27,994 research outputs found

    Efficient Benchmarking of Algorithm Configuration Procedures via Model-Based Surrogates

    Get PDF
    The optimization of algorithm (hyper-)parameters is crucial for achieving peak performance across a wide range of domains, ranging from deep neural networks to solvers for hard combinatorial problems. The resulting algorithm configuration (AC) problem has attracted much attention from the machine learning community. However, the proper evaluation of new AC procedures is hindered by two key hurdles. First, AC benchmarks are hard to set up. Second and even more significantly, they are computationally expensive: a single run of an AC procedure involves many costly runs of the target algorithm whose performance is to be optimized in a given AC benchmark scenario. One common workaround is to optimize cheap-to-evaluate artificial benchmark functions (e.g., Branin) instead of actual algorithms; however, these have different properties than realistic AC problems. Here, we propose an alternative benchmarking approach that is similarly cheap to evaluate but much closer to the original AC problem: replacing expensive benchmarks by surrogate benchmarks constructed from AC benchmarks. These surrogate benchmarks approximate the response surface corresponding to true target algorithm performance using a regression model, and the original and surrogate benchmark share the same (hyper-)parameter space. In our experiments, we construct and evaluate surrogate benchmarks for hyperparameter optimization as well as for AC problems that involve performance optimization of solvers for hard combinatorial problems, drawing training data from the runs of existing AC procedures. We show that our surrogate benchmarks capture overall important characteristics of the AC scenarios, such as high- and low-performing regions, from which they were derived, while being much easier to use and orders of magnitude cheaper to evaluate

    RMPD - A Recursive Mid-Point Displacement Algorithm for Path Planning

    Full text link
    Motivated by what is required for real-time path planning, the paper starts out by presenting sRMPD, a new recursive "local" planner founded on the key notion that, unless made necessary by an obstacle, there must be no deviation from the shortest path between any two points, which would normally be a straight line path in the configuration space. Subsequently, we increase the power of sRMPD by using it as a "connect" subroutine call in a higher-level sampling-based algorithm mRMPD that is inspired by multi-RRT. As a consequence, mRMPD spawns a larger number of space exploring trees in regions of the configuration space that are characterized by a higher density of obstacles. The overall effect is a hybrid tree growing strategy with a trade-off between random exploration as made possible by multi-RRT based logic and immediate exploitation of opportunities to connect two states as made possible by sRMPD. The mRMPD planner can be biased with regard to this trade-off for solving different kinds of planning problems efficiently. Based on the test cases we have run, our experiments show that mRMPD can reduce planning time by up to 80% compared to basic RRT

    ASlib: A Benchmark Library for Algorithm Selection

    Full text link
    The task of algorithm selection involves choosing an algorithm from a set of algorithms on a per-instance basis in order to exploit the varying performance of algorithms over a set of instances. The algorithm selection problem is attracting increasing attention from researchers and practitioners in AI. Years of fruitful applications in a number of domains have resulted in a large amount of data, but the community lacks a standard format or repository for this data. This situation makes it difficult to share and compare different approaches effectively, as is done in other, more established fields. It also unnecessarily hinders new researchers who want to work in this area. To address this problem, we introduce a standardized format for representing algorithm selection scenarios and a repository that contains a growing number of data sets from the literature. Our format has been designed to be able to express a wide variety of different scenarios. Demonstrating the breadth and power of our platform, we describe a set of example experiments that build and evaluate algorithm selection models through a common interface. The results display the potential of algorithm selection to achieve significant performance improvements across a broad range of problems and algorithms.Comment: Accepted to be published in Artificial Intelligence Journa

    The Configurable SAT Solver Challenge (CSSC)

    Get PDF
    It is well known that different solution strategies work well for different types of instances of hard combinatorial problems. As a consequence, most solvers for the propositional satisfiability problem (SAT) expose parameters that allow them to be customized to a particular family of instances. In the international SAT competition series, these parameters are ignored: solvers are run using a single default parameter setting (supplied by the authors) for all benchmark instances in a given track. While this competition format rewards solvers with robust default settings, it does not reflect the situation faced by a practitioner who only cares about performance on one particular application and can invest some time into tuning solver parameters for this application. The new Configurable SAT Solver Competition (CSSC) compares solvers in this latter setting, scoring each solver by the performance it achieved after a fully automated configuration step. This article describes the CSSC in more detail, and reports the results obtained in its two instantiations so far, CSSC 2013 and 2014
    corecore