55,844 research outputs found

    The Binational English & Spanish Telecommunications Network

    Get PDF
    BESTNET was established in the early 1980\u27s, as an effort to link universities on both sides of the U.S.- Mexico border through microwave, satellite and cable television technologies. In the late 1980\u27s BESTNET focused primarily on the development of asynchronous computer mediated learning and teaching in an internationally networked virtual environment. For the past six years (1990\u27s) BESTNET has strengthened its binational ties and continued its high tech focus through the development of active or vibrant model technology which is assisting in the creation of an on-line binational university setting that is borderless (albeit, seamless to the user). Today, this type of design and linkage for curriculum, learning, teaching, research and performing collaborative scholarly work is called a global virtual university . The design center for BESTNET is the vibrant global model based on METIS software. While the binational (U.S.-Mexico) design of BESTNET continues to flourish, new technologies are being continually assimilated into this highly adaptive project. Specifically, as we are able to combine the interests of a multitude of globally located campuses. We are also working towards a virtual project for higher education. Our operating, developmental premise has always been to redefine faculty, staff and student roles towards this purpose. BESTNET was created with the assistance of the founder of ARPANET a direct precursor to the Internet (even before the Internet was popularized) as a scholar\u27s collaborative network, with the explicit charge of exploring alternative approaches to the structures, substance, and processes which have traditionally defined the scholarly work of institutions of higher education. We have continually demonstrated courage in tackling difficult, but essential, issues of technological renewal. We are committed to developing educational programs which are especially responsive to both regional and global needs, student-centered, interdisciplinary in scope, and technologically innovative in nature. The tremendous success of the BESTNET paradigm is that we are not only renewing, we are also brandnewing an ambitious global and virtual educational model that will yield improved educational outcomes (in both low- and high-tech) settings, within the financial resources of most academic institutions. We have especially developed positive outcomes in Africa, Latin America, the United States and Europe. Because we barter and share collectively our on line resources, we avoid the exchange of funds, academic credits and the multitude of bureaucracies that are associated with traditional institutional exchanges. In short, we create a virtual learning environment for the world evolving student to experience like never before. While other projects are undergoing transformation from the Industrial Age to the Information Age, BESTNET is successfully aligning to the global needs of the Cyber-Age, by design

    Metadata for describing learning scenarios under European Higher Education Area paradigm

    Get PDF
    In this paper we identify the requirements for creating formal descriptions of learning scenarios designed under the European Higher Education Area paradigm, using competences and learning activities as the basic pieces of the learning process, instead of contents and learning resources, pursuing personalization. Classical arrangements of content based courses are no longer enough to describe all the richness of this new learning process, where user profiles, competences and complex hierarchical itineraries need to be properly combined. We study the intersection with the current IMS Learning Design specification and the additional metadata required for describing such learning scenarios. This new approach involves the use of case based learning and collaborative learning in order to acquire and develop competences, following adaptive learning paths in two structured levels

    Blending Learning: The Evolution of Online and Face-to-Face Education from 20082015

    Get PDF
    In 2008, iNACOL produced a series of papers documenting promising practices identified throughout the field of K–12 online learning. Since then, we have witnessed a tremendous acceleration of transformative policy and practice driving personalized learning in the K–12 education space. State, district, school, and classroom leaders recognize that the ultimate potential for blended and online learning lies in the opportunity to transform the education system and enable higher levels of learning through competency-based approaches.iNACOL's core work adds significant value to the field by providing a powerful practitioner voice in policy advocacy, communications, and in the creation of resources and best practices to enable transformational change in K–12 education.We worked with leaders throughout the field to update these resources for a new generation of pioneers working towards the creation of student-centered learning environments.This refreshed series, Promising Practices in Blended and Online Learning, explores some of the approaches developed by practitioners and policymakers in response to key issues in K–12 education, including:Blended Learning: The Evolution of Online and Face-to-Face Education from 2008-2015;Using Blended and Online Learning for Credit Recovery and At-Risk Students;Oversight and Management of Blended and Online Programs: Ensuring Quality and Accountability; andFunding and Legislation for Blended and Online Education.Personalized learning environments provide the very best educational opportunities and personalized pathways for all students, with highly qualified teachers delivering world-class instruction using innovative digital resources and content. Through this series of white papers, we are pleased to share the promising practices in K–12 blended, online, and competency education transforming teaching and learning today

    Updating the art history curriculum: incorporating virtual and augmented reality technologies to improve interactivity and engagement

    Get PDF
    Master's Project (M.Ed.) University of Alaska Fairbanks, 2017This project investigates how the art history curricula in higher education can borrow from and incorporate emerging technologies currently being used in art museums. Many art museums are using augmented reality and virtual reality technologies to transform their visitors' experiences into experiences that are interactive and engaging. Art museums have historically offered static visitor experiences, which have been mirrored in the study of art. This project explores the current state of the art history classroom in higher education, which is historically a teacher-centered learning environment and the learning effects of that environment. The project then looks at how art museums are creating visitor-centered learning environments; specifically looking at how they are using reality technologies (virtual and augmented) to transition into digitally interactive learning environments that support various learning theories. Lastly, the project examines the learning benefits of such tools to see what could (and should) be implemented into the art history curricula at the higher education level and provides a sample section of a curriculum demonstrating what that implementation could look like. Art and art history are a crucial part of our culture and being able to successfully engage with it and learn from it enables the spread of our culture through digital means and of digital culture

    DIGITAL: multidisciplinary and multidimensional in the classrooms

    Get PDF
    In this paper our aim is to analyse and present some pedagogical paths that prefigure and guide the teaching-learning devices developed "around" the digital tools. In this context issues related to the implementation with teaching methodologies and teaching techniques acquire a new dimension due to the need of transpose them into online learning environments (technologies to teach to technologies to learn). This starting point is a deep understanding from the analysis of actors in the online learning process: student, teacher, platform and e- contents. Thus, it is our goal in this chapter to promote digital education, think of teaching methods, tools and learning processes, to adapted to eLearninginfo:eu-repo/semantics/publishedVersio

    Collaborative learning and co-author students in online higher education: a-REAeduca – collaborative learning and co-authors

    Get PDF
    The technologies themselves cannot be analyzed as instruments per se, nor can they be exhausted in their relation with science. There is a social and even an individual dimension that affects our own way of relating to society. It is in open education that we have been developing our educational practices. This chapter presents a collaborative learning activity, the curricular unit Materiais e Recursos para eLearning, part of an on-line Master in Pedagogy of eLearning, Universidade Aberta, Portugal. In the present work, the authors dedicate their attention to co-learning and co-research, as processes that help to exemplify some situations, the a-REAeduca. The data collection was supported essentially by the content analysis technique.info:eu-repo/semantics/publishedVersio

    Culturally and Linguistically Responsive Noticing and Wondering: An Equity-Inducing yet Accessible Teaching Practice

    Get PDF
    Noticing and Wondering is a promising practice with an emerging research base in mathematics education for helping move teachers to a more contemporary paradigm of learning where culturally and linguistically diverse students have more equitable opportunities for academic success. This paper documents and extends this emerging research of Noticing and Wondering to fill a gap in the literature by (1) conceptualizing six reasons for the value of Noticing and Wondering and (2) discussing its potential to support English learners, such as by providing teachers easy access to students’ cultural assets. We document application of Noticing and Wondering beyond mathematics and conclude with a call for empirical research and practice in this direction

    Fast parallel volume visualization on cuda technology

    Get PDF
    In the medical diagnosis and treatment planning, radiologists and surgeons rely heavily on the slices produced by medical imaging scanners. Unfortunately, most of these scanners can only produce two dimensional images because the machines that can produce three dimensional are very expensive. The two dimensional images from these devices are difficult to interpret because they only show cross-sectional views of the human structure. Consequently, such circumstances require highly qualified doctors to use their expertise in the interpretation of the possible location, size or shape of the abnormalities especially for large datasets of enormous amount of slices. Previously, the concept of reconstructing two dimensional images to three dimensional was introduced. However, such reconstruction model requires high performance computation, may either be time-consuming or costly. Furthermore, detecting the internal features of human anatomical structure, such as the imaging of the blood vessels, is still an open topic in the computer-aided diagnosis of disorders and pathologies. This study proposed, designed and implemented a visualization framework named SurLens with high performance computing using Compute Unified Device Architecture (CUDA), augmenting the widely proven ray casting technique in terms of superior qualities of images but with slow speed. Considering the rapid development of technology in the medical community, our framework is implemented on Microsoft .NET environment for easy interoperability with other emerging revolutionary tools. The Visualization System was evaluated with brain datasets from the department of Surgery, University of North Carolina, United States, containing 109 datasets of MRA, T1-FLASH, T2-Weighted, DTI and T1-MPRAGE. Significantly, at a reasonably cheaper cost, SurLens Visualization System achieves immediate reconstruction and obvious mappings of the internal features of the human brain, reliable enough for instantaneously locate possible blockages in the brain blood vessels without any prior segmentation of the datasets

    Teaching Construction in the Virtual University: the WINDS project

    No full text
    This paper introduces some of the Information Technology solutions adopted in Web based INtelligent Design Support (WINDS) to support education in A/E/C design. The WINDS project WINDS is an EC-funded project in the 5th Framework, Information Society Technologies programme, Flexible University key action. WINDS is divided into two actions: ·The research technology action is going to implement a learning environment integrating an intelligent tutoring system, a computer instruction management system and a set of co-operative supporting tools. ·The development action is going to build a large knowledge base supporting Architecture and Civil Engineering Design Courses and to experiment a comprehensive Virtual School of Architecture and Engineering Design. During the third year of the project, more than 400 students all over Europe will attend the Virtual School. During the next three years the WINDS project will span a total effort of about 150 man-years from 28 partners of 10 European countries. The missions of the WINDS project are: Advanced Methodologies in Design Education. WINDS drives a breakdown with conventional models in design education, i.e. classroom or distance education. WINDS implements a problem oriented knowledge transfer methodology following Roger Schank's Goal Based Scenario (GBS) pedagogical methodology. GBS encourages the learning of both skills and cases, and fosters creative problem solving. Multidisciplinary Design Education. Design requires creative synthesis and open-end problem definition at the intersection of several disciplines. WINDS experiments a valuable integration of multidisciplinary design knowledge and expertise to produce a high level standard of education. Innovative Representation, Delivery and Access to Construction Education. WINDS delivers individual education customisation by allowing the learner access through the Internet to a wide range of on-line courses and structured learning objects by means of personally tailored learning strategies. WINDS promotes the 3W paradigm: learn What you need, Where you want, When you require. Construction Practice. Construction industry is a repository of ""best practices"" and knowledge that the WINDS will profit. WINDS system benefits the ISO10303 and IFC standards to acquire knowledge of the construction process directly in digital format. On the other hand, WINDS reengineers the knowledge in up-to-date courses, educational services, which the industries can use to provide just-in-time rather than in-advance learning. WINDS IT Solutions The missions of the WINDS project state many challenging requirements both in knowledge and system architecture. Many of the solutions adopted in these fields are innovative; others are evolution of existing technologies. This paper focuses on the integration of this set of state-of-the-art technologies in an advanced and functionally sound Computer Aided Instruction system for A/E/C Design. In particular the paper deals with the following aspects: Standard Learning Technology Architecture The WINDS system relies on the in progress IEEE 1484.1 Learning Technology Standard Architecture. According to this standard the system consists of two data stores, the Knowledge Library and the Record Database, and four process: System Coach, Delivery, Evaluation and the Learner. WINDS implements the Knowledge Library into a three-tier architecture: 1.Learning Objects: ·Learning Units are collections of text and multimedia data. ·Models are represented in either IFC or STEP formats. ·Cases are sets of Learning Units and Models. Cases are noteworthy stories, which describes solutions, integrate technical detail, contain relevant design failures etc. 2.Indexes refer to the process in which the identification of relevant topics in design cases and learning units takes place. Indexing process creates structures of Learning Objects for course management, profile planning procedures and reasoning processes. 3.Courses are taxonomies of either Learning Units or a design task and Course Units. Knowledge Representation WINDS demonstrates that it is possible and valuable to integrate a widespread design expertise so that it can be effectively used to produce a high level standard of education. To this aim WINDS gathers area knowledge, design skills and expertise under the umbrellas of common knowledge representation structures and unambiguous semantics. Cases are one of the most valuable means for the representation of design expertise. A Case is a set of Learning Units and Product Models. Cases are noteworthy stories, which describe solutions, integrate technical details, contain relevant design failures, etc. Knowledge Integration Indexes are a medium among different kind of knowledge: they implement networks for navigation and access to disparate documents: HTML, video, images, CAD and product models (STEP or IFC). Concept indexes link learning topics to learning objects and group them into competencies. Index relationships are the base of the WINDS reasoning processes, and provide the foundation for system coaching functions, which proactively suggest strategies, solutions, examples and avoids students' design deadlock. Knowledge Distribution To support the data stores and the process among the partners in 10 countries efficiently, WINDS implements an object oriented client/server as COM objects. Behind the DCOM components there is the Dynamic Kernel, which dynamically embodies and maintains data stores and process. Components of the Knowledge Library can reside on several servers across the Internet. This provides for distributed transactions, e.g. a change in one Learning Object affects the Knowledge Library spread across several servers in different countries. Learning objects implemented as COM objects can wrap ownership data. Clear and univocal definition of ownerships rights enables Universities, in collaboration with telecommunication and publisher companies, to act as "education brokers". Brokerage in education and training is an innovative paradigm to provide just-in-time and personally customised value added learning knowledg
    • …
    corecore