13,103 research outputs found

    'Towards a Conceptual Framework for Innate Immunity'

    Get PDF
    Innate immunity now occupies a central role in immunology. However, artificial immune system models have largely been inspired by adaptive not innate immunity. This paper reviews the biological principles and properties of innate immunity and, adopting a conceptual framework, asks how these can be incorporated into artificial models. The aim is to outline a meta-framework for models of innate immunity

    The Self Model and the Conception of Biological Identity in Immunology

    Get PDF
    The self/non-self model, first proposed by F.M. Burnet, has dominated immunology for sixty years now. According to this model, any foreign element will trigger an immune reaction in an organism, whereas endogenous elements will not, in normal circumstances, induce an immune reaction. In this paper we show that the self/non-self model is no longer an appropriate explanation of experimental data in immunology, and that this inadequacy may be rooted in an excessively strong metaphysical conception of biological identity. We suggest that another hypothesis, one based on the notion of continuity, gives a better account of immune phenomena. Finally, we underscore the mapping between this metaphysical deflation from self to continuity in immunology and the philosophical debate between substantialism and empiricism about identity

    The influence of biological rhythms on host–parasite interactions

    Get PDF
    Biological rhythms, from circadian control of cellular processes to annual cycles in life history, are a main structural element of biology. Biological rhythms are considered adaptive because they enable organisms to partition activities to cope with, and take advantage of, predictable fluctuations in environmental conditions. A flourishing area of immunology is uncovering rhythms in the immune system of animals, including humans. Given the temporal structure of immunity, and rhythms in parasite activity and disease incidence, we propose that the intersection of chronobiology, disease ecology, and evolutionary biology holds the key to understanding host–parasite interactions. Here, we review host–parasite interactions while explicitly considering biological rhythms, and propose that rhythms: influence within-host infection dynamics and transmission between hosts, might account for diel and annual periodicity in host–parasite systems, and can lead to a host–parasite arms race in the temporal domain

    libtissue - implementing innate immunity

    Get PDF
    In a previous paper the authors argued the case for incorporating ideas from innate immunity into articficial immune systems (AISs) and presented an outline for a conceptual framework for such systems. A number of key general properties observed in the biological innate and adaptive immune systems were hughlighted, and how such properties might be instantiated in artificial systems was discussed in detail. The next logical step is to take these ideas and build a software system with which AISs with these properties can be implemented and experimentally evaluated. This paper reports on the results of that step - the libtissue system.Comment: 8 pages, 4 tables, 5 figures, Workshop on Artificial Immune Systems and Immune System Modelling (AISB06), Bristol, U
    • …
    corecore