310 research outputs found

    Templates as a method for implementing data provenance in decision support systems

    Get PDF
    AbstractDecision support systems are used as a method of promoting consistent guideline-based diagnosis supporting clinical reasoning at point of care. However, despite the availability of numerous commercial products, the wider acceptance of these systems has been hampered by concerns about diagnostic performance and a perceived lack of transparency in the process of generating clinical recommendations. This resonates with the Learning Health System paradigm that promotes data-driven medicine relying on routine data capture and transformation, which also stresses the need for trust in an evidence-based system. Data provenance is a way of automatically capturing the trace of a research task and its resulting data, thereby facilitating trust and the principles of reproducible research. While computational domains have started to embrace this technology through provenance-enabled execution middlewares, traditionally non-computational disciplines, such as medical research, that do not rely on a single software platform, are still struggling with its adoption. In order to address these issues, we introduce provenance templates – abstract provenance fragments representing meaningful domain actions. Templates can be used to generate a model-driven service interface for domain software tools to routinely capture the provenance of their data and tasks. This paper specifies the requirements for a Decision Support tool based on the Learning Health System, introduces the theoretical model for provenance templates and demonstrates the resulting architecture. Our methods were tested and validated on the provenance infrastructure for a Diagnostic Decision Support System that was developed as part of the EU FP7 TRANSFoRm project

    Towards a Learning Health System: a SOA based platform for data re-use in chronic infectious diseases

    Get PDF
    Abstract Information and Communication Technology (ICT) tools can efficiently support clinical research by providing means to collect automatically huge amount of data useful for the management of clinical trials conduction. Clinical trials are indispensable tools for Evidence-Based Medicine and represent the most prevalent clinical research activity. Clinical trials cover only a restricted part of the population that respond to particular and strictly controlled requirements, offering a partial view of the overall patients\u2019 status. For instance, it is not feasible to consider patients with comorbidities employing only one kind of clinical trial. Instead, a system that have a comprehensive access to all the clinical data of a patient would have a global view of all the variables involved, reflecting real-world patients\u2019 experience. The Learning Health System is a system with a broader vision, in which data from various sources are assembled, analyzed by various means and then interpreted. The Institute of Medicine (IOM) provides this definition: \u201cIn a Learning Health System, progress in science, informatics, and care culture align to generate new knowledge as an ongoing, natural by-product of the care experience, and seamlessly refine and deliver best practices for continuous improvement in health and health care\u201d. The final goal of my project is the realization of a platform inspired by the idea of Learning Health System, which will be able to re-use data of different nature coming from widespread health facilities, providing systematic means to learn from clinicians\u2019 experience to improve both the efficiency and the quality of healthcare delivery. The first approach is the development of a SOA-based architecture to enable data collection from sparse facilities into a single repository, to allow medical institutions to share information without an increase in costs and without the direct involvement of users. Through this architecture, every single institution would potentially be able to participate and contribute to the realization of a Learning Health System, that can be seen as a closed cycle constituted by a sequential process of transforming patient-care data into knowledge and then applying this knowledge to clinical practice. Knowledge, that can be inferred by re-using the collected data to perform multi-site, practice-based clinical trials, could be concretely applied to clinical practice through Clinical Decision Support Systems (CDSS), which are instruments that aim to help physicians in making more informed decisions. With 4 this objective, the platform developed not only supports clinical trials execution, but also enables data sharing with external research databases to participate in wider clinical trials also at a national level without effort. The results of these studies, integrated with existing guidelines, can be seen as the knowledge base of a decision support system. Once designed and developed, the adoption of this system for chronical infective diseases management at a regional level helped in unifying data all over the Ligurian territory and actively monitor the situation of specific diseases (like HIV, HCV and HBV) for which the concept of retention in care assumes great importance. The use of dedicated standards is essential to grant the necessary level of interoperability among the structures involved and to allow future extensions to other fields. A sample scenario was created to support antiretroviral drugs prescription in the Ligurian HIV Network setting. It was thoroughly tested by physicians and its positive impact on clinical care was measured in terms of improvements in patients\u2019 quality of life, prescription appropriateness and therapy adherence. The benefits expected from the employment of the system developed were verified. Student\u2019s T test was used to establish if significant differences were registered between data collected before and after the introduction of the system developed. The results were really acceptable with the minimum p value in the order of 10 125 and the maximum in the order of 10 123. It is reasonable to assess that the improvements registered in the three analysis considered are ascribable to this system introduction and not to other factors, because no significant differences were found in the period before its release. Speed is a focal point in a system that provides decision support and it is highly recognized the importance of velocity optimization. Therefore, timings were monitored to evaluate the responsiveness of the system developed. Extremely acceptable results were obtained, with the waiting times of the order of 10 121 seconds. The importance of the network developed has been widely recognized by the medical staff involved, as it is also assessed by a questionnaire they compiled to evaluate their level of satisfaction

    A Service Oriented Architecture Approach to Achieve Interoperability between Immunization Information Systems in Iran

    Get PDF
    Clinical decision support (CDS) systems can support vaccine forecasting and immunization reminders; however, immunization decision-making requires data from fragmented, independent systems. Interoperability and accurate data exchange between immunization information systems (IIS) is an essential factor to utilize Immunization CDS systems. Service oriented architecture (SOA) and Health Level 7 (HL7) are dominant standards for web-based exchange of clinical information. We implemented a system based on SOA and HL7 v3 to support immunization CDS in Iran. We evaluated system performance by exchanging 1500 immunization records for roughly 400 infants between two IISs. System turnaround time is less than a minute for synchronous operation calls and the retrieved immunization history of infants were always identical in different systems. CDS generated reports were accordant to immunization guidelines and the calculations for next visit times were accurate. Interoperability is rare or nonexistent between IIS. Since inter-state data exchange is rare in United States, this approach could be a good prototype to achieve interoperability of immunization information

    DESIGN AND EXPLORATION OF NEW MODELS FOR SECURITY AND PRIVACY-SENSITIVE COLLABORATION SYSTEMS

    Get PDF
    Collaboration has been an area of interest in many domains including education, research, healthcare supply chain, Internet of things, and music etc. It enhances problem solving through expertise sharing, ideas sharing, learning and resource sharing, and improved decision making. To address the limitations in the existing literature, this dissertation presents a design science artifact and a conceptual model for collaborative environment. The first artifact is a blockchain based collaborative information exchange system that utilizes blockchain technology and semi-automated ontology mappings to enable secure and interoperable health information exchange among different health care institutions. The conceptual model proposed in this dissertation explores the factors that influences professionals continued use of video- conferencing applications. The conceptual model investigates the role the perceived risks and benefits play in influencing professionals’ attitude towards VC apps and consequently its active and automatic use

    Mobile Health in Remote Patient Monitoring for Chronic Diseases: Principles, Trends, and Challenges

    Get PDF
    Chronic diseases are becoming more widespread. Treatment and monitoring of these diseases require going to hospitals frequently, which increases the burdens of hospitals and patients. Presently, advancements in wearable sensors and communication protocol contribute to enriching the healthcare system in a way that will reshape healthcare services shortly. Remote patient monitoring (RPM) is the foremost of these advancements. RPM systems are based on the collection of patient vital signs extracted using invasive and noninvasive techniques, then sending them in real-time to physicians. These data may help physicians in taking the right decision at the right time. The main objective of this paper is to outline research directions on remote patient monitoring, explain the role of AI in building RPM systems, make an overview of the state of the art of RPM, its advantages, its challenges, and its probable future directions. For studying the literature, five databases have been chosen (i.e., science direct, IEEE-Explore, Springer, PubMed, and science.gov). We followed the (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) PRISMA, which is a standard methodology for systematic reviews and meta-analyses. A total of 56 articles are reviewed based on the combination of a set of selected search terms including RPM, data mining, clinical decision support system, electronic health record, cloud computing, internet of things, and wireless body area network. The result of this study approved the effectiveness of RPM in improving healthcare delivery, increase diagnosis speed, and reduce costs. To this end, we also present the chronic disease monitoring system as a case study to provide enhanced solutions for RPMsThis research work was partially supported by the Sejong University Research Faculty Program (20212023)S

    A standards-based ICT framework to enable a service-oriented approach to clinical decision support

    Get PDF
    This research provides evidence that standards based Clinical Decision Support (CDS) at the point of care is an essential ingredient of electronic healthcare service delivery. A Service Oriented Architecture (SOA) based solution is explored, that serves as a task management system to coordinate complex distributed and disparate IT systems, processes and resources (human and computer) to provide standards based CDS. This research offers a solution to the challenges in implementing computerised CDS such as integration with heterogeneous legacy systems. Reuse of components and services to reduce costs and save time. The benefits of a sharable CDS service that can be reused by different healthcare practitioners to provide collaborative patient care is demonstrated. This solution provides orchestration among different services by extracting data from sources like patient databases, clinical knowledge bases and evidence-based clinical guidelines (CGs) in order to facilitate multiple CDS requests coming from different healthcare settings. This architecture aims to aid users at different levels of Healthcare Delivery Organizations (HCOs) to maintain a CDS repository, along with monitoring and managing services, thus enabling transparency. The research employs the Design Science research methodology (DSRM) combined with The Open Group Architecture Framework (TOGAF), an open source group initiative for Enterprise Architecture Framework (EAF). DSRM’s iterative capability addresses the rapidly evolving nature of workflows in healthcare. This SOA based solution uses standards-based open source technologies and platforms, the latest healthcare standards by HL7 and OMG, Decision Support Service (DSS) and Retrieve, Update Locate Service (RLUS) standard. Combining business process management (BPM) technologies, business rules with SOA ensures the HCO’s capability to manage its processes. This architectural solution is evaluated by successfully implementing evidence based CGs at the point of care in areas such as; a) Diagnostics (Chronic Obstructive Disease), b) Urgent Referral (Lung Cancer), c) Genome testing and integration with CDS in screening (Lynch’s syndrome). In addition to medical care, the CDS solution can benefit organizational processes for collaborative care delivery by connecting patients, physicians and other associated members. This framework facilitates integration of different types of CDS ideal for the different healthcare processes, enabling sharable CDS capabilities within and across organizations

    Doctor of Philosophy

    Get PDF
    dissertationThe widespread use of genomic information to improve clinical care has long been a goal of clinicians, researchers, and policy-makers. With the completion of the Human Genome Project over a decade ago, the feasibility of attaining this goal on a widespread basis is becoming a greater reality. In fact, new genome sequencing technologies are bringing the cost of obtaining a patient's genomic information within reach of the general population. While this is an exciting prospect to health care, many barriers still remain to effectively use genomic information in a clinically meaningful way. These barriers, if not overcome, will limit the ability of genomic information to provide a significant impact on health care. Nevertheless, clinical decision support (CDS), which entails the provision of patient-specific knowledge to clinicians at appropriate times to enhance health care, offers a feasible solution. As such, this body of work represents an effort to develop a functional CDS solution capable of leveraging whole genome sequence information on a widespread basis. Many considerations were made in the design of the CDS solution in order to overcome the complexities of genomic information while aligning with common health information technology approaches and standards. This work represents an important advancement in the capabilities of integrating actionable genomic information within the clinical workflow using health informatics approaches

    Efficient Decision Support Systems

    Get PDF
    This series is directed to diverse managerial professionals who are leading the transformation of individual domains by using expert information and domain knowledge to drive decision support systems (DSSs). The series offers a broad range of subjects addressed in specific areas such as health care, business management, banking, agriculture, environmental improvement, natural resource and spatial management, aviation administration, and hybrid applications of information technology aimed to interdisciplinary issues. This book series is composed of three volumes: Volume 1 consists of general concepts and methodology of DSSs; Volume 2 consists of applications of DSSs in the biomedical domain; Volume 3 consists of hybrid applications of DSSs in multidisciplinary domains. The book is shaped decision support strategies in the new infrastructure that assists the readers in full use of the creative technology to manipulate input data and to transform information into useful decisions for decision makers
    corecore