644 research outputs found

    Lightweight and static verification of UML executable models

    Get PDF
    Executable models play a key role in many software development methods by facilitating the (semi)automatic implementation/execution of the software system under development. This is possible because executable models promote a complete and fine-grained specification of the system behaviour. In this context, where models are the basis of the whole development process, the quality of the models has a high impact on the final quality of software systems derived from them. Therefore, the existence of methods to verify the correctness of executable models is crucial. Otherwise, the quality of the executable models (and in turn the quality of the final system generated from them) will be compromised. In this paper a lightweight and static verification method to assess the correctness of executable models is proposed. This method allows us to check whether the operations defined as part of the behavioural model are able to be executed without breaking the integrity of the structural model and returns a meaningful feedback that helps repairing the detected inconsistencies.Peer ReviewedPostprint (author's final draft

    Semantic model-driven development of service-centric software architectures

    Get PDF
    Service-oriented architecture (SOA) is a recent architectural paradigm that has received much attention. The prevalent focus on platforms such as Web services, however, needs to be complemented by appropriate software engineering methods. We propose the model-driven development of service-centric software systems. We present in particular an investigation into the role of enriched semantic modelling for a modeldriven development framework for service-centric software systems. Ontologies as the foundations of semantic modelling and its enhancement through architectural pattern modelling are at the core of the proposed approach. We introduce foundations and discuss the benefits and also the challenges in this context

    Operational Semantics of the Marte Repetitive Structure Modeling Concepts for Data-Parallel Applications Design

    No full text
    International audienceThis paper presents an operational semantics of the repetitive model of computation, which is the basis for the repetitive structure modeling (RSM) package defined in the standard UML Marte profile. It also deals with the semantics of an RSM extension for control-oriented design. The goal of this semantics is to serve as a formal support for i) reasoning about the behavioral properties of models specified in Marte with RSM, and ii) defining correct-by-construction model transformations for the production of executable code in a model-driven engineering framework

    A logic-based approach for the verification of UML timed models

    Get PDF
    This article presents a novel technique to formally verify models of real-time systems captured through a set of heterogeneous UML diagrams. The technique is based on the following key elements: (i) a subset of Unified Modeling Language (UML) diagrams, called Coretto UML (C-UML), which allows designers to describe the components of the system and their behavior through several kinds of diagrams (e.g., state machine diagrams, sequence diagrams, activity diagrams, interaction overview diagrams), and stereotypes taken from the UML Profile for Modeling and Analysis of Real-Time and Embedded Systems; (ii) a formal semantics of C-UML diagrams, defined through formulae of the metric temporal logic Tempo Reale ImplicitO (TRIO); and (iii) a tool, called Corretto, which implements the aforementioned semantics and allows users to carry out formal verification tasks on modeled systems. We validate the feasibility of our approach through a set of different case studies, taken from both the academic and the industrial domain

    Lightweight and static verification of UML executable models

    Get PDF
    Executable models play a key role in many development methods (such as MDD and MDA) by facilitating the immediate simulation/implementation of the software system under development. This is possible because executable models include a fine-grained specification of the system behaviour using an action language. Executable models are not a new concept but are now experiencing a comeback. As a relevant example, the OMG has recently published the first version of the “Foundational Subset for Executable UML Models” (fUML) standard, an executable subset of the UML that can be used to define, in an operational style, the structural and behavioural semantics of systems. The OMG has also published a beta version of the “Action Language for fUML” (Alf) standard, a concrete syntax conforming to the fUML abstract syntax, that provides the constructs and textual notation to specify the fine-grained behaviour of systems. The OMG support to executable models is substantially raising the interest of software companies for this topic. Given the increasing importance of executable models and the impact of their correctness on the final quality of software systems derived from them, the existence of methods to verify the correctness of executable models is becoming crucial. Otherwise, the quality of the executable models (and in turn the quality of the final system generated from them) will be compromised. Despite the number of research works targetting the verification of software models, their computational cost and poor feedback makes them difficult to integrate in current software development processes. Therefore, there is the need for efficient and useful methods to check the correctness of executable models and tools integrated to the modelling tools used by designers. In this thesis we propose a verification framework to help the designers to improve the quality of their executable models. Our framework is composed of a set of lightweight static methods, i.e. methods that do not require to execute the model in order to check the desired property. These methods are able to check several properties over the behavioural part of an executable model (for instance, over the set of operations that compose a behavioural executable model) such as syntactic correctness (i.e. all the operations in the behavioural model conform to the syntax of the language in which it is described), non-redundancy (i.e. there is no another operation with exactly the same behaviour), executability (i.e. after the execution of an operation, the reached system state is -in case of strong executability- or may be -in case of weak executability- consistent with the structural model and its integrity constraints) and completeness (i.e. all possible changes on the system state can be performed through the execution of the operations defined in the executable model). For incorrect models, the methods that compose our verification framework return a meaningful feedback that helps repairing the detected inconsistencies

    Contracts for Model Execution Verification

    Get PDF
    International audienceOne of the main goals of model-driven engineering is the manipulation of models as exclusive software artifacts. Model execution is in particular a means to substitute models for code. We focus in this paper on verifying model executions. We use a contract-based approach to specify an execution semantics for a meta-model. We show that an execution semantics is a seamless extension of a rigorous meta-model specification and is composed of complementary levels, from static element definition to dynamic elements, execution specifications as well. We use model transformation contracts for controlling the dynamic consistent evolution of a model during its execution. As an illustration, we apply our approach to UML state machines using OCL as the contract expression language

    HybridMDSD: Multi-Domain Engineering with Model-Driven Software Development using Ontological Foundations

    Get PDF
    Software development is a complex task. Executable applications comprise a mutlitude of diverse components that are developed with various frameworks, libraries, or communication platforms. The technical complexity in development retains resources, hampers efficient problem solving, and thus increases the overall cost of software production. Another significant challenge in market-driven software engineering is the variety of customer needs. It necessitates a maximum of flexibility in software implementations to facilitate the deployment of different products that are based on one single core. To reduce technical complexity, the paradigm of Model-Driven Software Development (MDSD) facilitates the abstract specification of software based on modeling languages. Corresponding models are used to generate actual programming code without the need for creating manually written, error-prone assets. Modeling languages that are tailored towards a particular domain are called domain-specific languages (DSLs). Domain-specific modeling (DSM) approximates technical solutions with intentional problems and fosters the unfolding of specialized expertise. To cope with feature diversity in applications, the Software Product Line Engineering (SPLE) community provides means for the management of variability in software products, such as feature models and appropriate tools for mapping features to implementation assets. Model-driven development, domain-specific modeling, and the dedicated management of variability in SPLE are vital for the success of software enterprises. Yet, these paradigms exist in isolation and need to be integrated in order to exhaust the advantages of every single approach. In this thesis, we propose a way to do so. We introduce the paradigm of Multi-Domain Engineering (MDE) which means model-driven development with multiple domain-specific languages in variability-intensive scenarios. MDE strongly emphasize the advantages of MDSD with multiple DSLs as a neccessity for efficiency in software development and treats the paradigm of SPLE as indispensable means to achieve a maximum degree of reuse and flexibility. We present HybridMDSD as our solution approach to implement the MDE paradigm. The core idea of HybidMDSD is to capture the semantics of particular DSLs based on properly defined semantics for software models contained in a central upper ontology. Then, the resulting semantic foundation can be used to establish references between arbitrary domain-specific models (DSMs) and sophisticated instance level reasoning ensures integrity and allows to handle partiucular change adaptation scenarios. Moreover, we present an approach to automatically generate composition code that integrates generated assets from separate DSLs. All necessary development tasks are arranged in a comprehensive development process. Finally, we validate the introduced approach with a profound prototypical implementation and an industrial-scale case study.Softwareentwicklung ist komplex: ausfĂŒhrbare Anwendungen beinhalten und vereinen eine Vielzahl an Komponenten, die mit unterschiedlichen Frameworks, Bibliotheken oder Kommunikationsplattformen entwickelt werden. Die technische KomplexitĂ€t in der Entwicklung bindet Ressourcen, verhindert effiziente Problemlösung und fĂŒhrt zu insgesamt hohen Kosten bei der Produktion von Software. ZusĂ€tzliche Herausforderungen entstehen durch die Vielfalt und Unterschiedlichkeit an KundenwĂŒnschen, die der Entwicklung ein hohes Maß an FlexibilitĂ€t in Software-Implementierungen abverlangen und die Auslieferung verschiedener Produkte auf Grundlage einer Basis-Implementierung nötig machen. Zur Reduktion der technischen KomplexitĂ€t bietet sich das Paradigma der modellgetriebenen Softwareentwicklung (MDSD) an. Software-Spezifikationen in Form abstrakter Modelle werden hier verwendet um Programmcode zu generieren, was die fehleranfĂ€llige, manuelle Programmierung Ă€hnlicher Komponenten ĂŒberflĂŒssig macht. Modellierungssprachen, die auf eine bestimmte ProblemdomĂ€ne zugeschnitten sind, nennt man domĂ€nenspezifische Sprachen (DSLs). DomĂ€nenspezifische Modellierung (DSM) vereint technische Lösungen mit intentionalen Problemen und ermöglicht die Entfaltung spezialisierter Expertise. Um der Funktionsvielfalt in Software Herr zu werden, bietet der Forschungszweig der Softwareproduktlinienentwicklung (SPLE) verschiedene Mittel zur Verwaltung von VariabilitĂ€t in Software-Produkten an. Hierzu zĂ€hlen Feature-Modelle sowie passende Werkzeuge, um Features auf Implementierungsbestandteile abzubilden. Modellgetriebene Entwicklung, domĂ€nenspezifische Modellierung und eine spezielle Handhabung von VariabilitĂ€t in Softwareproduktlinien sind von entscheidender Bedeutung fĂŒr den Erfolg von Softwarefirmen. Zur Zeit bestehen diese Paradigmen losgelöst voneinander und mĂŒssen integriert werden, damit die Vorteile jedes einzelnen fĂŒr die Gesamtheit der Softwareentwicklung entfaltet werden können. In dieser Arbeit wird ein Ansatz vorgestellt, der dies ermöglicht. Es wird das Multi-Domain Engineering Paradigma (MDE) eingefĂŒhrt, welches die modellgetriebene Softwareentwicklung mit mehreren domĂ€nenspezifischen Sprachen in variabilitĂ€tszentrierten Szenarien beschreibt. MDE stellt die Vorteile modellgetriebener Entwicklung mit mehreren DSLs als eine Notwendigkeit fĂŒr Effizienz in der Entwicklung heraus und betrachtet das SPLE-Paradigma als unabdingbares Mittel um ein Maximum an Wiederverwendbarkeit und FlexibilitĂ€t zu erzielen. In der Arbeit wird ein Ansatz zur Implementierung des MDE-Paradigmas, mit dem Namen HybridMDSD, vorgestellt
    • 

    corecore