356 research outputs found

    Advancing the Underactuated Grasping Capabilities of Single Actuator Prosthetic Hands

    Get PDF
    The last decade has seen significant advancements in upper limb prosthetics, specifically in the myoelectric control and powered prosthetic hand fields, leading to more active and social lifestyles for the upper limb amputee community. Notwithstanding the improvements in complexity and control of myoelectric prosthetic hands, grasping still remains one of the greatest challenges in robotics. Upper-limb amputees continue to prefer more antiquated body-powered or powered hook terminal devices that are favored for their control simplicity, lightweight and low cost; however, these devices are nominally unsightly and lack in grasp variety. The varying drawbacks of both complex myoelectric and simple body-powered devices have led to low adoption rates for all upper limb prostheses by amputees, which includes 35% pediatric and 23% adult rejection for complex devices and 45% pediatric and 26% adult rejection for body-powered devices [1]. My research focuses on progressing the grasping capabilities of prosthetic hands driven by simple control and a single motor, to combine the dexterous functionality of the more complex hands with the intuitive control of the more simplistic body-powered devices with the goal of helping upper limb amputees return to more active and social lifestyles. Optimization of a prosthetic hand driven by a single actuator requires the optimization of many facets of the hand. This includes optimization of the finger kinematics, underactuated mechanisms, geometry, materials and performance when completing activities of daily living. In my dissertation, I will present chapters dedicated to improving these subsystems of single actuator prosthetic hands to better replicate human hand function from simple control. First, I will present a framework created to optimize precision grasping – which is nominally unstable in underactuated configurations – from a single actuator. I will then present several novel mechanisms that allow a single actuator to map to higher degree of freedom motion and multiple commonly used grasp types. I will then discuss how fingerpad geometry and materials can better grasp acquisition and frictional properties within the hand while also providing a method of fabricating lightweight custom prostheses. Last, I will analyze the results of several human subject testing studies to evaluate the optimized hands performance on activities of daily living and compared to other commercially available prosthesis

    The role of morphology of the thumb in anthropomorphic grasping : a review

    Get PDF
    The unique musculoskeletal structure of the human hand brings in wider dexterous capabilities to grasp and manipulate a repertoire of objects than the non-human primates. It has been widely accepted that the orientation and the position of the thumb plays an important role in this characteristic behavior. There have been numerous attempts to develop anthropomorphic robotic hands with varying levels of success. Nevertheless, manipulation ability in those hands is to be ameliorated even though they can grasp objects successfully. An appropriate model of the thumb is important to manipulate the objects against the fingers and to maintain the stability. Modeling these complex interactions about the mechanical axes of the joints and how to incorporate these joints in robotic thumbs is a challenging task. This article presents a review of the biomechanics of the human thumb and the robotic thumb designs to identify opportunities for future anthropomorphic robotic hands

    Whole-Hand Robotic Manipulation with Rolling, Sliding, and Caging

    Get PDF
    Traditional manipulation planning and modeling relies on strong assumptions about contact. Specifically, it is common to assume that contacts are fixed and do not slide. This assumption ensures that objects are stably grasped during every step of the manipulation, to avoid ejection. However, this assumption limits achievable manipulation to the feasible motion of the closed-loop kinematic chains formed by the object and fingers. To improve manipulation capability, it has been shown that relaxing contact constraints and allowing sliding can enhance dexterity. But in order to safely manipulate with shifting contacts, other safeguards must be used to protect against ejection. “Caging manipulation,” in which the object is geometrically trapped by the fingers, can be employed to guarantee that an object never leaves the hand, regardless of constantly changing contact conditions. Mechanical compliance and underactuated joint coupling, or carefully chosen design parameters, can be used to passively create a caging grasp – protecting against accidental ejection – while simultaneously manipulating with all parts of the hand. And with passive ejection avoidance, hand control schemes can be made very simple, while still accomplishing manipulation. In place of complex control, better design can be used to improve manipulation capability—by making smart choices about parameters such as phalanx length, joint stiffness, joint coupling schemes, finger frictional properties, and actuator mode of operation. I will present an approach for modeling fully actuated and underactuated whole-hand-manipulation with shifting contacts, show results demonstrating the relationship between design parameters and manipulation metrics, and show how this can produce highly dexterous manipulators

    Design of an underactuated compliant gripper for surgery using nitinol

    Get PDF
    Design of an Underactuated Complimant Gripper for surgery Using Nitinol -- Joint Design -- Underactuated Finger Design -- Optimization of the Transmission Mechanism -- Optimization of the Driving Mechanism -- Finite Element Simulation

    ReHand - a portable assistive rehabilitation hand exoskeleton

    Get PDF
    This dissertation presents a synthesis of a novel underactuated exoskeleton (namely ReHand2) thought and designed for a task-oriented rehabilitation and/or for empower the human hand. The first part of this dissertation shows the current context about the robotic rehabilitation with a focus on hand pathologies, which influence the hand capability. The chapter is concluded with the presentation of ReHand2. The second chapter describes the human hand biomechanics. Starting from the definition of human hand anatomy, passing through anthropometric data, to taxonomy on hand grasps and finger constraints, both from static and dynamic point of view. In addition, some information about the hand capability are given. The third chapter analyze the current state of the art in hand exoskeleton for rehabilitation and empower tasks. In particular, the chapter presents exoskeleton technologies, from mechanisms to sensors, passing though transmission and actuators. Finally, the current state of the art in terms of prototype and commercial products is presented. The fourth chapter introduces the concepts of underactuation with the basic explanation and the classical notation used typically in the prosthetic field. In addition, the chapter describe also the most used differential elements in the prosthetic, follow by a statical analysis. Moreover typical transmission tree at inter-finger level as well as the intra- finger underactuation are explained . The fifth chapter presents the prototype called ReHand summarizing the device description and explanation of the working principle. It describes also the kinetostatic analysis for both, inter- and the intra-finger modules. in the last section preliminary results obtained with the exoskeleton are shown and discussed, attention is pointed out on prototype’s problems that have carry out at the second version of the device. The sixth chapter describes the evolution of ReHand, describing the kinematics and dynamics behaviors. In particular, for the mathematical description is introduced the notation used in order to analyze and optimize the geometry of the entire device. The introduced model is also implemented in Matlab Simulink environment. Finally, the chapter presents the new features. The seventh chapter describes the test bench and the methodologies used to evaluate the device statical, and dynamical performances. The chapter presents and discuss the experimental results and compare them with simulated one. Finally in the last chapter the conclusion about the ReHand project are proposed as well as the future development. In particular, the idea to test de device in relevant environments. In addition some preliminary considerations about the thumb and the wrist are introduced, exploiting the possibility to modify the entire layout of the device, for instance changing the actuator location

    Analysis and Observations from the First Amazon Picking Challenge

    Full text link
    This paper presents a overview of the inaugural Amazon Picking Challenge along with a summary of a survey conducted among the 26 participating teams. The challenge goal was to design an autonomous robot to pick items from a warehouse shelf. This task is currently performed by human workers, and there is hope that robots can someday help increase efficiency and throughput while lowering cost. We report on a 28-question survey posed to the teams to learn about each team's background, mechanism design, perception apparatus, planning and control approach. We identify trends in this data, correlate it with each team's success in the competition, and discuss observations and lessons learned based on survey results and the authors' personal experiences during the challenge

    Grasp plannind under task-specific contact constraints

    Get PDF
    Several aspects have to be addressed before realizing the dream of a robotic hand-arm system with human-like capabilities, ranging from the consolidation of a proper mechatronic design, to the development of precise, lightweight sensors and actuators, to the efficient planning and control of the articular forces and motions required for interaction with the environment. This thesis provides solution algorithms for a main problem within the latter aspect, known as the {\em grasp planning} problem: Given a robotic system formed by a multifinger hand attached to an arm, and an object to be grasped, both with a known geometry and location in 3-space, determine how the hand-arm system should be moved without colliding with itself or with the environment, in order to firmly grasp the object in a suitable way. Central to our algorithms is the explicit consideration of a given set of hand-object contact constraints to be satisfied in the final grasp configuration, imposed by the particular manipulation task to be performed with the object. This is a distinguishing feature from other grasp planning algorithms given in the literature, where a means of ensuring precise hand-object contact locations in the resulting grasp is usually not provided. These conventional algorithms are fast, and nicely suited for planning grasps for pick-an-place operations with the object, but not for planning grasps required for a specific manipulation of the object, like those necessary for holding a pen, a pair of scissors, or a jeweler's screwdriver, for instance, when writing, cutting a paper, or turning a screw, respectively. To be able to generate such highly-selective grasps, we assume that a number of surface regions on the hand are to be placed in contact with a number of corresponding regions on the object, and enforce the fulfilment of such constraints on the obtained solutions from the very beginning, in addition to the usual constraints of grasp restrainability, manipulability and collision avoidance. The proposed algorithms can be applied to robotic hands of arbitrary structure, possibly considering compliance in the joints and the contacts if desired, and they can accommodate general patch-patch contact constraints, instead of more restrictive contact types occasionally considered in the literature. It is worth noting, also, that while common force-closure or manipulability indices are used to asses the quality of grasps, no particular assumption is made on the mathematical properties of the quality index to be used, so that any quality criterion can be accommodated in principle. The algorithms have been tested and validated on numerous situations involving real mechanical hands and typical objects, and find applications in classical or emerging contexts like service robotics, telemedicine, space exploration, prosthetics, manipulation in hazardous environments, or human-robot interaction in general
    • …
    corecore