2,573 research outputs found

    Man’s Underground Best Friend: Domestic Ferrets, Unlike the Wild Forms, Show Evidence of Dog-Like Social-Cognitive Skills

    Get PDF
    Recent research has shown that dogs’ possess surprisingly sophisticated human-like social communication skills compared to wolves or chimpanzees. The effects of domestication on the emergence of socio-cognitive skills, however, are still highly debated. One way to investigate this is to compare socialized individuals from closely related domestic and wild species. In the present study we tested domestic ferrets (Mustela furo) and compared their performance to a group of wild Mustela hybrids and to domestic dogs (Canis familiaris). We found that, in contrast to wild Mustela hybrids, both domestic ferrets and dogs tolerated eye-contact for a longer time when facing their owners versus the experimenter and they showed a preference in a two-way choice task towards their owners. Furthermore, domestic ferrets, unlike the wild hybrids, were able to follow human directional gestures (sustained touching; momentary pointing) and could reach the success rate of dogs. Our study provides the first evidence that domestic ferrets, in a certain sense, are more dog-like than their wild counterparts. These findings support the hypothesis that domestic species may share basic socio-cognitive skills that enable them to engage in effectively orchestrated social interactions with humans

    Smart Computing and Sensing Technologies for Animal Welfare: A Systematic Review

    Get PDF
    Animals play a profoundly important and intricate role in our lives today. Dogs have been human companions for thousands of years, but they now work closely with us to assist the disabled, and in combat and search and rescue situations. Farm animals are a critical part of the global food supply chain, and there is increasing consumer interest in organically fed and humanely raised livestock, and how it impacts our health and environmental footprint. Wild animals are threatened with extinction by human induced factors, and shrinking and compromised habitat. This review sets the goal to systematically survey the existing literature in smart computing and sensing technologies for domestic, farm and wild animal welfare. We use the notion of \emph{animal welfare} in broad terms, to review the technologies for assessing whether animals are healthy, free of pain and suffering, and also positively stimulated in their environment. Also the notion of \emph{smart computing and sensing} is used in broad terms, to refer to computing and sensing systems that are not isolated but interconnected with communication networks, and capable of remote data collection, processing, exchange and analysis. We review smart technologies for domestic animals, indoor and outdoor animal farming, as well as animals in the wild and zoos. The findings of this review are expected to motivate future research and contribute to data, information and communication management as well as policy for animal welfare

    Towards Intelligent Playful Environments for Animals based on Natural User Interfaces

    Full text link
    Tesis por compendioEl estudio de la interacción de los animales con la tecnología y el desarrollo de sistemas tecnológicos centrados en el animal está ganando cada vez más atención desde la aparición del área de Animal Computer Interaction (ACI). ACI persigue mejorar el bienestar de los animales en diferentes entornos a través del desarrollo de tecnología adecuada para ellos siguiendo un enfoque centrado en el animal. Entre las líneas de investigación que ACI está explorando, ha habido bastante interés en la interacción de los animales con la tecnología basada en el juego. Las actividades de juego tecnológicas tienen el potencial de proveer estimulación mental y física a los animales en diferentes contextos, pudiendo ayudar a mejorar su bienestar. Mientras nos embarcamos en la era de la Internet de las Cosas, las actividades de juego tecnológicas actuales para animales todavía no han explorado el desarrollo de soluciones pervasivas que podrían proveerles de más adaptación a sus preferencias a la vez que ofrecer estímulos tecnológicos más variados. En su lugar, estas actividades están normalmente basadas en interacciones digitales en lugar de explorar dispositivos tangibles o aumentar las interacciones con otro tipo de estímulos. Además, estas actividades de juego están ya predefinidas y no cambian con el tiempo, y requieren que un humano provea el dispositivo o la tecnología al animal. Si los humanos pudiesen centrarse más en su participación como jugadores de un sistema interactivo para animales en lugar de estar pendientes de sujetar un dispositivo para el animal o de mantener el sistema ejecutándose, esto podría ayudar a crear lazos más fuertes entre especies y promover mejores relaciones con los animales. Asimismo, la estimulación mental y física de los animales son aspectos importantes que podrían fomentarse si los sistemas de juego diseñados para ellos pudieran ofrecer un variado rango de respuestas, adaptarse a los comportamientos del animal y evitar que se acostumbre al sistema y pierda el interés. Por tanto, esta tesis propone el diseño y desarrollo de entornos tecnológicos de juego basados en Interfaces Naturales de Usuario que puedan adaptarse y reaccionar a las interacciones naturales de los animales. Estos entornos pervasivos permitirían a los animales jugar por si mismos o con una persona, ofreciendo actividades de juego más dinámicas y atractivas capaces de adaptarse con el tiempo.L'estudi de la interacció dels animals amb la tecnologia i el desenvolupament de sistemes tecnològics centrats en l'animal està guanyant cada vegada més atenció des de l'aparició de l'àrea d'Animal Computer Interaction (ACI) . ACI persegueix millorar el benestar dels animals en diferents entorns a través del desenvolupament de tecnologia adequada per a ells amb un enfocament centrat en l'animal. Entre totes les línies d'investigació que ACI està explorant, hi ha hagut prou interès en la interacció dels animals amb la tecnologia basada en el joc. Les activitats de joc tecnològiques tenen el potencial de proveir estimulació mental i física als animals en diferents contextos, podent ajudar a millorar el seu benestar. Mentre ens embarquem en l'era de la Internet de les Coses, les activitats de joc tecnològiques actuals per a animals encara no han explorat el desenvolupament de solucions pervasives que podrien proveir-los de més adaptació a les seues preferències al mateix temps que oferir estímuls tecnològics més variats. En el seu lloc, estes activitats estan normalment basades en interaccions digitals en compte d'explorar dispositius tangibles o augmentar les interaccions amb estímuls de diferent tipus. A més, aquestes activitats de joc estan ja predefinides i no canvien amb el temps, mentre requereixen que un humà proveïsca el dispositiu o la tecnologia a l'animal. Si els humans pogueren centrar-se més en la seua participació com a jugadors actius d'un sistema interactiu per a animals en compte d'estar pendents de subjectar un dispositiu per a l'animal o de mantenir el sistema executant-se, açò podria ajudar a crear llaços més forts entre espècies i promoure millors relacions amb els animals. Així mateix, l'estimulació mental i física dels animals són aspectes importants que podrien fomentar-se si els sistemes de joc dissenyats per a ells pogueren oferir un rang variat de respostes, adaptar-se als comportaments de l'animal i evitar que aquest s'acostume al sistema i perda l'interès. Per tant, esta tesi proposa el disseny i desenvolupament d'entorns tecnològics de joc basats en Interfícies Naturals d'Usuari que puguen adaptar-se i reaccionar a les interaccions naturals dels animals. Aquestos escenaris pervasius podrien permetre als animals jugar per si mateixos o amb una persona, oferint activitats de joc més dinàmiques i atractives que siguen capaces d'adaptar-se amb el temps.The study of animals' interactions with technology and the development of animal-centered technological systems is gaining attention since the emergence of the research area of Animal Computer Interaction (ACI). ACI aims to improve animals' welfare and wellbeing in several scenarios by developing suitable technology for the animal following an animal-centered approach. Among all the research lines ACI is exploring, there has been significant interest in animals' playful interactions with technology. Technologically mediated playful activities have the potential to provide mental and physical stimulation for animals in different environmental contexts, which could in turn help to improve their wellbeing. As we embark in the era of the Internet of Things, current technological playful activities for animals have not yet explored the development of pervasive solutions that could provide animals with more adaptation to their preferences as well as offering varied technological stimuli. Instead, playful technology for animals is usually based on digital interactions rather than exploring tangible devices or augmenting the interactions with different stimuli. In addition, these playful activities are already predefined and do not change over time, while they require that a human has to be the one providing the device or technology to the animal. If humans could focus more on their participation as active players of an interactive system aimed for animals instead of being concerned about holding a device for the animal or keep the system running, this might help to create stronger bonds between species and foster better relationships with animals. Moreover, animals' mental and physical stimulation are important aspects that could be fostered if the playful systems designed for animals could offer a varied range of outputs, be tailored to the animal's behaviors and prevented the animal to get used to the system and lose interest. Therefore, this thesis proposes the design and development of technological playful environments based on Natural User Interfaces that could adapt and react to the animals' natural interactions. These pervasive scenarios would allow animals to play by themselves or with a human, providing more engaging and dynamic playful activities that are capable of adapting over time.Pons Tomás, P. (2018). Towards Intelligent Playful Environments for Animals based on Natural User Interfaces [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/113075TESISCompendi

    The Emerging Nature of Participation in Multispecies Interaction Design

    Get PDF
    Interactive technology has become integral part of daily life for both humans and animals, with animals often interacting with technologized environments on behalf of humans. For some, animals' participation in the design process is essential to design technology that can adequately support their activities. For others, animals' inability to understand and control design activities inevitably stands in the way of multispecies participatory practices. Here, we consider the essential elements of participation within interspecies interactions and illustrate its emergence, in spite of contextual constraints and asymmetries. To move beyond anthropomorphic notions of participation, and consequent anthropocentric practices, we propose a broader participatory model based on indexical semiosis, volition and choice; and we highlight dimensions that could define inclusive participatory practices more resilient to the diversity of understandings and goals among part-taking agents, and better able to account for the contribution of diverse, multispecies agents in interaction design and beyond

    Assessing machine learning classifiers for the detection of animals' behavior using depth-based tracking

    Full text link
    [EN] There is growing interest in the automatic detection of animals' behaviors and body postures within the field of Animal Computer Interaction, and the benefits this could bring to animal welfare, enabling remote communication, welfare assessment, detection of behavioral patterns, interactive and adaptive systems, etc. Most of the works on animals' behavior recognition rely on wearable sensors to gather information about the animals' postures and movements, which are then processed using machine learning techniques. However, non-wearable mechanisms such as depth-based tracking could also make use of machine learning techniques and classifiers for the automatic detection of animals' behavior. These systems also offer the advantage of working in set-ups in which wearable devices would be difficult to use. This paper presents a depth-based tracking system for the automatic detection of animals' postures and body parts, as well as an exhaustive evaluation on the performance of several classification algorithms based on both a supervised and a knowledge-based approach. The evaluation of the depth -based tracking system and the different classifiers shows that the system proposed is promising for advancing the research on animals' behavior recognition within and outside the field of Animal Computer Interaction. (C) 2017 Elsevier Ltd. All rights reserved.This work is funded by the European Development Regional Fund (EDRF-FEDER) and supported by Spanish MINECO with Project TIN2014-60077-R. It also received support from a postdoctoral fellowship within the VALi+d Program of the Conselleria d'Educacio, Cultura I Esport (Generalitat Valenciana) awarded to Alejandro Catala (APOSTD/2013/013). The work of Patricia Pons is supported by a national grant from the Spanish MECD (FPU13/03831). Special thanks to our cat participants and their owners, and many thanks to our feline caretakers and therapists, Olga, Asier and Julia, for their valuable collaboration and their dedication to animal wellbeing.Pons Tomás, P.; Jaén Martínez, FJ.; Catalá Bolós, A. (2017). Assessing machine learning classifiers for the detection of animals' behavior using depth-based tracking. Expert Systems with Applications. 86:235-246. https://doi.org/10.1016/j.eswa.2017.05.063S2352468

    Developing a depth-based tracking systems for interactive playful environments with animals

    Full text link
    © ACM 2015. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in ACM. Proceedings of the 12th International Conference on Advances in Computer Entertainment Technology (p. 59). http://dx.doi.org/10.1145/2832932.2837007.[EN] Digital games for animals within Animal Computer Interaction are usually single-device oriented, however richer interactions could be delivered by considering multimodal environments and expanding the number of technological elements involved. In these playful ecosystems, animals could be either alone or accompanied by human beings, but in both cases the system should react properly to the interactions of all the players, creating more engaging and natural games. Technologically-mediated playful scenarios for animals will therefore require contextual information about the game participants, such as their location or body posture, in order to suitably adapt the system reactions. This paper presents a depth-based tracking system for cats capable of detecting their location, body posture and field of view. The proposed system could also be extended to locate and detect human gestures and track small robots, becoming a promising component in the creation of intelligent interspecies playful environments.Work supported by the Spanish Ministry of Economy and Competitiveness and funded by the EDRF-FEDER (TIN2014-60077-R). The work of Patricia Pons has been supported by a national grant from the Spanish MECD (FPU13/03831). Alejandro Catalá also received support from a VALi+d fellowship from the GVA (APOSTD/2013/013). Special thanks to our cat participants, their owners, and our feline caretakers and therapistsPons Tomás, P.; JaĂ©n MartĂ­nez, FJ.; Catalá BolĂłs, A. (2015). Developing a depth-based tracking systems for interactive playful environments with animals. ACM. https://doi.org/10.1145/2832932.2837007SJan Bednarik and David Herman. 2015. Human gesture recognition using top view depth data obtained from Kinect sensor.Excel. - Student Conf. Innov. Technol. Sci. IT, 1--8.Hrvoje Benko, Andrew D. Wilson, Federico Zannier, and Hrvoje Benko. 2014. Dyadic projected spatial augmented reality.Proc. 27th Annu. ACM Symp. User interface Softw. Technol. - UIST '14, 645--655.Alper Bozkurt, David L Roberts, Barbara L Sherman, et al. 2014. Toward Cyber-Enhanced Working Dogs for Search and Rescue.IEEE Intell. Syst. 29, 6, 32--39.Rita Brugarolas, Robert T. Loftin, Pu Yang, David L. Roberts, Barbara Sherman, and Alper Bozkurt. 2013. Behavior recognition based on machine learning algorithms for a wireless canine machine interface.2013 IEEE Int. Conf. Body Sens. Networks, 1--5.Adrian David Cheok, Roger Thomas K C Tan, R. L. Peiris, et al. 2011. Metazoa Ludens: Mixed-Reality Interaction and Play for Small Pets and Humans.IEEE Trans. Syst. Man, Cybern. - Part A Syst. Humans41, 5, 876--891.Amanda Hodgson, Natalie Kelly, and David Peel. 2013. Unmanned aerial vehicles (UAVs) for surveying Marine Fauna: A dugong case study.PLoS One8, 11, 1--15.Gang Hu, Derek Reilly, Mohammed Alnusayri, Ben Swinden, and Qigang Gao. 2014. DT-DT: Top-down Human Activity Analysis for Interactive Surface Applications.Proc. Ninth ACM Int. Conf. Interact. Tabletops Surfaces - ITS '14, 167--176.Brett R Jones, Hrvoje Benko, Eyal Ofek, and Andrew D. Wilson. 2013. IllumiRoom: Peripheral Projected Illusions for Interactive Experiences.Proc. SIGCHI Conf. Hum. Factors Comput. Syst. - CHI '13, 869--878.Brett Jones, Lior Shapira, Rajinder Sodhi, et al. 2014. RoomAlive: magical experiences enabled by scalable, adaptive projector-camera units.Proc. 27th Annu. ACM Symp. User Interface Softw. Technol. - UIST '14, 637--644.Cassim Ladha, Nils Hammerla, Emma Hughes, Patrick Olivier, and Thomas Ploetz. 2013. Dog's Life: Wearable Activity Recognition for Dogs.Proc. 2013 ACM Int. Jt. Conf. Pervasive Ubiquitous Comput. - UbiComp'13, 415.Shang Ping Lee, Adrian David Cheok, Teh Keng Soon James, et al. 2006. A mobile pet wearable computer and mixed reality system for human--poultry interaction through the internet.Pers. Ubiquitous Comput. 10, 5, 301--317.Clara Mancini, Janet van der Linden, Jon Bryan, and Andrew Stuart. 2012. Exploring interspecies sensemaking: Dog Tracking Semiotics and Multispecies Ethnography.Proc. 2012 ACM Conf. Ubiquitous Comput. - UbiComp '12, 143--152.Clara Mancini. 2011. Animal-computer interaction: a manifesto.Mag. Interact. 18, 4, 69--73.Clara Mancini. 2013. Animal-computer interaction (ACI): changing perspective on HCI, participation and sustainability.CHI '13 Ext. Abstr. Hum. Factors Comput. Syst., 2227--2236.Steve North, Carol Hall, Amanda Roshier, and Clara Mancini. 2015. HABIT: Horse Automated Behaviour Identification Tool -- A Position Paper.Proc. Br. Hum. Comput. Interact. Conf. - Anim. Comput. Interact. Work., 1--4.Mikko Paldanius, Tuula Kärkkäinen, Kaisa Väänänen-Vainio-Mattila, Oskar Juhlin, and Jonna Häkkilä. 2011. Communication technology for human-dog interaction: exploration of dog owners' experiences and expectations.Proc. SIGCHI Conf. Hum. Factors Comput. Syst., 2641--2650.Patricia Pons, Javier Jaen, and Alejandro Catala. Multimodality and Interest Grabbing: Are Cats Ready for the Game?Submitt. to Int. J. Human-Computer Stud. Spec. Issue Anim. Comput. Interact. (under Rev).Patricia Pons, Javier Jaen, and Alejandro Catala. 2014. Animal Ludens: Building Intelligent Playful Environments for Animals.Proc. 2014 Work. Adv. Comput. Entertain. Conf. - ACE '14 Work., 1--6.Patricia Pons, Javier Jaen, and Alejandro Catala. 2015. Envisioning Future Playful Interactive Environments for Animals. InMore Playful User Interfaces, Anton Nijholt (ed.). Springer, 121--150.Rui Trindade, Micaela Sousa, Cristina Hart, Nádia Vieira, Roberto Rodrigues, and João França. 2015. Purrfect Crime.Proc. 33rd Annu. ACM Conf. Ext. Abstr. Hum. Factors Comput. Syst. - CHI EA '15, 93--96.Jessica van Vonderen. 2015. Drones with heat-tracking cameras used to monitor koala population. Retrieved July 1, 2015 from http://www.abc.net.au/news/2015-02-24/drones-to-help-threatened-species-koalas-qut/6256558Alexandra Weilenmann and Oskar Juhlin. 2011. Understanding people and animals: the use of a positioning system in ordinary human-canine interaction.Proc. 2011 Annu. Conf. Hum. factors Comput. Syst. - CHI '11, 2631--2640.Chadwick A. Wingrave, J. Rose, Todd Langston, and Joseph J. Jr. LaViola. 2010. Early explorations of CAT: canine amusement and training.CHI '10 Ext. Abstr. Hum. Factors Comput. Syst., 2661--2669.Kyoko Yonezawa, Takashi Miyaki, and Jun Rekimoto. 2009. Cat@Log: sensing device attachable to pet cats for supporting human-pet interaction.Proc. Int. Conf. Adv. Comput. Enterntainment Technol. - ACE '09, 149--156.2013. ZOO Boomer balls. Retrieved July 1, 2015 from https://www.youtube.com/watch?v=Od_Lm8U5W4

    The evolution of human-dog communication mechanisms during the domestication process

    Get PDF
    Two theory tried to explain the divergences between the dogs and their ancestral progenitors: the “Domestication hypothesis”, which claims that the origin of most of the dog's behaviors is linked to the genetic processes involved in the domestication, and the “Two-stage hypothesis”, which emphasizes the role of behaviors acquired through individual experiences. This research project has had the purpose of examining the ontogenetic mechanisms that underlie dog-human relationship and communication in the most ancient domestic species. The first aim was to assess if the water rescue training affects the human-dog attachment bond using an adapted version of the “Strange Situation Test”. The second aim was to clarify if following human gestures could be influenced by living in a low socialization regime. The third aim was to evaluate how much the dogs weigh the information given by human (familiar and unfamiliar) posture and voice when they were asked to perform transitive and intransitive actions, and how much this was related to the domestication process. The fourth aim was that of assess whether emotional chemosignals contained in human sweat could affect dogs’ physiology and behavior. Finally, an overview on dog’s sex differences in personality traits as well as cognitive and perceptual processes have been made to explore whether such dissimilarities were affected by the domestication process or the sex-specific differences existing in wild animals have been maintained. All the results presented in this doctoral dissertation converge in emphasising the heavy role of the ontogenetic processes in acquiring socio-cognitive skills, cognitive processes and perception in dogs

    Social referencing in the domestic horse

    Get PDF
    Dogs and cats use human emotional information directed to an unfamiliar situation to guide their behavior, known as social referencing. It is not clear whether other domestic species show similar socio-cognitive abilities in interacting with humans. We investigated whether horses (n = 46) use human emotional information to adjust their behavior to a novel object and whether the behavior of horses differed depending on breed type. Horses were randomly assigned to one of two groups: an experimenter positioned in the middle of a test arena directed gaze and voice towards the novel object with either (a) a positive or (b) a negative emotional expression. The duration of subjects’ position to the experimenter and the object in the arena, frequency of gazing behavior, and physical interactions (with either object or experimenter) were analyzed. Horses in the positive condition spent more time between the experimenter and object compared to horses in the negative condition, indicating less avoidance behavior towards the object. Horses in the negative condition gazed more often towards the object than horses in the positive condition, indicating increased vigilance behavior. Breed types differed in their behavior: thoroughbreds showed less human-directed behavior than warmbloods and ponies. Our results provide evidence that horses use emotional cues from humans to guide their behavior towards novel objects

    An Attachment Style Based Experimental Design to Maximize Dog Adoption Success

    Get PDF
    Evolution and domestication have brought dogs very close to humans. Research has found numerous behavioral, cognitive, neurological, and physiological similarities between the two species. Additional research has found that humans and dogs can share cross-species attachments that are comparable to mother-infant attachments. Furthermore, attachment styles in dogs are classified the same way they are in children. The statistics on the vast amount of dogs in animal shelters, too many of which are being senselessly killed, are shocking. I propose a two-part study that first assesses which attachment style pairings are most successful and which are unsuccessful based on measurements of satisfaction and oxytocin levels reflecting attachment. The second study is designed to verify these pairings by manipulating adoptions and following pairs. If particular pairings are found more successful than others and are utilized at adoption, I hypothesize an attachment style based program would produce more successful adoptions, lower the amount of dogs returned to shelters, and eventually, lower euthanization rates
    • …
    corecore