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Abstract

Assembling and simultaneously using di↵erent types of distributed comput-
ing infrastructures (DCI) like Grids and Clouds is an increasingly common
situation. Because infrastructures are characterized by di↵erent attributes
such as price, performance, trust, greenness, the task scheduling problem
becomes more complex and challenging. In this paper we present the de-
sign for a fault-tolerant and trust-aware scheduler, which allows to execute
Bag-of-Tasks applications on elastic and hybrid DCI, following user-defined
scheduling strategies. Our approach, named Promethee scheduler, combines
a pull-based scheduler with multi-criteria Promethee decision making algo-
rithm. Because multi-criteria scheduling leads to the multiplication of the
possible scheduling strategies, we propose SOFT, a methodology that allows
to find the optimal scheduling strategies given a set of application require-
ments. The validation of this method is performed with a simulator that fully
implements the Promethee scheduler and recreates an hybrid DCI environ-
ment including Internet Desktop Grid, Cloud and Best E↵ort Grid based on
real failure traces. A set of experiments shows that the Promethee scheduler
is able to maximize user satisfaction expressed accordingly to three distinct
criteria: price, expected completion time and trust, while maximizing the
infrastructure useful employment from the resources owner point of view.
Finally, we present an optimization which bounds the computation time of
the Promethee algorithm, making realistic the possible integration of the
scheduler to a wide range of resource management software.
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1. Introduction

The requirements of distributed computing applications in terms of pro-
cessing and storing capacities is continuously increasing, pushed by the gigan-
tic deluge of large data volume to process. Nowadays, scientific communities
and industrial companies can choose among a large variety of distributed
computing infrastructures (DCI) to execute their applications. Examples of
such infrastructures are Desktop Grids or Volunteer Computing systems [8]
which can gather a huge number of volunteer PCs at almost no cost, Grids
[12] which assemble large number of distributed clusters and more recently,
clouds [4] which can be accessed remotely, following a pay-as-you-go pricing
model. All these infrastructures have very di↵erent characteristics in terms
of computing capacity, cost, reliability, consumed power e�ciency and more.
Hence, combining these infrastructures in such a way that meets users’ and
applications’ requirements raises significant scheduling challenges.

The first challenge concerns the design of the resource management
middleware which allows the assemblage of hybrid DCIs. The di�culty re-
lies in the number of desirable high level features that the middleware has
to provide in order to cope with: i) distributed infrastructures that have
various usage paradigms (reservation, on-demand, queue), and ii) comput-
ing resources that are heterogeneous, volatile, unreliable and sometimes not
trustee. An architecture that has been proved to be e�cient to gather hybrid
and elastic infrastructures is the joint use of a pull-based scheduler with pilot
jobs [37, 17, 35, 6]. The pull-based scheduler, often used in Desktop Grid com-
puting systems [1, 10], relies on the principle that the computing resources
pull tasks from a centralized scheduler. Pilot jobs consist in resource acquisi-
tion by the Promethee scheduler and the deployment on them of agents with
direct access to the central pull-based scheduler, so that Promethee can work
with the resources directly, rather than going through local job schedulers.
This approach exhibits several desirable properties, such as scalability, fault
resilience, ease of deployment and ability to cope with elastic infrastructures,
these being the reasons why the architecture of Promethee scheduler that we
propose in this paper, follows this principle.
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The second challenge is to design task scheduling that are capable of
e�ciently using hybrid DCIs, and in particular, that takes into account the
di↵erences between the infrastructures. In particular, the drawback of a pull-
scheduler is that it flattens the hybrid infrastructures and tends to consider
all computing resources on an equal basis. Our earlier results [26, 27] proved
that a multi-criteria scheduling method based on the Promethee decision
model [11] can make a pull-based scheduler able to implement scheduling
strategies aware of the computing resources characteristics. However, in this
initial work, we tested the method on single infrastructure type at a time,
without considering hybrid computing infrastructures, and we evaluated the
method against two criteria: expected completion time (ECT) and usage price.
In this paper, we propose the following extensions to the Promethee sched-
uler: i) we add a third criteria called Expected Error Impact (EEI), that
reflects the confidence that a host returns correct results, ii) we evaluate the
Promethee scheduler on hybrid environments, iii) we leverage the tunability
of the Promethee scheduler so that applications developers can empirically
configure the scheduler to put more emphasize on criteria that are important
from their own perspective.

The third challenge regards the design of a new scheduling approach
that maximizes satisfaction of both users and resource owners. In general,
end users request to run their tasks quicker and at the cheapest costs, op-
posed to the infrastructure owners which need to capitalize their assets and
minimize the operational costs. Thus, an overall scheduling approach should
allow the resource owners to keep their business profitable and meantime,
increase the end user satisfaction after the interaction with the global com-
puting system.

The Promethee scheduler allows users to provide their own scheduling
strategies in order to meet their applications requirements by configuring the
relative importance of each criteria. However such configurable multi-criteria
schedulers have two strong limitations: i) there is no guaranty that the user
preferences expressed when configuring the scheduler actually translates in
an execution that follows the favored criteria, and ii) the number of possible
scheduling strategies explodes with the number of criteria and the number of
application profiles, rapidly leading to an intractable situation by the user.
We propose Satisfaction Oriented FilTering (SOFT), a new methodology
that explores all the scheduling strategies provided by a Promethee multi-
criteria scheduler to filter and select the most favorable ones according to
the user execution profiles and the optimization of the infrastructure usage.
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SOFT also allows to select a default scheduling strategy so that the scheduler
attains a high and at the same time stable level of user satisfaction, regardless
the diversity of user satisfaction profiles.

In this paper, we introduce the design of the fault-tolerant and trust-
aware Promethee scheduler, which allows to execute Bag-of-Tasks applica-
tions on elastic and hybrid DCI, following user-defined scheduling strategies.
We thoroughly present the algorithms of the multi-criteria decision making
and the SOFT methodology. Finally, we extensively evaluate the Promethee
scheduler using a simulator that recreates a combination of hybrid, elastic
and unreliable environment containing Internet Desktop Grid, public Cloud
using Spot Instance and Best E↵ort Grid. Simulation results not only show
the e↵ectiveness of the Promethee scheduler but also its ability to meet user
application requirements. We also propose an optimized implementation of
the Promethee algorithms and perform real world experiments to validate
the approach.

The remainder of the paper is organized as follows. In section 2 we give
the background for our work and define the key concepts, in section 3 we
explain our scheduling approach and define the performance evaluation met-
rics. In section 4 we define SOFT, the methodology for optimal scheduling
strategies selection. Then we present the architecture of the implemented
experimental system in section 5. In section 6 we describe the experimental
data, the setup and present the obtained results and findings. In section 7
we discuss related work and finally section 8 gives the concluding remarks
and observations on this work.

2. Background

This section describes the multi-criteria scheduling on hybrid DCIs prob-
lem that we address in this work and defines the key concepts used in our
discussion.

2.1. Description of the scheduling problem

In the considered context users submit their applications for execution
on a system that aggregates the computing resources from at least three
types of DCI: Internet Desktop Grids (IDG), Best E↵ort Grids (BEG) and
Cloud. Each computing resource from the above mentioned infrastructures
have di↵erent characteristics in terms of computing capacity, reliability, cost,
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consumed power e�ciency, and trust. For instance, Internet volunteer Desk-
top PCs could be considered as free of charge but insecure and unreliable,
while a Cloud resource can be costly but far more secure and reliable.

Users usually expect good execution performance but they are also con-
cerned about other issues like cost, confidence and environmental footprint of
the infrastructure. Thus, a relevant concern for task scheduling is to attain
the best usage of the infrastructures in order to meet users’ expectations and,
at the same time, insure a convenient capitalization of the resources for
their owners.

2.2. Key concepts

Users submit bag of work-units to a centralized scheduler and expect
(after a while) the corresponding results. For each work-unit the scheduler
creates at least one task and inserts it into a BoT (Bag of Task). During the
execution the scheduler aims at emptying this BoT by scheduling tasks to
hosts belonging to various types of computing infrastructure.

We use a pull-based scheduling strategy. Hence our scheduler is a cen-
tralized component (master) based on the pull communication model for
the interaction with hosts (workers). The reason for this design choice is the
requirement for elasticity and adaptability to structure disruptions that
characterize DCIs like IDG and BEG. This model allows a complete inde-
pendence of all system components [23]. The pull model allows workers to
have the contact initiative, which overcomes the real issue of connecting to
volunteers residing behind firewalls [20] or other security components.

When a host hi
h

becomes available (either because it (re-)joins the sys-
tem or after completing a task) it contacts the scheduler in order to receive
a new task. This approach is e�cient [36] since in IDGs, hosts contact
the server quite seldom. More, if embedded into a real middleware, such a
scheduling component becomes more scalable, since it does not keep track of
the workers’ state. Due to its advantages, many Desktop Grid systems (e.g
BOINC[1], XtremWeb [10]), and Grid PilotJob framework (e.g FALKON
[34], DIRAC[6]) and others rely on the pull model for the master-worker
communication.

Due to the use of the pull model, the structure of the system and the
scheduling process are driven by the behavior of participating hosts. As
discussed above, there are two cases when a host pulls work: either when it
(re-)joins the system, or after completing a task. We consider that a host
may leave the system without preventing the scheduler. Such disruptions
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may degrade the execution performance of a BoT and they are more likely
to occur in IDG and BEG infrastructures.

Figure 1 depicts an overview of the considered scheduling context. As
our discussion is focused on the scheduling method, we omitted to detail
additional middleware components and layers which naturally occur in real
systems. For example, by Interface we designate specific mechanisms that
allow hosts from di↵erent types of infrastructure to communicate with the
scheduler. The details of this communication may di↵er from an infrastruc-
ture type to another. For instance it may be directly from a host to scheduler
in IDG or via a mediator component for Cloud, as used in [6]. However, such
mechanisms do not fall within our research scope.

Figure 1: Overview on the Promethee scheduler architecture and its context.

Formalisms:

A work unit, denoted with wi
w

, represents a unit of work that must
be processed and for which an end user application expects a result
from the scheduler. A work unit is characterized by:

– a unique identifier IDW (wi
w

),

– the number of instructions NOI(wi
w

),

– the arrival time TMA(wi
w

). This is the time when the scheduler
received the work unit from a user application.

– the completion time TMC(wi
w

). This is the time when the sched-
uler completes a work unit by receiving a correct result for a cor-
responding task.
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A task ti
t

is an instantiation ti
w

,r of the work unit wi
w

, r 2 N⇤. During
the execution, ti

w

,r is the rth instance (replica) created for wi
w

, in the
aim of completing it. A task ti

t

is characterized by:

– a unique identifier IDT (ti
t

),

– the number of instructions NOI(ti
t

) (this value is inherited from
its corresponding work-unit),

– the creation time TC(ti
t

). This is the time when the scheduler
created the task for an uncomplete work-unit,

– the schedule time TMS(ti
t

),

– the completion time TMC(ti
t

).

A pulling host hi
h

occasionally contacts the scheduler to pull a task
and is characterized by:

– a unique identifier IDH(hi
h

),

– IDDCI , a label indicating the identity of the computing infrastruc-
ture to which it belongs,

– the computing capacity CPU(hi
h

), expressed in number of pro-
cessed instructions per second. For the sake of simplicity, in this
work only CPU capacity is considered and not other types of re-
source such as memory, bandwidth etc.

– PRICE(hi
h

), which is the price (in monetary units) per second,
eventually charged by host for processing tasks.

After a host completes the execution of a task it contacts the scheduler
to return the computed result and pull a new task.

A set of scheduling criteria C = {ci
c

, 1  ic  Nc}, provided either by
the end user or by the infrastructure owner. For instance, a criterion ci

c

might be the expected completion time, the price charged for complet-
ing a task on a particular infrastructure or the expected error impact.
Each criterion ci

c

will have assigned an importance weight !i
c

> 0, such
as

P
!i

c

= 1.

The scheduler holds a set of work units W = {wi
w

, iw 2 N}, and a set
of tasks T = {ti

t

, it 2 N}. When the scheduler receives a work unit wi
w

, it
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inserts into T a new task ts,r, r = 1, as previously explained. When a task
ts,r is scheduled, the scheduler inserts into T a new replica, ts,r+1. This r+1
replica will have a lower priority for scheduling whilst the scheduler still waits
to receive a result for the ts,r task.

3. The Promethee scheduling method

This section presents our approach of using Promethee[11] for task schedul-
ing and the defined performance evaluation metrics.

3.1. The Promethee algorithm

When a host h pulls work, the scheduler uses the Promethee algorithm
to rank the BoT based on the characteristics of the host. Then it selects the
best ranked task and schedules it to the respective host.

Promethee[3] is a multi-criteria decision model based on pairwise com-
parisons, which outputs a ranking of the tasks. This method considers a
set of criteria C = {ci

c

; ic 2 [1, Nc]} to characterize tasks and a set of impor-
tance weights for criteria, W = !i

c

(ci
c

), so that
PN

c

i
c

=1 !i
c

(·) = 1. First, the
scheduler builds the matrix A = {ai

c

,i
t

} where each element ai
c

,i
t

is computed
by evaluating task ti

t

against criterion ci
c

. For instance, if price=2 monetary
units/sec. and CPU=10 NOI/sec., the evaluation against this criterion for task
t1 having NOI=100 is 20; similarly, for a task t2 with NOI=300 the evaluation
is 60. Matrix A is the input for the Promethee algorithm and characterizes
the BoT for a particular pulling host.

Based on the input matrix A, for each criterion ci
c

, the algorithm com-
putes a preference matrix Gi

c

= {gi1
t

,i2
t

}. Each value gi1
t

,i2
t

shows the prefer-
ence P 2 [0, 1] of task ti1

t

over ti2
t

. This value is computed using a preference
function P that takes as input the actual deviation between the evaluations
of ti1

t

and ti2
t

within each criterion ci
c

. If the criterion is min/max and the
deviation is negative, the preference is 0/P (gi1

t

,i2
t

); it becomes P (gi1
t

,i2
t

)/0
when the deviation is positive. For short, the preference function brings the
deviation value within the [0, 1] interval. Resuming the previous example, if
the algorithm is configured with a min target for price, then t1 is preferred
to t2 with g1,2 = P (40); otherwise, if the target is set to max, g1,2 = 0 since
the price of t1 is smaller than that of t2.

For each criterion, the algorithm continues with the computation of �+,
which shows the power of a task to outrank all other tasks j. The computa-
tion aggregates gi1

t

,j values (summation per line in matrix G). In a similar
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way, �� is computed to express the weakness of a task while being outranked
by all other tasks j. The computation aggregates gj,i1

t

values (summation per
column) in matrix G. For each criterion, a net flow is computed as �+���.
Figure 2 depicts the calculation of the positive flow �+ - summation by line
of the preferences and for the negative flow �� - summation by column, for
the t0 task.

Figure 2: Computing positive and negative outranking flows for task t0.

Finally the algorithm calculates an aggregated flow as a weighted sum on
the net flows, using the importance weights ! assigned to criteria. This final
aggregated flow is a list of scores for each task in the BoT. The task with the
highest score is scheduled to the pulling host.

We notice that the Promethee algorithm uses a preference function P to
calculate a preference among two tasks. The literature [11] suggests several
definitions for the preference function, including Linear, Level, Gaussian and
others. However, one is free to provide any other definition for this function.
In section 6.3.2 we show how to choose an e�cient preference function.

3.2. Evaluating tasks against a set of scheduling criteria

Before making a scheduling decision, the scheduler creates the evaluation
matrix A, as previously described, by evaluating all tasks against each crite-
rion in the considered set C. In this section we describe the policies for eval-
uating tasks for a set of three criteria: the expected completion time, price
and expected error impact. Although in our work we used three scheduling
criteria, one can easily define and add her own new criteria to this scheduling
method.
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The Expected Completion Time (ECT) represents an estimation of the
time interval needed by a pulling host to complete a particular task. This
is calculated by dividing the number of instructions (NOI) of a task by the
computing capacity (CPU) of the host.

The Price represents the estimated cost (expressed in monetary units)
eventually charged by the pulling host for the completion of a task. This is
computed as a product between the ECT and the price/time unit required by
host. In our scheduler, if a host returns the result of a task later than its
ECT the total cost for the execution of the BoT remains unchanged. By this
approach we seek to mimic what happens in a real system where the SLA1

can include agreed execution time limits and penalties if exceeded.

The Expected Error Impact (EEI) indicates the estimated impact of
scheduling a particular task to the pulling host taking into account its repu-
tation (error proneness) and the size of the task. For a less trusted pulling
host the evaluation of a larger task would result into a higher error impact.
The idea of using this criterion is to mitigate the behavior of scheduling large
tasks to mistrusted hosts. In algorithm 1 we give the calculation steps for
the EEI(ti) evaluation.

In order to create a realistic behavior of the hybrid DCI, in our experi-
mental system we consider that hosts can produce erroneous results or even
fail to return a result to the scheduler. In real systems this is either due to
hardware/platform issues or due to malicious behavior of the hosts (i.e. in
BOINC). Hence we use two parameters to model this behavior in each type of
infrastructure: f the fraction of hosts that produce erroneous results and s,
the probability with which they manifest this behavior. In order to use this
information within the scheduling method we implemented a simple reputa-
tion model like the one described by Arenas et al. in [2]. The idea is that the
scheduler computes and keeps track of hosts’ reputation, based on the quality
of the returned results during the execution. We assume that the scheduler
has a result verification mechanism to check the validity of the results re-
ceived from hosts. According to the implemented model, if a host returns an
erroneous result for a large task, its reputation will be more severely a↵ected
compared to the erroneous result of a small task. Besides, the reputation
score is more significantly a↵ected by the quality of the soonest completions.

1Service Level Agreement
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With respect to this rule, our scheduler computes a host’s reputation based
on a maximum of 5 last returned results. By this, the scheduler takes into
account the recent behavior of hosts within the system.

Algorithm 1 The calculation of EEI(ti)

1: Calculate the reputation of the pulling host, Rh
i

h .
2: Calculate the relative utility ⌥(ti) =

NOI(t
i

)
NOI

max

{The utility of task t
i

relative to its size}.
3: Based on Rh

i

h and ⌥(ti) calculate EEI(ti) using a policy, like in table 1.

aaaaaaaaaaa
Rhih

⌥(ti)
(0, 0.5] (0.5, 0.7] (0.7, 1]

(0, 0.5] ⌥(ti) · 2 ⌥(ti) · 4 ⌥(ti) · 8
(0.5, 0.7] ⌥(ti)/2 ⌥(ti) · 2 ⌥(ti) · 4
(0.7, 1] ⌥(ti)/4 ⌥(ti)/2 ⌥(ti)

Table 1: EEI calculation scheme.

In table 1 we describe the EEI calculation scheme used in our implemen-
tation. This can be seen as a risk matrix, where EEI indicates the risk of
scheduling a task of a certain size to a host with a particular reputation. The
values in the table show that:

the higher the relative task utility, the bigger the EEI value (for a
particular reputation score) and

the higher the host reputation, the smaller the EEI value (for a partic-
ular task relative utility).

3.3. Performance evaluation metrics

To evaluate the performance of the scheduling approach we use the fol-
lowing metrics: makespan, cost, execution e�ciency, the user satisfaction ⇥
and the infrastructure utilization e�ciency ".

We define makespan (M) like Maheswaran et al. in [24], as the duration
in time needed for the system to complete the execution of all work units
belonging to the same application execution. This is computed by scheduler
as the di↵erence between the timestamp of the result received for the last
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uncompleted task and the timestamp of the first task schedule. In all ex-
periments the makespan reflects the execution at hosts plus the scheduling
decision making time but not the network communication between scheduler
and hosts. We consider that this value has no relevance for the evaluation of
the scheduling method in the scheduling context defined in section 2.2.

The cost (C) indicates the total cost in monetary units accumulated for
an entire application execution. Each result returned by a host to scheduler
may increase the total cost of the whole execution. Exceptions from the cost
cumulation are when a host returns the result after the estimated completion
time. In a real system, this situation could be when a host from a Cloud
infrastructure violates the SLA agreement.

The execution e�ciency (E) is calculated for an application execution as
a ratio between the number of instructions from successfully executed tasks
and the number of instructions from the total scheduled tasks. Hosts that
are error prone or those who fail, lead to a smaller execution e�ciency since
the tasks they received must be rescheduled.

In order to facilitate the analysis of the scheduling performance we add
up the metrics defined from user perspective into the aggregated objective
function ⇥. This indicates the overall user satisfaction and it is defined in
eq. 1. Given that, based on a set of parameters, a system designer can
configure the scheduler in di↵erent ways using a set of strategies S, ⇥ shows
the relative satisfaction perceived by user Ui

u

after the completion of her
application, for a specific strategy s from S. For instance, a high �m and a
low �c shows that the user is more satisfied by a faster but costly execution,
while a low �m and a high �c indicate that the user is more satisfied by a
slower but cheaper execution of their application.

⇥U
i

u

s (M,C,E) = �m · Mmax �MU
i

u

v

Mmax �Mmin
+ �c ·

Cmax � C
U
i

u

v

Cmax � Cmin
+

�e · (1�
Emax � E

U
i

u

v

Emax � Emin
)

(1)

where

Mmax, Cmax, Emax (andMmin, Cmin, Emin) represent the maximum (and
minimum) values of makespan, cost and execution e�ciency measured
for the BoT execution in all strategies within S.
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�m, �c and �e denote weights of importance from the user perspective
Ui

u

over makespan, cost and execution e�ciency. After the completion
of their applications, end-users can compute the perceived satisfaction
in their own ways. For this we define the set of unique user satisfaction
profiles L = {li

l

, li
l

= (�m, �c, �e)} where �m, �c, �e � 0 and �m + �c +
�e = 1.

From the resource owners’ perspective we measure the relative infras-
tructure utilization e�ciency ", defined in eq. 2.

"DCI
i

DCI

s =
NOIutils (DCIi

DCI

)

NOI tots (DCIi
DCI

)
(2)

where, for a given strategy s from the set S1 (defined in section 4.2):

NOI tots (DCIi
DCI

) denotes the total number of operations executed on a
particular infrastructure DCIi

DCI

during the execution of a workload.

NOIutils (DCIi
DCI

) denotes only the number of operations executed on
a particular infrastructure DCIi

DCI

that led to work-units completion.

Obviously, NOItot(DCIi
DCI

) � NOIutil(DCIi
DCI

) since hosts can fail before
completing tasks, the computations can last longer than the expected com-
pletion time or the scheduler simply drops the erroneous results and schedule
new replicas of the respective tasks.

We consider that the greater the relative e�ciency of the resource utiliza-
tion, the bigger the satisfaction of their owners.

4. Overall scheduling approach

This section presents our contribution in defining a methodology that
allows one to select from a large number of defined scheduling strategies the
optimal ones with regard to a set of application requirements.

4.1. The SOFT Methodology

In this section we give the Satisfaction Oriented FilTering (SOFT) method-
ology. This allows one to select the optimal scheduling strategies given her
own set of criteria C. Its essence derives from the practice of the performed
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Algorithm 2 SOFT methodology for optimal scheduling strate-
gies selection.
1: Let ci

c

be a criterion from C, the considered set of criteria.
2: for all ci

c

2 C do

3: Define the evaluation of a task ti within this criterion {used for building the

evaluation matrix A, as discussed in section 3}.
4: Define an appropriate metric and integrate it into the aggregating metric ⇥

{the definition proposed in section 3.3 can be extended}.
5: end for

6: Define S, a set of scheduling strategies based on: the criteria set C, min/max
target for each criterion and combinations of importance weights assigned to
criteria {as in table 7 and 8}.

7: Define L, a set of user satisfaction profiles {as in table 9}.
8: for all strategy s in S do

9: Run the system to complete a workload and record values for metrics defined
at step 4.

10: end for

11: for all profile l in L do

12: for all strategy s in S do

13: Calculate ⇥s.
14: end for

15: end for

16: From S extract a subset S1 by applying a filtering method {we proposed Filter1

with Winabs
/Winfreq

selection methods in section 4.2}.
17: Define an e�ciency metric " from the resource owners perspective. {we proposed

" in section 3.3}
18: From S1 extract a subset S2 by applying a filtering method that employs "

{we proposed Filter2 in section 4.2}.

experiments and analyses. So we describe a detailed process, from the def-
inition of new criteria to the selection of a particular set of strategies that
are optimal from both user and resource owners perspectives. Algorithm 2
defines the proposed methodology.

The methodology begins with the definition of criteria to be integrated
into the scheduler and a corresponding metric for each (steps 1-5). On the
constructed set of possible scheduling strategies (step 6) a selection method is
applied in order to find those that provide high and stable user satisfaction
levels (steps 7-16). On this resulting subset a second selection method is
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applied in order to retain the strategies that are also the most e�cient from
the resource owners perspective (steps 17-18).

4.2. Finding optimal scheduling strategies

When using this scheduling method into a real system, its designer can
configure the method through several key parameters which impact on the
defined metrics. For instance, one may define a large variety of scheduling
strategies by:

1. setting either max or min target to the task evaluation criteria pre-
sented in section 3.2, and

2. by defining di↵erent combinations of importance weights !, assigned
to those criteria.

To address this challenge, in this section we propose a methodology that
supports a scheduler designer in finding optimal scheduling strategies given
the formulated conditions. Our methodology is generic and independent
from the number and type of considered scheduling criteria. Conse-
quently, the advantage is that one can use it to configure the scheduler for
her own set of criteria.

The methodology yields a set of optimal strategies considering all defined
user satisfaction profiles at a time, but it can also be applied (with small
adaptation) in a similar way for a particular profile only.

Figure 3 depicts the method, which at the highest level consists of two
phases: Filter1 - defined from the users’ perspective and Filter2 - defined
from the resource owners perspective. From the set of all defined scheduling
strategies S, Filter1 selects the strategies that conveniently satisfy the users,
resulting S1. Next, Filter2 selects from S1 the strategies that satisfy the
resource owners (i.e. increasing the capitalization of their infrastructures)
resulting S2. Finally, a scheduler designer can use the strategies from S2 to
configure the scheduler.

From section 2.2 recall Nc, the number of scheduling criteria in the com-
plete set of considered criteria C and !i

c

the importance weight assigned to
a criterion ci

c

. Based on C and the min/max target assigned to each cri-
terion there are a number of 2Nc possible families of scheduling strategies.
Moreover, for each family i 2 {1, ..., 2Nc}, one may assign values for the
weights !1,!2, ...!N

c

such that
PN

c

j=1 !j = 1,!j 2 [0, 1) in di↵erent combi-
nations. Therefore, a scheduler designer faces the problem of optimizing the
scheduling method on these two key parameters.
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Figure 3: Method for selecting optimal scheduling strategies from user and resource owners
perspectives.

Based on the optimization parameters we define a scheduling strategy
s as a tuple ((b1, . . . , bi, . . . , bN

c

), (!1,!2, ...,!N
c

)), with bi 2 {0, 1}, where
0/1 stands for min/max. Thus, the set S can be split into 2Nc strategy
families.

In the following we define the Filter1 and Filter2 phases. First, for each
strategy s 2 S and a sample L of NL user profiles over L we compute the
⇥ metric and obtain a satisfaction sampling distribution characterized by

the sample mean ūs = 1
N

L

N
LP

l=1
⇥l and the sample standard deviation �s =

s
1

N
L

�1

N
LP

l=1
(⇥s � ūs)2.

Filter1 works in two steps:
Step1 constructs the set S 0 from strategies s that achieve both:

X a corresponding user satisfaction distribution of user satisfaction
values so that ū

s

�
s

is above some chosen percentile q1, when sequentially
considering all the ū

s

�
s

distributions of values restricted to each strategy
family and

X a flat positive satisfaction for all users, i.e. �s = 0 and ūs > 0.

Step2 further selects from S 0 a set of strategies S1, by applying one of
the following methods:
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Absolute winners (Winabs):
Select the strategies that obtain the largest p values (e.g. p = 2) in the
descending order of ūs.

Frequency winners (Winfreq):
Based on the distribution of ūs values, select the strategies s 2 S 0

so that ūs is above some percentile q2. Among these, identify those
strategy families i which appear with the highest p frequencies (e.g.
p = 2). Then, select the strategies that belong to the identified families
and also for which weights !(.) occur with the highest frequency in the
initially selected set of strategies.

Step1 provides a primary filtering of all strategies in S, by selecting the
ones that are among the first (i.e. fall into the q1 percentile) in terms of
average satisfaction value per unit of risk. The risk is represented by the
heterogeneity of the considered user profiles, L. After this step we obtain
the most homogeneous strategies with respect to the induced benefits. Step2
proposes two methods for further refining the strategies set: either Winabs

which trivially selects the strategy with the highest mean utility value, or
Winfreq which takes into account the stochastic nature of user satisfaction
realizations.

Filter2
From the S1 set, this phase further selects the strategies that perform well

from the resource owners perspective. Hence, for each s 2 S1 we compute
the infrastructure utilization e�ciency ✏ for each considered infrastructure
DCIi

DCI

. Thus for Ndci infrastructures, we obtain a distribution of values

{✏(k)s , k = 1, ..., Ndci} with mean ✏̄s = 1
N

dci

N
dciP

k=1
✏
(k)
s , representing the average

infrastructure utilization e�ciency of strategy s. Given these, we finally
select the strategies s so that ✏̄s is above a percentile q3 within the distribution
of the obtained values. These strategies form the S2 set which is further
embedded into the scheduler.

In section 6.3.5 we present the results of applying this methodology for a
setup with 3 scheduling criteria, 10 user satisfaction profiles (given in table
9) and 8·28=224 scheduling strategies.
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5. Scheduling method implementation

In this section we describe the architecture of the scheduler implemen-
tation and other complementary components. The scheduler in general is
inspired from the XtremWeb behavior, borrowing basic functional compo-
nents like the pull-based and task replication mechanisms.

Figure 4 depicts a component-based representation of the implemented
system architecture; its main components are: the Task Scheduler, the trace-
based Hybrid DCI Simulator and the Visualizer.

Figure 4: Experimental system architecture.

The Task Scheduler is a real implementation of the proposed scheduling
approach. This component is responsible for selecting and scheduling tasks
to pulling hosts. This component is called by the EvCtrl component when
consuming a HJ (host join) or RET (return result) event from the queue.
The e↵ective decision making for the task selection is delegated to the SDM
component, which, at its root implements the Promethee decision model,
described in section 3.

The Hybrid DCI Simulator realistically reproduces the behavior of hosts
from di↵erent types of computing infrastructure. It is based on events created
from real failure traces. In this way we obtain hybrid IN/OUT behavior of
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hosts originating from di↵erent types of DCI. After reading the experiment
configuration, the TraceLdr component can load di↵erent subsets of hosts
from any combination of DCIs and for particular time-windows from the
total available trace-period. For each DCI type, the DCIFactory creates
hosts accordingly in terms of CPU, price, error rate and energy e�ciency.
Before running an experiment, all hybrid DCI infrastructure events (HJ and
HLE (host leave)) are created and added to the EvPQ. Also, based on workload
information for each user, the EvFactory creates and adds WKUA (work unit
arrival) events to the EvPQ queue.

The EvCtrl is the main component of the simulator, controlling the com-
pletion of BoTs. For this, after the creation of the hybrid DCI and workload,
EvCtrl starts the execution of the workload by consuming events from EvPQ
in a priority order, given by a time-stamp.

During the execution, based on the type of event currently being con-
sumed the simulator creates new events, which we describe in table 2.

Event name Significance Creation

HJ - Host Join Indicates a host identity, its
originating DCI and the time
at which it joins/ leaves the
system.

Created from real fail-
ure traces, before start-
ing the BoTs execution.HLE - Host

Leave
WKUA - Work
Unit Arrival

Indicates the identity of a work
unit, the BoT to which it be-
longs and its arrival time at
scheduler.

Created for di↵erent
types of workload at
the beginning of the
experiment run.

SCH - Sched-
ule

Marks the time when the
scheduler schedules and sends
a task to a pulling host.

Created for HJ/RET
events if the BoT execu-
tion uncomplete.

RET - Return Marks the time at which a host
completes a task and returns
the result to scheduler.

Created for SCH events.

Table 2: Rules for creating new events by the experimental system.

Algorithm 3 shows the order in which EvCtrl component consumes
events. EvCtrl component reads events from EvQueue in their priority or-
der. For some of them, new events are created or existent ones are deleted
from the queue. For instance, when a host leaves during the execution of a
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Algorithm 3 The event processing algorithm.

1: e = next event in EvQueue
2: if type of e is HJ then
3: Call the SDM component to select a task ti

t

and schedule it to the
pulling host.

4: else
5: if type of e is HLE then
6: for all event 2 EvQueue do
7: if type of event is not HJ or HLE then
8: remove event from EvQueue
9: end if

10: end for
11: end if
12: else
13: if type of e is WKUA then
14: wi

w

= the received work unit
15: Create task ti

w

,1

16: Add ti
w

,1 to T
17: end if
18: end if

task, the return result event (HLE) associated to the fallen node is deleted.
Consequently, the scheduler will not receive the result for the respective task,
causing a rescheduling of a new replica of the task.

During the execution of the system, the EvCtrl component calls the
Stats component to log relevant meta-information about the tasks’ comple-
tion process. We use this output for the characterization of the experimental
data in section 6.1 and to retrieve e�ciency metrics of the infrastructures’
utilization in section 6.3.6.

The Visualizer creates custom representations of the meta-information
collected by the Stats component during the system execution. Figure 4 was
drawn from the information produced by the Visualizer. This facilitates
the understanding of the di↵erent behaviors of the infrastructures in terms
of availability of the hosts. The output of the Visualizer proved to be
useful for driving our investigations, helping us to better understand the
distribution of the tasks on di↵erent types of DCI.
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6. Experiments and results

This section presents the experimental setup used for the validation of
the scheduling approach presented in the previous sections. More precisely,
we showed how to apply the scheduling methodology devised in section 4.2,
in order to select the proper tuning of the scheduler, considering a hybrid
computing infrastructure. We start by presenting the experimental data and
setup then we discuss the obtained results.

6.1. Experimental data

With the aim of observing the behavior and measuring the performance of
the proposed scheduling method, we developed and ran the system presented
in section 5. The considered hybrid computing infrastructure was created by
loading real failure traces [21, 19] as found in the public FTA (Failure Trace
Archive) repository [15] for three types of infrastructure:

IDG: For Internet Desktop Grid, the system loads BOINC failure
traces (from the SETI@home project) characterized by highly volatile
resources. The traces contain 691 hosts during a period of 18 months,
starting from 2010.

Cloud: For this environment the simulator loads Amazon EC2 spot
instance traces containing 1754 hosts from 2011. Observing the traces,
the resources are very stable.

BEG: The Best E↵ort Grid is an infrastructure or a particular usage
of an existing infrastructure (like OAR [5]) that provides unused com-
puting resources without any guarantees that these remain available
to user during the complete execution of his application [9]. For the
creation of this environment, the simulator loads Grid5000 traces with
host join and leave events for a period of 12 months (during 2011) from
the following sites: Bordeaux, Grenoble, Lille and Lyon. The traces
capture the activity of 2256 hosts. Inspecting the files we observe that
the resources are quite stable, meaning that small groups of machines
go o↵ approximately at once for a small number of hours.

When the experimental system loads the failure traces, it assigns CPU
capacity and price values to each host, according to the type of the origi-
nating DCI. The values are randomly chosen with uniform distribution from
the ranges given in table 3. As order of magnitude, the values were set

21



DCI
type

CPU capacity
(number of executed instructions/ sec-
ond)

Price charged by host
(monetary units/ sec-
ond)

IDG {50, 100, 150, 200, 250, 300, 350, 400} 0

Cloud

250 0.001
300 0.005
350 0.0075
400 0.01

BEG {50, 100, 150} 0

Table 3: Host CPU capacity and price values for the considered types of DCI.

so that a host having the maximum considered CPU capacity completes
the largest task (107instructions) in almost 7 hours and the smallest task
(106instructions) in 40 minutes. While hosts from IDG and BEG compute
for free (0 price), the hosts from Cloud require a price for their computa-
tions. The values in table 3 show that more powerful Cloud hosts are more
expensive. In all experiments, CPU capacity and price are constant for a
particular host throughout the execution of the BoT. Therefore we do not
consider dynamic pricing models.

In real systems, hosts originating from di↵erent infrastructure types man-
ifest unequal reliability levels. To mimic this aspect in our experiments we
created three types of host behavior concerning the moment in time
when a host returns the result for a completed task, relative to the estimated
ECT (at scheduler):

In time - when a host returns the result for a particular task at the
expected completion time.

Delay - when a host in order to complete and return the result for a
task needs more than ECT. For this behavior, 15% of the results from
a BoT are delayed with a factor between (1, 1.5].

Never - when a host do not yield the result for a particular task. For
this behavior we consider that for 5% of the BoT, hosts never send a
result to the scheduler. This is di↵erent from a host leaving the system
(according to the failure traces). In that case, the same host may rejoin
the system and pull for work again, while in this behavior the host is
available, but do not finish the computation (due to a local error).
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In all experiments we use all three behaviors, except the experiment from
section 6.3.1, where we distinctly analyze the scheduler performance on each
particular type of behavior.

From the publicly available failure traces we randomly selected subsets of
hosts so that the aggregated CPU capacity per type of DCI is roughly equal.
By this approach we obtain three types of computing infrastructure, which
are comparable. They are balanced in terms of total computational capacity
while having di↵erent degrees of heterogeneity in terms of availability, price
and error-proneness.

For our purpose we kept static the individual characteristics of hosts for
the duration of the experiments. It is out of the scope of this paper to
investigate our scheduling approach with dynamic host models, like dynamic
pricing of the computation.

In section 3.2 we shortly described our approach of considering two pa-
rameters f and s to implement the error proneness behavior of some hosts
within the computing infrastructures. Recall f , the fraction of hosts that
produce erroneous results and s, the probability with which they manifest
this behavior. Our scheduler implements a simple reputation model[2] and
computes the reputation of the pulling host, before the task evaluation phase
(described in section 3.2). During the task evaluation phase, the scheduler
uses this reputation score to calculate the expected error impact (the EEI
criterion described in section 3.2). In our experiments we consider the f and
s parameters as in table 4 - all values are expressed in % and have uniform
distribution:

DCI type Value of f Value of s
IDG (BOINC: SETI@home) 40 [0,70]
Cloud (Amazon EC2) 2 [0,5]
BEG (Grid5000) 10 [0,20]

Table 4: Values for the f and s parameters.

Table 5 describes the workload for one user and one application execu-
tion.

6.2. Experimental setup

Each experiment is performed according to a particular setup, which is
defined by a set of key parameters. For one setup, the value of a target
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Name Number of instructions
(NOI)/work unit

Number of work units/
user/ application

WL Randomly selected values from
[106, 107], uniformly distributed.

2000

Table 5: Description of the scheduler workload.

parameter may vary on a defined range and the other parameters take
fixed values. This basic approach allows us to study the impact of the target
parameter on the tracked metrics. For comparability, we used the same
workload (presented in table 5) into the experimental system, for various
particular setups.

For each experiment run, the system performs the following steps, in the
given order:

1. Read the experiment setup from a configuration file.

2. Create the hybrid DCI by loading failure traces and instantiating HJ
and HLE events for each type of DCI. In all experiments we use a hybrid
DCI composed from Cloud, IDG and BEG, unless otherwise specified.

3. Create the workload for all users by instantiating the WKUA event.

4. Start the execution of the workload on the hybrid infrastructure. The
running of an experiment ends when all work units within the given
workload are complete.

5. Report the obtained results.

6.3. Results

This section presents the results of the experiments driven for the valida-
tion of the proposed multi-criteria scheduling method. The evaluation begins
with simple scenarios focused on the specific mechanisms of the scheduling
method. Next we propose a set of optimizations for the scheduler and show
how to find optimal scheduling strategies by applying the filtering method
defined in section 4.2.

6.3.1. Primary performance evaluation
In this section we validate the performance of the task scheduling method

by comparing it with the First-come-first-serve (FCFS) approach, using
makespan and cost as metrics.
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The FCFS (First� Come� First� Served) method assumes that the
scheduler randomly selects a task and assigns it to a pulling host.

Experimental setup: For each method, combination of DCIs and type
of host behavior we measure and report the makespan for the completion of
the workload.

In order to obtain a clear performance overview between the proposed
scheduling method and FCFS, we depict the relative di↵erence of makespan
in figure 5. The values are calculated using eq. 3.

�i
M =

M i
FCFS �M i

Promethee

M i
Promethee
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Figure 5: Performance improvement of the proposed scheduling approach and FCFS.

We observe that the Promethee-based scheduling outperforms FCFS, at
di↵erent degrees in the considered types of DCI. While in Cloud environment
the di↵erence is 9-12%, a better performance (32% improvement) of the
proposed scheduling method is shown for IDG, for the never behavior. Also,
the proposed scheduling method shows a 38% improvement for the IDG-BEG
hybrid infrastructure. As a general remark, our scheduling method performs
significantly better on infrastructure combinations containing IDG (in which
hosts are more likely to fail).

6.3.2. Evaluating Promethee scheduler overhead
When designing the scheduler, one can choose from several preference

functions. These functions have di↵erent complexities and though di↵erent
real execution costs (in terms of CPU cycles), on the machine running the
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scheduler. In this section we evaluate the overhead of the scheduler for the
following preference functions:

PLinear(di
c

) =

⇢
d
i

c

� if di
c

 �
1 otherwise

PLevel(di
c

) =

8
<

:

0 if di
c

< q
1
2 if q  di

c

< p
1 if di

c

� p

PGaussian(di
c

) =

(
1� e�

d

i

c

2

2�2 if di
c

> 0
0 otherwise

where:

di
c

is the deviation between the evaluations of two tasks within a cri-
terion ci

c

: di
c

(t1, t2) = ai
c

,1 � ai
c

,2;

� is the standard deviation of the di↵erences di
c

for all pairs of tasks;

q is the degree of indi↵erence; any deviation below q leads to considering
t1 and t2 equivalent;

p is the degree of preference; any deviation greater than q gives a strict
preference, either 0.5 (for deviations between q and p) or 1.

Experimental setup: for each type of considered preference functions
(Linear, Level and Gaussian) we run the system to complete the same WL
workload.

Figure 6 presents real execution time measurements of the decision-making
algorithm, implemented by the SDM component (presented in section 5).
While the values on the y axis represent duration in milliseconds for each
scheduling decision making, the x axis shows the scheduling iterations needed
for a workload completion. The results regard the Linear, Level andGaussian
preference functions. The graph clearly shows that Gaussian is significantly
more CPU-consuming, compared to the Linear and Level functions. Conse-
quently, although the Linear and Gaussian functions yield similar makespan
values (as mentioned in section 6.3.3), when designing a real system one
should use the Linear function due to its execution cost e�ciency. In this
chart, the execution time needed for making a scheduling decision decreases
with the completion process, since the decision is computed on smaller sets
of tasks.
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Figure 6: Real execution time values for the SDM component during the completion of a
WL workload.

6.3.3. Tuning the scheduling method to increase performance
From section 3.1 we recall the preference function P , which may impact on

the performance of the task selection algorithm. Therefore in this experiment
we studied the achievements of the scheduler in terms of makespan when
using the Linear, Level preference functions compared to FCFS. We also
analyzed the consistency of the attained performance with respect to the
utilized failure traces.

Experimental setup: in this experiment, for each method (Linear,
Level, Gaussian and FCFS) the system is run 120 times to complete the
same workload. For all methods the completion is carried by the scheduler
with the same set of hosts but loading the failure traces at di↵erent start-
points in time. By this we aim at proving that the relative performance
of the proposed scheduling method is consistent with respect to the host
failure behavior in time. In this experiment we use a hybrid DCI, composed
from IDG, Cloud and BEG. First we compare our scheduler using Level and
Linear preference functions described in section 6.3.3 and a FCFS scheduler.

Table 6 presents the descriptive statistics regarding the makespan distri-
bution for the considered setup.

Figure 7 depicts the empirical cumulative distribution functions (CDFs)

2P-values are computed for the Kolmogorov-Smirnov test of normality under the null
hypothesis is that the distribution of makespan is Gaussian.
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Method Mean (STDEV) Di↵erence
(%)

The p-
values2

Linear 367540,26
(104523,14)

0 0,190
(> 10%)

Gaussian 371987,49
(105017,32)

+1,21 0,214
(> 10%)

Level 414840,79
(110604,18)

+12,86 0,466
(> 10%)

FCFS 432419,97
(118178,69)

+17,65 0,831
(> 10%)

Table 6: Descriptive statistics of the makespan distributions for each method.
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Figure 7: Stochastic dominance of the Linear method with respect to the FCFS and
Level methods.

of the execution times for the three methods. The Y-axis depicts the values
of the CDF function F (M) of the makespan M , showing the probability
that the makespan records values lower than the scalar on the abscissa. We
observe that the Linear function strictly dominates the other two methods,
in the sense that FLinear > FLevel and FLinear > FFCFS for all values on
the abscissa. We also tested the dominance of the Linear method over the
Level and FCFS using the t� test for the equality of means in two samples
and the Levene’s test for equality of variances in two samples with 99%
confidence level, and the results are the same. Statistical tests show a weak
dominance of Level over FCFS, therefore we conclude that the designed
scheduling method based on the Promethee decision model is superior to
FCFS. We omitted the representation for the Gaussian function because
its performance is very similar to the Linear function and they overlap.
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6.3.4. Adjusting the Promethee window size
As stated in section 2.2, the scheduler makes a new scheduling decision

for each pulling host. Hence, each time, the whole BoT is given to Promethee
as input.

In this experiment we are interested in finding out whether for a par-
ticular application, the Promethee scheduler needs to compute the decision
on the whole BoT in order to obtain a good makespan or it can cope with
smaller subsets of the BoT, without loosing performance. For this we run
the scheduler on a window of the BoT, denoted µ, defined as a fraction of
tasks, randomly chosen from the BoT. By this we adjust the scheduler input
size.

Experimental setup: For each value of µ in the [0.05,100] range we run
the system to complete a WL workload and measure the makespan and the
real execution time of the Promethee algorithm (on the machine running the
scheduler).
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Figure 8: Real execution time of the Promethee algorithm and makespan values.

In figure 8 we present in comparison the impact of µ variation on both a)
the real execution time of the Promethee algorithm and b) makespan. From
the chart we observe that up to µ = 25% the execution time is relatively flat,
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then it linearly increases. Analysing the values we find that the algorithm
has a good scalability since for µ = 50% the execution time is almost double,
then for µ = 100% the execution time increased with a 1.3 factor only. At
this time, we do not have information on the algorithm’s behavior regarding
scalability for a greater number of criteria. However, from the definition of
the algorithm we deduct a high parallelization and distribution potential.

In figure 8 b) we observe that Promethee algorithm needs that the size of
the window is above a threshold (i.e. 10%) in order to yield a low makespan.
We explain this as the need of the algorithm of a minimum sample of the
BoT in order to make relevant scheduling decisions. After this threshold we
observe that the makespan oscillates within a small range.

6.3.5. Finding optimal strategies from user perspective - Filter1 phase
This experiment shows the results for applying the Filter1 phase previ-

ously defined in section 3.3. From S - the initial set of defined scheduling
strategies we aim to select a subset of strategies that provide high levels of
user satisfaction. For this we apply the two methods proposed in section 3.3.
We recall that Winabs method is conceived to admit strategies that achieve
the highest levels of user satisfaction while Winfreq selects those strategies
that yield high levels of user satisfactions, but also stable relative to the
user satisfaction profile distribution L.

Experimental setup: for this experiment we used the following values:

three scheduling criteria: ECT, price and EEI, so Nc = 3 and the result-
ing scheduling strategy families given in table 7;

28 combinations of importance weights !(.) given in table 8;

10 di↵erent user satisfaction profiles l, given in table 9.

For each defined scheduling strategy (based on tables 7 and 8) we ran the
system to complete a WL workload and used ⇥ as evaluation metric.

Figure 9 shows the user satisfaction values delivered by the scheduler, for
all scheduling strategies s 2 S and user satisfaction profiles l 2 L.
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aaaaaaaaaaa
Criterion

Strategies

s1,j s2,j s3,j s4,j s5,j s6,j s7,j s8,j

Price max max max max min min min min
ECT min min max max min max max min
EEI min max min max max max min min

Table 7: 23 = 8 possible and considered strategy families for the three scheduling criteria
setup.

Strategies
Importance weights si,1 si,2 si,3 si,4 si,5 si,6 si,7 si,8 si,9 si,10si,11 si,12 si,13si,14

!ECT
1/3 2/3 2/3 0 1/3 0 1/3 0.5 0.5 0 0.1 0.450.45 0.2

!Price
1/3 0 1/3 2/3 2/3 1/3 0 0.5 0 0.5 0.45 0.1 0.45 0.4

!EEI
1/3 1/3 0 1/3 0 2/3 2/3 0 0.5 0.5 0.450.45 0.1 0.4
si,15si,16si,17si,18si,19si,20si,21si,22si,23si,24si,25 si,26 si,27si,28

!ECT 0.4 0.4 0.1 0.1 0.2 0.7 0.2 0.7 0.1 0.1 0.3 0.6 0.3 0.6
!Price 0.2 0.4 0.2 0.7 0.1 0.1 0.7 0.2 0.3 0.6 0.1 0.1 0.6 0.3
!EEI 0.4 0.2 0.7 0.2 0.7 0.2 0.1 0.1 0.6 0.3 0.6 0.3 0.1 0.1

Table 8: The 28 considered combinations of importance weights !(.).

User satisfaction profile
Weights l1 l2 l3 l4 l5 l6 l7 l8 l9 l10

�M 1 0 0 1/3 2/3 2/3 0 1/3 0 1/3
�C 0 1 0 1/3 1/3 0 2/3 2/3 1/3 0
�E 0 0 1 1/3 0 1/3 1/3 0 1/3 2/3

Table 9: 10 considered user satisfaction profiles (L) based on di↵erent combinations of
weights in ⇥.
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Figure 9: User satisfaction ⇥ for the considered scheduling strategies and user satisfaction
profiles; j indicates a combination of weights !(.) from table 8.
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Table 10 presents the results of applying bothWinabs andWinfreq meth-
ods defined in Step2 of the Filter1 phase (section 4.2). In this table we
considered only the first two winning positions, so p = 2.

Percentile q1
Win

abs
Win

freq

Strategy Place Percentile q2 Strategy Place

top 25%

s3,1 1st
top 25%

s4,26 1st
s2,26
s3,26 2nd

top 15%
s3,26 1st

s2,26 2nd

s2,20 2nd

s3,20

top 5%

s3,1 1st
s3,26
s3,27 2nd
s2,20

top 15%

s3,1 1st
top 25%

s3,26 1st

s2,26 2nd

top 15%
s3,26 1st

s2,20 2nd

s2,26 2nd

top 5%
s3,1 1st
s3,27
s2,20 2nd

Table 10: Results of Filter1 phase: optimal scheduling strategies from a user satisfaction
perspective. Recall that percentile q1 is used in both methods while percentile q2 is used
in Win

freq method only.

It is obvious that for the same percentile q1, the Winabs method provided
the same strategies, while with method Winfreq the set of winning strategies
changed. However, the fact that increasing percentile q1 does not change
the absolute winners implies that these strategies are homogenous enough,
in terms of the satisfaction induced for the considered L user profiles.

Moreover, we found that the set of frequency winners gets closer to the
set of absolute winners as q2 increased. However, the Winfreq method should
not be applied for a very high percentile q2 (e.g. above percentile 85%), since
then the method starts to rely too much on very particular realizations of
satisfaction values, within the current experiment.
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Briefly put, the knowledge achieved from the presented results is that
the ECT criterion should be always maximized, while price and EEI can be
maximized or minimized, but never simultaneously minimized. The win-
ning strategies with respect to the importance weights !(.) are for j =
{1, 20, 26, 27}.

6.3.6. Finding optimal strategies from resource owners’ perspective - Filter2
phase

In the previous experiment we evaluated the scheduling method using
the ⇥ metric. We found a set of strategies that yield high levels of user
satisfaction and is stable relative to the user satisfaction profile distribution.
Hence, the evaluation of the scheduling method was purely from the user’s
perspective. Since in reality the owners of the utilized resources aim at
maximizing their capitalization, we continue the evaluation of the scheduling
method from their perspective.

Recall the idea that from S1 - the set of strategies that passed the Filter1
phase we further aim to select a subset of strategies that also maximize
the e�ciency " (previously defined at the end of section 3.3). By this, we
ensure that the finally selected scheduling strategies perform best, also from
resource owners perspectives.

Experimental setup: for the system executions presented in the previ-
ous experiment we calculate the e�ciency " for each type of infrastructure.
Then we seek for correlations between the calculated values and the winning
strategies that passed Filter1.

First we report the calculated e�ciency " for the strategies that satisfied
users (passing Filter1). Then we compare these strategies with the other
strategies in the same family by testing the compliancy with q1=top
25% percentile and also with the median. In table 11 we present this test,
where " = 1

N
dci

PN
dci

i
dci

=1 "idci , representing the average e�ciency calculated for
the entire hybrid DCI; in our case Ndci = 3. In this table the strategies are
ranked by their calculated ".

Based on this analysis we draw the following observations:

The most e�cient strategies are s4,26 and s2,20, consequently we consider
them as similar candidates for the final winning strategy.

The selected strategies comply with the top 25% test for all types of
DCI, with a small exception - the s4,26 strategy fails to this test for the
Grid5000 infrastructure. Correlating this with table 12 we found that
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Strategy
Calculated e�ciency and compliancy tests Average

infrastructure
utilization
e�ciency "

"BOINC "AmazonEC2 "Grid5000

top 25% median top 25% median top 25% median
s4,26 0.636 0.929 0.573

pass pass pass pass fail pass 0.713
s2,20 0.648 0.896 0.512

pass pass pass pass pass pass 0.685
s3,26 0.547 0.917 0.568

fail fail fail pass pass pass 0.677
s3,27 0.576 0.897 0.547

fail fail fail fail fail fail 0.673
s3,1 0.560 0.901 0.534

fail fail fail fail fail fail 0.665
s2,26 0.623 0.881 0.442

fail pass fail fail fail fail 0.649

Table 11: Calculated e�ciencies and the top 25% percentile and median compliancy tests.

the failure is caused by a 0.001 di↵erence in absolute value beneath the
top 25% percentile threshold, which is irrelevant.

Considering the overall compliance and the maximum average e�ciency
E recorded, we select the s4,26 strategy as final winner. This may
further be used by a system designer into the multi-criteria scheduler
of a real system.

Checking also with table 13, the second best strategy - s2,20 yields
a high e�ciency on the BOINC infrastructure, being beaten only by
strategies s1,j. This strategy passes both top 25% and median tests on
all infrastructure types, but yields a slightly lower average e�ciency,
namely 0.685.
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Infrastructure utilization e�ciency "
Threshold Strategies "BOINC "AmazonEC2 "Grid5000

top 25% percentile s2,j 0.593 0.890 0.503
Median s2,j 0.558 0.881 0.480

top 25% percentile s3,j 0.619 0.922 0.562
Median s3,j 0.601 0.915 0.549

top 25% percentile s4,j 0.612 0.927 0.574
Median s4,j 0.594 0.919 0.564

Table 12: Top 25% percentile and median threshold values for the s2,j , s3,j and s4,j
families.

In table 13 we report the maximum of the measured e�ciency " over
all strategies and infrastructure types.

aaaaaaaaaaa
DCI

Strategies

s1,j s2,j s3,j s4,j s5,j s6,j s7,j s8,j

BOINC 0.653 0.648 0.648 0.636 0.506 0.489 0.534 0.515
Amazon EC2 0.932 0.927 0.928 0.932 0.885 0.870 0.892 0.889
Grid5000 0.580 0.615 0.575 0.607 0.441 0.505 0.520 0.471

Table 13: Maximum values for " per scheduling strategy family and type of DCI.

Figure 10 shows the infrastructure utilization e�ciencies obtained with
the scheduling strategies selected during the Filter 1 phase. Due to the dis-
ruption patterns specific to each considered infrastructure type, the Amazon
EC2 is the most e�ciently employed, followed by BOINC and Grid5000.
While for the Amazon EC2 all studied strategies attain a relatively simi-
lar utilization e�ciency, for BOINC and Grid5000 the obtained e�ciencies
di↵er. Hence we observe that strategies like s4,26, s2,20, s2,26 attain consider-
able higher e�ciency levels on BOINC compared to Grid5000 and others like
s3,26, s3,27 and s3,1 obtain very similar e�ciencies for BOINC and Grid5000.
From these observations we conclude that one may use the latter strategies
to configure the scheduling method, if the aim is to insure high and relatively
similar satisfaction levels for the resource owners.
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Figure 10: Obtained e�ciencies per infrastructure type.

Figure 11 depicts a comparison of two scheduling strategies on the number
of executed operations needed to complete a workload, on the considered hy-
brid DCI. Hence we confront the optimal s4,26 and a pessimal s8,28 scheduling
strategies. We observe that they have quite similar behavior with respect to
the distribution of tasks on the specific infrastructure types within the hybrid
infrastructure. Inspecting figure 11a we observe that the optimal strategy
utilizes more e�ciently all infrastructure types composing the hybrid DCI.
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Figure 11: Comparison on number of executed operations of optimal and pessimal schedul-
ing strategies.

7. Related work

In this section we review other approaches for building middleware solu-
tions to facilitate joint usage of computing resources, originating from di↵er-
ent types of distributed computing infrastructure.

Addressing the need of simultaneously exploiting di↵erent computing in-
frastructures, for both research and business purposes, there are several at-
tempts [9, 35, 25] to build middleware that aggregates resources from di↵erent
types of infrastructure, in order to facilitate a better capitalization for their
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owners. For instance, the RainCloud3 project uses two types of clouds: a
private Eucalyptus instance and Amazon EC2. The researchers working on
this project highlight [31] the importance of carefully considering multiple
criteria during the scheduling process for scientific workflow applications on
Cloud. It is usually not su�cient to schedule the application just for mini-
mum execution time, because this can drive the costs too high, especially on
commercial Cloud systems. Hence, the user perspective must be considered
within the scheduling process.

The European FP7 projects EDGeS[37]4 and EDGI[17]5 are representa-
tive examples of hybrid DCIs which mix Clouds, Grids and Desktop Grids.
These projects have developed bridge technologies to allow bag-of-tasks, to
flow from Grid infrastructures to Desktop Grid. The SpeQuloS [9] system,
developed in the context of EDGI, uses private Cloud resources to provide
quality of service to BoT applications executed on Desktop Grid. In contrast
to SpeQuloS, our work allows a broader range of usage optimization of hybrid
DCIs, such as cost minimization.

GridBot [35] puts together Superlink@Technion, Condor pools and Grid
resources to execute both throughput and fast-turnaround oriented BoTs. It
represents a first solution to combine several grids in a monolithic platform
for large-scale execution of grids, leveraging on replication to handle the job
failures on DCIs. GridBot scheduling is policy-based, considering only a fixed
set of scheduling criteria. Our approach will be more generic, allowing one
to include new criteria into the scheduler.

Iosup et al. [16] employ a performance analysis of BoTs scheduling on
large-scale cluster infrastructures, given that multiple users submit simulta-
neously BoTs to the system and the scheduling is driven by several policies.
Kim [18] presents multi-criteria scheduling of BoTs in order to reduce the
power consumption at the infrastructure level, while preserving the agreed
SLA over the whole bag-of-tasks. Muthuvelu et al. [29] emphasize the gran-
ularity of tasks composing the BoTs towards economic and e�cient usage of
grid resources, while satisfying the user QoS requirements. Their approach
is directed by a bugetary constraint of users, who own a limited budget for
the execution of the BoTs and they deal with time constraints, but neither

3The RainCloud project: http://imgi.uibk.ac.at/research/atmospheric-
dynamics/projects/raincloud

4Enabling Desktop Grids for e-Science, http://www.edges-grid.eu/
5European Desktop Grid Infrastructure, http://edgi-project.eu

38



of them considers public Cloud.
Dealing with Cloud resources, Oprescu et al. [30] design a budget-

constraint scheduler for BoTs, estimating the costs and the makespan for
various scenarios before executing the user-selected schedule.

Mateescu et al.[25] propose a complex and innovative architecture for
combining the benefits of the HPC, Grid and Cloud technologies. In their
work, the authors aim at combining the best attributes of each technology,
proposing a model for how these paradigms can work together and how scien-
tific workloads can be managed in such a hybrid computing environment. A
key concept proposed in their paper is the Elastic Cluster, as an extension of
the notion introduced by the OpenNebula[28]. Hence, Mateescu et al. enrich
the content of the concept by highlighting the necessity of key mechanisms
that allows the di↵erent types of computing infrastructure work together.
Such mechanisms facilitate the dynamic infrastructure management, work-
load management as well as the cooperation between cluster-level services
and dynamic infrastructure management services.

There already exists a large literature on bi-objective and multi-criteria
scheduling on Grid infrastructures. For instance [38] addresses the issue of
multi-criteria scheduling workflows on the Grid while [22] adds the constraint
of a multi-user environment. Multi-objective scheduling algorithms for mul-
tiple Clouds are slowly emerging as a focused research topic. In [13], authors
present multi-objective scheduling algorithm, which aims at achieving ap-
plication high-availability and fault-tolerance while reducing the application
cost and keeping the resource load maximized. In [14] consider the issue
of costs and elasticity in multiple clouds environment. While we did not
consider a decentralised scheduler in this work, it is noteworthy that such
direction [32] could be promising as well.

However, the majority of the above-mentioned work [30, 16, 29, 18] con-
sider only a single type of DCI, while our work addressed the issues of using
hybrid DCIs. In addition, because our evaluation includes IDG, which su↵ers
from a high volatility of the computing resources, we also take into consider-
ation fault tolerance in our scheduling strategies. Furthermore, we analyzed
the scheduling problem from a dual perspective, mitigating the conflicting
goals of end users and resource owners.

Other approaches [33] use a distributed strategy for scheduling, instead
of a centralized one. In this work, the authors propose a decentralized and
cooperative workflow scheduling in a dynamic and distributed Grid resource
sharing environment. Through a set of experiments they compare the perfor-
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mance of the proposed approach against a centralized coordination technique,
showing that their approach is as e�cient as the centralized technique with
respect to achieving coordinated schedules. Also, in [7] the authors propose
a decentralized scheduling model that uses aggregated information to route
tasks to the most suitable execution nodes, and is easily extensible to provide
very di↵erent scheduling policies.

8. Concluding remarks

In this paper we addressed the challenge of scheduling tasks in distributed
computing infrastructures (DCI) like Grids and Clouds by proposing a multi-
criteria scheduling method based on the Promethee algorithm. We presented
the design for a fault-tolerant and trust-aware scheduler, which allows to ex-
ecute Bag-of-Tasks applications on elastic and hybrid DCI, following user-
defined scheduling strategies. Our approach, named Promethee scheduler,
combines a pull-based scheduler with multi-criteria Promethee decision mak-
ing algorithm. We explained how multi-criteria scheduling leads to a massive
multiplication of the possible scheduling strategies. To address this challenge,
we proposed SOFT, a methodology that allows to find the optimal schedul-
ing strategies given a set of scheduling criteria and application requirements.
The validation of this method was performed with a simulator that fully im-
plements the Promethee scheduler and recreates an hybrid DCI environment
including Internet Desktop Grid, Cloud and Best E↵ort Grid based on real
failure traces. Through a set of experiments we showed that the Promethee
scheduler is able to maximize user satisfaction expressed accordingly to three
distinct criteria: price, expected completion time and trust, while maximiz-
ing the infrastructure useful employment from the resources owner viewpoint.
We also presented an optimization which bounds the computation time of
the Promethee algorithm so that it makes realistic the possible integration
of the scheduler to a wide range of resource management software.
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