pp. 305-345.

Schank, R. C., and Jona, M. Y. (1991). Empowering the Student: New Perspectives on the Design

of Teaching Systems. The Journal of the Learning Sciences, 1 (1), pp. 7-35.

Schank, R. and Leake, D. (1989). Creativity and Learning in a Case-Based Explainer. Artificial

Intelligence, 40 (13), pp. 353-385.

Schaefer, B.A., Side, R.S., and Morrison, I.R. (1992) A Knowledge-Based Intelligent Tutoring

System: Training Spacecraft Operators, PC AI Magazine, 7, 20-25.

Scardamalia, M. and Bereiter, C. (1993). Computer-Support for Knowledge Building

Communities. Journal of the Learning Sciences, 3, pp. 265-283.

Scardamalia, M., and Bereiter, C. (1996). Adaptation and Understanding: A Case for new

Cultures of Schooling. In Vosniadou, S., Corte, E. De, Glaser, R. and Mandl, H. (Eds.),

International Perspectives on the Psychological Foundations of Technology-Based Learning

Environments. Mahwah, NJ: Lawrence Erlbaum. pp. 149-163.

Schoen, D. (1992). Designing as Reflective Conversation with the Materials of a Design

Situation. Knowledge-Based Systems,S (1), pp. 3-14.

Schoen, D. (1983). The Reflective Practitioner: How Professionals Think in Action. New York,

Basic Books.

Schofield, lW., Eurich-Fulcer, R. and Britt, C.L. (1994). Teachers, Computer Tutors, and

Teaching: The Artificially Intelligence Tutor as an Agent for Classroom Change. American

Education Research Journal, 31 (3), pp. 579-607.

Schwier, R.A. and Misanchuk, E. (1993). Interactive Multimedia Instruction. Educational

Technology Publications, Cliffs Englewood, Nl

Sebrechts, M. M., Marsh, R. L. and Furstenburg, C. T. (1990). Integrative Modelling: Changes in

Mental Models During Learning. Robertson, S. P., Zachary, W. and Black, J.B. (Eds.)

Cognition, Computing, and Co-operation. Ablex Publishing, Norwood, NJ, pp. 338-398.

Self. lA. (1999). The Defining Characteristics of Intelligent Tutoring Systems Research: ITSs

Care, Precisely. International Journal of Artificial Intelligence in Education. 10, pp.))0-

364.

Self. 1 A. (1994). Formal Approaches to Student Modelling. Greer. lE. ;.md McCalla. G.I..

(Eds.). Student Modelling: The Key to Individualised Knowledge Based Instruction.

Springer-Verlag, Berlin, pp. 295-352.

:\ Ueneric Architecture for Interactive Intelligent Tutoring Systems T A Atolagbe

References
222

Self, lA. (1992). Computational Mathematics: The Missing Link in Intelligent Tutoring Systems

Research, in Costa, E. (Eds.), New Directions for Intelligent Tutoring Systems. Springer­

Verlag, Berlin, pp. 295-352.

Self, l (1990a). Theoretical Foundations for Intelligent Tutoring Systems. Journal Artificial

Intelligence in Education, 1 (4), pp. 3-14.

Self, l A., (1990a). Bypassing the Intractable Problem of Student Modelling. Frasson, C.

and Gauthier G., (Eds.), Intelligent Tutoring Systems: At the Crossroads of Artificial

Intelligence and Education, Ablex Publishing, Norwood, NJ, pp. 107-123.

Self, J. A. (1989). The case for formalising student models (and intelligent tutoring systems

generally). In Bierman, Breuker, D., and Sandberg, J. (Eds.), Artificial Intelligence and

Education: Synthesis and Reflection, lOS, Springfield, VA, pp. 244.

Self, J. A. (Ed.). (1988). Artificial Intelligence and Human Learning: Intelligent Computer-Aided

Instruction. Chapman and Hall, London.

Sein, M. K. and Bostrom, R. P. (1989). Individual Differences and Conceptual Models III

Training Novice Users. Human Computer Interaction, 4, pp. 197-229.

Sellen A, Nicol A. (1990). Building User-Centred on-line Help. In The Art of Human-Computer

Interface Design, Laurel, B. (Ed.), Addison-Wesley, Reading, MA, pp.143-153.

Shaw, M. L. and Gaines, B. R. (1989). Comparing Conceptual Structures: Consensus, Conflict

Correspondence and Contrast. Knowledge Acquisition, 4 (1), pp. 341-364.

Shachter, R., Andersen, S., Szolovits, P. (1994). Global Conditioning for Probabilistic Inference

in Belief Networks. Proceedings of 1(jh Conference on Uncertainty in Artificial

Intelligence, Seattle WA. Lopez, R., de Mantaras and Poole, D. (Eds.), Morgan Kaufmann

Publishers, San Francisco, CA, pp. 514-522.

Shadbolt, N., Motta, E. and Rouge, A. (1993). Constructing Knowledge Based Systems. IEEE

Software, 10 (6), pp. 34-38.

Shaw, M., and Garlan, D. (1996). Software Architecture: Perspectives on an Emerging

Discipline, Prentice-Hall, Upper Saddle River. NJ.

Sheth, A. P., Larson, J. A., Cornelio, A. and Navathe, S. B. (1988). A Tool for Integrating

Conceptual Schemata and User Views. IEEE Data Engineering, IEEE Computer Society

Press, pp. 176-183.

Shiffrin, R.M. and W. Schneider. (1977). Controlled and Automatic Human Information

Processing: II. Perceptual Learning, Automatic Attending and a General Theory.

Psychological RevieH', 94. pp. 127-190.

Shortliffe, E.H. (1976). Computer-Based Medical Consultations: MYCIN. Elsevier Scienc~

Publishers. Amsterdam.

A Generic Architecture for Interactive Intelligent Tutoring Systems I .\ Atolagoc

References

Shneidennan, B. (998). Designing the User Interface, Third Edition. Addison-Wesley, Reading.

MA.

Shulman, L.S. (986). Those Who Understand: Knowledge Growth in Teaching. Education

Researcher. 15 (2), ppA-14.

Shute, V.1. (998). DNA - Uncorking the Bottleneck in Knowledge Elicitation and Organisation.

Proceedings of Intelligence Tutoring Systemsn Conference, San Antonio, TX, pp. 1'+6-155.

Shute, V. 1. (995). SMART: Student Modelling Approach for Responsive Tutoring. User

Modelling and User-Adapted Interaction, 5, pp. 1-44.

Shute, V. 1. (994). Learning Processes and Learning Outcomes. In Husen, T. and Postlethwaite.

T. N. (Eds.), International Encyclopedia of Education (20d
). Pergamon Press, New York.

pp. 3315-3325.

Shute, V. 1. (1993). A Macroadaptive Approach to Tutoring. Journal of Artificial Intelligence and

Education, 4 (1), pp. 61-93.

Shute, V. 1. and Gawlick-Grendell, L. A. (994). What does the Computer Contribute to

Learning? International Journal of Computers and Education, 23 (3), pp. 177-186.

Shute, V. 1., and Glaser, R. (990). A Large-Scale Evaluation of an Intelligent Discovery World:

Smithtown. Interactive Learning Environments, 1 (1), pp. 51-77.

Shute, V. 1. and Psotka, 1., (996). Intelligent Tutoring Systems: Past, Present, and Future. In

Jonassen, D. (Ed.), Handbook of Research for Educational Communications and

Technology, Macmillan, New York. NY., pp. 570-600.

Shute, V. 1., and Regian, W. (993). Principles for Evaluating Intelligent Tutoring Systems.

Journal of Artificial Intelligence in Education, 4 (2/3), pp. 245-272.

Skalak, C.B, and Rissland, E. (992). Arguments and Cases: An Inevitable Twining.

International Journal of Artificial Intelligence and Law, 1 0), pp.3-48.

Skinner. B.F. (953). Science and Human Behaviour. New York, Macmillan.

Siemer, 1., and Angelides, M.C., (1998). Towards an Intelligent Tutoring Architecture that

Supports Remedial Tutoring. Artificial Intelligence Review 12, pp. 469-511.

Siemer. 1.. S., Taylor, 1.E. and Elliman, T. (995). Intelligent Tutoring Systems for Simulation

Modelling in the Manufacturing Industry. International Journal of Manufacturing Systems

Design. 2 (3), pp.165-175.

Silverman, B.G. (1992). Critiquing Human Error - A Knowledge Based Human-Computer

Collaboration Approach. Academic Press, London.

Sim. I., and G. Rennels (1995). Developing A Clinical Trial Ontology: Comments on Domain

Modelling and Ontological Reuse. Knowledge Systems Laboratory Medical. COmpllfl'r

Scicllce, pp.95-60.

------ --------------------------------
A GL'neric :\rchllL'cture for Interactiw Intelligent Tutoring Systems T A. Atolagbe

References 22.+

Sime, J. A. and Leitch, R.R. (1993). A Specification Methodology for Intelligent Training

Systems, Computers in Education, 20, pp. 73-80.

Sleeman, D., Hirsh, H., Ellery, I., and Kim, I. (1990). Extending Domain Theories: Two Case

Studies In student Modelling. Machine Learning, 5, pp. 11-37.

Sleeman, D. and Brown, J. S. (1982). Intelligent Tutoring Systems. Academic Press, New York.

Smith, J. P., diSessa, A. A., and Roschelle, J. (1993). Misconceptions Reconceived: A

Constructivist Analysis of Knowledge in Transition. The Journal of the Learning Sciences,

2 (2), pp. 15-164.

Soloway, E. and Ehrlich, K. (1984). Empirical studies of Programming Knowledge. IEEE

Transactions on Software Engineering, 10 (5), pp.595-609.

Soloway, E., Guzdial, M., Brade, K., Hohmann, L., Tabak, I., Weingrad, P. and Blumenfeld, P.

(1991). Technical Support for the Learning and Doing of Design. Jones, M. and Winne,

P.H. (Eds), Adaptive Learning Environments: Foundations and Frontiers, Springer-Verlag,

Berlin, pp. 173-200.

Sommerville, I. (1996). Software Engineering. Fourth Edition, Addison-Wesley. Reading, MA.

Sparks, R. Dooley, S., Meiskey, L. and Blumenthal, R. (1999). The LEAP Authoring Tool:

Supporting Complex Courseware Authoring Through Reuse, Rapid Prototyping, and

Interactive Visualizations. International Journal of Artificial Intelligence in Education, 10

(1), pp. 75-97.

Specht, M., Weber, G., Heitmeyer, S. and Schoch, V. (1997). AST: Adaptive WWW-Courseware

for Statistics. In Brusilovsky, P., Fink. J., and Kay, J. (Eds.) Proceedings of 6
th

International Conference on Adaptive Systems and User Modeling on the World Wide Web,

Chia Laguna, Sardinia, Italy, pp. 91-95.

Stead, W. W., Miller, R. A.,. Musen, M. A and Hersh. W. R. (2000). Integration and Beyond:

Linking Information from Disparate Sources and into Workflow. Journal of the American

Medical Informatics Association, 7 (2), pp. 135-145.

Spewak, S. (1992). Enterprise Architecture Planning. John Wiley, New York.

Steels, L. (1993). The Componential Framework and its Role in Reusability. In David, 1. M.,

Krivine, J.P., and Simmons, R. (Eds.), Second Generation Expert Systems, Spinger-Verlag,

Berlin, pp. 273-298.

Steels, L. (1992). Reusability and Knowledge Sharing. In Steels, L. and Lepape, B. (Eds.),

Enhancing the Knowledge Engineering Process: Contributions from ESPRIT, Elsevier.

Amsterdam, pp. 240-271.

Steels, L. (1990). Components of Expertise, AI Magazine. 11, pp. 30-49.

Stepanov, A. and Lee, M. (1995). The Standard Template Library.

http://www.cs.rpi.edul-musser/doc.ps.

A (icneric Architecture for Interactive Intelligent Tutoring Systems T:\ Atolagbe

References

Stem, M., Woolf, B. P., and Kuroso, J. (1997). Intelligence on the Web? In Boulay, B. d. and

Mizoguchi, R. (Eds.) Proceedings of gh World on Artificial Intelligence in Education:

Knowledge and Media in Learning Systems, Kobe, Japan, Amsterdam, lOS, pp. 490--+97.

Stuart K. Card, Jock Mackinlay, and Ben Shneiderman. (1998). Readings in Information

Visualisation - Using Vision to Think. Morgan Kaufmann, Palo Alto, CA.

Strube, G. (1991). The Role of Cognitive Science in Knowledge Engineering. Schmalhofer, F..

and Strube, G. (Eds.), Proceedings of First joint Workshop on Contemporary Knowledge

Engineering and Cognition. Springer-Verlag, Berlin, pp. 161-174.

Studer, R., Benjamins, V.R., and Fensel, D. (1998). Knowledge Engineering,Principles and

Methods. In Data and Knowledge Engineering 25 (1-2), pp. 161-197.

Studer, R., Fensel, D., Decker, S. and Benjamins, V.R. (1999). Knowledge Engineering: Survey

and Future Directions. In Puppe, F. (Ed.), Knowledge-Based Systems: Survey and Future

Directions, Proceedings of the Fifth Conference on Knowledge-based Systems, Lecture

Notes in Artificial Intelligence, Wuerzburg, Springer-Verlag, Berlin. pp. 1-23.

Sun Microsystems. (1999). Java Look and Feel Guidelines. Addison-Wesley, Reading, MA.

Suthers, D. and Jones, D. (1997). An Architecture for Intelligent Collaborative Educational

Systems. In Boulay, B. d. and Mizoguchi, R. (Eds.), Proceedings of Artificial Intelligence

in Education: Knowledge and Media in Learning Systems, Kobe, Japan, Amsterdam. lOS,

pp.55-62.

Sweller,1. (1989). Cognitive technology: Some Procedures for Facilitating Learning and Problem

Solving in Mathematics and Science. Journal of Educational Psychology, 81 (4),457-466.

Sycara, K. (1988). Using Case-based Reasoning for Plan Adaptation and Repair. In Kolodner, 1.

(Ed.), Proceedings Case-Based Reasoning Workshop, DARPA, Morgan Kaufmann, Pal

Alto, pp. 425-434.

Szyperski, C. (1997). Component Software - Beyond Object-Oriented Software. Adison-Wesley.

Reading, MA.

Tambe, M. (1997). Towards Flexible Teamwork. Journal of Artificial Intelligence Research, 7,

pp. 83-124.

Taylor, R. N., Medvidovic, N .. Anderson, K., Whitehead, Jr., E. J., Robbins, J. E., Nies, K. A.,

Oreizy, P .. and Dubrow. D. L. (1996). A Component and Message Based Architectural

Style for GUI Software. IEEE Transaction Software Engineering. 22 (6), pp.390-406.

Tessmer, M. (1993). Planning and Conducting Formative Evaluations. London. Kogan Page.

Thorndike, E. (1932). The Fundamentals of Learning. Teachers College Press.

Tobin, K. G. (1993). The Practice of Constructivism in Science Education. American Associate

for the Advancement of Science Washington, D. C.

:\ Generic Architecture for Interactive Intelligent Tutoring Systems T. A Atolagbc

References
226

Top J., and Akkermans, H. (1994). Tasks and Ontologies in Engineering Modelling, International

Journal of Human-Computer Studies, 41, pp. 585 - 617.

Towne, D.M. (1997). Approximate Reasoning Techniques for Intelligent Diagnostic Instruction.

International Journal of Artificial Intelligence in Education. 8, (3-4), pp. 262-283.

Tu, S. W., Eriksson, H., Gennari, J. H., Shahar, Y., and Musen, M. A. (1995). Ontology-Based

Configuration of Problem Solving Methods and Generation of Knowledge; Acquisition

Tools: Applications of PROTEGE-II to Protocol Based Decision Support. Artificial

Intelligence in Medicine, 7, pp. 257-289.

Tulving, E. (1977). Episodic and Semantic Memory. Tulving. E., and Donaldson. W. (Eds.)

Organisation of Memory. Academic Press, Boston, MA, pp. 381-403.

Twidale, M., Pengelly, M., Chanier, T., and Self, J. (1992). Experiments on Knowledge

Acquisition for Leamer Modelling. Cerri, S.A. and Whiting, J. (Eds.) Learning Technology

in the European Communities, Kluwer, Dordrecht, pp. 355-368.

van Heijst, G., Schreiber, A.T., and Wielinga, BJ. (1997). Using Explicit Ontologies in

Knowledge Based Development, International Journal of Human and Computer Studies,

46, pp. 293-310.

VanLehn, K. (1999). Rule-Learning Events in the Acquisition of a Complex Skill: An Evaluation

of Cascade. The Journal of the Learning Sciences, 8 (1), pp. 71-125.

VanLehn, K. (1996a). Conceptual and Meta Learning During Coached Problem Solving. In

Frasson, C., Gauthier, G., and Lesgold, A. (Eds.), Proceedings of the Third International

Conference on Intelligent Tutoring Systems, Springer-Verlag, New York. pp. 29-47.

VanLehn, K. (1996b). Cognitive Skill Acquisition. In Spence, J., Darly, J., and Foss, D. J. (Eds.),

Annual Review of Psychology, Palo Alto, CA., 47, pp. 513-539.

VanLehn, K., and Jones, R. M. (1993). Learning by Explaining Examples to Oneself: A

Computational Model. In Chipman, S. and Meyrowitz, A. (Eds.), Cognitive Models of

Complex Learning Kluwer Academic Publishers, Boston, MA, pp. 25-82.

VanLehn, K., Jones, R. M., and Chi, M. T. H. (1992). A Model of the Self Explanation Effect.

The Journal of the Learning Sciences, 2 (1), pp. 1-59.

VanLehn. K. (1991). Rule Acquisition Events in the Discovery of Problem-Solving Strategies.

Cognitive Science, 15, pp. 1-47.

VanLehn, K. (1988). Student Modelling. In Polson, M. (Ed.), Foundations of Intelligent Tutoring

Systems. Lawrence Erlbaum, Hillsdale, NJ, pp. 55-78.

Van Marcke, K. (1998). GTE: An Epistemological Approach to Instructional Modelling.

Instructional Science, 26, pp. 147-191.

~-----~---

A Generic Architl'cturl' for InteractIve Intelligent Tutoring Systems T.-'\ Atolagbc

References

Van Marcke, K. (1992). Instructional Expertise. In Frasson, C., Gauthier, G., and McCalla, G.I.

(Eds.) Proceedings of Intelligent Tutoring Systems. Springer-Verlag, New York, pp. 234-

243.

Van Merrienboer, J. and Krammer, H. (1992). A Descriptive Model of Instructional Progresses in

Interactive learning Environments for Elementary Computer Programming. In Dijkstra, S.,

Krammer, H. and Van Merrienboer, J. (Eds.), Instructional Models in Computer-Based

Learning Environments, Spring-Verlag, Berlin, pp. 213-228.

Vassileva, J., (1997). A New View of Interactive Human-Computer Environments. In Anthony

Jameson, Cecile Paris, and Carlo Tasso (Eds.) User Modelling, Proceedings of the Sir:th

International Conference, on User Modelling. Vienna, New York, Springer Wien New

York, pp. 433-435.

Villano, M. (1992). Probabilistic Student Models: Bayesian Belief Networks and Knowledge

Space Theory. In Proceedings of the Second International Conference on Intelligent

Tutoring Systems, Springer-Verlag, Berlin, pp. 491-498.

Visser, W. (1990). More or Less Following a Plan During Design: Opportunistic Deviations in

Specification. International Journal of Man-Machine Studies, pp. 247-278.

Vonk, K. (1993). Mentoring the Beginning Teacher. Mento ring , 1 (1). pp. 31-41.

Voss, J., Wiley, J., and Carretero, M. (1995). Acquiring Intellectual Skills. Annual Review of

Psychology, 46, pp. 155-181.

Vygotsky, L. (1978). Mind in Society: The Development of Higher Psychological Processes.

Harvard University Press, Cambridge, MA.

Wadsworth, B.J. (1971). Piaget's Theory of Cognitive Development. Longman, New York.

Walther, E., Eriksson, H., and Musen, M.A. (1992). Plug and Play: Construction of Task Specific

Expert System Shells Using Sharable Context Ontologies. Proceedings of AAAI Workshop

on Knowledge Representation Aspects of Knowledge Acquisition, San Jose, CA, pp.191-

198.

Wasson. B. (1996). Instructional Planning and Contemporary Theories of Learning: Is this a Self­

Contradiction? In Bma, P., Paiva A. and Self, J. (Eds.) Proceedings of the_European

Conference on Artificial Intelligence in Education, Lisbon: Colibri, pp. 23-30.

Wasson, B. (1992). PEPE: A Computational Framework for a Content Planner. In Dijkstra, S.A.,

Krammer, H.P.M and van Merrienboer, J.J.G. (Eds.), Instructional Models in Computer­

Based Learning Environments. Sringer-Verlag, New York, 104, pp. 153-170.

Waterworth, J.A. (1992). Multimedia Interaction with Computers: Human Factors Issues. Ellis

Horwood, Chichester, Sussex.

Webb, N. (1982). Student Interaction and Learning in Small Group. RevieH' of Educational

Research, 52. pp. 421- 445.

~----. --
A GenCrIL' Architecture for Interac!I\c Intelligent Tutoring Systems T A Ato\agbe

References
~~8

Weber, G and Sprecht, M. (1997). User Modelling and Adaptive Navigation Support in WW\V _

Based Tutoring Systems. In Jameson, A., Paris, C. and Tasso, C. (Eels.), In Proceedings of

the Sixth International Conference on User Modelling User Modelling, Vienna, Sprinter

Wien, New York, pp. 289-300.

Wedman, l, and Tessmer, M. (1993). Instructional Designers' Decisions and Priorities: A Sur\'ey

of Design Practice. Performance Improvement Quarterly, 6 (2), 43-57.

Weld, D. S. (1994). An Introduction to Least Commitment Planning. AI Magazine, 15 (4), pp.27-

61.

Wenger, E. (1987). Artificial Intelligence and Tutoring Systems. Morgan Kaufmann, Los Altos,

CA.

White, B. Y. and Frederiksen, l (1985). QUEST: Qualitative Understanding of Electrical

Troubleshooting, ACM SIGART Newsletter, 93, pp. 34-37.

Wielinga, B. land Breuker, l A. (1990). Models of Expertise. International Journal of

Intelligent Systems, 5, pp. 497 - 509.

Wielinga, B., Sandberg, l and Schreiber, G. (1997). Methods and Techniques for Knowledge

Management: What has Knowledge Engineering to offer, Expert Systems with

Applications, 13 (1), pp. 73-84.

Wielinga, B. l, Schreiber, A. Th., and Breuker, A. (1992). KADS: A Modelling Approach to

Knowledge Acquisition. Knowledge Acquisition, 4 (1), pp. 5-54.

Wielinga, BJ., Van de Velde, W., Schreiber, A.T., and Akkermans, lM. (1993). Towards a

Unification of Knowledge Modelling Approaches. David, J.M., Krivine, lP. and Simmons,

R. (Eds.). Second Generation Expert Systems, Springer-Verlag, Berlin, pp. 299-335.

Willis, J. (1995). A Recursive, Reflective Instructional Design Model Based on Constructivist­

Interpretivist Theory. Educational Technology, 35 (6), pp. 5-23.

Wilson, B., and Cole, P. (1992). A Critical Review of Elaboration Theory. Educational

Technology Research and Development, 40 (3), pp. 63-79.

Winkels, R., J. Sandberg, and l Breuker. (1990). The Coach. Developing Intelligent Help

Systems, Breuker, l (Ed.), Copenhagen, EC, pp. 119-146.

Woolf. B. (1992). Building knowledge Based Tutors. In Tomek, I. (Ed.), Proceedings of the

Fourth International Conference on Computer Assisted Learning, Wolfville. NS, pp. 46-60.

Woolf, B. P. (1988). Intelligent Tutoring Systems: A Survey. In Schrobe, H. (Ed.), Exploring

Artificial Intelligence, Morgan Kaufmann, Palo Alto, CA, pp. 1-4·t

Woolf, B. and Cunningham, P. A. (1987). Multiple Knowledge Sources in Intelligent Tutoring

Systems. IEEE Expert. 2 (2), pp. 41-54.

Woolf, B., and Hall. W. (1995). Multimedia Pedagogues - Interactive Systems for Teaching and

Learning. IEEE Computers, pp.74-80.

A Generic Architecture for Interacti\'l~ Intelligent Tutoring Systems T A A\olagbe

References 229

Woolf, B. and McDonald, D. D. (1984). Building a Computer Tutor: Design Issues, Computer.

17 (9), pp. 60-73.

Wong, W.K. and Chan, T.W. (1997). A Multimedia Authoring System for Crafting Topic

Hierarchy, Learning Strategies, and Intelligent Models. International Journal of Artificial

Intelligence in Education, 8, (1), pp. 71-96.

World Wide Web Consortium (W3C), (1998). Extensible Markup Language (XML) 1.1.

Available from http://www.w3.org.

World Wide Web Consortium (W3C), (1998). Precision Graphics Mark-up Language (PGML).

Available from http://www.w3.org.

World Wide Web Consortium (W3C) (1999). Scalable Vector Graphics (SVG) 1.0 Specification:

Available from http://www.w3.org.

Yang, Q. (1997). Intelligent Planning: A Decomposition and Abstraction Based Approach.

Artificial Intelligent. Springer Verlag, Berlin, pp. 163-188.

Yazdani, M. (1987). Intelligent Tutoring Systems: An Overview, In Artificial Intelligence and

Education. Laeler, R. and Yazdani, M. (Eds.), Ablex Publishing, Norwood, pp. 182-201.

Yazdani, M. and Lawler, R. W. (1986). Artificial Intelligence and Education: An Overview.

Instructional Science. 14, pp. 197-206.

Young, R. M. (1983). Surrogates and Mappings: Two Kinds of Conceptual Models for Interacti ve

Devices. Genter, D., and Stevens, A. (Eds.) Mental Models. Lawrence Erlbaum, Hillsdale.

NJ., pp. 35-52.

Zeigler, B. P. (1991). Object-Oriented Modelling and Discrete-Event Simulation. Advances in

Computers, 33, pp. 67-114.

Zsambok, C.E., and Klein, G. A. (1997). Naturalistic Decision Making. Lawrence Erlbaum.

Mahwah, NJ.

:\ Generic Architecture for Interacti\L' Intelligent Tutoring Systems
I A Atolagbc

Appendices 230

APPENDICES

:\ Generic Architecture for Interactive Intelligent Tutoring Systems

Appendix A: Background Research Materials
231

APPENDIX A

BACKGROUND RESEARCH MATERIALS

A1.0 Instructional Theories

The use of "intelligent machines" for education was started by Pressey (1926) to develop an

instructional machine with multiple-choice questions and answers. The system delivered

questions and then provided immediate feedback to each learner. The problem with this

"machine" is that it was not adaptive to the needs of the user because of the ways that knowledge

was represented.

Educational psychology began to develop learning processes and models in the 1950s. The

pioneering work postulates a cognitive development approach (Bloom, 1956), (Carroll, 1963).

Cognitive development takes place by either assimilating a new learning relationship directly into

the present schema by extending it to subsume the new relationship or by creating a new schema

(Piaget, 1971). This was followed by those that conceptualised learning as the process of

reinforcement of stimulus-response connection (Skinner, 1957), (Glaser, 1976), i.e., changes in

behaviour are the result of learners' response to events (stimuli) that occur in the environment.

These pioneering programmes were not flexible and they were not adaptable to any domain.

"Authoring languages" development started in the early 1970s to allow non-programmers to

develop computer-assisted learning programmes. Use of artificial intelligence (AI) techniques

subsequently followed this period. Artificial intelligence techniques involve the use of models of

human cognition and intelligent tools. ITS are developed by combining both components within a

domain. Research in ITS began as an attempt to provide solutions to the shortcomings of the

computer-based learning programmes. Developing an ITS is usually knowledge intensive and

requires that the developer must to be an expert in that domain discipline (e.g., simulation

modelling or biology).

Computer-based training (CBT) and computer-aided instruction (CAl) were the first such systems

deployed as an attempt to teach using computers. Although both CBT and CAl may be somewhat

effective for educational use, they do not provide the same kind of individualised attention that a

:\ (;em'ric Architecture for Inll'ractivc Intelligent Tutoring Systems

Appendix A: Background Research Materials
23~

student would receive from a human tutor (Bloom, 1984). For a computer-based educational

system to provide such attention, it must reason with the domain and the learner. This has

prompted research in the field of ITS. ITS offer considerable flexibility in presentation of

material and a greater ability to respond to idiosyncratic student needs.

A1.1 Theory of Instruction

Theories of instruction can be broadly classified into three categories:

1. Behavioural and Associationist theories of learning focus on drives, responses, stimuli and

rewards. Drives and stimuli impel animals to generate responses and rewards, and causes

certain stimulus-response connections to be strengthened. Despite the seemingly low-level

nature of behavioural theories of learning, some quite sophisticated high-level theories of

learning are based on behavioural foundations. Landmark works include those by Anderson

(1987), Skinner (1957) and Gagne (1956).

11. Cognitive theories of learning focus on knowledge representation and epistemology, as well

as human information processing and problem-solving strategies. Of primary importance is

understanding the knowledge structures and processes that underlie competent performance

on particular tasks in some domain, the initial knowledge state of a learner, and the

processes by which a learner is transformed from novice to expert (Eliot and Woolf, 1995).

Predicted misconceptions and errors are used to evaluate the plausibility of competing

theories.

lll. Meta-cognitive theories of learning focus on the cognitive processes that allow learners to

self-monitor and self-regulate their thinking. This group, in particular, emphasises the

important role that social (social cognition) and environmental interactions (situated

cognition) play in fostering the development of thinking and learning skills. Constructivism

(McLellan, 1996), active learning, apprenticeship, communities of practice, and portfolio­

based assessment are key concepts in the full range of meta-cognitive theories of learning.

The most dominant and long-lasting approach for the delivery of an instructional system is to

conceptualise learning as the process of reinforcement of stimulus-response associations.

Thorndike's (1882), study of animal intelligence is a landmark in the literature of psychology and

learning. He proposed that training was a result of gradual strengthening of associations between a

stimulus (S) and a response (R). Thorndike proposed the law of effect, which states that "responses

having favourable consequences will be learned".

A Uenenc Architecture for Interactive Intelligent Tutoring Systems T A. Atolagbc

Appendix A: Background Research Materials 233

Brown (1990), Anderson (1992), Corbett and Anderson (1990) have explained how current

instructional theories and architectures in ITS have impacted learning theories, and their

environment. Brown (1990) makes the distinction between explicit cognition (practice) and

implicit cognition (theories), and differentiates between the ways that students learn in school (by

using formal reasoning and abstraction) and outside school (by experience, demonstration,

problem solving in practical situations). The analogy is extended further to everyday cognition

(typically those types of processes in which one would engage in the course of ordinary living)

and expert cognition (the ability to abstract problems in order to solve them). These theories are

currently being used as the basis for the design of ITS. Cognitive theories involve the behaviour

of the student during instruction, their problem-solving methods, support shared conversations

and investigations; allow issues and problems to emerge from the investigative activities and

allow the reflective process of human mental modelling in problem solving (Brown. 1990).

Brown's assertion that theories of learning and ITS design are related is supported by Anderson

(1990), who believes that there is considerable research in cognitive psychology that can be used

as a guide to the development of ITS. He states that the success of an ITS can depend on its

ability to achieve "task decomposition", a process of simplifying learning, and the monitoring of a

student's belief by generating production rules (task analysis) for a restricted knowledge domain.

Piaget (1970) is best known for his work on elucidating the early stages of childhood

development. Discrete stages of competency fits well with the cognitive learning theories notions

of novice/expert differences in representation and reasoning capabilities. His view of a child as a

scientist, trying to make sense of the world and actively constructing knowledge, as opposed to

simply memorising it, is an extreme departure from typical behavioural theories.

Instructional theories are essential in the design of ITS. These theories help to understand the

learning processes and help in the design of effective instruction. One of the most important

features of a CAl program is its interactivity, and the computer is used as the vehicle through

which certain teaching techniques may be used and enhanced. ITS programs are knowledge

centred as they are based on a well-defined model, and ITS developers are interested in a set of

instructional principles general enough to apply to a variety of teaching domains. Thus, ITSs have

developed from instructional theories, and research in this field helps understand the relationship

between the leamer, the content and the instructional strategies.

A Generic Architecture for Interactive Intelligent Tutoring Systems T A. Atolagbe

Appendix A: Background Research Materials
234

The ACT (Adaptive Control of Thought) and the ACT-R theory of learning and problem solving

is concerned primarily with the acquisition of cognitive skills (Anderson, 1983), (Anderson.

1993). This theory provides a distinction between procedural, and declarative knowledge.

Declarative knowledge is knowledge that is factual in nature, and can be made explicit, whereas

procedural knowledge is knowledge about how to accomplish some task, such as driving a car or

troubleshooting a circuit (Patrick, 1992). Basically, Anderson's theory states that skill acquisition

occurs when declarative knowledge is converted, or compiled to procedural knowledge

(productions) through practice, and gradually proceeds to procedural knowledge before it is

internalised. Declarative knowledge about the task may take the form of basic facts about the

domain, simple procedures, or specific procedures. Procedural knowledge is acquired by making

inferences to already acquired domain facts or procedures and practice (Anderson, 1987).

The second step of the skill acquisition process, is knowledge compilation, which involves

compilation and proceduralisation. Compilation is the classification of a sequence of productions

into a single production that has the same effect as the sequence (chunking). Proceduralisation is

the instantiation of variables in a production, to essentially create a more specialised production,

thereby eliminating retrieval from long-term memory retrieval (Anderson,1988). The

proceduralisation process is analogous to Shiffrin' s automatisation process (Shiffrin, 1977),

whereby the performance of skills is learned in an automatic fashion, eliminating the cognitive

load required for performing the skill. Once the declarative knowledge has been converted to

procedural knowledge, it is further refined in the third stage of skill acquisition: tuning. The

tuning stage of skill acquisition consists of three phases: generalisation, discrimination, and

strengthening.

Generalisation is essentially the process of replacing bound facts in a production with variables to

broaden the production's scope of applicability. For example, this can have the effect of

eliminating productions when two or more productions have identical consequence and the

generalisation process results in the productions having matching antecedents. Discrimination is

the addition of antecedents to a production, which has the effect of narrowing the scope of the

production. Finally, strengthening is the process whereby competing productions are weighted

based upon feedback as to their applicability (reliability). Anderson theorises that positive

feedback is a more gradual process than negative feedback; in other words. a production gets

slowly promoted over time as it proves correct, whereas a production will be quickly demoted if

it proves incorrect. Anderson's theory has been successfully applied to other ITS (Fink, 1990).

(Wenger. 1990). (Anderson et aI.. 1987).

A Generic Architecture for Interactive Intelligent Tutoring Systems T A. Atolagbe

Appendix A: Background Research Materials ~35

It can be inferred that many instructional theories that can be considered too simplistic to apply to

the broad scope of "education" can be adapted to the more limited scope of "Instruction" quite

well. This section describes some of the theories used and adapted for this research.

Gagne (1988) postulates that learning tasks for intellectual skills can be organised in a hierarchy

according to complexity: stimulus recognition, response generation, procedure following, use of

terminology, discriminations, concept formation, rule application and problem solving. The

primary significance of the hierarchy is to identify prerequisites that should be completed to

facilitate learning at each level. Prerequisites are identified by doing a task analysis of a

learning/training task or by transforming a pedagogical hierarchy into a task classification

structure. The task classification structure provides a basis for the sequencing of instruction.

According to Gagne, the best method for facilitating learning in this range is practice with

feedback, and suggestive information on how to make a proper response (Patrick, 1992). A

second aspect of Gagne's theory are his nine instructional events (Gagne, 1985), and

corresponding cognitive processes, which can serve as a general purpose pedagogical structure

for presenting information to the student: (i) Gaining attention (reception), (ii) Informing learners

of the objective (expectancy), (iii) Stimulating the recall of prior learning (retrieval), (iv)

Presenting the stimulus (selective perception), (v) Providing "learning guidance" (semantic

encoding), (vi) Eliciting performance (responding), (vii) Providing feedback (reinforcement),

(viii) Assessing performance (retrieval), and (ix) Enhancing retention and transfer

(generalisation) .

These events should satisfy or provide the necessary conditions for learning and serve as the basis

for designing instruction and selecting appropriate media (Gagne et al.. 1992). To design

instruction using the Gagne and Briggs model of instructional design requires that learning

outcome are categorised and instructional events organised for each kind of learning outcome.

Merrill's Component Display Theory (CDT), (Merrill, 1983), (Merrill, 1996) is based on the

same assumptions as Gagne's theory that different classes of learning outcomes require different

procedures for teaching and assessment. CDT is concerned with teaching individual concepts or

principles, classifies objectives on two dimensions and formats instruction to provide learner

control.

Using this framework of knowledge, Merrill postulates four different types of training material

presentation strategies: (i) Expository general (telling a rule), (ii) Expository instance (telling an

A Generic Architecture for Interactive Intelligent Tutoring Systems T A. AtoIagbe

Appendix A: Background Research Materials
'136

example), (iii) Inquisitor general (asking about a rule), and (iv) Inquisitor instance (asking about

an example).

Thus, a complete lesson would consist of an objective followed by some combination of rules.

examples, recall, practice, feedback, helps and mnemonics appropriate to the subject matter and

learning task. Indeed, the theory suggests that for a given objective and learner, there is a unique

combination of presentation forms that results in the most effective learning experience. Both the

knowledge framework and presentation strategies are used in the instructional design strategies

for this research. The specific details of how these theories are applied are discussed in Section

2.3.

A1.2 Cognitive Bases of Instruction

Instruction is generally affected by theoretical models in the philosophy of science describing

how scientific research advances scientific knowledge and models in psychology and

epistemology describing human learning processes. For example, Kuhn's (1966) philosophy of

science and Piaget's theory (1970) of cognitive development have been drawn by various

researchers and used by some as a basis for curricular development. Because these fields both

deal with human knowledge acquisition, their related ideas and similarities in their taxonomies,

are often used for the purposes of designing "a philosophically more valid science curriculum"

(Hodson, 1988), or a "generative learning model" (Osborne and Wittrock, 1985).

However, in its attempt to offer a solution to instructional design problems, the systems approach

generated a set of its own problems and accompanying critics. Ironically, models based on

information processing theory and systems theory are now called "traditional" design models.

Jonassen (1991) criticises systematic models as a "top-down" behaviourist and subject-matter­

expert approach to education. Instead, he champions constructivist instructional approaches

(Jonassen, 1994). Wedman and Tessmer (1993) comment that systematic models are too linear

and time-consuming to be practical in the "real world" and Rowland (1992) states that systematic

models do not reflect the ways that instructional design experts really work when designing

learning materials.

From the learner's point of view, the weakness of the systems approach for instructional design

becomes apparent: learning may not always be linear. It may require the learner to spontaneously

adopt a different approach for learning the task at hand. Some critics complain that linear

A Generic Architecture for Interactivc Intelligent Tutoring Systems T A. Alolagbc

Appendix A: Background Research Materials
237

instruction is often boring and lacks creativity although proponents try to refute that charge (Dick.

1995).

From the developer's point of view, instructional design cannot always be based on careful and

logical decomposition of the knowledge and skills to be learned (Carroll. 1992). "One size fits

all" does not work successfully for instructional purposes. Development does not occur in a linear

fashion; some steps require several visits and some may follow a different order or be completely

eliminated. Too many instructional objectives with too much detail may be counterproductive.

especially if they are created early in the development process (Willis, 1995).

Piaget's theory of genetic epistemology (Wadsworth, 1971), (Piaget, 1972) describes the

constraints upon the development of knowledge in terms of cognition and cognitive development.

This theory played a large role in the critique of Skinner's (Skinner, 1968) behaviourism in

favour of cognition as the operating paradigm for instructional development.

Piaget's model describes the mind as organising internalised regularities (operations) into

dynamic cognitive structures known as schema, which represent the relationships between

perceived environmental regularities (concepts). According to Piaget, cognitive development can

proceed in one of two ways; either by assimilating a new relationship directly into the present

schema by extending it to subsume the new relationship "simple growth" (Wadsworth, 1971), or

by creating a new schema (or changing the structure of the original schema to create a different

schema) by accommodation. Assimilation is said to reflect a quantitative change in mental

structure (growth) whereas accommodation reflects a qualitative one (development). The balance

between accommodation and assimilation is known as "equilibrium". Assimilation and

accommodation are important factors for instructional design and account for all cognitive growth

and development, and therefore shape human learning.

Vygotsky (1978) introduced the notion of a zone of proximal development in which a learner

could interact effectively with a facilitator to acquire new competencies. The zone of proximal

development refers to the zone between the things one can already do and the things it would be

foolhardy to attempt. The middle range are those things that one can reasonably hope to master

either on our own, with the right tools or cognitive artefacts, or with the right facilitators. Much of

the work in situated cognition has its roots in this work.

Despite the large number of innovative ideas expressed in the classic works of these scholars.

behavioural theories of learning to date have had the largest impact on the practice of education

A (;cnefll: Architecture for Interactive Intelligent Tutoring SYSlL'ms T. A. Atolagbe

Appendix A: Background Research Materials 238

and instruction. The current development paradigm is in the direction of the cognitive and meta­

cognitive camps.

Skinner (1953) applied his ideas of "operand conditioning" to classroom teaching. This approach has

quickly been adapted for the technique of programmed text to employee training, including some

sophisticated methods of computer-assisted instructions (Orione and Rummler. 1987). Because

recognising positive reinforcement is central to learning, an instructional system must incorporate

these principles at an early stage in courseware development.

There is a growing emphasis on the cognitive load of the learner and the mental processes, including

attention, memory, language, reasoning and problem solving. As Howell and Cooke (1989)

observed, the changes in technology have increased the demands on the learner who now, instead of

performing simple procedural and predictable tasks, must become responsible for inferences,

diagnosis, judgements and decision making often under severe time pressure.

Bruner (1961) defines one of the most coherent and consistent cognitive descriptions of learning. It

sees learning not merely as a passive unit elicited by stimulus and strengthened or weakened by

reinforcement, but as an active process in which the learner infers principles and rules and then tests

them out. Learning is something they themselves make happen by the manner in which they handle

incoming information and put them into use. Bruner helped popularise the notion of alternative

modes of representation (actions, pictures, and symbols) tied to developmental stages.

Representing knowledge in all three modes supports deeper understanding of materiaL such that

problem solving could be done efficiently in the most appropriate mode and difficulties occurring

in one mode could be overcome by falling back to a more fundamental mode. Bruner (1961.

1990) has expanded his theoretical framework to encompass the social and cultural aspects of

instruction.

Bruner and Anglian (1973), suggested that three important variables are important for learning to

take place - the learner, the knowledge to be learned, and the learning process. These variables

provide ways of arranging tasks in relation to practical aspects of learning. For learning to take place.

the tasks involved must be associated and structured so that the student can easily grasp them.

Keeler (1974) produced a student-centred teaching program, which was based on behavioural

principles, and suggested that the material be taught in units. It also suggested that tutorial help

should be given during instruction, and that the learner takes a diagnostic test at the end of the unit.

This epistemology should be applied during courseware design stages.

A GencriL' Architecture for Interactlvc Intelligent Tutoring Systems T A, Atolagbe

Appendix A: Background Research Materials 239

Livingstone and Borko (1989) suggested that an experienced practitioner has a more sophisticated

understanding of practice than a novice. Mentees have cognitive schemas that are less elaborate, less

accessible and less interconnected when brought to bear on professional practice. Similarly, recent

studies have shown that, for the purpose of teaching, novices have to relearn their subject matter

(Yonk, 1993). As Borko et al. (1988) note, all teachers need to reshape and revise their knowledge of

subject content. Shulman (1986), suggested that teachers have to develop a "pedagogical content

knowledge" in order to translate academic knowledge into school knowledge.

Piaget (1970) identified four factors that are necessary for a theory of cognitive development. These

factors include maturation, experience with physical environment, social experience and equilibrium

or self-regulation. What is of interest to this research is the importance he places on peer interaction.

He suggested that peer interaction induces cognitive conflict, which in turn results in cognitive

restructuring and development. Piaget believed that the students learn more working in a group than

they would from interaction with a lecturer.

Vygotsky's (1979) approach also rejected the strict separation of the individual and hislher social

environment. He treats cognitive development as a process of acquiring culture. He suggests that

social interaction plays a fundamental role in the development of cognition. He points out how

peer interaction enhances the development of logical reasoning through a process of active cognitive

reorganisation. It helps the individual to acknowledge and integrate a variety of perspectives on a

problem and this process of co-ordination, in tum, produces superior intellectual results. He argues

that it is not really how the learner takes overall responsibility that had formerly been vested in the

adult, but how the learner begins to develop a definition of the task situation that will allow himlher

to participate in the communicative context. He sees the development of the task of reasoning as

taking a top-down course.

Vygotsky gives much insight into assessing the "developmental level" of a learner. Because learning

can result in the change of the behaviour of the learner, he characterised behavioural change in terms

of shifts in control or responsibility. He described shifting control within activities as a "zone of

proximal development (ZPD)". He said the ZPD was the difference between "actual development as

determined by problem solving" and the higher level of "potential development as determined

through problem solving under guidance or in collaboration". This concept is of great importance to

the development of instructional systems as it involves the assessment of the learner's cognitive

ability and evaluation of instructional practices.

:\ Generic Architecture for Interactive Intelligent Tutoring Systems

Appendix A: Background Research Materials

One important aspect of the cognitive emphasis is that it focuses on the behaviour to be learned

and suggests that different approaches might be used to support learning for different behaviours.

One good illustration of what is to be learned is presented by Gagne's (1984) system. In this

model, when teaching an intellectual skill, the trainer is supposed to present an example of the

concept rule: when teaching problem solving, the trainer presents novel problems. Gagne's theory

begins with a framework of learning outcomes considered essential for an understanding of

human learning as it occurs in instructional settings. The learning outcomes are treated as

acquired capabilities and are grouped into five categories: verbal information, intellectual skills

cognitive strategies, motor skills and attitudes.

The theory proposes that each of the categories of learning outcome requires a different set of

conditions for optimising learning, retention and transferability. Optimal conditions are defined both

in terms of the instructional environment and the learner's memory. The process of learning involves

using attention, selective perception, short-term memory, rehearsal, long-term memory, storage and

retrieval of previously learned information, and reinforcement by external feedback.

Ausubel (1978) applied a cognitive approach to learning based on assimilation theory. The theory

suggested that meaningful learning results from the interaction between new concepts, which

learners acquired, and the cognitive structures he possesses. Instructional systems designer must

consider what knowledge the learner possesses and structure its curriculum to facilitate learning.

In a review of training, Goldstein (1980) defined training as, "the acquisition of skills, concepts or

attitude that results in improved performance in an on-the-job situation". Instructional systems are

therefore intimately concerned with the theories or principles of learning and cognitive skill

acquisition (Greeno et aI., 1998), (V anLehn, 1996b), (Glaser and Bassock, 1989), (Voss, et al..

1995). Bramley (1990) defined training as, "systematic development in individual to perform task".

This implies that training should be planned and controlled, and task performance is the criterion of

success.

A2.0 Intelligent Tutoring Systems Software

Computers are increasingly becoming the natural delivery medium for teaching software packages

(Shute and Region 1990). Kernighan and Lesk (1979) provided a tutorial environment on UNIX

with controlled embedded access to the application software. Learners are allowed to manipulate the

application software at certain stages during instruction. The tutorial was designed to teach the use of

the operating systems. More recent application packages such as Lotus Smart Suite, and \1icrosoft

A Generic Architecture for Interactive Intelligent Tutoring Systems
T A Atobg!x'

Appendix A: Background Research Materials
241

Office, have been released with built-in tutorial assistance. These tutorials allow the learner to

interact with what appears to be the genuine application software. The tutorials allow for a subset of

the operations that can normally be available making learner control difficult.

Numerous research papers have been published relating to ITS software. Most of these papers are

very specific in terms of application, curriculum design, knowledge representation formalism. and

method of delivery. Some of the pUblications include:

1. Effect of Error Information in Tutorial Documentation. This study is based on providing

learners with error information in tutorial documentation (Lazonder and Meij. 1994). It is

based on the hypothesis that users who used a manual with error information would develop

better procedural skills than subjects who used a manual without error information. Forty-two

subjects were randomly assigned to one of the two conditions. The result of the experiment

shows that error information has no effect on procedural skills, both constructive and

corrective. Although the aim of the experiment was clearly stated, the learners preferred

learning strategy was not considered. The text system was interactive and is manual based. The

result of the text may have been different if the software was context sensitive and a graphical

user interface was used.

11. Socratic Tutoring. Carbonell's (1970) research is concerned with enabling systems to

engage in Socratic dialogs, believed to involve the learner more actively in the learning

process, which may enhance learning. Collins (1977) outlined a set of tutorial rules for

Socratic tutoring that were incorporated in the WHY (Stevens and Collins, 1977) system. It

executes, for example, IF the student gives an explanation of one or more factors that are

not sufficient, THEN formulate a general rule for asserting that the given factors are

sufficient, and ask the student if the rule is true (Collins, 1977). Instead of semantic nets, the

domain knowledge (e.g., flowering plan) was stored in a "script hierarchy" where

information was contained about stereotypical sequences of events.

111. Expert Systems Tutors. MYCIN (Shortliffe, 1976) was a rule-based expert system for

diagnosing certain infectious diseases such as meningitis. GUIDON (Clancey, 1979) was

constructed to interface with MYCIN for tutoring, and interactively presenting the rules in

the knowledge base to a student. The way this tutoring occurred was as follows. GUIDON

presented case dialogs where a sick patient was described to the student in general terms.

The student had to adopt the role of a physician and ask for information that may be

relevant to the case. GUIDON compared the student's questions wi th those that MYCIN

would have asked and then responded accordingly.

A Generic Architecture for Interactive Intelligent Tutoring Systems T A Atolagt :

Appendix A: Background Research Materials

IV. Reactive Learning Environments. Reactive learning environments allow the system to

respond to learners' actions interactively. An early example of this kind of environment was

SOPHIE (Sophisticated Instructional Environment), designed to assist learners in

developing electronic troubleshooting skills (Brown and Burton, 1975), (Brown et aL

1982). In SOPHIE I, learners located faults in a broken piece of equipment by interactively

communicating with the system. SOPHIE I included three main components: a

mathematical simulation, a program to understand a subset of natural language. and routines

to set up contexts, keep history lists, and so on. When troubleshooting a simulated piece of

equipment, the student could offer a hypothesis about what was wrong. SOPHIE II (Lesgold

et aI., 1993), (Katz et aI., 1993) extended the architecture of its predecessor by adding an

expert based on a pre-stored decision tree for troubleshooting the power supply. Sherlock II

provides a student with explanations/hints when there is an impasse. Finally, SOPHIE III

represented a significant advance beyond the earlier versions in that it contained an

underlying expert based on a causal model rather than a mathematical simulation. The

importance of this change is that, in the original version of SOPHIE I, the simulator worked

out a set of equations rather than by human-like, causal reasoning so it wasn't possible for

the system to explain its decision in any detail. But the later version of the tutor (SOPHIE

III) did employ a causal model of circuits to deal with the deficiency. Learners can

communicate with the system by using a natural language dialogue mechanism and provide a

critique for the learners. This system does not use a graphical user interface system to deliver

instruction. The most essential feature of the system is the use of simulation as a workbench for

learning to run its own experiments. It is interactive and thereby encourages learner

involvement, and hence enhances retention and skill acquisition. The main problem with this

system is that knowledge outside this domain cannot be taught, thereby limiting flexibility and

robustness.

v. LISP ITS. Corbett and Anderson's (1992) description of the LISP ITS (LISP Intelligent

Tutoring System) teaches students in the lisp programming language. It is based on

theoretical principles derived from a theory of cognition proposed by Anderson known as

ACT* (Anderson, 1990). ACT* theory proposes that human problem solving is enabled by

a set of production rules, and can be turned into a formal set of well-ordered rules about

instruction. Instruction based on the ACT* model should guide the learner through repeated

practice, in order to facilitate procedural skill acquisition. Although. the ACT* model, does

not directly address "buggy" and students misconceptions (Wilson and Cole. 1992). Based

on a cognitive analysis of the domain. a representation of the student "buggy" and

performance model has been implemented in LISP ITS. LISP ITS uses the finest grain size

(Greer. 1992) as it analyses individual characters that students enter. It provides immediate

A (,t'neric Architecture for InterJctive Intelligent Tutoring Systems r A. Atolagb<:

Appendix A: Background Research Materials

feedback after errors are made. The tutor's behaviour is linked to the student modeL which

consists of over 1200 rules. The tutor predicts the steps that the student might take in

solving the problem, and with a known set of misconceptions, it models student errors at

each step.

VI. SOLA. Student On-line Advisor. SOLA (Arshad and Kelleher, 1993) is an educational

advice system that guides the student on what to learn and offers choice of educational

materials. The system was implemented in SMALTALK-80, it involves determining study

topics for the learner, and advising with appropriate teaching materials, when it should learn

it. It is an advisory system, therefore it does not teach the specified course. Advisory

systems are not suitable for an experience learner or mature student as they have formed

their own learning strategy. SOLA should incorporate learning guidelines and control

structures to facilitate the co-ordination and flow of information, and adapt different

strategies for navigation to suit different learners.

Vll. MATHPERT. Beeson (1990) has described MATHPERT (MATH EXPERT), an expert

system in mathematics with extensive capabilities, supporting learning in algebra,

trigonometry and introductory calculus. It provides step-by-step solutions, tailoring teaching

methods and step size to individual users through student modelling. MA THPERT does not

allow students to make mistakes, thereby eliminating the "buggy model". Self (1990)

proposed an ITS without a student modeller as a means of "bypassing the intractable

problem of student modelling". Self (1990) argues that the role of student modeller is

essentially to analyse student errors and misconceptions. It can be inferred that

misconceptions and mistakes during instruction are corrected, and this negates the need for

a student model.

Vlll. DOMINE. Domine system, (Spensley and Cook, 1988) has a knowledge elicitation phase that

captures static screen dumps from the application. These can then be displayed to the learner as

an appropriate teaching operation. It does not allow the learner to interact directly with the

software being taught.

-

IX. Kimball's Integration Tutor. Kimball's integration tutor (Kimball, 1973) was developed to

teach integration. The teaching method employed is interventionist, when the learner is in

trouble, the program intervenes by employing a dialogue rule. The learner carries out

integration on a computer terminal and the program checks each transformation to see if the

learner has applied integration principles correctly. The program uses artificial an intelligence

method for integration and algebraic simplification. Using these two techniques. Kimball's

tutor can solve symbolic integration problems. The program also has a lot of problems and

solutions, and will select examples for students when requested.

:\ Generic Architelture for Interactive Intelligent Tutoring Systems T. A. Atolagbe

Appendix A: Background Research Materials

x. PROUST. PROUST (Soloway, et al. 1991) is a tutorial system for teaching Pascal. PROUST

attempts to identify and report possible errors during compilation of program statement. It is a

non-interactive tutorial system. It works by understanding what the learner wants to do and

how they are going to do it.

Xl. SHERLOCK. SHERLOCK (Lesgold et al., 1993), (Gott et al., 1996) developed for teaching

complex electronic troubleshooting job. The system provides expert explanation to

troubleshooting problems. It also helps students compare the systems' solutions with their

own solutions at the end of each problem solving task

XlI. LISP. This is a teaching program for teaching programming language. It is based on adapti\'e

control of thought (Anderson and Reiser, 1985) within the interactive environment of the USP

interpreter. Errors are detected and reported immediately after they are committed. The USP

approach can be applied to a wide range of software interfaces.

X11l. Leeds Arithmetic's Teaching Programs. Leeds Arithmetic's Teaching Program (Woods and

Harley, 1971) was developed to teach arithmetic and to generate and administer exercises in

arithmetic problems at diverse levels of difficulties. The system is context sensitive and can

provide materials suitable to the learner level of competence, it also provides different types of

feedback and error information. The major shortcoming of the system is that the learner cannot

interact directly with the system, use of a GUI will greatly improve the user interface.

XIV. CATO (Aleven and Ashley, 1997) helps students building legal arguments by generating

relevant case scenarios. The system also reifies the connection between the content of the

cases and their use in the arguments.

xv. DISCOVER (Ramadhan, 1992) is a learning environment for a very simple algorithm-like

pseudo-code language. DISCOVER, following Du Boulay et al. IS (1981) glass-box

approach, is designed to offer students an opportunity to "look inside" the virtual machine,

i.e., to see how the values of variables change when a program executes. To achieve the

goal of making intrinsic activities of program execution explicit to students, DISCOVER

provides a window with an example solution and a window showing the current values of

all variables. This approach is similar to Mayer's (1981) approach of supporting "concrete

models" of computers and software systems. Although, DISCOVER seems to be a good

learning environment for learning to solve programming problems, it deals with a very

simplistic programming domain and does not support iterative or recursive programming.

Viz (Eisenstadt et al., 1992) works in the same domain as PROUST, but it supports a software

visualisation technique instead of program code analysis for understanding students' programs.

Software visualisation techniques help programmers see what their programs do using

meaningful graphical abstractions and, as a result. programmers learn better programrlllllg

t\-G-cn-cric-A-rc-'h-ite-c-tu-re-~-or-In-te-ra-c-ti \-'c-In-te-n-ig-en-t-T-ut-onn-' -g-S-ys-te-ms-----~~~--~-----:;:T:-. A-:-.~A:::to~la:;gbe:::-

Appendix A: Background Research Materials

techniques for constructing programs in the first place. Viz provides tools to view "monitorable

program constructs," and tools to view snapshots of executions of algorithms.

Most of these ITS software applications are domain specific and their functionalties are limited to the

development platforms. Some of this research also discourages attributions by providing a detailed

model of how new domains can arise only from the current developments. Furthermore, many ITS

authoring tools sacrifice pedagogical requirements for content flexibility (Bell and Zirkel. 1997).

Table 1A summarises reviewed ITS research publications, indicating different emphases placed

on different ITS components development.

Table lA ITS Research Publications
-;:;:;:;;:::;;;;;;:.;;;;;;:;;;;;:;;;;;;;;;;...-;:;;;~;;;:.;:;..~;z;;;-~~;;.." ,--- ~~---~ , , ,- - -

AUTHORIYEAR DESCRIPTION
Carbonell (1970) SCHOLAR system, geography tutor, based on semantic tutor.

Brown et al. (1978) DEBUGGY, attempted to identify and correct bugs during
instruction.

Burton and Brown, (1978) Buggy, Subtraction, procedural network of tasks.

Burton and Brown (1979b) WEST, Arithmetic tutor. i

Brown et al. (1982) SOPIllE, electrical trouble shooting.
Hartley and Sleeman (1973) ITS must possess: (i) knowledge of the domain (expert model), (ii)

Sleeman and Brown (1982) knowledge of the learner (student model), and (iii) knowledge of
teaching strategies (tutor).

Goldstein (1982) WUSOR, teaches logic relations based on genetic graph network.

Millar (1982) Logo programming tutor in SPADE.

Sleeman (1982) Algebraic procedures, in LMS.

0' Shea (1982) QUADRATIC, quadratic equation tutor.

Clancey (1982) GUIDON, infectious diseases Ji
Soloway et al. (1983) PROUST, programming in Pascal. I,

Lantz et al. (1983) Applied ALGEBRA.

Soloway et al. (1991) SODA: adaptive learning environment; provides scaffolding
knowledge support.

Eisenstadt et al.(1992) Viz provides a software visualisation technique for programmers.

Ramadhan (1992) DISCOVER is a learning environment for a very simple algorithm-
like pseudo-code language.

Anderson (1993) Anderson lists of errors are embedded In specific production.
Manages all interactions between the student and tutor.

,~

Some of these research publications use expert systems and case-based reasoning methods for

capturing and representing domain knowledge. These publication illustrate the many trade-offs

between conflicting "soft" research goals such as domain specification, interactivity, run-time

efficiency, modularity, flexibility, reuse of pre-existing components, and production of reusable

A (J~nenc Architecture for Interactive Intelligent Tutoring Systems T A, Atolag~

Appendix A: Background Research Materials 246

components. For example, the researcher may have placed higher priority on clear conformity to

the domain specification than on easy-to-understand instructional modules and reusability. ITS

development requires a "conceptual shift" from traditional approaches to a more reusable and

modular knowledge representation (Murray, 1996).

~A Generic Architecture for Interactive Intelligent Tutoring Systems
T A Atolagbe

Appendix B: Bayesain Network
247

APPENDIXB

BAYESIAN NETWORK

Bl.O Introduction

In a complex environment, no matter how good the instructional environment is designed, it will

sometimes be unable to make adequate predictions about the learner's activities and behaviour

with definite certainty. Uncertainty may rise from the environment, from the user's activities. and

from the inference systems and learners path through instruction. In some case, the student model

may be inadequate. Some major sources of uncertainty (Russell and Norvig, 1995) include:

1. Randomness. The environment may be un-deterministic. In this case, an omniscient

observer would be unable to predict the world correctly.

11. Complexity. There may be a number of unlikely exceptions that would be expensive to

enumerate, or the "true" theory of the world would take too long, or be too large, to learn

precisely.

111. Representational Limitations. The system may be unable to express a correct deterministic

theory (event if one exists) in its concept language.

IV. Interactive Limitation. Interactive feedback only reports a limited number of information

about the learning activities. If important data are not reported, the system may be unable to

acquire the knowledge necessary to characterise the world precisely.

v. Feedback Inconsistency. Feedback may always report the same perceived world in identical

world states, due to noise in the sensors.

VI. Missing data: this may be a result of incomplete representation/acquisition during analysis

and development. The causes a "gap" in the different sources of knowledge used.

Vll. Invalid data may result from input errors and specification errors or knowledge.

V1l1. Relevant: Training instances may not be relevant (e.g., Mitchell, 1983) due to classification

methods.

These sources of uncertainty are related. For example, an environmental factor may greatl)

influence the activities of a user and the effect is passed to other instructional activities .

. ------~.----------------------- ----------
A Generic Architecture for Interactm.! Intelligent Tutoring Systems T A Atolagbc

Appendix B: Bayesain Network 2.+8

Furthermore, a distorted model may result from using incorrect inferences. SimilarlY. if the

environment is deterministic, in such as a way that outcomes are heavily dependent on initial

conditions, then incorrect inferences may result due to insufficient theory or noise.

B1.1.0 Evaluating Probabilities Theories

This thesis developed a Bayesian method for estimating the quality of "theories". The essential

requirements are: the accuracy of the theory, given by the likelihood of evidence P(EI T) and the

prior probability of the theory peT). The former is computed using probabilistic combination

independence (PCI).

In most models of concept learning, observations are assumed to be correct (i.e., noise free) and

consistent with some deterministic hypothesis that is expressed in the hypothesis language (for

example, (Mitchell and Keller, 1983), (Kuipers, 1985), (Carbonell and Gil, 1987). The concept­

learning problem under this assumption becomes that of finding a hypothesis in the concept

space, which is consistent with all of the observed instances of the concept to be learned. A

consistent hypothesis may be prioritised according to some preference metric (e.g., of simplicity

or specificity), or they may all be considered equally good (as in the version space algorithm).

In a non-deterministic or noisy environment, we can no longer expect to find a completely

consistent hypothesis. The problem then becomes that of finding the hypothesis that "best

describes" the observed instances.

The question is how to define "best description?" If we allow enough parameters in the concept

description, there will always be some theory that is consistent with all of the data, for example,

we can just take the disjunction of all of the observations. The problem with this approach is that

the resulting theory will be cumbersome and expensive to use, and is not likely to make any

useful predictions (or perhaps not able to make any predictions at all).

Using a simpler theory has two advantages. First, minimising error on the training set may

actually cause the theory to be fitted loosely and therefore will not minimise future error. Second.

if the simpler theory is less accurate, the cost saved in applying it may outweigh the loss of

accuracy for a limited rational agent (able to make a limited number of deductions in a limited

time). The approach adapted in this thesis is based on Bayesian probability theory.

A Generic Architecture for Interactive Intelligent Tutoring Systems T A Atolagtx:

Appendix B: Bayesain Network 249

Bl.1.1 Theory Notation

The short-hand notation for theories is used through the rest of this section. Rules are represented

as implications with attached probabilities. They should not be interpreted as logical implications.

but as conditional probabilities, for example.

action(tl : elicitate) ~ 06!J.U(t + 1,90)

Represents the conditional probability.

p(!J.u9t = 1,90)laction(tielicitate)) = 0.6

The symbol is used to indicate an empty conditioning context in a single rule. Represented

conditional contexts in a single rule are left out for readability.

Bl.l.2 Bayesian Knowledge Representation

In order to use probabilistic knowledge in an automated knowledge acquisition module, a formal

system for representing and reasoning with probabilities is required. Bayesian knowledge

representation (Eugene and Bank, 1995) is used to represent the domain knowledge. This

approach reduces oversimplification of the knowledge variable by training their "independence

assumptions in terms of conditional dependency" (Eugene and Bank, 1995). This approach is

widely used for military applications where the source and application of the domain knowledge

is crucial. Bacchus' (1990) probabilistic logic and Pearl's (1988a), (Pearl, 1993) belief networks

provide formalism for representing probabilistic knowledge. Each of these approaches are

discussed below:

Logic and Probability: Bacchus' probabilistic logic is a formal language for representing

probabilistic knowledge using first-order logic. The language provides a representation for both

statistical probabilities (which may be defined in terms of observed frequencies of events) and

subjective probabilities (degrees of believe derived from the statistical probabilities). The

inference mechanism provides for some manipulation of the statistical probabilities using

standard axioms of probability. and for direct inference from statistical to subjective probabilities

using the narrowness reference class.

A direct inference from statistical to subjective probabilities is based on finding a statistical

probability with the same reference class as the desired subjective probability. If there is no

probability. a simple type of independence is assumed non-monotonically (i.e. until additional

evidence shows otherwise), and the "next-narrowness" reference class for which a probabi lity is

A Gt'ncric Architecturt' for Interactl\c IntelJigt'nt Tutoring Systt'ms T. A. Atolagbe

Appendix B: Bayesain Network ~50

available is used. Bacchus' approach provides a useful formalism for representing many aspects

of probabilistic reasoning, including certain forms of default reassigning. However it does not

provide a representation for beliefs about relevance, nor does it allow default assumptions such as

independence to be used in the inference process.

Bl.2 Bayesian Network

A Bayesian network (BN) is a directed acyclic graph in which nodes represent variables of

interest, and edges represent associations among these variables (Pearl, 1988a). To quantify the

strengths of these associations, each node has a conditional-probability table that captures the

relationships among that node and its parents.

Bayesian-network semantics are founded on the principle of conditional independence, which

dictates that if the states of a variable's parents are known, all other information adds nothing to

our attempt to predict that variable's states.

Figure B.l Example of a Bayesian Network for a Tutor

As illustrated in Figure B.1, each object and their attributes have a unique identifier that specifies

their class, and domains. Figure B.1 depicts an example of a Bayesian network for a Tutor. with

Task 1, and Task 2, which are mutually exclusive and represented as variables. Each class is

represented based on their probabilistic information and their attributes as described above. The

Bayesian network provides a mechanism for computing and analysing user actions by using a

combination of the following techniques:

I. identifying different classes of components and their attributes;

11. identifying the constraints imposed by these classes;

Ill. abstracting the component/module from the class schema;

A Generic Architecture for InterJctive Intelligent Tutoring Systems
T. A. AtoIJ):lx'

Appendix B: Bayesain Network

IV. dynamically generating explanations in response to user queries and feedback obtained

from the student model;

v. inferences are made from background knowledge and tutorial exploration.

Some of these techniques are discussed further in this section.

Bl.2.1 Representation

251

The GeNisa knowledge base uses probabilistic theories about the domain, i.e., instructional

goal/task to make inferences. Each theory consists of a set of conditional probabilistic distribution

of values of a specific task. The learning task is the area to where knowledge is to be acquired,

i.e., the conditional context. A probabilistic inference representation is used to make predictions

(assumptions) about the effect of each attribute and the learning goal. The mechanism requires

the determination of which conditional distributions within a theory are relevant and combining

them if necessary (using minimal independence assumption (discussed later in this chapter) to get

a single predicted distribution.

B 1.2.2 Conditional Probability

Definition. The conditional probability (CP) of X given Y is X, the target, and Y, the conditioning

context (CC), are first-order schematas. These features are required to be conjunctions of feature

specifications, where each node in a feature specification may contain internal value disjunction

representing internal nodes at time t. For example the following task is valid.

(t, tutorial [1,30])

This implies that, at time t, the learner was using tutorial (units) between nodes 1 and 3. This

schema corresponds to a set of perceived actions. The following task is valid.

tutorial(t, apptask,l) 1\ case(t, [10, 00]) 1\ ~u(t,-IOO

Note negation of features is not allowed, since they may be written as a disjunction.

An example of a condition probability is

P(~ll(t + 1), -10) I action(t,: move - forward» = 0.75

The variable t, represents time at which the conditional probability is the most specific in the

current domain, i.e., the knowledge about the task at time t, implies CC and does not imply any

other more specific CC.

A Generic Architecture for Interactive Intelligent Tutoring Systems
T. A AtlllJt:rx'

Appendix B: Bayesain Network

Variables are universally quantified, since they cannot be instantiated without the rest of the

theory. The semantics of any individual probability theory will depend on the context of the rest

of the theory as well as on the inference mechanism used to instantiated the variables and make

predictions. Using conditioning context and relevance in this way yield a "quasi-non-momtonic"

representation, which adds new knowledge, i.e., new conditional probabilities to a theory doesn't

change the rest of the CP in the theory, but it may change the range of applicability and

semantics.

B1.3 Conditional Distributions

Definition: A conditional distribution (CD), which is henceforth referred to as rule, is a set of n

conditional probabilities on a target schema G (a learning goal), with mutually exclusive partial

variable substitutions 81 •.. 8n and common conditioning context C, such that

n

LP(GBtl C) = 1
i=1

A CD specifies all of the possible instantiations for a target given a particular context, and their

probabilities. If C contains all of the relevant information, this distribution is used to predict the

probability of each value of G. A CD of an empty conditioning context is referred to as a prior

distribution on the given domain task. A prediction on G is a set of probabilistic outcomes

specified by a conditioning distribution.

B1.3.1 Predictive Theories

Definition. A predictive theory (PT) on goal schema G is a set of m conditional distributions, or

rules, on G, with conditioning contexts Ct. "Cm (which must be distinct but not necessary

disjunction), such that any situation (consisting of a perceived world and possibly an action)

implies at least one of the conditioning contexts.

As long as a set of distinct rules on a goal schema includes a default rule it is guaranteed to be a

predicative theory.

A predictive theory stores all of the beliefs about the current goal G. The rules in a theory are

indexed by their conditioning contexts (i.e .. the situations in which they apply). Using a

specificity relation between CCs, the rules can be organised in a directed acyclic graph (DAG) in

which a child is always more specific than its parents.

A Generic Architecture for Interactive Intelligent Tutoring Systems T A Alolagbe

Appendix B: Bayesain Network 253

Figure B.2 below shows an example of a predictive theory on a goal G, drawn as DAG. Only the

conditioning contexts are shown, indicating the structure of the theory. A conditional distribution

is stored at each node. For example, the bottom node represents a rule containing conditional

probabilities of the form

P(G6i I A(x) 1\ B(x)) = Pi.

Figure B.2 Example of a Predicative Theory

The above procedures can then be used to identify valid independence assumptions and use them

to find the joint distribution The independence assumption technique involves finding a shared

feature in the conditioning contexts of rules to be combined and assuming that the remaining

features are independent, given feature.

Figure B.3 Example of a Predictive Theory

Definition. The shared feature of a set of rules is the feature that appears in the entire

conditioning context and has some attributes in common. "Share feature" may also refer to the

share sets of values for the attributes of the current class/domain. For example, the share feature

of a tutorial class:

tutorial (x) 1\ task -unit(x) & Sceanrio(x) /\ Uniter) , (Unit (x)) is the shared featur~.

A Generic Architecture for Interactive Intelligent Tutoring Systems T. A Alolagbe

Appendix B: Bayesain Network

B 1.4 Probabilistic Inference

Probabilistic inference uses independence assumptions described earlier in this section. However.

prediction about the environment can not be inferred due to uncertainty. In general, it will be

impossible to be certain about the sources of uncertainty. The system cannot know a priori which

uncertainty sources are present.

There are functional advantages for using a probabilistic representation of theories. (i)

Probabilistic representation are less brittle than deterministic theories, i.e., the behaviour of the

system degrades as the quality of the theory decreases. (ii) Statistical probabilities represents

summaries of observed frequencies of an event, i.e., learning relevant "events".

Subjective probabilities are used to evaluate the domains predictive theories. In order to decide

which theories are most effective, a Bayesian analysis is performed with the likelihood of the

evidence (computed using the statistical probabilities in the theories).

Theory Evaluation. This research developed Bayesian methods for measunng the quality of

"theories". The essential requirements are: (i) the accuracy of the theory given by the likelihood

of evidence P (T), and (ii) the prior probability of the theory peT), (iii) a priori preferences (i.e.,

learning biases) can be expressed as prior probabilities, which are gradually overridden by data.

The former quantity is computer-generated using probability conditional inference (defined

because of simplicity).

Bl.4.1 Discourse Planning

The discourse planner performs a random action over a fixed percentage of time (default

probability 0.25). The remainder of the time it uses a heuristic search to find the action with

maximum overall expected utility. The overall expected utility is equal to the immediate expected

utility of performing the action, plus the maximum utility of the action plan that can be formed in

the resulting states.

The discourse planner forwards chains to a fixed depth (default 3) through the space of possible

outcomes for each action, then propagates the maximum expected utility backwards to yield an

expected utility for each initial action. An example of part of the discourse process is shown in

the Figure B.4. Only the left half of the plan is fully expanded. The theory used is:

A (ieneric Architecture for Interactive' Intelligent Tutoring Systems
T. A. Atolagbe

Appendix B: Bayesain Network

~ 07~(t + 1,-10)

~ O.3~(t + 1,-11)

action(t, : elicitate) ~ .5 ~(t + 1,90)

~ 0.5 ~(t + 1,-10)

action(t, elicitate) /\ ~u(t,90) ~ 0.67 ~u(t + 1,90)

~ 0.33 ~u(t + 1,-10)

255

The square represents predicted changes in utility; the capsules contain the expected utility of the

entire discourse plan. The expected utility in the bottom row is computed directly using

probabilities to weight the predicted utilities. For example, the leftmost expected utility is equal to

(0.67*90 + 33*(-10». The values in the upper row of capsules are computed by taking the

maximum expected utility of the rest of the plan from each state, plus the immediate utility of the

state and by weighting the probability of the state. For example, :elicitate has the highest expected

utility in both of the lower states, so the expected utility of performing :elicitate (57 and 40.

respectively for the two possible outcomes) is propagated backwards. The overall expected utility

of performing :elicitate as the first action (represented by the upper left capsule) is then (90 + 570

*.5 + (-10 + 40) * 5, or 88.5. The overall expected utility of :move-forward is 29.7 , so the

discourse planner selects :elicitate.

-10

:move-forward

-10 -11

--.............................

Figure B.4 Partial Discourse Plan Tree

A Generic ArdlltL'l"tlllL' for Interactive intL'lligen! Tutoring Systems

Appendix B: Bayesain Network
256

B 1.4.2 Task Directed

The discourse planning uses principles of decision theory to choose discourse units. The expected

utility of being able to compute the various utility of the environment is computed and those with

the highest utility are used during discourse. As user action progresses, GeNisa uses the learning

theory to determine which feature of the scenario, i.e., learning features, it expects to be most

useful to learn next.

Definition: A unit step treats the difference in two plans (actions) generated by the user

using different scenario models as the differences in the final step of each plan.

For each learning goal, the user uses background knowledge to select discourse and induces a

predictive theory for the goal from observations of the domain action. The utility of the

intermediate steps is assumed because the utility of the intermediate steps varies.

Bl.4.3 Knowledge Acquisition

The knowledge acquisition module is based on probabilistic learning. Knowledge bases are

generally characterised by uncertainty caused by:

Representation. As discussed earlier, incomplete/incorrect inferences may have been drawn

during analysis and development. For example, data may be eliminated during analysis and

development (e.g., (Dirtherich, 1982), (Mitchell, 1983)) where the training cases were pre­

classified into relevant instances and non-instances. There may also be a "gap" between the

different sources of knowledge.

UnreliableData. The sources of discrepancies may result from expert views, i.e., discrepancies in

experts' knowledge and methods of representation.

In general. it will be impossible to be certain what the sources of uncertainty are. The system

cannot know a priori which uncertainty sources are present.

Subjective probabilities are used to evaluate the users' predictive theories. In order to decide

which theories are most effective, a Bayesian analysis is performed combining a prior probability

with the likelihood of the evidence (computed using statistical probabilities in the theories).

A (icneric Architecture for InlL'ractive Intelligent Tutoring Systems T A Atolaglx

Appendix B: Bayesain Network ..,--
':'1

BI.S Bayesian Probability

The theory with the highest probability should be that with the most effective structure for

representing the observed data. Given this structure, the probabilities within the theory are

straightforward to optimise. Complex structures (those with many dependencies) take too much

computation time and are characterised by a risk of "over-fitting". On the other hand, a simple

structure with only a few dependencies may not capture important relationships in the world.

The probabilities we wish to find are the probabilities that the structure of this theory is the best

representation of the behaviour of the environment. It is not in the probability that the particular

values of the conditional (statistical) probabilities are estimated using observed frequencies; this

maximises the accuracy of the theory as given by the Bayesian likelihood P(EIT· .. K). Using the

notation:

T: A proposed theory

K: Background knowledge

E: Evidence: a sequence of observation eJ, e2 , en

the Bayesian rule gives:

peT I K 1\ E) = peT I K)P(E I T 1\ K)
peE I E)

We are only interested in finding a relative probability in order to compare probabilities of

competing theories, so the normalising factor P(ElK) in the denominator can be dropped yielding

peT I K 1\ E)aP(T I K)P(E I T 1\ K).

We also assume that the individual observations e\ ... en composing E are independent, given K

and T. This standard conditional independence assumption is reasonable because the theories

generated by the user make independent predictions. Therefore, T embodies an assumption that

the observations are independent, which must be true if T holds. Therefore, the first quantity on

the right-hand represents the "informed prior", i.e., the probability of the theory given the

background knowledge K. but no direct evidence. The second quantity represents the likelihood

of the theory. i.e., the combined probabilities of each piece of evidence given the theory and K.

A Generic Architecture for Interactive Intelligent Tutoring Systems T .\ Atolagbe

Appendix B: Bayesain Network
25S

B1.5.1 Prior Probability

The prior probability of a theory, pen, is the probability of T before any e\'idence has been

collected. A "prior", however, is never completely uninformed an event before any direct

observations about a particular leaning task are made, a user's past experience, available sensors.

and internal representation will affect its disposition to believe a theory. and hence its prior

probability distribution. For example, even if you have never been to a particular theatre. your

general background knowledge about theatres allows you to learn quickly how to buy tickets and

refreshments, and how to find your seat. All of the background knowledge available to the user

should ideally be reflected in its "prior".

peT I K /\ E)aP(T I K)II;=l P(et IT /\ K)

Encoding should take into account not just the probabilities of individual terms. but the

probabilities of pairs of terms. In some domains, however, even this will not be enough: structure

in the language may affect large groups of terms. Individual terms may not be the right level to

consider for computing "prior", rather, higher level classification should be used to evaluate a

theory (Good, 1983). These categories might be semantic groupings of similar words or

ontologies.

B1.5.2 Uniform Distribution of Theories

Uniform distribution allows equal probabilities to be assigned to every theory. An infinite theory

space may result in improper prior (i.e. all theories have zero prior probabilities), but since we are

interested only in relative probabilities, we can ignore the prior probability terms and simply

choose the theory with maximum Bayesian likelihood P(EIT). This procedure finds a theory that

exactly fits the data, if one exists. In cases of a tie (where two theories have equal likelihood) the

shorter one will still be preferred (i.e., the theory with fewer rules r, if the theories being

compared have the same number of rules, the theory with fewer terms).

Suppose PR has constructed the following two simple theories. Tl and T2·

Tl -) 0,5 ~u(t + 1, -10)

-) O,5~(t + 1, 90)

T2 -) 1.0 ~u(t + 1, -10)

action(t,: elicitate) -) 1.0~u(t + 1, 90)

Suppose that the evidence used to construct these theories consists of t\\O obsen'ations:

A Generic Architecture for Interactive Intelligent Tutoring Systems T A Atolagbe

Appendix B: Bayesain Network 259

el = action(l,: elicitate) /\ ~u(2,90)

e2 = action(2,: move - forward) /\ ~u(3,-1O)

~ 1.0~u(t + 1,10)

The uniform distribution on theories assigns the same probability to the two theories (P(T]) =
P(T2)). The likelihood of the two theories is simply the conditional probability of the evidence,

given the theories:

action(tl: elicitate) ~ 1.0~u(t + 1,90)

peE I TI) = p(ell TI)p(e21 TI) = 1/2 * 1/2 = 1/4
peE I T2) = P(ell T2)p(e21 T2) = 1 *1 = 1

Applying the Bayesian evaluation formula:

peT I I E) Q p(T1)p(E I T1) Q 1/4

peT 2 I E) a peT 2)p(E I T 2) a 1

Therefore, under the uniform distribution of theories, T2 IS preferable gIVen the evidence.

-:\(;t'I~~'I~ Architecture for Interactive Intelligent Tutoring SYStl'n1S

Appendix C: Evaluation Critieria
~60

APPENDIXC

EVALUATION CRITIERIA

C1.0 Introduction

This section provides materials used for both formal and informal evaluation of GeNisa.

Evaluation materials were collated throughout this research.

Ct.t Evaluation Criteria

This section provides a brief description of evaluation criteria presented in Chapter 5.

In the content criteria section of the questionnaire, the participants rated the objectives, the

difficulty level, the component modules and usability as appropriate. Generally, the participants

ranked the entire questionnaire as accurate. Likert scale for first five section:

Strongly
Agree

5

Agreed

4

Neutral Disagree Strongly
Disagree

321

The means of effectiveness criteria rankings ranged from 4.0 to 4.83. The highest ranked criterion

was that there was a short delay between student response and program feedback. The lowest

ranking indicated that the users felt that the program did provide exit options, but that the

participants only agreed with this item rather than strongly agreeing.

In the section regarding impact criteria. the highest ranked item was that incorrect responses were

given feedback about why they were wrong, or hints to move them closer to a correct response

(mean 5.0). The next highest ranking was that knowledge was connected sufficiently through

hyperlinks (mean 4.83). The other items in this section were ranked with means ranging from -t.)

to 4.0. The lowest scored item was that simulation example met objectives and built intuition.

although with a mean ranking of 4.0. the participants still agreed with this criteria.

--- ---------------------- -- ~--- -

A Generic Architecture for Interactive Intelligt!nt Tutoring Systems

Appendix C: Evaluation Critieria
:261

The effective use of media was evaluated, with means ranging from 3.60 to 5.0 for the criteria.

The participants strongly agreed that the graphics, animation and pictures were appropriately

used.

Participants rated that GeNisa provides immediate and satisfying feedback and would hold their

attention (means 5.0 for both items). The lowest rated item was that students would not need

additional training to meet objectives (mean 3.83), and that documentation and instructions were

adequate (mean 4.16). The overall opinion of the participants was that the courseware was

adequate for instructional use (mean 4.83).

For the final section, Likert scale values are:

Difficult Neutral Easy

1 2 3

User interface ratings were generally very positive, with means ranging from 8.0 to 9.67 (on a

ten-point scale). Highest ranked criteria were ease of use (mean of 9.67) and easy to begin

program (mean 9.5).

The lowest ranked item was mapping (which indicates whether the program gives information

about where the user is within this GeNisa) with a mean of 8.0.

Four quantitative criteria that the software was evaluated against are defined below:

I. Enquiry. This criteria refers to software design, screen display, logical operations, ease of

movement and the variety and flexibility of search options. Other aspects considered

include whether the screen was configurable for different users, ability to create, sort and

use the graphical package and connection to the Internet or networks.

II. Collection Management. This criterion assessed file management and general media

management and editing of different functions. This criterion also considered the

availability and quality of help messages, and ease of management modules

Ill. Data Import/Export. Import and export of different classes and classes developed by

other vendors. This criterion also measure data backups and data-processing modules

IV. Online Support. Considers content-sensitive help between modules and types of feedback

provided.

A Cienerie Architecture for Interactive Intelligent Tutoring Systems T A. Atolaghc

Appendix C: Evaluation Critieria
262

Cl.2 Qualitative Evaluation Criteria

1. Quantitative elements include configuration, help support, reliability of the software.

performance failure, and usability.

11. Configuration. Minimum configuration and was assessed in this section. Items included

the operating system required, network type and platform requirements.

111. Help Support. This includes the availability of prompts, and adequate and appropriate

support given to different component modules

IV. Reliability of the Software. This measures the stability of the GeNisa in different

operating environment. Here, a few users reported minor glitches, some bugs that could

be worked around or problems associated with platforms and operating systems.

v. However, it was observed that there were no instances where these bugs caused any

serious damage or interrupted the operation of the software and the operating

environment. Problems were associated with differences in Java classes and were

immediately resolved with new classes.

VI. Usability. Each component was assessed on whether it was easy or difficult to use. The

degree of usability was evaluated in terms of user feedback and HCI guideline, and on

whether the tools were intuitive and logical, especially the "search" and "case" tools. The

main emphasis was placed on logical operation and use of files, classes management and

editing functionality, lists to choose from, and default response incrementally during data

entry.

This section provides sources of essential evaluation criteria used for the evaluation of GeNisa

described in Chapter 5.

Table C 1. Evaluation Criteria

Criteria Sources Definition

Architecture literature and ~odular architecture with different user interface fOi
Development Experience courseware authoring and delivery.

Courseware Literature and The tool should allow development of instructional units
lDevelopment Development Experience visually, i.e. by using icons and graphics objects.

iLearning lLi terature and The number of potential new software systems to be
Environment !Development Experience kieveloped or existing software systems enhanced in the

tools should support different use.

lReusability [Literature and T e potential to identify reusable components in the
Ioevelopment Experience domain and each component reusability.

Courseware literature and Heuristics The courseware may be generated automatically fom
Generation users activities and from case scenarios.

Components Literature and ~he size of the scoped domain versus the available
lRepresentation Development Experience esources and expertise to complete the effort.

Unique Features and Literature and The amount of knowledge about reuse possessed hy the

A Generic ArchltcClure for IntcrJCli\'e Intelligent Tutoring Systems I A. Atola1'lx'

Appendix C: Evaluation Critieria 263

Criteria Sources Definition

lFunctionality !Development Experience domain experts including knowledge of tool.

Algorithms !Literature and Heuristics For embedded controls and to enhance application
lcunctionality.

Stability Literature and The degree of change to the functionality to the
Development Experience components within during the tool enhancement.

tDialogue lDevelopment Experience IFlexible, mixed-initiative dialogue.

tuser Support lDevelopment Experience ~is is concerned with the perceived facility with which (1

user interacts with an interactive application program.

Domain Expertise !Literature and The domain experts should provide support for the
Development Experience learning environment, and should have adequate domain

expertise and tools to support instruction.

Instructional Content lLiterature and The ability of domain experts to provide adequate
Development Experience instructional content and to assist within a knowledge

acquisition. Ability to review instructional contents, and
have flexibility for managing the tutorial discourse, and
according to instructional strategies.

lLearner Monitoring Literature and The programs ability to track and graphically represent tc
!Development Experience the user his or her path through the program; provides

content domain specific feedback to user performance.

Case Scenario Literature and The availability of usable domain scenarios, to assist
Development Experience instructional activities. Scenario library of different cases

and use of realistic case scenarios.

Scalability lLiterature and The expected consistency of all components

lDevelopment Experience functionality; and the ability of the system to withstand
additional tools, users, processes and data with minimal
impact upon the overall performance.

Portability Literature and !platform independence, usability, including code

Development Experience algorithms, etc. The use of widely accepted and

implemented computing standards.

tDevelopment literature Whether a consistent development methodology fO!

Methodology applications has been employed.

Graphic and lLiterature and tDo the visual effects enhance the resource, distract from

Multimedia Design lDevelopment Experience the content? If audio, video, virtual reality modelling, etc
are used, are they appropriate to the purpose of the
source?

Interactivity lLi terature and This includes screen design (relates to text, icons

Development Experience graphics, colour, and other visual aspects of the
!programs); navigation, i.e. ability to move through an
instructional contents III an interactively; associati ve
~ecall (use of effective cueing methods), provision of
meaningful error messages: reduce short-term memon
load where possible.

Connectivity heuristics tan the resource be accessed with standard user interface
pr network requirements? Can the resource be accessed

eliably?

Scope lLiterature and poes the actual scope of the components match youl

Pevelopment Experience ~xpectations and all area of use covered?

!Users trial ~e
..

of the system such as
Audience target recIpIents

learner/developer. Quality of the i nstructionltool s

provided.

A G~neric Architecture for Interactive Intelligent Tutoring Systems
T Atolagbe

Appendix C: Evaluation Critieria 264

Criteria Sources Definition

Ussues lLiterature and trhe use of appropriate varieties of instructionaJ
tDevelopment Experience !principles, which may facilitate acquisition and retention

of tutorial contents.
IFlexibility Development Experience The ability of the systems to be configured in a variety of

and Users trial ways and across platforms.
~nstruction ;Development Experience The system should be easy to learn. The lessons should be

and Users trial structured with particular instructional steps or sequences
directed to particular domain task.

[Efficiency !Development Experience The system should be efficient to use, with a resultant
and Users trial high level of productivity.

Cognitive Load Literature and The system should be intuitive and be easy to remember.
Development Experience Should minimise cognitive load on the user (e.g.

Shneiderman, 1998). The user interface should reduce
short-term memory load as much as possible.

Associative Recall lLiterature Components should provide cues that cause users to
Irecall related events or tasks e.g. effective cueing.

IProblem Solving lLiterature and lRealistic problem solving, with adaptive responses and
!Development Experience the use of graphical illustrations as instructional aids.

Knowledge lLiterature, and Heuristics Automated, and mixed initiative knowledge acquisition
Acquisition method.

Database Support ~iterature and Ability to store application specific data represented in a
Development Experience irormalism that allows cross platform utilisation and reuse.

Cost ~iterature and Costs associated with the development, use of the system
Development Experience and instructional content delivered.

Errors Tolerance Literature and The system should have a low error rate, and allow users
Development Experience to recover from mistakes.

C2 General Features and Rationale for Evaluation Criteria

This section presents the rationale for using evaluation criteria in Table C 1 and a general features

to be considered for evaluating an ITS. A number of the criteria in Table Cl may be combined to

meet application specific criteria or platform requirements. The general features are listed below.

1. Domain Specific. Relates to domain specific content required for effective application

development and delivery. The identification of the trade-offs between conflicting "soft"

goals such as clear conformity to the specification, easy-to-understand code, run-time

efficiency, modularity, modifiability, flexibility, and reuse of pre-existing components.

II. Generic Features. Identification of features that could leveraged future development.

This also involves the use of existing components that may satisfy the current

requirements, or that may be instantiated for specific tools. Developed components

should support short and long-term objectives.

Ill. Integration. Ability to share data across platforms and in a language neutral way is

essential for developing a cohesive system. The system must support back\\'ard

compatibility in order for it to be easily evolved and allow developers to modify the

A Generic Architecture for Interactive Intelligent Tutoring S ~'stems
T. A Atolagbc

Appendix C: Evaluation Critieria 265

existing tools. This may increase the flexibility of the application development process

and support future enhancements.

IV. User Interface. The user interface must provide a seamless way to navigate between the

different components in a consistent manner. The user interface must provide support for

seamless integration with other tools. Each user interface tool must be clearly visible.

recognisable, and contain an icon represented on the standard toolbar. Users activities

must be specified and invoked by direct manipulation of graphical representation of the

tool (Shneiderman, 1998).

v. Forcing Function. The dialogues implemented by the user interface should either be

non-exclusive or exclusive. A non-exclusive dialogue, allows users to interact with a tool

and invoke another tool without having to close the first dialogue. Examples of this are

dialogues that display a message to the user or an option window. Non-exclusive or

exclusive dialogues could be used for forcing functions. A forcing function (Norma.

1988) prevents a user from performing actions that are not necessary in a given context.

For example, a user should not be allowed to proceed to the next tutorial tasks until all

prerequisite tasks, including case scenarios have been completed.

VI. On-line-Help. On-line-help should be provided for all components. The on-line-help

should be goal-oriented, descriptive, procedural, interpretive and navigational (Sellen and

Nicol, 1990).

V11. Reduced Working Memory. By using associative recall (Ellis and Hunt, 1993) for all tools

and user activities. This may also be implemented by using interactive strategies that

minimises cognitive load and by providing subgoals, plans and providing hints that may

assist with the completion of the task.

VIlI. Application Requirements. Matching the application requirements with the tools provided

by the system. The system should provide means by which other tools can be easily

prototyped. Also, there must be a clear separation between components and their

underlying events. This allows flexibility by proving permitting reuse of existing tools

IX.

and development of new ones.

Instructional Content. The instructional contents are hierarchically organised and easy it

is easy to make enhancements and modifications. It should also support different learn

levels of activities.

x. Le\'el of Expertise. Level of expertise required for using the components and the easy to

which the tools can easily be integrated into new development must by minimal.

~.\-C;-L'neric Architecture for Interactive Intelligent Tutoring Systems
T A. Atolagbc

Appendix C: Evaluation Critieria
266

Xl. Demonstration of unique functionality associated with different components.

Xll. Platform Specific Features. This relates to consistency of application functionality on

different platforms. Procedures should be implemented to isolate platform dependence

features. For example, all platform-dependent procedures could be abstracted into

platform-independent class library. This allows cross platform implementation of

different components and enhances reasonability.

X111. The Scope of the different components is well defined and user-friendliness. screen

display, clarity, length of time, topic interest, and overall usability. The components

should conform to well established standards.

XIV. Development Methodology i.e. a well-defined methodology was used throughout the

system and a framework for application deployment is well defined. A consistent

development methodology makes it easier to compare existing systems and

documentation to uncover commonality and variability.

xv. Security. All security issues should be considered. While this issue has not been

addressed in literature, there are many well-tested solutions that could be used. Security

systems such as version control, for maintaining a new version of a file. or public-key

encrypted electronic signatures may be implemented on a network system. Also, all data

stored in databases must be securely protected against hardware failures such as disk

crashes. The system must provide different options for providing data security and

backup facilities, e.g. the use of on backup media, such as tapes or dicks.

This may help determine whether the system provides enough tools to be evaluated and used for

an ITS development or to help evaluate the tools provided by the system. Existing tools are an

important factor to be considered in order to foster reuse and ensure uniform development

methods. Reuse potential is important to the success of any application development effort.

This determines whether there will be a future need for new or enhanced systems, and determines

the need for the further development. However, component can be used for more than just the

development/enhancement of an application.

------ ~---------------------
:\ Generic Architecture for Interactive Intelligent Tutoring Systems T A Atolaght·

Appendix D: Evaluation Questionaire

APPENDIXD

EVALUATION QUESTIONNAIRE

Your Personal Details (Optional)

User Name: .. .

Organisation:

Phone / Fax:

E-mail:

GeNisa software aims to provide a Generic architecture and modular application components for

Intelligent Tutoring Systems. More specificallY, the GeNisa architecture aims to facilitate

development and delivery of instruction qy reusing existing components and is portable over different

platforms. As part of the process of evaluating the GeNisa, you will have used the GeNisa software

from the perspective of an ITS developer.

The purpose of this questionnaire is to help evaluate various aspects 0/ the GeNzsa software

components and environment. Your feedback will assIst us in enhancing the architecture and its

functio nalities.

I L ________ _ _ ______________ -.1

Please send completed questionnaire to:

Tajudeen Atolagbe

Department of Information Systems and Computing
BruneI University, Uxbridge.
UB8 3PH. United Kingdom.
Email: tajudeen.atolagbe@brunel.ac.uk

267

A Generic Architecture for Interactive Intelligent Tutoring Systems
T A Atolagbe

Appendix D: Evaluation Questionaire

Instruction

Please tick all the boxes that are applicable:

1. Your Profile

1.1. What is your profession?
ITS Researcher
Lecturer
Developer
Technician
Student
Other

o
o
o
o
o
o

1.2 Which of the processes do you perform as part of your job?
E val uate ITS 0
Project Management 0
Software Development 0
Software Procurement 0
User Support 0
Oilicr 0

1.3 Which operating system are you using as part of your work?
Windows 0
Unix 0
OOcr 0

1.4 How often do you use an intelligent tutoring system (ITS)?
~~ 0
Daily 0
Weekly 0
Monthly 0
Less frequently than monthly 0

268

1.5 How important is it that you are able to reuse ITS components and be able to deploy your
application on different platforms?

Extremely 0
Important 0
Preferred 0
Not Important 0
Irrelevant 0

2. Suitability for Courseware Authoring and Deployment

2.1 Please indicate the extent to which you agree or disagree with each of these statements, related to
GeNisa software, making use of the scale provided in each case.

Strongly Agreed Neutral Disagree Strongly
Agree Disagree

Navigation facilities are 0 0 0 0 0
adequate
Classes developed and populated 0 0 0 0 ::J
independentl y
Easy to switch between 0 0 0 0 0
different menu levels
Easy to evoke required 0 0 0 0 0

-------~--

A ('L'I1L'ric Architecture for Interactive Intelligent Tutoring S ystL'rns T..\ :\tllLlt:I'<:

Appendix D: Evaluation Questionaire
~bq

.........

~-" ~ 4---procedures __
Easy navigation between 0 0 0 :J 0 different modules +~-Predetermined sequence of 0 0 0 0 0 procedures f~r tasks
Command option for menu 0 0 0 0 0 selection

User can interrupt any dialogue
--:

0 0 0 0 :J at any time

Commands and tools are easy to 0 0 0 0 0 . find 1
r- -+--Message boxes are contents I 0 0 0 0 0 specific

2.2 Please specify how you see the implementation of the following functions within the GeNisa software
and components:

Not Good Moderately Neutral Good Very
Good Good

Functions

su
pp±-: 0 0 0 0

current tasks --
Search engine 0 0 0 0 _.1.

Routines are ~kt- 0
~

0 0 0
specific
Clarity of the screen 0 0 0 0
layout !

-+-Input and output 0 0

I

0 0 0
procedures

the I "'t"""'"

Access to 0 0 0 I 0 0 I ~nowledge base I + Adaptable for new tasks 0 I 0 0 0 0
Screen presentation 0 ~- 0 0 0
supports my work
Commands are easy to 0 I 0 0 0 0
find -L_,_ ,

I

0 --+- 0 0 0 Beneficial to your 0

I
work I Ease of use 0 0 .1 0 0 0 H,t

2.3 Do you feel some key components are missing in GeNisa software.

Strongly Agree Neutral Disagree Strongly
Agree Disagree

0 0 0 0 0

If you agree, please specify which facilities are missing:

. ~--~- - -----

A Generic ArchilL'clure for Interactive Intelligent Tutoring Systems T. A Awlagbe

Appendix D: Evaluation Questionaire 270

2.4 If you have been using other ITS software similar to GeNisa, please rate the overall GeNisa
functionality with relevance to these systems?

Not Good

o

Moderately
Good

o

Neutral

o

Good Very Good

o o

2.5 Please describe other unique functions which you have seen in these other ITS software and if
appropriate list the names of these systems:

3.0 Unique Features and Fuctionalities
3.1 Please state your perception of the following features in GeNisa software.

Not Good

Object oriented architecture __ -+1_ 0
Portable across different platforms ! 0
Objects can easily be modified 0

Moderately
Good

o
o
o

--+-- o Exposes reusable objects to developer, 0
Reuse-oriented approach T'--o---+---

_Performance on different platforms _ I 0
o
o
o Binary interface permits runtime reuse 0

of classes
Objects promotes encapsulation and 0
portability
Provide common functionality within 0
tools ~
Integrate with other software package --1--.. 0
Ease of adaptation ~ 0
Authoring tools supports optimal usage -t-- 0
GeNisa makes use of realistic case I 0
scenanos
Ability to easily create "links" between
tutorial pages I
Capacity to handle rich text, graphics +- 0

o

etc

r
o

o

o
o
o
o

o

o

.. ·-t··

Supports schema evolution _____ ,_+_

Extensible

0_--+ __
o

0 __ -+
o

GUI controls are provided to enrich
development
Facilitates connectivity to other
databases
Allows developer to add classes
Includes lists of instructional strategies
Scalability
Flexibility
Cost-effective development tool
Construction IS facilitated by
knowledge representation

o

o

o
o
o
o
o
o

---1---

A GcncrIC Architecture for Interactive Intelligent Tutoring Systems

o

o

o
o
o
o
o
o

Neutral

o
o
g-+~
o --+-
o
o

o

o

o
o
o
o

o

o

o
o
o

o

o
o
o
o
o
o

Good

o
o
o -.- -o I o t

o
o

o

o

o
o
o
o

o

o

o
o
o

o

o
o
o
o
o
o

Very
Good
o
o
o
o
o
o
o

o

o

o
o
o
o

o

o

o
o
o

o

:J
o
:J
:J
:::J
o

T A Atolagbe

Appendix D: Evaluation Questionaire
271

Classes are domain independent
Reusable for different scenarios and
applicable to other domains

D
D

D
D

D
D

3.2 Please rate the above features in terms of supporting your courseware development

Not Good

D

Moderately
Good

D

Neutral

D

Good Very Good

D D

3.3 Different courseware authoring tools are identified and represented.

Strongly
Agree

D

Agree

D

Neutral

D

Disagree

D

Strongly
Disagree

D

3.4 The components meet your courseware development needs.

Strongly Agree Neutral Disagree Strongly
Agree Disagree

0 0 0 0 0

D
D

3.5 Easily tailor the components to your needs by assembling classes and tools rather than
programming from scratch.

Strongly Agree Neutral Disagree Strongly
Agree Disagree

0 0 0 0 0

3.6 Appropriate taxonomic characterisation of tasks that adequately supports pedagogy development.

Strongly
Agree

o

Agree

o

Neutral

o

Disagree

o

Strongly
Disagree

o

3.7 GeNisa software enables and supports reuse of previously developed knowledge bases.
Strongly Agree Neutral Disagree Strongly
Agree Disagree

o 0 DOD

3.8 GeNisa software is flexible, open and provides automatic courseware generation.
Strongly Agree Neutral Disagree Strongly
Agree Disagree

o 0 DOD
3.9 Please specify any features provided in GeNisa that are, in your opinion unique or better that those
provided in other ITS software used.

·to Module Representation

4.1 Please specify how you see the implementation of the following modules:

Not Good Moderately Neutral Good

A(;cllcric Architecture for Illtl'ractive Intelligent Tutoring Systcms T A Atolagbe

:J
D

Appendix 0: Evaluation Questionaire

""T
Good ' +,;

Provides enough D i D D :J information about
which entries I
Contents are clear and D 1-- D D D
unambiguous [

i - ~T--Visual queues used to D : D D D
indicate eE.try point ,
Clarity of feedback D

~'-..
D D D

messages ,
~-

~ ~

Navigation within the D D D D
software +---
Interrupt any dialog at D D D D
any time
Easy of moving D D D D
between different
screens

the system + ... _-Usage of D D D D
functionality
Abort D

---i--
a runmng D D D

procedll~~_man uall y L
Output of functions D ~I_. D D D
Use of prompts / D D D D
messages boxes

4.2 Little training is required before a user can employ GeNisa software productively.

Strongly
Agree

D

Agree

D

Neutral

D

Disagree

D

Strongly
Disagree

o

4.3 Interaction with the system is clear and not subject to misinterpretation.

Strongly
Agree

D

Agree

D

Neutral

D

Disagree

D

Strongly
Disagree

D

4.4 Components are adequate for courseware development

Strongly Agree Neutral Disagree Strongly
Agree Disagree

D D D D D

4.5 Components have necessary functionalities

Strongly Agree Neutral Disagree Strongly
Agree Disagree

D D D D D

5.0 Difficulties

5.1 Please indicate the parts of the system, which were difficult to use/understand:

Function
Authoring tools

A (;CIlL'IX Architecture for Interactive Intelligent Tutoring SystL'ms

Difficult to use or Understand
D

,..."
_/-

Good
D

D

D

D

D

D

D

D

D

D
0

Appendix D: Evaluation Questionaire

Search engine
Courseware authoring
Knowledge acquisition module
Editing the scenario library
Retrieve information from field
Messages displayed
Correcting mistakes
Navigation
Feedback

5.2 Did you find the GeNisa user interface easy or difficult to master?

Very Difficult

o
Fairly Difficult

o
Neutral

o

o
o
o
o
o
o
o
o
o

Fairly Easy

o
Easy

o
5.3 Did you find it easy or difficult to navigate through the screen/windows of the GeNisa user
interface?

Very Difficult

o
Fairly Difficult

o
Neutral

o
Fairly Easy

o
Easy

o

5.4 Did you find the use of the system tiring for reasons such as: much information or not in logical order,
tiring colours, difficult fonts other. If you answer Yes or Neutral please comment below:

YES

o
Neutral

o

5.5 Please rate the overall design and look of the GeNisa user interface:

Very Good

o
Good

o

6.0 GeNisa Software Performance

Neutral

o

NO

o

Satisfactory

o

6.1 Please rate the performance of GeNisa software in reference to the following tasks:

Poor

o

Very Good Neutral Satisfactory Poor

Good
Speed of response 0 0 0 0 :J

How well are text/icons/tables 0 0 0 0 0
displayed on your screen

0 0 ~ Presentation of information on- 0 0
line
Contents sensiti vity 0 0 0 :J :J

------- ----

A(;~'~1-L'!Il' Architecture for Interactive Intdligent Tutoring Systems

Appendix D: Evaluation Questionaire 27 ..

Use of Scenarios 0 j 0 0 0 0 --- I Courseware Authoring 0 0 0 ::J ::J --- -~'-

P0l'1:a~ility to other platform 0 0 0 0 ::::J
Reuse of components and 0 0 0 0 0
functions
Designations are used 0 0 0 0 :J
consistently + Meaningful message boxes 0 0 0 0 0

6.2 PI~ase .make any s~ecific comments or provide examples in reference to any problems you may have
faced m usmg the GeNlsa software (eg. specific problems you may have faced, etc.):

6.3 The following components are adequately provided in the GeNisa:

Strongly Agree Neutral Disagree Strongly
Agree Disagree

. ,-~.~~.--

Quality of Instruction I 0 0 0 0 0
,-"'------

User Interface 0 0 0 0 0
- -

Information presentation
~,--~------ ...---

0

-" .. -.. i-.~
0 --1-- 0 0 0

Information Integrity 0 0 --·---·I-----~-- 0 0 0
............................ _ .. _ ... • ri •• ····_··

Dialogue/Message Boxes 0

I
0 -+ 0 0 0

Knowledge Base 0 0 !
0 0 0

Scenario Library 0
i 0 0 0 0 I
i

'-j'

On-line help 0 0 0 0 0
- -"'~ """'~-----

Inference Engine 0 0 0 0 0
-----... ,,-..... ~~""--~~"'''-

Tutorial Discourse 0 0 0 0 0

6.4 Please rate the level of error tolerance in the component as presented in GeNisa:

Small mistakes have sometimes had

Strongly
Agree

o
senous consequences_ -+-_

o Prompts are used to confirm destructive
operation (e.g. deletion of file etc.), -i=
Mistakes can easily be corrected.. 0
Needs minimum technical support 0
Data are checked for correctness before 0

Agree

o

o
-!--

I 0 -+-: 0
-r~' o

processing is initiated _
Easily undo the last operation
Error messages are helpful

o ___ 1_ 0

Warning about potential problem
situations
Keep the original data even after it has
been changed
Provides useful information on how to
recover from mistakes

o 0
o 0

o o

o o

A Generic Architecture for Interactive Intelligent Tutoring Systems

Neutral

""""'-----

o

o

o
o
o

o
o
o

o

o

Disagree Strongly
Disagree

o o

o

o
o
o

o
o
o

o

o

o

o
o
o

o
o
o

o

T :\ Atolagbe

Appendix D: Evaluation Questionaire

7.0 Reuse, Portability and Learning

7.1 The following statements test the suitability for reuse, portability and learning.

Strongly
A

Agree
gree -~ 0 Easy to adapt fo~s, screens and m~nus

Faster access to components
Components integration
Access to data from a number of resources
Greater productivity for developer on
different platfonns _
Reduction in development time
Ability to access infonnation during
instruction

:

I
I
!

_Support for other software -,-
Reuse of data and attributes
Mixed-initiative knowledge acquisition
Incorporates set of tools to optimise ITS
development
Adjust the amount of information (data,
text, graphics, etc.) displayed

0
0
0
o

0
0

0
0
0
0

0

0
0
0
0

'" o
,

+
0
0

0
0 - -
0
0

0

7.2 The following statement tests the suitability for learning

Strongly Agree
Agree

Long time needed to learn how to use the 0 0
software I
The explanation provided is clear and easy i 0 0
to understand I ___ .l -,,------

~-GeNisa is intuitive 0 ! 0 f -
" Requires remembering many details 0 ! 0

---~...;.

The program performs better than other ITS 0 0
that I have used

-4..-

Sufficient number of examples are given 0

+
0

for each topic
Help information in the GeNisa is clear and 0 0
preCIse ~.
Courseware materials are comprehensive 0 0
Tutorial directions are clear 0 0
I have control during instruction 0 0
Easily adapted to suit my own level of 0 0
knowledge and domain
Course is divided into smaller modules 0 0
Scenarios are used appropriately 0 0
Help improve knowledge of the subject 0 0
Interactivity provided is adequate 0 0
Meaningful error messages are provided 0 0
Instruction is consistently designed, thus 0 0
making it easy to use

A Generic Architecture for Interactive Intelligent Tutoring Systems

- 1--

._,.-

Neutral

o
o
o
o
o

o
o

o
o
o
o

o

Neutral

0

0

0
0
0

0

0

0
0
0
0

0
0
0
0
0
0

Disagree Strongly
Disagree

0 :::J
0 :::J
0 0
0 0
0 :J

0 0
0 0

0 0
0 0
0 0
0 0

0 0

Disagree Strongly
Disagree

0 0

0 0

0 0
0 0
0 0

0 0

0 0

0 0
0 0
0 0
0 0

0 :l
0 0
0 0
0 0
0 0
0 0

T:\ Atolagoc

Appendix D: Evaluation Questionaire

8.1 In what ways do you feel that the GeNisa Software can be improved and new facilities added?

8.2 Please use space below to make any comments or suggestions concerning the package, which may be
useful for current or for further development

Thank you for completing this questionnaire.

Completed questionnaire should be returned either by post, fax or email to the address given on page

1.

A Generic Architecture for Interactive Intelligent Tutoring Systcms
T A .·\tolagbe

.....

Your Personal Details (optional)

User Name:

Organisati on:
-

. · -- ••••••••• ac: ~

Phone/Fax:•....•.....•................•................. .

E-mail:•.........••.............................•.

GeNisa
GeNisa software aims to provide a Generic architecture and modular application components

for Intelligent Tutoring Systems. More specifically, the GeNisa architecture aims to facilitate

development and delivery of instruction by reusing existing components and is portable over

different platforms. As part of the process of evaluating the GeNisa, you will have used the

GeNisa software from the perspective of an ITS developer.

The purpose of this questionnaire is to help evaluate various aspects of the GeNisa software

components and environment. Your feedback will assist us in enhancing the architecture and its

functionalities.

Tajudeen Atolagbe

Department of Information Systems and Computing
BruneI University, Uxbridge.
UB8 3PH. United Kingdom.
email: Tajudeen.Atolagbe@brunel.ac.uk

1

Instruction

]llea c tick all the boxes that are applicable:

1. Your Profile

1.1. What is your profession?
- ITS Researcher
- Lecturer
- Developer
- Technician
- Student
- Other

o

~
o
o
o

1.2 Whi h of the proc s cs do you perform as part of your job?
- Evaluate ITS 0
- Project Management
- Software Development
- Software Procurement
- User Support
- Other

~
o
o
o

1.3 Which op rating system are you using as part of your work?
- Windows c:r

Ucix 0
- Oilicr 0

1.4 How oft n do you use an intelligent tutoring system (ITS)?
- Never 0
- Daily I!J
- Weekly 0
- Monilily 0
- Less frequently than monthly 0

1.5 How important is it that you are able to reuse ITS components and be able to deploy yO!
application on different platforms? ~

- Extremely B'
- Important 0
- Preferred 0
- Nothnportant 0
- Irrelevant 0

2

The Suitability for Courseware Authoring and Deployment

Please indicate the extent to which you agree or disagree with each of these statements,
rela ted to GeNisa software, making use of the scale provided in each case.

. I Strongly '
:

Neutral Disagree ' ':'Strongly . . Agreed . I Agree I Disa2ree
Navigation facilities are 17" 0 0 0 0
adequate
Classes developed and m" 0 0 0 0
populated independently
Easy to switch between G'Y 0 0 0 0
different menu levels
Eas y to evoke required [JI' 0 0 0 0
procedures A

Easy navigation between (ii 0 0 0 0
different modules /

Predetermined sequence of Q' 0 0 0 0
procedures for tasks .r
Command option for menu 0 L9" 0 0 0
selection
User can interrupt any r:Y 0 0 0 0
dialogue at any time
Commands and tools are crv 0 0 0 0
easY to find

- Message boxes are crY' 0 0 0 0
COI!tents ~Eecific ._._. __ '--. ____ '--. ______ '---___ . ____ 1...-___ , __ .. ____ -
please specify how you see the implementation of the following functions within the GeNisa
software and components:

. • fi ~..."./1

'f Not .. Moderatelr Neutral
, I Good . Good .---____ ~------l-~----- ~~--_+-

Functions support I 0 0 0
current tasks I

Search en ine 0 0 0
Routines are tasks 0 0 0

I S ecific
Clarity of the 0 0 0
screen la out
Input and output 0 0 0

rocedures
Access to the 0 0 0

I)a1owled e base
Adaptable for new 0 0 0
tasks

3

Good

o

o
o

o

o

o

o

Very
Good - GV--

Screen presentation I
SU orts m work I

I Beneficial to your
... work _._--1-

Ease of use 1

o

o

o

o

o o o

o o o

o o I 0
I I +------+--------r----.-.. o 0 \ 0 _ I

2.3 Do you feel some key components are missing in GeNisa software

Strongly
Agree

o

Agree

o

Neutral

o

Disagree

o

Strongly

DiSwe

If you agree, please specify which facilities are missing:

2.4 If you have been using other ITS software similar to GeNisa, please rate the overall
GeNisa functionality with relevance to these systems?

Not
Good
o

Moderately
Good
o

Neutral

o

Good Very

o G~

2.5 Please describe other unique functions which you have seen in these other ITS software
and if appropriate list the names of these systems:

4

Unique Features and Fuctionalities

Please state your perception of the following features in GeNisa software .

• oqo ;.0." ~.. .:...: ~ I Not " 'f •
Neutral I ' Moderately Good Very

... I Good .. 1 Good I .' Good . ,

LQ!?lect oriented architecture I 0 ~ ___ D 0 0 CV -- ----
portable across different

I
0 0 0 0 er"

I platfonns --
I -----

Objects can easily be modified 0 0 0 0 C3"
Exposes reusable objects to

I
0 0 0 0 c:Y

I developer
Reuse-oriented a:Ql2roach 1 0 0 0 0 [j7 r Perfonnance on different

I
0 0 0 Q/ 0

. platfonns
r Binary interface permits runtime

I
0 0 0 0 GJI'"""

reuse of classes --_._._-- 1-----1

Objects promotes encapsulation 0 0 0 0 CiV
and porta~ilit~

I Provide common functionality 0 0 0 0 CiV
within tools r Integrate with other software 0 0 0 [g/ -0

~Eacka_ge - ~-- -
Ease of adaptation 0 0 0 0
Authoring tools supports optimal 0 0 0 0 c::Y

I usage
r aeNisa ma~es use of realistic 0 0 0 0 cY

case scenanos /'

Ability to easily create "links" 0 0 rY 0 0
between tutorial pages
Capacity to handle rich text, 0 0 0 (J/ 0
graphics etc /'

~;orts schema evolution 0 0 0 nY __ o L I--
Extensible -- 0 0 0 0 ~ -- _._----1--._---

- aUI controls are provided to 0 0 0 0 W
enrich develo:Qment ___ ------- W- -----
Facilitates connectivity to oth:J 0 0 0 0
databases ./

--AlloWS developer to add classes 0 0 0 0 , e'
Includes lists of instructional 0 0 0 g- O
strategies
'Scalabilit~ I 0 0 0 0 ~
~xibility . 0

' ___ M~_' -¥ -0 0 0
~ctive development tool 0 0

[j7 0 0

t-construction is facilitated by 0 0 0 "g'" 0
knowledge reEresentation

t-Classes are domain indeEendent 0 0 0 0 cY
~---------- - ---------

Reusable. for different sc~n_arios 0 0 0 0
5

I and applicable to other domains

3.2 Please rate the above features in terms of supporting your courseware development

Not
Good
o

Moderately
Good

o

Neutral

o

Good Very

o G~

3.3 Different courseware authoring tools are identified and represented

Strongly
Agree

o
Agree Neutral Disagree Strongly

Disagree
DOD

3.4 The components meet your courseware development needs

Strongly Agree

A~ o

Neutral Disagree Strongly
Disagree

DOD

3.5 Easily tailor the components to your needs by assembling classes and tools rather than
programming from scratch

Strongly
Agree

(3

Agree

o

Neutral Disagree Strongly
Disagree

DOD

3.6 A ppropriate taxonomic characterisation of tasks that adequately supports pedagogy
development

Strongly
Agr~
l]

Agree

o

Neutral Disagree Strongly
Disagree

DOD

3.7 GeNisa software enables and supports reuse of previously developed knowledge bases

Strongly Agree Neutral Disagree Strongly
Agree ~. Disagree

0 0 0 0

3.8 GeNisa software is flexible, open and provides automatic courseware generation

Strongly Agree Neutral Disagree Strongly
Agrye Disagree

[J' D 0 0 0

6

1,9 Please specify any features provided in GeNisa that are, in your opinion unique or better
hat those provided in other ITS software used.

1 A jI /J-, -; f;,z /iL..~\ ~'V'/.J
.f

/" (./ ", ~7

to Module Representation

tl please specify how you see the implementation of the following modules:

<:~~~'i~;~' .;;."~', .'!;.~ '~'->:~ Nol ": ':"MC;~~rateiYtT" Neu'ttal';;-"" -Goo~r ': [. V~ry <
,

~ ,I". V. -.. ",,-

Good ' ' .. , G d 'G d ' t ~ ,' (. ", _ , ',> ",_' ~_ 00 ' " 00 t' , . ' , •

Provides enough
I 0 0 0 0 Cl")

I I infonnation about
which entt:ies I -------or -r-Contents are clear !

c1
0 0 0 I

~and unambiguous
I

- /

Visual queues used 0 0 0 8"
to indicate entry
p.oint -
Clarity of feedback

I
0 0 0 0 c:v

messages I
r-Navigation within 0 0 0

-
0 OJ

the software -------- ---
Jntenupt any dialog 0 0 0 0 Cl
at any time I

Easy of moving I 0 0 0 0 g
between different
screens ,

V sage of the system 0 0 0 0 Cf
functionalit~

/

Abort a running 0 0 0 0 Cl"
procedure manually

t-' Output of functions 0 0 0 cr 0 .'

Use of prompts /
J

0 0
I

0 0 0
message~ bo.xes" ,,,, " ..

7

4.2 Littl training i required before a user can employ GeNisa software productively

Strongly
Agree

o

Agree

0 -

Neutral Disagree Strongly
Disagree

ODD

4.3 Int raction with the system is clear and not subject to misinterpretation

4.4

4.5

Strongly
Agree

CJ

Agree

o

Neutral Disagree Strongly
Disagree

DOD

omponents are adequate for courseware development

Strongly Agree Neutral Disagree Strongly
Agree

0 /
Disagree

0 0 0 0

Components have necessary functionalities

Strongly Agree Neutral Disagree Strongly
Agree crf Disagree

0 0 0 0

5.0 Difficulties

5.1 Please indicate the parts of the system which were difficult to use/understand:

8

'.2 Did you find the GeNisa user interface easy or difficult to master?

"r -

Very Difficult '! Fairly Difficult

D 0

Neutral

o
Fairly Easy

o
Easy

0 /'0

i,3 Did you find it easy or difficult to navigate through the screen/windows of the GeNisa user
interface?

.:,1. " ,tll .,' ,II, t, . r . " " -1'"'11 I , .'. t" " "1 .,
f ,'. :j" F I ,

I "II ,
Very Difficult Fairly Difficult Neutral ' Fairly Easy Easy
. !, ,,"""U' I 1:;; '.j;:

I
·1:' .

0 j 0 0 0 (J /

---~ ,-

5.4 Did you find the use of the system tiring for reasons such as: much information or not in logical
order, tiring colours, difficult fonts other. If you answer Yes or Neutral please comment below:

1 ,1,1

J

5.S please rate the overall design and look of the GeNisa ,user interface:

'. ~ ~ 1
Very Good ·

a/ "
Good

o

6.0 GeNisa Software Performance

Neutral

D

Satisfactory I

o
Poor

o

6.1 Please rate the performance of GeNisa software in reference to the following tasks:

Very
Good .

'Good ' Neutral Satisfactory Poor

Seed of resQonse rn D 0 0 D
How well are CJ/ 0 0 0 D
text/icons/tables di splayed

9

-
1 I on your screen

Presentation of information 0 0 0 D 0
on-line
Contents sensitivity Cl(D D D D ,.
Use of Scenarios g 0 D D 0
Courseware Authoring 0 (0" D I D 0
Portability to other GJ 0 D D 0
platfonn ,

Reuse of components and 0 ' 0 D D 0
functions ,

Designations are used 0 0 0 0 0
consistently /

Meaningful message boxes ro/ 0 0 D 0

6.2 PI a e make any specific comments or provide examples in reference to any problems you
may have faced in using the GeNisa software (eg. specific problems you may have faced,
etc.): / ' -7 -I

., .J\.</

6.3 The ronowing components are adequately provided in the GeNisa:

0
User Interface D

..- 0
0

Gl"- 0
D

/

0 " D 0 0 CJ
0 0 0 D CJ
0 / 0 D D 0

Tutorial Discourse Q / 0 0 D CJ

10

).4 P lease rate the level of error tolerance in the component as presented in GeNisa:

'f~ - I Strongly r -- - I r Neutral -I DisaJ?~e~--. ~.~ . - . Agt:ee Strongly ,
i Agree Disa2r~~L '>f. ~ I ,< , -, __ .J:..,_~_-,-,

Small mistakes have sometimes 0 0 o 0 Q
had serious conseguences
Prompts are used to confinn 0 cY 0

.

0 0
destructive operation (e.g. deletion
of file etc.),
Mistakes can easily be corrected GJI' 0 0 0 0
Needs minimum technical support Q/ 0 0 0 0
Data are checked for correctness 0 (J/ 0 0 0
before processing is initiated
Easil~ undo the last operation 0 CJ/ 0 0 0 -- --
Error messages are helpful 0 CJ// 0 0 0
Warnjng about potential problem 0 GI/ 0 0 0
si tuations

r Keep the original data even after it 0 0 !3 0 0
has been changed
Provides useful infonnation on cY 0 0 0 0
ho~_~'? recover from mistakes

. -..... ,,_·.w_. _"R._ • ___ fl ___ '_ ._ _ _ •
~. R"~'" • _. ___ ._ ... h. _ .,_ • . __ . -- .-

7.0 Reuse, Portability and Learning

7.1 The foJ)owing statements test the suitability for reuse, portability and learning

''i' ,.,,, • r~ "'{ w Iftr" ' ". r I

Neutral Djsagree Strongly ,
• I Dlsa~ree

r Easy to adapt fonns, screens and 0 13 DOD
menus

r Faster access to components o o o o
Components integration o o o
Access to data from a number of o o o

o o

ptimi e o - 1- 0 o -----+- o

f-Adjust the amount of info~ation -+---O--+---O---t--o-- 0 0 ITS develo ment I I r-~
I (data, text, graphics, etc.) displayed I I

7.2 The fonowing statement tests the suitability for learning

Long time needed to learn how to 0 0 o 0 [J

use the software
The explanation provided is clear
and easy to understand
GeNisa is intuitive
Requires remembering many details
The program performs better than
other ITS that I have used
Sufficient number of examples are
given for each topic
Help information in the GeNisa is
clear and precise
Courseware materials are
comprehensi ve
Tutorial directions are clear
I have control during instruction
Easily adapted to suit my own level
of knowledge and domain
Course is divided into smaller
modules
Scenarios are used appropriately
Help improve knowledge of the
subject
Interactivity provided is adequate
Meaningful error messages are
provided
Instruction is consistently designed,

_ thus m_aking it e~ to use

o

o
o /

o
.

0 '- /
0 -

o

o
o

o

12

o o o CJ

o o o CJ ~I
o o o [J I
o o D CJ

o o CJ

o D o CJ

o o D o

o o D o
o o D CJ
o o D CJ

o o o D

o 0 o o
o 0 D CJ

o 0 o CJ
o 0 o CJ

o 0 D CJ

------'- --- -_. ____ ' __ ----~

·1 In what ways do you feel that the GeNisa Software can be improved and new facilities
added?

/' ~ -:. :.~ / ... -.-
I

:.. I • I /

2 Please use space below to make any comments or suggestions concerning the package,
which may be useful for current or for further development

\ I .1 ... / .I
! c flo. - -.. • .)

I
I , I; ~.

I /

Thank you for completing this questionnaire.

/
, • " ~ , I

Completed questionnaire should be returned either by post, fax or email to the addr

given on page 1.
13

~ ITS develo ment
Adjust the amount of information
(data, text, graphics, etc.) displayed

Cl I -ot0
I

7.2 The following statement tests the suitability for learning

Long time needed to learn how to (j Cl (j

use the software
The explanation provided is clear Cl (j (j

and to understand
(j a
(j (j

The program perfonns better than (j a
other ITS that I have used
Sufficient number of examples are CI Cl CI

ven for each
D D

Cl (j

(j

(j

a
.~

[J a a

Seen (j (j

Help improve knowledge of the (j (j

Instruction is consistently designed, o
thus it to use

12

(j

(j (j

A

(j

a (j

D a

(j (j

(j (j

(j LJ
a LJ

(j CJ

(j LJ
CJ LJ

(j CJ

In what ways do you feel that the GeNisa Software can be improved and new facilities
added?

/. / /.
/> ,~> ~-! ~

Please use space below to make any comments or suggestions concerning the package,
which may be useful for current or for further development

/

, >.///.
~ ,

--
----~---

Thank you for completing this questionnaire.

Completed questionnaire should be returned either by post, fax or email to the addr

given on page 1.
13

Your Personal Details (optional)

User Name:

Organisation:

Phone I Fax:

E-mail: ...

GeNisa
GeNisa software aims to provide a Generic architecture and m dular application mp n nt

for Intelligent Tutoring Systems. More specifically, the GeNisa architecture aims to f cilitate

development and delivery of instruction by reusing existing c mponent and is p rt ble ver

different platforms. As part of the process of evaluating the GeNisa, you will have u ed the

GeNisa software from the perspective of an ITS developer.

The purpose of this questionnaire is to help evaluate various aspects of the GeNisa software

components and environment. Your feedback will assist us in enhancing th architectur and i

functionalities.

Tajudeen Atolagbe

Department of Information Systems and Computing
BruneI University, Uxbridge.
UB8 3PH. United Kingdom.
email: Tajudeen.Atolagbe@brunel.ac.uk

1

Instruction

Please tick all the boxes that are applicable:

1. Your Profile

1.1. What is your profession?
- ITS Researcher
- Lecturer
- Developer
- Technician
- Student
- Other

o
o
o
o
o
~

1.2 \¥hich of the processes do you perform as part of your job?
- Evaluate ITS 0
- Project Management 0
- Software Development ~
- Software Procurement 0
- User Support 0
- Oili~ 0

1.3 Which operating system are you using as part of your work?
- Windows ' ~
- Urux 0
- Other ~

1.4 How often do you use an intelligent tutoring system (ITS)?
- Never 0

Daily 0
W~~y 0
Monthly ~
Less frequently than monthly 0

1.5 How important is it that you are able to reuse ITS components and be able to deploy your
application on different platforms?
- Extremely
- Important
- Preferred
- Not Important
- Irrelevant

o
o
o

2

The Suitability for Courseware Authoring and Deployment

Please indicate the extent to which you agree or disagree with each of these statements,
related to GeNisa software, making use of the scale provided in each case.

, Strongly ' Agreed Neutral Di agree Strongly

.-----~
A2ree

'--'- -.~
I'pjsagree _ -- CY' Navigation facilities are 0 a a 0

adequate - ~ 0 a a a Classes developed and
populated independently
Easy to switch between GV' 0 a 0 0
different menu levels
Easy to evoke required ~ CY' 0 0 0
procedures
Easy navigation between crv 0 0 0 0
different modules
Predetermined sequence of g- O 0 0 0
procedures for tasks
command option for menu m' 0 0 0 0
selection /" -
User can interrupt any g" 0 0 a a
dialogue at any time

- Commands and tools are 0 cY 0 0 0
easy to find

- Message boxes are 0 0 5r' 0 0
~~!l_t~nts sEec~.!l~ __ ._ .. _._.L.... __ .. _._ .. _ ... _,-. ____ . -.

2 Please specify how you see the implementation of the following functions within th G Ni a
software and components:

--"I " 11- .

I
-

i , Not Moderately Neutral Good Very
Good Good Good

,....-~ . ' -- _ _--- ._------_ .. . -
FunctlOns support 0 0 0 ~ a
current tasks

r-Search engine a a a 0 ~
r-Routines are tasks a a D 0 0/"

specific
Clarity of the D D D a r:;J/
screen l~yout

r Input and output D D D D CiV'
I procedures ./

r Access to the D D D -rg' 0
knowledge base ./

Adaptable for new a D D a ~
tasks

3

Screen presentation I 0 0
I

0 I 0
I supports my work I

Commands are easy 0 0 I 0 I 0
to find I
Beneficial to your 0 0 0 I 0
work
Ease of,use 0 0 0 I 0

2.3 Do you feel some key components are missing in GeNisa software

Strongly
Agree

LJ

Agree

o

Neutral

o

Disagree Strongly
Disagree

o

If you agree, please specify which facilities are missing:

I I

\

Q/"
J

I Q/ I

i W-i I

2.4 If you have been using other ITS software similar to GeNisa, please rate the overall
GeNisa functionality with relevance to these systems?

Not
Good
o

Moderately
Good
o

Neutral

o

Good Very

o G~

2.5 Please describe other unique functions which you have seen in these other ITS software
and if appropriate list the names of these systems:

4

3.0 Unique Features and Fuctionalities

3.1 Please state your perception of the following features in GeNisa software.

I Not Moderately Neutral Good Very
Good Good G~_

Object oriented architecture 0 0 0 0 -- . - -.-

portable across different 0 0 0 0
J>~tforJl}.s ------ --- _._------- ~ Objects can easily be modified 0 0 0 0

Exposes reusable objects to 0 0 0 c:v 0
I developer

Reuse-oriented aEEroach 0 0 0 0 ~ --PerfOlmance on different 0 0 0 0
platforms
Binary interface permits runtime 0 0 ev- 0 0
reuse of classes .------------------------1--------- .------ - - f- --
Objects promotes encapsulation 0 0 a a
and portability -

...... Provide common functionality 0 0 0 0
within tools

rJntegrate with oth'er software
- - --

0 0 a a
p~ckage - - - f- -- i- V -Ease of adaptation 0 0 a a

r- Authoring tools supports optimal 0 0 a a t::'J,/

usage
- GeNisa makes use of realistic 0 0 a a 0/

case scenarios
r Ability to easily create "links" 0 0 a G)/'" 0

between tutorial pages
r-Capacity to handle rich text, 0 0 a ~ a

graphics etc
~.Eports sch.ema eV.9l~~i~!! _____ 0 0 ev_ a a -- - -- .-

~~ Extensible 0 0 0 0 ._ f-
- aUI controls are provided to 0 0 a 0 ¥
~ch development - f- -

Facilitates connectivity to other a 0 a 0
databases

-~. Allows developer to add classes 0 0 a a
r-Includes lists of instructional 0 0 a !LV Cl

strategies /"

Scalability 0 0 0 gr .. CY - - -Flexibility 0 0 a 0
r-Cost-effective development tool a 0 a a - ~

Construction is facilitated by a 0 a (]7 Cl
knowledge representation /'
Classes are domain independent a 0 a a Er / ----
Reusable for different scenarios D 0 0 0 C"

5

and applicable to other domains I

3.2 Please rate the above features in terms of supporting your courseware development

Not
Good
a

Moderately
Good
a

Neutral

a

Good

a

Very
Good

CY'"

3.3 Different courseware authoring tools are identified and represented

Strongly
Agree

o

Agree Neutral

o

Disagree

o

Strongly
Disagree

o

3.4 The components meet your courseware development needs

Strongly Agree Neutral Disagree Strongly

A~ Disagree
a a 0 a

3.5 Easily tailor the components to your needs by assembling classes and tools rather than
programming from scratch

Strongly
Agree

o

Agree Neutral Disagree Strongly
Disagree

a a a

3.6 Appropriate taxonomic characterisation of tasks that adequately supports pedagogy
development

Strongly Agree Neutral Disagree Strongly

A~ Disagree
a a 0 o

3.7 GeNisa software enables and supports reuse of previously developed knowledge bases

Strongly Agree Neutral Disagree Strongly
Agree

~
Disagree

0 a a 0

3.8 GeNisa software is flexible, open and provides automatic courseware generation

Strongly
A~ Neutral Disagree Strongly

Agree Disagree
0 0 0 0

6

3.9 Please specify any features provided in GeNisa that are, in your opinion unique or better
that those provided in other ITS software used.

4.0 Module Representation

4.1 Plea e pecify how you see the implementation of the following modules:

,-
I Moderately I I 1 Not Neutral Good Very

Good Good Good
Provides enough 0 0 0 0 0-
information about
which entries
Contents are clear -., D 0 D D __ L~_I and unambiguous
Visual queues used D D 0 0 (J/
to indicate entry
Eoint
Clarity of feedback D 0 D c:v-- D
messages
Navigation within D D D 0 Q/
the software
Interrupt any dialog D D D D ,r;v
at any time
Easy of moving 0 0 0 ~ D
between different
screens
Usage of the system 0 0 0 0 g--
functi onali ty
Abort a running D 0 _0 0 bV
procedure manually
~Rut of functions D 0 J 0 0 9'"" --
Use of prompts / D 0 0 D ~
messages boxes 1 __ - ----- - -- - - -- - -- -- -

7

4.2 Little training is required before a user can employ GeNis a software productively

Strongly Agree

A~ o

Neutral Disagree Strongly
Disagree

DOD

4.3 Interaction with the system is clear and not subject to misinterpretation

t4

4,5

Strongly Agree

A~ o

Neutral

o

Disagree Strongly
Disagree

o 0

Components are adequate for courseware development

Str~ Agree Neutral Disagree Strongly
Agre Disagree

0 0 0 0

Components have necessary functionalities

Strongly Agree Neutral Disagree Strongly
Agree Disagree

0 0 0 0 CJ

5.0 Difficulties

5.1 Please indicate the parts of the system which were difficult to u elunder land:

Fu~ction
. A u..~()!:i!1g .~().<?!~_ _.
Inference engine

-- --.-.-. i
Courseware authoring
Know.Jedge _acqu.i_sition. J!lodtlle
E~!.ing t1!e sce.~ario library
Retrieve information from field
Messages displayed
Correcting J!llstakes
I'!avigation .___ _ ._ ...
Feedback

I
·1

I

~
- -1·- - -

8

Difficult to use or Under tand

o
o
GV
(j

o
o
o
(j

o

5.2 Did you find the GeNisa user interface easy or difficult to master?

Very Difficult

o
Fairly Difficult

o
Neutral

o
Fairly Easy

~
Easy

o

5.3 Did you find it easy or difficult to navigate through the screen/windows of the GeNisa user
interface?

Very Difficult

o
Fairly Difficult

o
Neutral

o
Fairly Easy

.~.

5.4 Did you find the use of the system tiring for reasons such as: much information or not in logical
order, tiring colours, difficult fonts other. If you answer Yes or Neutral please comment below:

YES

o
Neutral

o
NO
~

5.5 Please rate the overall design and look of the GeNisa user interface:

Very Good

o

6.0 GeNisa Software Performance

Neutral

o
Satisfactory

o
Poor

D

6.1 Please rate the performance of GeNisa software in reference to the following tasks:

Good Neutral Satisfactory Poor

o o o o
o o o D

9

-
on your screen

-presentation of infonnation tnr 0 0 -0 0
on-1ine
Contents sensitivity- GV 0 0 0 0 --1--- - ._- -
Use of Scenarios 0 GV 0 0 0 •.
Courseware Authoring 0 0 0 0 D
portability to other ct/ D D 0 D
platfonn -"

Reuse of components and D GV 0 D 0
functions /

- Designations are used Q/ D D D D
consistently /'
~~g!ul message boxes (9' D D D D --_. -_._--

6.2 please make any specific comments or provide exampJe in r t rence to any prohl m you
may have faced in using the GeNisa software (eg. sp inc problems you may hav Cac d
etc.):

6.3 The following components are adequately provided in the eNi a:

Agree Neutral Di agr e

D r::J
r::J r::J
D 0
r::J 0
0 0 ----
r::J r::J

scenario Librar ._ D 0 C]

on-line hel 0 a D
Inference En ine 0 r::J C]

Tutorial Discourse r::J 0 D

10

ITS develo ment
Adjust the amount of information
(data, text, graphics, etc.) displayed I

.2 The fonowing statement tests the suitability for learning

.~,.,- s , Strongly I Agree
I Agree
Long time needed to learn how to 0 0
use the software
The explanation provided is clear er- 0
and eas:y to understand

~ -GeNisa is intuitive 0
... Requires remembering many details .~ 0
r The program performs better than LV 0
l ather ITS that I have used
--5 ufficient number of examples are D D
J~.tven for each tOEic -----r--W -Help information in the GeNisa is 0
clear and precise

"-Courseware materials are 0 0
com2rehensi ve ' __ MW -_ ... _-
~rial directions are clear 0 0
I have control during instruction rg" 0
r Easily adapted to suit my own level Q/ 0
of knowledge and domain ,.-

rcourse is divided into smaller LV Q
modules

r scenarios are used appropriately (j , [V
lIelp improve knowledge of the UJ/ 0
subject ./

Interactivity provided is adequate GV 0
Meaningful error messages are (j IV"
provided /
Instruction is consistently designed, (j CV

I thUS m~ng ite!lsX ~ .. u_se -

12

,
trongly I Neutral Di agree

Disa ree I
0 0 - Q,//

- - f-
0 -

0 0

0 --f--
0 0

0 0 0
0 0 0

GV 0 0 -

--
c::J D D -

- - --0 0

- _. - - ,- -0 0 0 .- -0 0 0
0 0 (j

D D 0

0 0 D - - 10- (j -(j (j

-_.-
D

.- D -O
0 0 0

(j 0 (j

I

Appendix E: Evaluation Data

APPENDIXE

EVALUATION DATA

E.1 Introduction

This section contains analysis of data obtained from the evaluation questionnaire.

E.2 Cronbach's Coefficient Alpha

Cronbach's Coefficient Alpha (Cortina, 1993) was calculated by using the formula:

Cronbach's Coefficient Alpha: N {I - L (s;)J
N -1 s2

t

Where (s;) is the variance of item i. (s t2
) is the variance of the total scores.

N is the number of items or samples.

Table E.1 Cronbach's Coefficient Alpha

Evaluation Criteria Weighted Mean
Score (X)

Suitability for courseware authoring/development 50 40.44

Components implementation methods 65 '+8.56

Unique features and functionality l70 1.+2.89

Module representation 86 66.78

Difficulties encountered 22 l7.00

Overall design and look of the user interface 5 4.33

GeNisa performance 50 43.33

Components representation 50 .+ 1.89

Error tolerance 50 .+1.67

Reuse and portability 60 51.'+'+

Learning environment 85 69.48

Total 671 567.81

Mean (M) 63 51.62

Variance

:\ Generic Architecture for Interactive Intelligent Tutoring S \ s!l'm~

Variance
(X-M)
-11.18

-3.06

91.27

15.16

-34.62

-.+ 7.28

-8.29

-9.73

-9.95

-0.17

17.86

0.01

277

(X_M)2

124.89

9.36

8330.21

22l).~C

119S.5'+

2236.3'+

68.72

94.67

99.00

0.032'+

318.80

12710.38

2.+6.23

T o\\!olagbe

Appendix E: Evaluation Data
."27S

1 n -
Variance: Vex) =-L(xi-m)2

n i=1

From the above table, N {l- L~;)) = 0.99.
N -1 s

t

Kline (1993) notes that Cronbach's Coefficient Alpha should never be below 0.7 for internal

consistency estimate. This is important because it takes into account variance attributable to

subjects and items between them (Cortina, 1993).

E.3 Pearson's Product-Moment Correlation Coefficient

The Pearson Product-Moment Correlation Coefficient was used to find the degree that two

variables "go together".

The Pearson's correlation coefficient is a number that summanses the direction and degree

(closeness) of linear relations between two variables (Coolican, 1990). The sample value is

represented by r, and the population value is represented by r (rho). The correlation coefficient

can take values between -1 through 0 to +1. The sign (+ or -) of the correlation affects its

interpretation. When the correlation is positive (r > 0), as the value of one variable increases, so

does the other (Coolican, 1990).

Pearson's Product-Moment Correlation Coefficient (Coolican, 1990) was calculated by using the

formal:

Where X, stands for standard scores, Y stands for the score of the second variable and N stands

for number if items.

Table E.2: Pearson's Correlation Coefficient

Evaluation Criteria \Yeighted Scores eXY) x- y-
(X) en

Suitability for courseware 50 ..+0 --+..+ 2022 2500 1635.39
authoring/development
Components implementation 65 "+8.56 3156..+ ..+225 2.~)~.07

:\ Genl'ric Architecture for Interactive Intelligent Tutoring SY$tcms

Appendix E: Evaluation Data

methods

Unique features and functionality 170 142.89 24291.3 28900 20.t17.55
Module representation 86 66.78 5743.08 7396 .+.+59.56

Difficulties encountered 22 l7.00 374 484 289

Overall design and look of the user 5 4.33 21.65 ,-
-) 18.75

interface
GeNisa performance 50 43.33 2166.6 2500 1877 .49

Components representation 50 41.89 2094.5 2500 175.+.78

Error tolerance 50 41.67 2083.5 2500 1736.39

Reuse and portability 60 51.44 3086.4 3600 2646.07

Learning environment 85 69.48 5902.4 7225 .+821.91

Total (L) LX = 671 LY = 567.77 LXY= LX2 = 61855 LY- =
79349.33 .+2014.05

Using Pearson's equation and the data from the table.

------~~-

~.\(;CI1CI'H: Architecture for Interactin- Intelligent Tutoring S yslL'l11~
T :\ Atolaghc:

Appendix F: Heuristic Evaluation
280

APPENDIXF

HEURISTIC EVALUATION

COMMENTS AND OBSERVATIONS LOG SHEET

Reviewer:..................... Date:.................. Log Sheet No .•••..•••.••

Introduction: Work through the GeNisa software. Read the systems overview. Manipulate the

components and finally comment on each of the items in the table. The table is based on guideline

for heuristic evaluation (Nielsen, 1994).

Table F.l Heuristics Evaluation Tasks

Activity Systems Area

1 The flow of information from screen to screen and on each screen evaluate.

2 Use simple and natural dialogue.

3 Speak the user's language.

4 Minimise user memory load.

5 Be consistent.

6 Provide feedback.

7 Provide Clearly Marked exits.

8 Provide shortcuts.

9 Provide good error messages.

10 Prevent errors.

••••••••••••••••••••••••••••• II ••••••••••••• ••

Comments:
••••••••••••••••••••••• I ••••••••••• •••

..

...

••••••••••••••••••••••••••••• 11 ••••• 00.0.00.000.0000.00 ••• 000 ••• 0 •••••••••••• 000. 0 0 0 0 0 o •

•••••• 0 ••• 00000 ••
0
•••

00
•••• 0 •••• 00.0.0000000000.0 ••••••••••• 0 ••• 0 0 0 ••• 0000.0.000000.0 •• 0

.00 •••• 0 •••• 0 •• 0.0 •••
0

• 0 •• 000000.0 ••••• 0000 •• 0. 0 0 0 ••• 0 •••••••••••••••• 0.0 •• 00.0.0.0 •••••

• 0 ••••••••••••••••••• 0 ••••• 0 ••• 0 ••••• 0 ••••••••• 00 ••••• 0 •••• 0 •••• 0 •• o ••••••••••••• 0 ••• 0 ••

------ -
A Generic Architecture for Interactive Intelligent Tutoring Systems

Appendix F: Heuristic Evaluation 281

..

Observations:

..

.

...................

..

...........

.......

.................

• ••••••••• •••••••••• ••••••••• ••••••••• II ••

..

A Generic Architecture for Interactive Intelligent Tutoring Systems
T. A. Atolagbe

Appendix F: Heuristic Evaluation

HEURISTIC EVALUATION

COMMENTS AND OBSERVATIONS LOG SHEET

Reviewer:...................... Date:.................. Log Sheet No

Introduction: Work through the GeNisa software. Read the systems overvle\\".

Manipulate the components and finally comment on each of the items in the table. The

table is based on guideline for heuristic evaluation (Nielsen, 1994).

Activity

1

2

3

4

S

6

7

8

9

10

Comments:

Table F.1 Heuristics Evaluation Tasks

.
Systems Area

The flow of information from screen to screen and on each screen evaluate.

Use simple and natural dialogue.

Speak the user's language.

Minimise user memory load.

Be consistent.

Provide feedback.

Provide Clearly Marked exits.

Provide shortcuts.

Provide good error messages.

Prevent errors.

, ~ -' -, ;1 L), J . L k t!
... ~0. .. ~~ J~4oj;:C:. .. .-?~ ... il:.::~ .. :-/ ~~Lr(:; .c:.:./J

01
/,- I _/

~
• ? ./L~-c,Y2 ~ /..A,,/2..~·/Z •..... y•...........................

I , i4 ·.·/···1 4,- .
- l, (., . I';'..--f ,,~ "

It .2-rt~ ftl-~ ... k:~~ .~.~ : «" .. ~.. ·@.·:1·4'#-.''''··j·'/#4
'-. ~. ~ ,4.1R ,.,.~ -..S)'

• 'I"<':'r':-'.

···C··········L····-···~····~·i~··~·~···.·~~;~~:>i,:~~J.:::.;~7::,:~;:
CN>r.>f:b ~ 1>fP..~iI· . "'" ,,-, ::: .. !.y:~~:::~~ .. ~~ .. .

.....................

I
I

I

T. A. Atolagbe and Hlupic, V. Evaluation of Intelligent Tutoring Systems

Observations:

.... A£._.~ ~~ ... z:i: .. :.')£

.. ·((:;;Y4i.:;£7~~· .Ji-.~ ~: .. r •. /~. 2.

....... fJ":' if' ': -::!J1;;I' 'z;;;.;,~~" M..Q. "if .. , "

.... ~

~~ ~Oj. ·::;::~{;;;;UA:;;r~;::.~.·~ .~fo~
. ~ ~ 1Al {I 1:7t. r.,:, ···i(~ ~ _~~ ~ 1 r<. ~ W' /. ~ t.."'~. ,,""'~ .. '. ~;-... 1.' ~ :r:(! .. :t":'. ~ .7. !v.~

... ~ : ~~ ..

...... ~_.~ ... ~ .. ~ :.:~~~u .. 1+:~"

.... ~ .. ~ ~ .. #.--?: ... L ••• ••• :!~:-{-:.&.~.~.:~~~k
j .. _ r rr '.~ / ~ - I ;(C~:!J .. ~~ .. .

.... i~·:;·CI.··· .1!J..~ ~·t··· .~ ~ .- .. ~ iT··· .J:, ... j.J,;~ ~~'
"'4l'~"~'" .. d·~···~ .. ;:tf);;;····~~
.... : ... ~ : ... t':~.wv.-:s£.J+:t;. ((atfil6l. r:v.'.~ .. ~ .. .
.... .M.(~
.

46

Appendix F: Heuristic Evaluation

HEURISTIC EVALUATION

COMMENTS AND OBSERVATIONS LOG SHEET ,

Introduction: Work through the GeNisa software. Read the systems overvIew.

Manipulate the components and finally comment on each of the items in the table. The

table is based on guideline for heuristic evaluation (Nielsen, 1994).

Table F.l Heuristics Evaluation Tasks

Activity Systems Area

1 The flow of information from screen to screen and on each screen evaluate.

2 Use simple and natural dialogue.

3 Speak the user's language.

4 Minimise user memory load.

S Be consistent.

6 Provide feedback.

7 Provide Clearly Marked exits. .

8 Provide shortcuts.

9 Provide good error messages.

10 Prevent errors.

Comments: ::::::~&~::::::::~~~~:::::~~:::;;:~l~~!~:::
\--e ~ t .. ~%:\':-~ ... ~~ ~ ..•........

.. :~

t\~'-\. ~~\ ~ .. ~~
....... ~ .. ~~ ~ .. ····~··::::::~ .. sp.~q~>c\i~
....... ~.~. M

f\. - '- ... ,.'. • ~~~~

....... ~ ... ~~;;; \t~~ ... ~~~ ~O
t::X.--~I:\-r- ~c.~ ... \~: ~~ ~......... ~

Appendix F: Heuristic Evaluation

oo .. .

Observations:
.......... ~~~ .. ~ (.~~ ~~~~\~\y.} . .-
..... ~G ~ ~ ~~~V0~~ ... ~'-'~(................ c., ~\;~A~ ~~~~ .. ~.~~

... , .

..............

... 0 ... • ••

... ..

..

Appendix F: Heuristic Evaluation 282

APPENDIXG

INFORMAL ENQUIRIES

AC;CIlL'IIl' Architecture for Interactive Intelligent Tutoring Systems

From:
To: <tajudeen.ato lagbe@brunel.ac~ uk>
Sent: October 29, 1998 12:26 PM
Subject: Re: ITS Components

Dear Taju,

We have read your abstract in ESS. Here are a few comments about the
contents.

First, we are impressed by the very high quality of the paper and the
objectives of the research. The component architecture as well as the
resulting intelligent tutoring system component library are innovative and
feasible both on the research and the development side.

We particularly liked the combined use of bayesian networks, and symbolic
inference mechanisms as well as the Web and networking aspects of your
paper.

_ ' is well positioned for the project as the component
architecture itself (the major part of the project) can be developed
relatively easily as an extension to our Java based web agent programming
infrastructure. That is by providing the networking
infrastructure (Web-enabled and currently interoperating with Corba and on
the way to support multicasting) as well as accelerated inference
mechanisms.

Our estimate for developing the reusable intelligent component architecture,
amounts to a 3-5 programmer/year effort feasible over a I-year period. Also,
tutoring system application level component of the project would require an
additional effort.

We would like to support the development, release, commercialization,
installation training etc., of this research. We can provide iterative, with
quick prototype delivery, alpha-beta-production-maintenance milestones and
quick reaction to customer
feedback and possibly evolving requirements.

We are looking forward for your feedback on this proposal, as well as
on the proposed scenarios and/or designated component development options.
We hope that this project can become a basis for long-standing cooperation
with your company.

Best regards,

President

Message 4:
From mailer-daemon@brunel.ac.uk Tue Dec 1023:46:53 1996
Delivery-Date: Tue, 10 Dec 199623:46:51 +0000
Date: Wed, 11 Dec 1996 10:17 +1030
From: '
To: Tajudeen.Atolagbe@brunel.ac.uk
Subject:
X-charset: US-ASCII

Hi,

Hello, my name is ~ and work for the Defence Science and
Technology Organisation in Australia. I am looking for applicable
technologies/software for generic discrete event simulation modelling to be
applied to a variety of applications eg, wide area surveillance.

I noticed the abstract of your paper for WSC 96. I would be very interested
in reading your full paper. Are you able to email me a copy? Also if you
are able to give me advice in the above area I would be gratefuJI.

Regards,

	341689_0000
	341689_0001
	341689_0002
	341689_0003
	341689_0004
	341689_0005
	341689_0006
	341689_0007
	341689_0008
	341689_0009
	341689_0010
	341689_0011
	341689_0012
	341689_0013
	341689_0014
	341689_0015
	341689_0016
	341689_0017
	341689_0018
	341689_0019
	341689_0020
	341689_0021
	341689_0022
	341689_0023
	341689_0024
	341689_0025
	341689_0026
	341689_0027
	341689_0028
	341689_0029
	341689_0030
	341689_0031
	341689_0032
	341689_0033
	341689_0034
	341689_0035
	341689_0036
	341689_0037
	341689_0038
	341689_0039
	341689_0040
	341689_0041
	341689_0042
	341689_0043
	341689_0044
	341689_0045
	341689_0046
	341689_0047
	341689_0048
	341689_0049
	341689_0050
	341689_0051
	341689_0052
	341689_0053
	341689_0054
	341689_0055
	341689_0056
	341689_0057
	341689_0058
	341689_0059
	341689_0060
	341689_0061
	341689_0062
	341689_0063
	341689_0064
	341689_0065
	341689_0066
	341689_0067
	341689_0068
	341689_0069
	341689_0070
	341689_0071
	341689_0072
	341689_0073
	341689_0074
	341689_0075
	341689_0076
	341689_0077
	341689_0078
	341689_0079
	341689_0080
	341689_0081
	341689_0082
	341689_0083
	341689_0084
	341689_0085
	341689_0086
	341689_0087
	341689_0088
	341689_0089
	341689_0090
	341689_0091
	341689_0092
	341689_0093
	341689_0094
	341689_0095
	341689_0096
	341689_0097
	341689_0098
	341689_0099
	341689_0100
	341689_0101
	341689_0102
	341689_0103
	341689_0104
	341689_0105
	341689_0106
	341689_0107
	341689_0108
	341689_0109
	341689_0110
	341689_0111
	341689_0112
	341689_0113
	341689_0114
	341689_0115
	341689_0116
	341689_0117
	341689_0118
	341689_0119
	341689_0120
	341689_0121
	341689_0122
	341689_0123
	341689_0124
	341689_0125
	341689_0126
	341689_0127
	341689_0128
	341689_0129
	341689_0130
	341689_0131
	341689_0132
	341689_0133
	341689_0134
	341689_0135
	341689_0136
	341689_0137
	341689_0138
	341689_0139
	341689_0140
	341689_0141
	341689_0142
	341689_0143
	341689_0144
	341689_0145
	341689_0146
	341689_0147
	341689_0148
	341689_0149
	341689_0150
	341689_0151
	341689_0152
	341689_0153
	341689_0154
	341689_0155
	341689_0156
	341689_0157
	341689_0158
	341689_0159
	341689_0160
	341689_0161
	341689_0162
	341689_0163
	341689_0164
	341689_0165
	341689_0166
	341689_0167
	341689_0168
	341689_0169
	341689_0170
	341689_0171
	341689_0172
	341689_0173
	341689_0174
	341689_0175
	341689_0176
	341689_0177
	341689_0178
	341689_0179
	341689_0180
	341689_0181
	341689_0182
	341689_0183
	341689_0184
	341689_0185
	341689_0186
	341689_0187
	341689_0188
	341689_0189
	341689_0190
	341689_0191
	341689_0192
	341689_0193
	341689_0194
	341689_0195
	341689_0196
	341689_0197
	341689_0198
	341689_0199
	341689_0200
	341689_0201
	341689_0202
	341689_0203
	341689_0204
	341689_0205
	341689_0206
	341689_0207
	341689_0208
	341689_0209
	341689_0210
	341689_0211
	341689_0212
	341689_0213
	341689_0214
	341689_0215
	341689_0216
	341689_0217
	341689_0218
	341689_0219
	341689_0220
	341689_0221
	341689_0222
	341689_0223
	341689_0224
	341689_0225
	341689_0226
	341689_0227
	341689_0228
	341689_0229
	341689_0230
	341689_0231
	341689_0232
	341689_0233
	341689_0234
	341689_0235
	341689_0236
	341689_0237
	341689_0238
	341689_0239
	341689_0240
	341689_0241
	341689_0242
	341689_0243
	341689_0244
	341689_0245
	341689_0246
	341689_0247
	341689_0248
	341689_0249
	341689_0250
	341689_0251
	341689_0252
	341689_0253
	341689_0254
	341689_0255
	341689_0256
	341689_0257
	341689_0258
	341689_0259
	341689_0260
	341689_0261
	341689_0262
	341689_0263
	341689_0264
	341689_0265
	341689_0266
	341689_0267
	341689_0268
	341689_0269
	341689_0270
	341689_0271
	341689_0272
	341689_0273
	341689_0274
	341689_0275
	341689_0276
	341689_0277
	341689_0278
	341689_0279
	341689_0280
	341689_0281
	341689_0282
	341689_0283
	341689_0284
	341689_0285
	341689_0286
	341689_0286a
	341689_0286b
	341689_0286c
	341689_0286d
	341689_0287a
	341689_0287b
	341689_0287c
	341689_0287d
	341689_0287e
	341689_0287f
	341689_0287g
	341689_0287h
	341689_0287i
	341689_0287j
	341689_0287k
	341689_0287l
	341689_0287m
	341689_0287n
	341689_0287p
	341689_0287q
	341689_0287r
	341689_0287s
	341689_0287t
	341689_0287v
	341689_0287w
	341689_0287x
	341689_0287y
	341689_0287z
	341689_0287zz
	341689_0291
	341689_0292
	341689_0293
	341689_0294
	341689_0295
	341689_0296
	341689_0297
	341689_0298
	341689_0299
	341689_0300
	341689_0301
	341689_0302

