31,893 research outputs found

    Towards a comprehensive Data LifeCycle model for big data environments

    Get PDF
    A huge amount of data is constantly being produced in the world. Data coming from the IoT, from scientific simulations, or from any other field of the eScience, are accumulated over historical data sets and set up the seed for future Big Data processing, with the final goal to generate added value and discover knowledge. In such computing processes, data are the main resource, however, organizing and managing data during their entire life cycle becomes a complex research topic. As part of this, Data LifeCycle (DLC) models have been proposed to efficiently organize large and complex data sets, from creation to consumption, in any field, and any scale, for an effective data usage and big data exploitation. 2. Several DLC frameworks can be found in the literature, each one defined for specific environments and scenarios. However, we realized that there is no global and comprehensive DLC model to be easily adapted to different scientific areas. For this reason, in this paper we describe the Comprehensive Scenario Agnostic Data LifeCycle (COSA-DLC) model, a DLC model which: i) is proved to be comprehensive as it addresses the 6Vs challenges (namely Value, Volume, Variety, Velocity, Variability and Veracity, and ii), it can be easily adapted to any particular scenario and, therefore, fit the requirements of a specific scientific field. In this paper we also include two use cases to illustrate the ease of the adaptation in different scenarios. We conclude that the comprehensive scenario agnostic DLC model provides several advantages, such as facilitating global data management, organization and integration, easing the adaptation to any kind of scenario, guaranteeing good data quality levels and, therefore, saving design time and efforts for the scientific and industrial communities.Peer ReviewedPostprint (author's final draft

    Algorithms for advance bandwidth reservation in media production networks

    Get PDF
    Media production generally requires many geographically distributed actors (e.g., production houses, broadcasters, advertisers) to exchange huge amounts of raw video and audio data. Traditional distribution techniques, such as dedicated point-to-point optical links, are highly inefficient in terms of installation time and cost. To improve efficiency, shared media production networks that connect all involved actors over a large geographical area, are currently being deployed. The traffic in such networks is often predictable, as the timing and bandwidth requirements of data transfers are generally known hours or even days in advance. As such, the use of advance bandwidth reservation (AR) can greatly increase resource utilization and cost efficiency. In this paper, we propose an Integer Linear Programming formulation of the bandwidth scheduling problem, which takes into account the specific characteristics of media production networks, is presented. Two novel optimization algorithms based on this model are thoroughly evaluated and compared by means of in-depth simulation results

    Challenges for the comprehensive management of cloud services in a PaaS framework

    Full text link
    The 4CaaSt project aims at developing a PaaS framework that enables flexible definition, marketing, deployment and management of Cloud-based services and applications. The major innovations proposed by 4CaaSt are the blueprint and its lifecycle management, a one stop shop for Cloud services and a PaaS level resource management featuring elasticity. 4CaaSt also provides a portfolio of ready to use Cloud native services and Cloud-aware immigrant technologies

    A unified view of data-intensive flows in business intelligence systems : a survey

    Get PDF
    Data-intensive flows are central processes in today’s business intelligence (BI) systems, deploying different technologies to deliver data, from a multitude of data sources, in user-preferred and analysis-ready formats. To meet complex requirements of next generation BI systems, we often need an effective combination of the traditionally batched extract-transform-load (ETL) processes that populate a data warehouse (DW) from integrated data sources, and more real-time and operational data flows that integrate source data at runtime. Both academia and industry thus must have a clear understanding of the foundations of data-intensive flows and the challenges of moving towards next generation BI environments. In this paper we present a survey of today’s research on data-intensive flows and the related fundamental fields of database theory. The study is based on a proposed set of dimensions describing the important challenges of data-intensive flows in the next generation BI setting. As a result of this survey, we envision an architecture of a system for managing the lifecycle of data-intensive flows. The results further provide a comprehensive understanding of data-intensive flows, recognizing challenges that still are to be addressed, and how the current solutions can be applied for addressing these challenges.Peer ReviewedPostprint (author's final draft
    corecore