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ABSTRACT 
 

BOINC desktop grids have been used for more than a decade for running grand 

challenge applications. In this chapter we show those technologies, and particularly 

virtualization and cloud solutions, that make BOINC desktop grids more generic and speed 

up the execution of existing grid-enabled parameter sweep applications without porting 

them to BOINC and eliminate the tail problem of volunteer BOINC systems. Furthermore, 

we show a technology by which institutional and public desktop grids can be created in a 

few minutes in clouds and used without any BOINC knowledge. 
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INTRODUCTION 
 

Desktop grids (DG) provide the cheapest possible way of building large computing 

infrastructures for e-science. BOINC became very popular to support grand-challenge scientific 

applications like climate research, anti-cancer research, etc. However, its mass usage among 

scientists has not happened so far although, most of the scientific applications are large 

parameter study simulations where BOINC-like volunteer computing could help a lot. The 

reason is that porting an application to BOINC is not straightforward. In SZTAKI, we have 
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developed several tools that made the porting much easier, but the real breakthrough has 

happened when we introduced virtualization in the BOINC client. We have developed GBAC 

(Generic BOINC Application Client) [10] based on VirtualBox virtualization technology. As a 

result, porting does not require any effort and existing applications can be instantly used in 

BOINC systems without preregistering them on the BOINC server. We have also developed 

3GBridge [9] that enables access to BOINC systems via a high level job submission interface, 

and hence users can exploit BOINC systems even from complex workflow applications. 

3GBridge also enables the connection of BOINC to other types of grid middlewares such as 

gLite [1], ARC [2], and UNICORE [4]. In this way, for example, gLite based middleware can 

be extended with institutional and volunteer BOINC systems in a transparent way. As a result, 

gLite users can access larger number of free resources without changing their applications. 

Cloud computing [12] opens a new horizon to support the DG systems and hence, can help 

in many ways to further disseminate the idea of desktop grids and make them easily accessible 

for researchers. The first aspect in which clouds can assist volunteer desktop grids is the 

possibility of significantly reducing the tail problem [22] (occurs when failures of unreliable 

resources accumulate and cause significant delay in the last 10% of batch) by extending a 

desktop grid with dedicated cloud resources. The number of these resources can be increased 

and decreased according to the number of tail tasks in the different computations running in the 

desktop grid. The second issue that prevented researchers from extending their existing grid 

infrastructure (for example, Globus [3]), with DG systems was the difficulty of creating and 

installing BOINC systems. Cloud computing solves this problem by providing an extremely 

easy and fast way to deploy the core BOINC system in a cloud, and then extend it with volunteer 

resources. We have created such a system to demonstrate the applicability of this technology. 

This approach can be used in a more generic way to create any kind of architecture in the cloud 

on demand. 

The chapter is organized as follows. First, we shortly summarize the BOINC volunteer 

desktop grid technology and one of its projects, called EDGeS@home, that was created for EGI 

(European Grid Infrastructure) user communities. Next we explain how the gLite based VOs 

(Virtual Organizations) can be extended with BOINC desktop grids, and particularly with 

EDGeS@home. Afterwards, the chapter introduces the GBAC virtualization technology and 

its advantages. Then the chapter focuses on how clouds can be used to eliminate the tail problem 

in desktop grids. Later, we show examples on how EGI user communities access and use 

EDGeS@home. Subsequently, the chapter shortly describes the One Click Cloud Orchestrator 

(OCCO) cloud deployment tool and its usage for quickly creating BOINC desktop grid systems 

without BOINC knowledge. Finally, we summarize the most important aspects of related 

research. 

 

 

EDGES@HOME AS A VOLUNTEER DESKTOP GRID 
 

The generic mechanism of BOINC-based volunteer desktop grids can be summarized in 

the following way. Volunteers join the project by downloading and installing a piece of 

lightweight software: the BOINC client. First, the client downloads the registered application 

binaries from the BOINC project. Second, it periodically fetches new input files and parameters 
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for the application in a form of so called workunits. These downloaded tasks are then processed 

in the background on the volunteer resources. 

Any application supported by a desktop grid must be deployed and registered in the project, 

thus it is not possible to submit and run arbitrary ones. Also, there is no possibility of 

communication between running tasks, the so called embarrassingly parallel applications are 

supported only. Therefore, desktop grids are best suited for bag-of-tasks or parameter study 

type applications, where the applications do not change often. 

EDGeS@home is a BOINC [5] based volunteer desktop grid project established with the 

goal to support EGI (European Grid Infrastructure [19]) user communities in executing large 

parameter sweep applications. Running since 2008, it has been started under the Enabling 

Desktop Grids for e-Science (EDGeS) EU FP7 project [15]. It was maintained further by the 

successor of EDGeS, the European Desktop Grid Initiative (EDGI) [8] until late 2012 and is 

currently maintained by the International Desktop Grid Federation Support Project (IDGF-SP) 

[16]. EDGeS@home has currently over 13,000 registered volunteers with 21,000 registered 

hosts.  

Traditional desktop grids usually target a single grand-challenge scientific problem. 

Contrary to the traditional ones, EDGeS@home is running multiple applications, making it an 

“umbrella” project in order to support as many EGI user communities as possible. Any 

volunteer has the freedom to select which application(s) he or she wants to support from the 

deployed ones. This means that applications are usually competing with each other for a given 

set of resources and each of them can typically use a fraction of the client machines registered 

for the project. At the time of writing, EDGeS@home hosts 10 applications from different 

science domains such as physics, logistics or biology, and a framework called Generic BOINC 

Application Client (GBAC, to be discussed in a later section) [10], which allows running 

arbitrary applications inside virtual machines. 

EDGeS@home is part of the IDGF desktop grid Regional Operations Centre (ROC) in the 

EGI infrastructure. This centre collects volunteer resources, each of its sites representing a 

BOINC project. The ROC has been founded with two sites, one of which is EDGeS@home, in 

order to make the volunteer BOINC projects visible for the EGI user communities as normal 

gLite resources. The ROC has the same services as normal resource sites have: information 

system, workloads management system, job submission interface, monitoring and accounting 

system, and authentication. The EDGeS@home BOINC project is open for EGI scientists for 

submitting jobs. 

EGI user communities typically use ARC [4], gLite [1] and UNICORE [2] middleware 

based grid systems. They have got used to these grids, and quite often they are not prepared to 

learn a new type of grid middleware like BOINC. Therefore, if we want to support these 

communities we have to solve the issue of automatically transferring parameter sweep 

application jobs from their grid infrastructure into the EDGeS@home BOINC infrastructure. 

The advantage for the users is accessing hundreds of thousands of resources which is a higher 

scale than ARC, gLite or UNICORE usually provides. To achieve this goal the EDGI EU FP7 

project has extended ARC, gLite and UNICORE with the capability of transferring jobs to 

BOINC desktop grids. In the next Section, as an example, we describe this solution for gLite. 

The interested reader can find the description of the ARC and UNICORE integration as well in 

the deliverables of EDGI project [8]. 
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Figure 1. EDGI Infrastructure to bridge gLite jobs to BOINC DGs. 

 

EXTENDING GLITE VOS WITH BOINC SYSTEMS 
 

The goal of extending gLite VOs with BOINC systems is to transparently transfer 

parametric jobs from a gLite VO to one or more supporting BOINC systems, and to distribute 

large number of job instances of parametric jobs among the large number of BOINC client 

resources.  

In order to extend gLite VOs with BOINC systems we have designed a bridging solution. 

The key component is the modified Computing Element (mCE; see “EDGI gLite modified 

CREAM CE” in Figure 1). It extracts the job from the gLite system and transfers it to a remote 

desktop grid site. On the remote BOINC server a Generic Grid-Grid (3G) Bridge service [17] 

(“3G Bridge” in Figure 1 is running to receive the incoming jobs and to insert them into the 

BOINC server. These two components (modified CREAM [1] CE and the 3G Bridge) in the 

infrastructure represent the two pillars of the bridge.  

To control which jobs can be transferred through the bridge, the EDGI application 

repository [18] (“EDGI Application Repository in Figure 1) has been introduced. This contains 

those registered applications that are validated for the gLite→BOINC execution. 

Concerning the security mechanisms of the two middleware, in gLite, compute resources 

trust the user who is holding a certificate, and accept any kind of executable from a trusted user. 

In desktop grids the compute resources (i.e. the clients, or donors, who offer their resources) 

trust the DG project server, and accept only pre-registered and validated executables. To 

overcome this conceptual difference we combined the two concepts by restricting the 

applications that can be passed from the gLite system to the particular DG system. This means 

that the transfer is only realized when a trusted user submits an application that is trusted by 

the target DG system. Enabling the transfer is done by the central EDGI Application Repository 

(AR) that stores the validated/trusted applications with all of their executable binaries to be 

submitted, and with a list of DG systems that trust and has registered this application. 

Applications are registered by the admins, users can list/query or request new registrations on 
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demand. The EDGI AR [25] distinguishes several platforms (gLite, BOINC, XtremWeb, etc.) 

for which developers can upload the compatible binaries. In addition to the binaries, the AR 

stores the description of the application, an example jdl and input files, and all the pieces of 

information that are necessary to perform a correct job submission. The central EDGI AR also 

stores the information about which VO the particular application can be submitted from and 

which computing element (and its queue) will be able to handle the job submission successfully. 

This information is needed since DG systems are configured for and can be reached through a 

special CREAM CE queue. 

This solution was too complicated for the user communities: it required first the porting of 

the original grid (ARC, gLite or UNICORE) application to BOINC, then the ported application 

had to be validated for the various grid and BOINC combinations. In order to avoid all these 

complexities we have developed the GBAC virtualization framework [10] that has been 

introduced to enable executing jobs inside virtual machines on the BOINC clients. With the 

help of the virtualization environment GBAC provides, the mCE became able to automatically 

convert non-registered applications into a GBAC workunit. Using virtualization on volunteer 

resources, untrusted applications can also be executed safely under BOINC. Moreover, gLite 

users do not need to modify their submission jdl file when changing from normal gLite 

resources to desktop grid ones. 

The last problem that kept grid users from using BOINC was the so-called tail problem 

[22]. Based on experiences of the BOINC community, the first 80-90% of the jobs belonging 

to one application are executed according to the expected speed-up of parallel systems but the 

last 10-20% are executed much slower since the unreliable volunteer BOINC clients can cause 

significant delay in giving back the result of the task they registered for solving. This tail 

problem can be solved in several ways and we proposed the extension of Desktop Grid 

infrastructure with on-demand dedicated cloud resources (“On-demand dedicated BOINC 

clients” in Figure 1) that proved to be a very efficient solution. This cloud extension will be 

detailed in a later section. 

Before giving more detailed description of the cloud-oriented extensions of desktop grids, 

first we show the two most popular deployment scenarios of creating such a combined 

infrastructure. In the first case, extending the existing gLite VO with already gathered and 

maintained volunteer resources is shown, while the second case details setting up the combined 

infrastructure based on an institutional desktop grid system. 

 

 

Case Study: Extending a gLite VO by the EDGeS@home Project 
 

There are many gLite VOs around Europe, for which gLite administrators are taking care 

of the infrastructure, and not willing to take up operating a separate desktop grid site for 

collecting volunteer resources. EDGI (and later IDGF-SP [16]) eases their work by maintaining 

and offering access to the extension services (“Service Grid extension” in Figure 1) and the 

required volunteer desktop grid project: EDGeS@home with a large number of volunteer 

desktop grid resources, and cloud resources in addition. In this scenario, the gLite VO admin 

has nothing to do; EDGI (or IDGF-SP) takes care of the operation of the modified computing 

element, the 3G Bridge and all the desktop grid related tasks. After the necessary configuration 

is performed in the Service Grid extension, the gLite mCE appears among the CEs of the 
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supported VO. This experiment is an ongoing and continuous activity performed by the IDGF-

SP project in order to support various EGI VOs in accessing EDGeS@home. 

 

 

Case Study: Extending a gLite VO by Institutional DG Site 
 

BOINC can be used as an effective solution for aggregating the available compute capacity 

of desktop computers inside an institute. For example, universities can easily follow this 

strategy to create a campus-wide desktop grid system to provide large computational capacity 

for the researchers. University of Westminster is a good example, where approximately 1800 

machines have been collected and utilized by a campus desktop grid and offered for their 

scientists to run various simulations [20]. Such a newly built campus DG site is a good 

candidate to be bridged to a gLite VO where the university is a member and to provide a 

significant capacity increase to that VO. To support this scenario, the IDGF-SP project has 

consolidated all the necessary software components (gLite mCE, AR, 3G Bridge, GBAC, etc.) 

and provides them freely for academic institutes. The project set up a website [21] for system 

administrators on how to setup and operate a combined gLite desktop grid infrastructure. This 

scenario requires very little effort from the administrators if the required components (BOINC 

server, 3G Bridge, gLite mCE) of such an infrastructure are deployed in a cloud system. In 

order to support this easy deployment and maintenance, IDGF-SP provides the necessary cloud 

images [21] too, as described below in detail in the section about the One Click Orchestrator. 

 

 

GBAC FOR AVOIDING APPLICATION PORTING 
 

As mentioned in the previous section, gLite jobs can be transparently transferred to a 

connected BOINC DG system if the application has been already ported to BOINC. 

Unfortunately, the porting effort can sometimes be significant, which keeps user communities 

from applying desktop grid technologies. SZTAKI has developed the DC-API [7] and 

GenWrapper [6] tools that significantly reduced the porting effort, but even this was not 

enough. The communities did not want to invest in any porting effort at all. This is 

understandable, as they have free access to managed grid resources, i.e. someone else pays for 

their application execution on the managed grid resources. However, if they have to pay for the 

resources, as in the case of commercial clouds, this attitude will change significantly. 

Nevertheless, we had to find a solution on how to avoid application porting for BOINC systems. 

As a result of searching for such a solution, we developed the Generic BOINC Application 

Client (GBAC), a virtualization-based wrapper. It is aimed at a generic framework providing 

virtualized environments for different distributed computing infrastructures (DCIs). GBAC is 

implemented using the DC-API Meta API [7] and does not rely on any middleware-specific 

functionalities. Thus, it can be used not only with BOINC, but also on any DCIs that are 

supported by DC-API. GBAC currently supports VirtualBox as hypervisor. From here on, we 

refer to the BOINC version of GBAC for demonstrating its concepts and internals.  
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Figure 2. GBAC: application, inputs and outputs. 

As shown in Figure 2, the GBAC wrapper consists of the following components. First, the 

wrapper binary itself is a BOINC enabled DC-API application that contains all BOINC related 

parts and handles communication with the BOINC client. 

Its task is to set up the client execution environment and manage the virtual machine on 

the client machine. Second, a user-supplied XML based configuration file is used to set the 

parameters of the virtual machine: (i) the operating system type (e.g., Linux 64 bit); (ii) the size 

of the allocated memory for the virtual machine; (iii) whether the machine should have network 

access; (iv) which virtual appliance to use; (v) whether to enable a shared directory between 

the host and the guest (the virtual machine); and (vi) whether to enable network for the guest. 

The third component is a compressed virtual appliance that contains the operating systems and 

libraries for the virtual machine. By default it contains a 32 bit Linux installation with the Guest 

Tools component of GBAC installed. However, arbitrary Linux distributions, both 32 bit and 

64 bit, can be used instead. The Guest Tools, which is the fourth and final component, is 

deployed in the virtual appliance, and handles the interaction between the GBAC wrapper and 

the application inside the virtual machine. It acts as an agent of the wrapper, sets up a sandboxed 

environment for the application, executes it, performs logging, and returns the outputs. More 

details about GBAC can be found in [10]. 

Contrary to the normal BOINC use case, where the available applications are registered at 

the project, GBAC provides two use cases. First, a single-purpose mode, in which GBAC is 

registered with a single legacy application. This conforms to the normal BOINC use case with 

the following additions: (a) the legacy application does not require any BOINC related porting; 

(b) the legacy application will be run in a homogeneous environment based on the same virtual 

applicance (VA) regardless of the software and hardware characteristics of the donor machines; 

and (c) as a consequence, only a single binary of the application compatible with the guest VM 

under GBAC is required. The second use case is the multipurpose mode. Here, GBAC is 

deployed on BOINC without any legacy applications, and arbitrary ones can be submitted as 

inputs for GBAC. In this case, both the legacy application binaries and their inputs are inputs 

of GBAC. This allows, on top of the previous additions ((a) - (c)), to overcome the limitation 

BOINC imposes on applications. Namely, that each of them must be deployed and registered 

before use, and only these trusted ones are available to the users. GBAC allows delegating this 

trust and, instead of the legacy application, the submitting user is trusted. As a result, beyond 

avoiding the application porting effort, there is another advantage of using the GBAC concept. 
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It eliminates the need of using the EDGI Application Repository (which filters the applications 

to be executed). In the case when the target BOINC server is equipped with the GBAC 

virtualization framework, the modified Computing Element recognizes this situation and skips 

the AR checking procedure, and submits the incoming job wrapped as a GBAC-job to the 

BOINC server. All is done automatically, no user interaction is needed for the bridging. In this 

case, the BOINC clients trust the GBAC application, which safely encapsulates the original job 

by running it inside a virtual machine. 

 

 

CLOUD FOR TAIL ELIMINATION 
 

EDGeS@home has over 21,000 registered volunteer hosts. However, the active number of 

hosts is always lower and varies over time depending on the volunteers’ usage pattern; e.g., 

some volunteers only run BOINC when their computer is idle, but some turn off completely 

their computers when they are about to be idle for longer periods of time. Hardware failures on 

volunteer resources cannot be neglected either. The consequence of these is that the task failure 

and completion deadline-miss ratios can be high. In case of batches of tasks, a single delayed 

task is going to affect the completion time of the whole batch, resulting in the so-called tail 

problem [22].  

There are different methods available for improving task completion times: (i) redundant 

computing, (ii) reliability and availability based scheduling, and (iii) resubmission. 

Redundancy (i) means that multiple copies of the same task are distributed to clients with the 

expectation that at least a single one is going to finish in time. Reliability and availability based 

scheduling (ii) means that the system will prioritize the reliable resources over less reliable and 

less available. Finally, resubmission (iii) identifies problematic tasks and submits them again, 

e.g., in case of a batch the last 10% uncompleted tasks can be resubmitted trying to avoid the 

tail effect. Each of these methods on its own will improve the completion time to some extent; 

however, usually a combination of these is used. The problem is always twofold. First, the set 

of resources that is considered highly available and reliable must be determined. Second, a 

redirection mechanism is required for the tasks. Determining reliability and availability is a 

challenge itself; however, there are already good mechanisms implemented, e.g. for BOINC, 

that can be used as a foundation [23].  

One of the goals of EDGI was adding certain Quality of Service (QoS) capabilities to 

desktop grids to improve task completion times. The project investigated different alternatives 

like redundancy with resubmission [24], however the final method chosen was resubmission 

with reliability based scheduling. BOINC provides information about reliability and 

availability of the connected (volunteer) resources that can be used to determine the most 

reliable resources. 

These resources can be used as complementary ones, but primarily resources from private 

Infrastructure-as-a-Service (IaaS) clouds provided by the consortium members were utilized, 

with the option to scale out to public providers, like Amazon Web Services. It has been designed 

as a non-interactive solution, meaning that the system automates the process of task redirection 

for the users without any interaction from the users. Table 1 describes the available IaaS cloud 

resources for EDGeS@home. These are single virtual core resources, thus each resource 

provides a worker with a single core CPU. Each resource runs a special Virtual Appliance that 



Desktop Grid in the Era of Cloud Computing 9 

contains the BOINC Client. These instances run 64 bit version Debian Linux 6.0 and have at 

least 2GB free space for BOINC tasks. The instances are instructed via contextualization data 

to attach to a given BOINC project with given user credentials. 

As Table 1 shows (in its 3rd column) each private cloud has a dedicated user at 

EDGeS@home. The dedicated users are used to group together the resources coming from the 

different clouds for the reliability based scheduling. Also, the profiles of these users are public, 

i.e. their performance can be checked on the website of EDGeS@home.  

As shown in Figure 3, the cloud resources are managed from a dedicated virtual machine 

(“EDGI Cloud Management”) from the LPDS cloud. This management VM instructs all 

configured clouds. It uses an enhanced version of the solution described in [10]. The 

management node is responsible for starting and stopping instances as required. It is able to 

interact with different IaaS cloud middleware, namely OpenNebula, OpenStack, Eucalyptus 

and Amazon Web Services using the de facto standard Amazon EC2 interface.  

 

Table 1. IaaS cloud resources available for EDGeS@home 

 

Cloud 

Acronym 

Cloud Provider EDGeS@home 

User 

Middleware Number of 

Resources (up to) 

CICA Centro Informático 

Científico de Andalucía 

CloudCICA OpenNebula 100 

LPDS MTA SZTAKI LPDS CloudLPDS OpenNebula 64 

UniMainz University of Mainz CloudMAINZ OpenStack 32 

UNIZAR University of Zaragoza CloudUNIZAR OpenStack 50 

UoW University of Westminster UoW OpenStack 52 

EC2 Amazon EC2 CloudAmazon Amazon WS ∞ 

Total    300 + 

 

When a new worker is requested, the URL of the BOINC project and a specific 

authenticator unique to each configured cloud is used as contextualization. This allows them to 

connect to the BOINC project. The instances remain attached to the BOINC project and 

continue processing tasks until they are terminated by the manager. 

This way, the different configured private clouds contribute reliable resources for 

EDGeS@home. However, this solves only the first part of the problem. For the second part, 

EDGI developed a complementary Scheduler component for BOINC that reassigns problematic 

tasks to multiple sets of resources. This component assigns the oldest non-finished tasks in the 

system to one of the configured reliable resource group. In this case, a resource group is the set 

of resources made available from each connected private cloud.  

The scheduler keeps track of the number of assigned tasks for each resource group and 

assigns new tasks based on the number of resources available in that group. It also provides an 

interface extending the administrator interface of BOINC for querying the status of assignments 

as shown in Figure 4. It allows filtering the jobs based on the different configured clouds (e.g. 

“LPDS”, “UNIZAR”) according to Figure 4 and applications (e.g. “DSP” in the figure) or all 

tasks (“All” in our figure). Reassignment is performed in round-robin order, where each 

configured cloud has a weight and capacity assigned and a global limit for the assignments 

total. The Scheduler keeps track of the total number of assigned jobs and the currently 

processed ones for each resource group. It continuously keeps the number of assignments at 
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the global limit while removing finished assignments and adding new ones based on the group 

limit and prioritizing between resources based on the group weights.  

 

 

UTILIZATION OF EDGES@HOME BY EGI USER COMMUNITIES 
 

After the technical solutions shown in the previous sections every obstacle of using the 

desktop grid technology has been eliminated and indeed EGI user communities have started to 

use the EDGeS@home volunteer desktop grid more and more intensively. Furthermore, these 

communities use EDGeS@home via different interfaces, demonstrating that the user interface 

flexibility we provide is indeed an important feature of supporting the user communities. There 

are three ways of accessing the services of EDGeS@home as shown in Figure 5. 

 

 

Figure 3. Task reassignment in the non-interactive QoS process. 

 

Figure 4. Information interface for querying the different desktop grid tasks (by application) assigned to 

the configured clouds. 



 

 

Figure 5. Overview of various access modes of EDGeS@home volunteer resources. 
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Figure 6. WeNMR HADDOCK portal: modeling of biomolecular complexes, and its connection to 

EDGeS@home. 

One possibility of accessing EDGeS@home is from a gLite VO as we introduced before. 

This interface is applied by the WeNMR project [30]. They use the WeNMR HADDOCK portal 

for modeling of biomolecular complexes by submitting their jobs to the WeNMR VO. This VO 

is extended with the gLite CREAM mCE provided by the IDGF-SP project. So, the transfer of 

the WeNMR jobs to EDGeS@home is transparent for the WeNMR gateway users. Currently 

the WeNMR VO decided to send every 10th job to EDGeS@home to utilise volunteer resources 

beyond their own infrastructure. Notice that the utilisation of volunteer resources did not 

require any application porting, or any Windows version development since most of the 

applications are written for Linux OS, but most of the volunteer resources are MS Windows 

based. The architecture of supporting the execution of WeNMR jobs in EDGeS@home is 

shown in Figure 6. 

The second option to access EDGeS@home is from a gateway that is directly connected to 

the 3G Bridge component of EDGeS@home. This interface possibility is used by the 

AUTODOCK gateway of the SCI-BUS project that was set up jointly by MTA SZTAKI and 

the University of Westminster. Biologists and chemists can easily do docking experiments via 

this gateway that is tailored for this application type. All the docking jobs defined by the users 

of the gateway are directly sent to the 3G Bridge component of EDGeS@home and results 

returned by EDGeS@home are directly shown on the gateway. 

The third possible access mode to EDGeS@home is via the 3G Bridge API. This approach 

has been used by three projects: the EU FP7 BioVEL project [31], the Riemann zeta research 
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project of the Eötvös Loránd University (ELTE, Budapest) [36] and the Optimiser for Linear 

Programming project of the Pannon University Veszprem [37]. The first one searches for values 

of t on the critical line, where the Riemann zeta function Z(t) is larger than a predetermined 

threshold, in order to get a better understanding of the behavior of the distribution of primes. 

In the second one they are trying to find optimal values for system solvers of Linear 

Programming problems by doing parameter sweep of a large number of runtime parameters. 

Due to the lack of space, these projects are not detailed here. The interested reader can find 

their descriptions in the following literature [36, 37]. 

 

 

CLOUD FOR AUTOMATIC DEPLOYMENT OF DESKTOP GRIDS 
 

As described beforehand, grid VOs can easily be extended with new institutional desktop 

grids. Institutional desktop grids have the advantage to use resources that are already available 

in the institutes and hence, without investment of new hardware significant computing 

resources can be put together. However, to set up such institutional desktop grid requires 

BOINC knowledge that is usually not available in universities and other academic institutes. In 

order to overcome this problem we have developed a new tool called as One Click Cloud 

Orchestrator (OCCO) and a web-based cloud installation environment that enables for institutes 

and universities to quickly (in several minutes) set up their own desktop grid in a cloud without 

any BOINC knowledge. 

 

 

One Click Cloud Orchestrator (OCCO) 
 

Here we give a short overview of the OCCO architecture and components (see Figure 7) 

that allows the prompt creation of various infrastructures in the cloud including the required 

BOINC infrastructure, too. OCCO has the following components:(i) Automated Infrastructure 

Maintenance, (ii) Infrastructure Processor, (iii) Cloud Handler, (iv) VM Reshaper, and (v) 

Information Dispatcher. We have defined the Automated Infrastructure Maintenance 

component as the one responsible to understand the customized deployment descriptors. But 

this component does not only provide the descriptor processing capabilities but it also offers 

dependency resolution (so the nodes of the particular instantiated infrastructures are 

instantiated in a natural order), scalability and error resilience rule evaluation and enactment 

(so the end user does not have to intervene in its infrastructure’s internal operations). The 

Infrastructure Processor component of OCCO is used to ensure that the definitions of the 

infrastructure nodes are propagated to the VM Reshaper (which allows runtime reconfiguration 

of a virtual machine to meet a particular node description). In addition, the Infrastructure 

Processor sends such virtual machine requests to the Cloud Handler that ensures the intended 

role of the virtual machines after their creation. Next, the Cloud Handler is responsible for 

selecting a cloud infrastructure that will host a particular virtual machine, and interfacing with 

the infrastructure provider in a unified manner. Finally, the Information Dispatcher allows the 

Automated Infrastructure Maintenance component to determine the current state of the 

infrastructure to be used during the scaling and error resolution rule evaluation process. 
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In order to enable the creation of a BOINC infrastructure in a cloud we have to provide the 

Infrastructure Deployment Descriptor (IDD) of the target BOINC infrastructure for OCCO. 

The preparation of such an IDD requires some expertise and therefore we have created the 

required IDD. We have also created a web based UI through which user community or 

university representatives can initiate the creation of their BOINC infrastructure. The current 

version of the BOINC infrastructure we provide through this web interface is a demonstration 

infrastructure that connects the Autodock gateway of SCI-BUS to a BOINC infrastructure via 

the 3G Bridge as shown in Figure 8. As an extra functionality, the BOINC project is associated 

with a public IP address; therefore, the user can attach his/her own BOINC client to the server. 

Using automatically deployed and configured BOINC clients in virtual machines, 

computational resources are automatically attached to this BOINC project. Our descriptor 

template allows the customization of the number of computational resources. Computing jobs 

arrive to the BOINC project as work units with the help of the WS-PGRADE/gUSE science 

gateway (also automatically deployed as a node of the virtual infrastructure). Overall, the 

prototype shows how a complete gateway plus DCI with resources can be deployed by OCCO 

and how the components attach to each other. Detailed description of a similar infrastructure is 

shown at http://doc.desktopgrid.hu/doku.php?id= scenario:unidg with a different application. 

In the prototype's welcome- and request submission page (see Figure 9) the user is not only 

requested to fill in the list of customization options, but he/she must also provide some details 

about him/her for identification and for justification. After a request is submitted, the prototype 

first asks for approval by the SZTAKI cloud administrators then initiates the infrastructure's 

creation with the Automated Infrastructure Maintenance component. Once the infrastructure is 

created, the notification service generates an email with all the authentication and access details 

to the new infrastructure (e.g., url of the science gateway and of the BOINC project plus 

user/password for login). With these details, users just need to login to the gateway, submit a 

scientific workflow (implementing molecule docking simulation based on the autodock tool) 

with their inputs and inspect the operation (i.e. how the jobs are flowing through the 

infrastructure and processed by the BOINC clients). To prevent SZTAKI's IaaS from 

overloading the OCCO created virtual infrastructures have a limited lifetime. Our notification 

service sends an email to the infrastrucure's user before the shutdown procedure is initiated. 

Limitation for the lifetime of the infrastructure is only applied for the demonstration 

infrastructure. 

Notice that this service is used just for demonstration and trial purposes but the same 

technology can be used to set up real BOINC infrastructures with generic purpose WS-

PGRADE/gUSE gateways in the cloud to which the user has access. The created BOINC 

infrastructure is using the GBAC technology and, as a result, no application porting is needed: 

the gateway/BOINC infrastructure created can immediately be used by the university or other 

user communities to submit and run applications in the created BOINC system. 

 

 

RELATED WORK 
 

SpeQuloS [22] aims to shorten the completion time of a batch (collection of jobs) running 

on a desktop grid by redirecting the workunits to cloud resources. This is similar to our 

proposed solution however, it requires user interaction as users must explicitly request the 
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speed-up of their batches and must pay for it by virtual credits that can be earned by 

volunteering their own machine for the target desktop grid site. The more capacity they offer, 

the more credit they collect. The more credit they have, the more jobs can be redirected to cloud 

resources and the less completion time the batch will reach. 

Another work targeting the elimination of the tail-effect has been introduced by the 

University of Westminster. The system introduced in [26] is similar to the one presented in this 

chapter; however, they use a different batch system (PBS) for executing the replicas of the 

delayed workunits in BOINC. Therefore, the delayed jobs are not handled in the frame of 

BOINC, but resubmitted to a separate PBS cluster that is set up on-demand when a tail has to 

be handled. Another difference is that they use an institutional BOINC system, not volunteer 

resources. 

Lei Ni and Aaron Harwood [27] propose the “next generation Volunteer Computing 

systems on top of well studied Peer-to-Peer techniques to fully take advantage of its 

decentralized characteristic and its very large, shared data storage capacity”. Their proposed 

system is based on a P2P-Tuple system where the execution of a job is done by a kind of 

cooperation of the peers. The paper proposes to handle the tail effect by peers pushing 

unfinished jobs to each other. Based on this, completion time of a job can be much lower than 

in a normal BOINC system.  

 

 

Figure 7. Architecture of OCCO. 
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Figure 8. Infrastructure created by OCCO. 

Various pilot systems like DIRAC [28] or Diane [29] are widely used by scientists these 

days. In these systems, a single pilot job is submitted through gLite, as a placeholder, to a given 

CE. The pilot job pulls real jobs from the pilot system’s job repository for execution on the CE, 

and transfers information and results back. Pulling jobs and all communication are executed 

bypassing the gLite infrastructure, reducing the overhead of job submission from linear to 

constant time. This is also a way of decreasing the overhead of the gLite system; however, it is 

not targeted to use volunteer resources, and hence the number of accessible resources will be 

much smaller than in a volunteer system. 

The notion of dynamic resource provisioning/orchestration and automatic deployment 

similar to the OCCO concept appears in other works, too. These solutions are general and are 

not aimed at supporting or extending desktop grids particularly. Chen et al. [32] present Sulcata, 

an on-line virtual cluster provisioning. They assume a pool of various physical resources that 

act as VM containers. Upon an user's request the system deploys a virtual cluster on-the-fly 

involving VM image preparation, VM creation and configuration and VM reboot. They solve 

basic functionalities of dynamic infrastructure provisioning; furthermore, the solution largely 

focuses on minimizing the overhead of VM image handling and deployment and proposes a 

resource mapping scheme. These solutions are general and are not aimed at supporting or 

extending desktop grids particularly. 

Dörnemann et al. [33] introduced an on-demand on-the-fly deployment scheme to avoid 

peak loads. In a later work [34], this solution was advanced to support workflows and eliminate 

some shortcomings with respect to throughput and cost. To find a trade-off between task based 

scheduling (imprecise) and graph based scheduling (complex) of workflows, they propose a 

critical path based scheduling where the graph is annotated with information on anticipated run 

times and data transfers to calculate the makespan. Possible allocations for critical paths are 

predicted by genetic algorithms and the process is iterated until a mapping with minimal 

estimated runtime is reached. As it can be seen, in this case the goal is improving the quality of 

experience (as opposed to general resource provisioning in our case) by deploying services on 

VM2

VM1

gUSE
workflow
engine

DCI Bridge

BES interface

SZTAKI Desktop Grid server

3G
Bridge

BOINC project

BinariesAPP

VM4

BOINC
client

job

VM3

BOINC
client

job
job

BOINC
client

Volunteers



Desktop Grid in the Era of Cloud Computing 17 

the fly with focus on workflows (as opposed to embarrassingly parallel applications in our 

case). 

Vukojevic et al. [35] present a similar solution to OCCO in a service oriented scenario to 

support simulation workflows. Their aim is to provide and redeem services on-demand 

according to the progress of the workflow. The core of the solution is dynamic binding with 

software stack provisioning. Their aims are similar to ours, the technical realization is entirely 

different due to the service oriented approach. 

 

 

Figure 9. Autodock gateway with BOINC prototype's welcome- and request submission page. 



Peter Kacsuk, Zoltan Farkas, Jozsef Kovacs et al. 18 

CONCLUSION 
 

BOINC-based desktop grid systems are excellent in collecting large number of volunteer 

resources worldwide. Despite their cost-effectiveness, there were several problems that 

prevented their widespread use in e-science environments. Recent innovations in virtualization 

and cloud technology helped us to overcome these major problems. Overall, we can claim that 

all the major obstacles witnessed in the former use of BOINC systems have been eliminated. 

Our GBAC technology eliminates the need of porting applications to BOINC and the 

integration of clouds with BOINC systems solves the tail problem in volunteer desktop grids. 

As a result, more and more user communities start to use the EDGeS@home BOINC desktop 

grid either via a gLite VO (e.g. WeNMR), or via a gateway (e.g. biologists and chemists using 

autodock), or directly (e.g. BioVEL project). We expect more radical increase in use of BOINC 

systems in the near future, when the recently introduced one-click creation method of BOINC 

systems in clouds will be widely applied by scientists.  
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