168 research outputs found

    Multi-criteria and satisfaction oriented scheduling for hybrid distributed computing infrastructures

    Get PDF
    International audienceAssembling and simultaneously using different types of distributed computing infrastructures (DCI) like Grids and Clouds is an increasingly common situation. Because infrastructures are characterized by different attributes such as price, performance, trust, greenness, the task scheduling problem becomes more complex and challenging. In this paper we present the design for a fault-tolerant and trust-aware scheduler, which allows to execute Bag-of-Tasks applications on elastic and hybrid DCI, following user-defined scheduling strategies. Our approach, named Promethee scheduler, combines a pull-based scheduler with multi-criteria Promethee decision making algorithm. Because multi-criteria scheduling leads to the multiplication of the possible scheduling strategies, we propose SOFT, a methodology that allows to find the optimal scheduling strategies given a set of application requirements. The validation of this method is performed with a simulator that fully implements the Promethee scheduler and recreates an hybrid DCI environment including Internet Desktop Grid, Cloud and Best Effort Grid based on real failure traces. A set of experiments shows that the Promethee scheduler is able to maximize user satisfaction expressed accordingly to three distinct criteria: price, expected completion time and trust, while maximizing the infrastructure useful employment from the resources owner point of view. Finally, we present an optimization which bounds the computation time of the Promethee algorithm, making realistic the possible integration of the scheduler to a wide range of resource management software

    Efficient replication of large volumes of data and maintaining data consistency by using P2P techniques in Desktop Grid

    Get PDF
    Desktop Grid is increasing in popularity because of relatively very low cost and good performance in institutions. Data-intensive applications require data management in scientific experiments conducted by researchers and scientists in Desktop Grid-based Distributed Computing Infrastructure (DCI). Some of these data-intensive applications deal with large volumes of data. Several solutions for data-intensive applications have been proposed for Desktop Grid (DG) but they are not efficient in handling large volumes of data. Data management in this environment deals with data access and integration, maintaining basic properties of databases, architecture for querying data, etc. Data in data-intensive applications has to be replicated in multiple nodes for improving data availability and reducing response time. Peer-to-Peer (P2P) is a well established technique for handling large volumes of data and is widely used on the internet. Its environment is similar to the environment of DG. The performance of existing P2P-based solution dealing with generic architecture for replicating large volumes of data is not efficient in DG-based DCI. Therefore, there is a need for a generic architecture for replicating large volumes of data efficiently by using P2P in BOINC based Desktop Grid. Present solutions for data-intensive applications mainly deal with read only data. New type of applications are emerging which deal large volumes of data and Read/Write of data. In emerging scientific experiments, some nodes of DG generate new snapshot of scientific data after regular intervals. This new snapshot of data is generated by updating some of the values of existing data fields. This updated data has to be synchronised in all DG nodes for maintaining data consistency. The performance of data management in DG can be improved by addressing efficient data replication and consistency. Therefore, there is need for algorithms which deal with data Read/Write consistency along with replication for large volumes of data in BOINC based Desktop Grid. The research is to identify efficient solutions for data replication in handling large volumes of data and maintaining Read/Write data consistency using Peer-to-Peer techniques in BOINC based Desktop Grid. This thesis presents the solutions that have been carried out to complete the research

    Contributions to Desktop Grid Computing : From High Throughput Computing to Data-Intensive Sciences on Hybrid Distributed Computing Infrastructures

    Get PDF
    Since the mid 90’s, Desktop Grid Computing - i.e the idea of using a large number of remote PCs distributed on the Internet to execute large parallel applications - has proved to be an efficient paradigm to provide a large computational power at the fraction of the cost of a dedicated computing infrastructure.This document presents my contributions over the last decade to broaden the scope of Desktop Grid Computing. My research has followed three different directions. The first direction has established new methods to observe and characterize Desktop Grid resources and developed experimental platforms to test and validate our approach in conditions close to reality. The second line of research has focused on integrating Desk- top Grids in e-science Grid infrastructure (e.g. EGI), which requires to address many challenges such as security, scheduling, quality of service, and more. The third direction has investigated how to support large-scale data management and data intensive applica- tions on such infrastructures, including support for the new and emerging data-oriented programming models.This manuscript not only reports on the scientific achievements and the technologies developed to support our objectives, but also on the international collaborations and projects I have been involved in, as well as the scientific mentoring which motivates my candidature for the Habilitation `a Diriger les Recherches

    Extension of Grid Portal Functionalities with Collection and Visualization of Usage Statistics

    Get PDF
    The WS-PGRADE Grid Portal allows users to create and maintain workflows through an intuitive user interface. However the current version lacks the ability to share metrics about the system. To provide these metrics a new portlet, database and web service were developed. The service is responsible for collecting and storing metrics in the database and the portlet is responsible for display of these metrics. These additions enable end-users to retrieve statistics on the portal, user, DCI\u27s, resources, concrete workflows, workflow instances, and individual jobs from the workflow graph

    Content rendering and interaction technologies for digital heritage systems

    Get PDF
    Existing digital heritage systems accommodate a huge amount of digital repository information; however their content rendering and interaction components generally lack the more interesting functionality that allows better interaction with heritage contents. Many digital heritage libraries are simply collections of 2D images with associated metadata and textual content, i.e. little more than museum catalogues presented online. However, over the last few years, largely as a result of EU framework projects, some 3D representation of digital heritage objects are beginning to appear in a digital library context. In the cultural heritage domain, where researchers and museum visitors like to observe cultural objects as closely as possible and to feel their existence and use in the past, giving the user only 2D images along with textual descriptions significantly limits interaction and hence understanding of their heritage. The availability of powerful content rendering technologies, such as 3D authoring tools to create 3D objects and heritage scenes, grid tools for rendering complex 3D scenes, gaming engines to display 3D interactively, and recent advances in motion capture technologies for embodied immersion, allow the development of unique solutions for enhancing user experience and interaction with digital heritage resources and objects giving a higher level of understanding and greater benefit to the community. This thesis describes DISPLAYS (Digital Library Services for Playing with Shared Heritage Resources), which is a novel conceptual framework where five unique services are proposed for digital content: creation, archival, exposition, presentation and interaction services. These services or tools are designed to allow the heritage community to create, interpret, use and explore digital heritage resources organised as an online exhibition (or virtual museum). This thesis presents innovative solutions for two of these services or tools: content creation where a cost effective render grid is proposed; and an interaction service, where a heritage scenario is presented online using a real-time motion capture and digital puppeteer solution for the user to explore through embodied immersive interaction their digital heritage

    VO-compliant workflows and science gateways

    Get PDF
    Abstract Workflow and science gateway technologies have been widely adopted by scientific communities as a valuable tool to carry out complex experiments. They offer the possibility to perform computations for data analysis and simulations, whereas hiding details of the complex infrastructures underneath. There are many workflow management systems covering a large variety of generic services coordinating execution of workflows. In this paper we describe our experiences in creating workflows oriented science gateway based on gUSE/WS-PGRADE technology and in particular we discuss the efforts devoted to develop a VOcompliant web environment
    corecore