13,412 research outputs found

    Sistemas de informação na indústria 4.0 : mecanismos de apoio à transferência de dados para conhecimento em ambientes Lean

    Get PDF
    The paradigm that presently emerges in the organizational context, known as Industry 4.0 (I4.0) or Fourth Industrial Revolution, promises to bring principles of connectivity and flexibility to the companies that embrace it. Industry 4.0 enhances the efficiency in adapting in real time to the customers’ requirements, through the establishment of an intelligent shop floor capable of answering in a flexible and customized way to market changes. However, during the last three decades, it is known that the adoption of the Lean philosophy was absorbed by the industrial environment, with results that proved to be exuberant, considering the simplicity of the tools. In this way, the I4.0 implementation must be prepared to preserve the existing manufacturing systems, proceeding, whenever possible, to upgrade them on a Lean excellence basis. It is said that information systems will be decisive in the foundation of the I4.0 paradigm. Of these, MES systems, with greater connection to the shop floor, will tend to be aligned with existing practices, contributing, through their connectivity, to the introduction of knowledge management practices and data visualization mechanisms. In the specification and architecture phase of these systems, understanding the processes will be crucial. Thus, their documentation is an organizational pillar, with BPMN and UML being able to guide it. However, and in addition to its usefulness in the processes’ mapping, BPMN is also likely to be applied in capturing tacit knowledge, which can be a foundation for the constitution of knowledge repositories, impacting organizational excellence. It is in this context that the present work is implanted, aiming at the creation of guidelines and mechanisms that facilitate the implementation of I4.0 strategies in Lean industrial environments. The adopted methodology first went through an exhaustive literature review, in order to find possible bilateral effects between I4.0 technologies and lean tools. Then, the development of some applications aligned with the I4.0 paradigm, as a technological engine, and the Lean philosophy, as a tool for eliminating waste and / or creating value, was contemplated. From the various development experiences in an industrial context and considering the evidence reported in the literature, this study proposes a Lean 4.0 framework oriented to the shop floor.O paradigma que atualmente emerge no contexto organizacional, conhecido como Indústria 4.0 (I4.0) ou Quarta Revolução Industrial, promete trazer princípios de conectividade e flexibilidade às empresas que a adotam. A Indústria 4.0 potencia a eficácia no ajuste em tempo real aos requisitos dos clientes, através da constituição de um chão de fábrica inteligente e capaz de responder de forma flexível e customizada às mudanças do mercado. Contudo, durante as últimas três décadas, sabe-se que a adoção da filosofia Lean foi absorvida pelo meio industrial, com resultados que se demonstraram exuberantes, tendo em conta a simplicidade das ferramentas. Deste modo, a implementação I4.0 deve ser feita no sentido da preservação dos sistemas de manufatura já existentes, procedendo, desde que possível, ao seu upgrade numa base de excelência Lean. Conta-se que os sistemas de informação serão decisivos na fundação do paradigma I4.0. Destes, os sistemas MES, com maior conexão ao chão de fábrica, tenderão a ser alinhados com as práticas já existentes, contribuindo, através da sua conectividade, para a introdução de práticas de gestão do conhecimento e mecanismos de visualização de dados. Na fase de especificação e arquitetura destes sistemas, o entendimento dos processos será crucial. Assim, a documentação dos mesmos é um pilar organizacional, estando o BPMN e a UML capazes de a orientar. Porém, e a somar à sua utilidade na ilustração de processos, o BPMN está igualmente passível de ser aplicado na captação de conhecimento tácito, o que por si pode ser uma base para a constituição de repositórios de conhecimento, contribuindo para a excelência organizacional. É neste contexto que o presente trabalho se insere, tendo como objetivo a criação de linhas orientadoras e mecanismos que facilitem a implementação de estratégias I4.0 em ambientes industriais Lean. A metodologia adotada passou, primeiramente, por uma exaustiva revisão da literatura, por forma a encontrar possíveis efeitos bilaterais entre tecnologias I4.0 e ferramentas lean. De seguida, contemplou-se o desenvolvimento de alguns aplicativos alinhados ao paradigma I4.0, enquanto motor tecnológico, e à filosofia Lean, enquanto ferramenta de eliminação de desperdícios e/ou criação de valor. Das diversas experiências de desenvolvimento em contexto industrial e considerando as evidências reportadas na literatura o presente estudo propõe uma framework Lean 4.0 orientado ao chão de fábrica.Mestrado em Engenharia e Gestão Industria

    Instantiating the PERFORM system architecture for industrial case studies

    Get PDF
    The PERFoRM project, an innovation action promoted within the scope of the EU Horizon 2020 program, advocates the use of an Industrie 4.0 compliant system architecture for the seamless reconfiguration of robots and machinery. The system architecture re-uses the innovative results from previous successful R & D projects on distributed control systems domain, such as SOCRADES, IMC-AESOP, GRACE and IDEAS. This paper, after describing the main pillars of the PERFoRM system architecture, focuses on mapping the system architecture into four industrial use cases aiming to validate the system architecture design before its deployment in the real environments.info:eu-repo/semantics/publishedVersio

    Industry 4.0 and world class manufacturing integration: 100 technologies for a WCM-I4.0 matrix

    Get PDF
    In the last decade, technological progress has profoundly influenced the industrial world and all industrial sectors have been confronted with a change in technological paradigms. In such a context, this study aims to analyze the synergies between the technological world of Industry 4.0 and the purely organizational and managerial domain ofWorld Class Manufacturing, a model of Operational Excellence. The objective is relating the driving dimensions of the World Class Manufacturing (WCM) system to the technological macrocategories of Industry 4.0: this would allow the identification of which technological solution to leverage on, aiming at optimization in a given World Class Manufacturing pillar. The result is a "WCM-I4.0 matrix": a proposal to reconcile, exploit and trace the relations between the two complex concepts. The WCM-I4.0 matrix includes, by now, 100 Industry 4.0 technologies that best suits with the World Class Manufacturing pillars

    Digital Tools and Information Needs Assessment for Efficient Deviation Handling in SMEs

    Get PDF
    A shift to digitalization implies a high emphasis on both management and creation of data. In a time of change, when high emphasis is put on the application of technology, there is a high risk that too little is said about the compliance of internal needs. Companies and practitioners risk to not prioritizing the assessment and questioning the adoption of digital ways of working. The present paper intends to discuss the impact that digital tools may have on deviation management in Small to Medium Size Enterprises (SMEs) and under which circumstances digital tools will improve deviation management in SME context. The research study employs a qualitative approach using the case study methodology. The source of data comes from five different manufacturing companies categorized as SMEs, mainly doing business in the automotive and maritime industry. A multidisciplinary team performed semi-structured interviews and fieldwork at each site, along with regular online meetings with all the partners. The study employs five dimensions from the information quality perspective to assess information utilized to support deviation handling and then connects the information quality deficiencies to the digital tools impact. The empirical data indicate the need for the companies to perform a requirement analysis, as a prerequisite for them to assess their current state in terms of data and information, before the adoption of digital systems or digital tools. The research demonstrates the value for SMEs to understand their information needs and usage, in order to better determine their data needs and how to translate data into information. Lastly, this paper intends to provide a better foundation for SMEs prior to investments on automation and digitalization in the area of disturbance handling on the production shop floor
    corecore