18 research outputs found

    Data Models in Neuroinformatics

    Get PDF
    Advancements in integrated neuroscience are often characterized with data-driven approaches for discovery; these progressions are the result of continuous efforts aimed at developing integrated frameworks for the investigation of neuronal dynamics at increasing resolution and in varying scales. Since insights from integrated neuronal models frequently rely on both experimental and computational approaches, simulations and data modeling have inimitable roles. Moreover, data sharing across the neuroscientific community has become an essential component of data-driven approaches to neuroscience as is evident from the number and scale of ongoing national and multinational projects, engaging scientists from diverse branches of knowledge. In this heterogeneous environment, the need to share neuroscientific data as well as to utilize it across different simulation environments drove the momentum for standardizing data models for neuronal morphologies, biophysical properties, and connectivity schemes. Here, I review existing data models in neuroinformatics, ranging from flat to hybrid object-hierarchical approaches, and suggest a framework with which these models can be linked to experimental data, as well as to established records from existing databases. Linking neuronal models and experimental results with data on relevant articles, genes, proteins, disease, etc., might open a new dimension for data-driven neuroscience

    Ethical Reflections of Human Brain Research and Smart Information Systems

    Get PDF
    open access journalThis case study explores ethical issues that relate to the use of Smart Infor-mation Systems (SIS) in human brain research. The case study is based on the Human Brain Project (HBP), which is a European Union funded project. The project uses SIS to build a research infrastructure aimed at the advancement of neuroscience, medicine and computing. The case study was conducted to assess how the HBP recognises and deal with ethical concerns relating to the use of SIS in human brain research. To under-stand some of the ethical implications of using SIS in human brain research, data was collected through a document review and three semi-structured interviews with partic-ipants from the HBP. Results from the case study indicate that the main ethical concerns with the use of SIS in human brain research include privacy and confidentiality, the security of personal data, discrimination that arises from bias and access to the SIS and their outcomes. Furthermore, there is an issue with the transparency of the processes that are involved in human brain research. In response to these issues, the HBP has put in place different mechanisms to ensure responsible research and innovation through a dedicated pro-gram. The paper provides lessons for the responsible implementation of SIS in research, including human brain research and extends some of the mechanisms that could be employed by researchers and developers of SIS for research in addressing such issues

    The future of human cerebral cartography: a novel approach.

    Get PDF
    Cerebral cartography can be understood in a limited, static, neuroanatomical sense. Temporal information from electrical recordings contributes information on regional interactions adding a functional dimension. Selective tagging and imaging of molecules adds biochemical contributions. Cartographic detail can also be correlated with normal or abnormal psychological or behavioural data. Modern cerebral cartography is assimilating all these elements. Cartographers continue to collect ever more precise data in the hope that general principles of organization will emerge. However, even detailed cartographic data cannot generate knowledge without a multi-scale framework making it possible to relate individual observations and discoveries. We propose that, in the next quarter century, advances in cartography will result in progressively more accurate drafts of a data-led, multi-scale model of human brain structure and function. These blueprints will result from analysis of large volumes of neuroscientific and clinical data, by a process of reconstruction, modelling and simulation. This strategy will capitalize on remarkable recent developments in informatics and computer science and on the existence of much existing, addressable data and prior, though fragmented, knowledge. The models will instantiate principles that govern how the brain is organized at different levels and how different spatio-temporal scales relate to each other in an organ-centred context

    Linking brain structure, activity and cognitive function through computation

    Get PDF
    Understanding the human brain is a “Grand Challenge” for 21st century research. Computational approaches enable large and complex datasets to be addressed efficiently, supported by artificial neural networks, modeling and simulation. Dynamic generative multiscale models, which enable the investigation of causation across scales and are guided by principles and theories of brain function, are instrumental for linking brain structure and function. An example of a resource enabling such an integrated approach to neuroscientific discovery is the BigBrain, which spatially anchors tissue models and data across different scales and ensures that multiscale models are supported by the data, making the bridge to both basic neuroscience and medicine. Research at the intersection of neuroscience, computing and robotics has the potential to advance neuro-inspired technologies by taking advantage of a growing body of insights into perception, plasticity and learning. To render data, tools and methods, theories, basic principles and concepts interoperable, the Human Brain Project (HBP) has launched EBRAINS, a digital neuroscience research infrastructure, which brings together a transdisciplinary community of researchers united by the quest to understand the brain, with fascinating insights and perspectives for societal benefits

    The coming decade of digital brain research - A vision for neuroscience at the intersection of technology and computing

    Get PDF
    Brain research has in recent years indisputably entered a new epoch, driven by substantial methodological advances and digitally enabled data integration and modeling at multiple scales – from molecules to the whole system. Major advances are emerging at the intersection of neuroscience with technology and computing. This new science of the brain integrates high-quality basic research, systematic data integration across multiple scales, a new culture of large-scale collaboration and translation into applications. A systematic approach, as pioneered in Europe’s Human Brain Project (HBP), will be essential in meeting the pressing medical and technological challenges of the coming decade. The aims of this paper are: To develop a concept for the coming decade of digital brain research To discuss it with the research community at large, with the aim of identifying points of convergence and common goals. To provide a scientific framework for current and future development of EBRAINS. To inform and engage stakeholders, funding organizations and research institutions regarding future digital brain research. To identify and address key ethical and societal issues. While we do not claim that there is a ‘one size fits all’ approach to addressing these aspects, we are convinced that discussions around the theme of digital brain research will help drive progress in the broader field of neuroscience

    The INCF Digital Atlasing Program: Report on Digital Atlasing Standards in the Rodent Brain

    Get PDF
    The goal of the INCF Digital Atlasing Program is to provide the vision and direction necessary to make the rapidly growing collection of multidimensional data of the rodent brain (images, gene expression, etc.) widely accessible and usable to the international research community. This Digital Brain Atlasing Standards Task Force was formed in May 2008 to investigate the state of rodent brain digital atlasing, and formulate standards, guidelines, and policy recommendations.

Our first objective has been the preparation of a detailed document that includes the vision and specific description of an infrastructure, systems and methods capable of serving the scientific goals of the community, as well as practical issues for achieving
the goals. This report builds on the 1st INCF Workshop on Mouse and Rat Brain Digital Atlasing Systems (Boline et al., 2007, _Nature Preceedings_, doi:10.1038/npre.2007.1046.1) and includes a more detailed analysis of both the current state and desired state of digital atlasing along with specific recommendations for achieving these goals

    A Comparison of Neuroelectrophysiology Databases

    Full text link
    As data sharing has become more prevalent, three pillars - archives, standards, and analysis tools - have emerged as critical components in facilitating effective data sharing and collaboration. This paper compares four freely available intracranial neuroelectrophysiology data repositories: Data Archive for the BRAIN Initiative (DABI), Distributed Archives for Neurophysiology Data Integration (DANDI), OpenNeuro, and Brain-CODE. These archives provide researchers with tools to store, share, and reanalyze neurophysiology data though the means of accomplishing these objectives differ. The Brain Imaging Data Structure (BIDS) and Neurodata Without Borders (NWB) are utilized by these archives to make data more accessible to researchers by implementing a common standard. While many tools are available to reanalyze data on and off the archives' platforms, this article features Reproducible Analysis and Visualization of Intracranial EEG (RAVE) toolkit, developed specifically for the analysis of intracranial signal data and integrated with the discussed standards and archives. Neuroelectrophysiology data archives improve how researchers can aggregate, analyze, distribute, and parse these data, which can lead to more significant findings in neuroscience research.Comment: 25 pages, 8 figures, 1 tabl

    CLUSTER ANALYSIS IN BIOTECHNOLOGY

    Full text link

    Brain in the Shell. Assessing the Stakes and the Transformative Potential of the Human Brain Project

    Get PDF
    The “Human Brain Project” (HBP) is a large-scale European neuroscience and information communication technology (ICT) project that has been a matter of heated controversy since its inception. With its aim to simulate the entire human brain with the help of supercomputing technologies, the HBP plans to fundamentally change neuroscientific research practice, medical diagnosis, and eventually the use of computers itself. Its controversial nature and its potential impacts render the HBP a subject of crucial importance for critical studies of science and society. In this paper, we provide a critical exploratory analysis of the potential mid- to long-term impacts the HBP and its ICT infrastructure could be expected to have, provided its agenda will indeed be implemented and executed to a substantive degree. We analyse how the HBP aspires to change current neuroscientific practice, what impact its novel infrastructures could have on research culture, medical practice and the use of ICT, and how, given a certain degree of successful execution of the project’s aims, potential clinical and methodological applications could even transform society beyond scientific practice. Furthermore, we sketch the possibility that research such as that projected by the HBP may eventually transform our everyday world, even beyond the scope of the HBP’s explicit agenda, and beyond the isolated ‘application’ of some novel technological device. Finally, we point towards trajectories for further philosophical, historical and sociological research on the HBP that our exploratory analysis might help to inspire. Our analysis will yield important insights regardless of the actual success of the HBP. What we drive at, for the most part, is the broader dynamics of scientific and technological development of which the HBP agenda is merely one particularly striking exemplification
    corecore