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Abstract6

Biological rhythms—from circadian control of cellular processes to annual cycles in life history—are7

a main structural element of biology. Biological rhythms are considered adaptive because they allow8

organisms to partition activities to cope with, and take advantage of, predictable fluctuations in9

environmental conditions. A flourishing area of immunology is uncovering rhythms in the immune10

system of animals, including humans. Given the temporal structure of immunity, and rhythms in11

parasite activity and disease incidence, we propose that the intersection of Chronobiology, Disease12

Ecology and Evolutionary Biology holds the key to understanding host-parasite interactions. We13

review host-parasite interactions while explicitly considering biological rhythms, and propose that14

(1) rhythms influence within-host infection dynamics and transmission between hosts, (2) rhythms15

might account for diel and annual periodicity in host-parasite systems, and (3) rhythms can lead to16

a host-parasite arms race in the temporal domain.17
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Biological Timekeeping21

Environmental rhythms are a ubiquitous feature of our planet. Many rhythms are caused by geo-22

physical cycles, including diel, tidal, lunar, and annual rhythms. These rhythms are highly predictable23

and have resulted in the evolution of biological clocks throughout the tree of life [1]. Most biological24

activities have rhythmic time structure, which scales from gene expression to life history events such25

as breeding and hibernation. Rhythmic time structure allows organisms to partition and prioritize life26

history activities—whether they are molecular or behavioral—relative to predictable fluctuations in en-27

vironmental conditions. For example, for cyanobacteria, which are an ancient lineage, sunlight provides28

both energy and risk. Cyanobacteria have adapted to this challenge by temporally partitioning photo-29

synthesis from UV-sensitive DNA replication [2]. Likewise, throughout the year, organisms must meet30

survival needs, while seasonally requiring further resources for reproduction and other activities. This31

leads to annual cycles of life history, when animals alternate between reproductively active states and32

inactive states such as dormancy, hibernation, or migration, a retreat to wintering grounds that buffer33

against resource scarcity [1].34

Over evolutionary time, organisms have adapted to environmental fluctuations by an internal rep-35

resentation of time—endogenous biological clocks—that perpetuate biological rhythms even when en-36

vironmental conditions are kept constant. These rhythms are characteristically innate, evidenced by37
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the observation that individuals who have never experienced environmental fluctuations display rhyth-38

micity [1]. Endogenous biological rhythms oscillate with period lengths that approximate those of39

geophysical cycles, and are accordingly called circadian, circatidal, circalunar, and circannual. Circadian40

rhythms, which are most heavily studied, are driven by cell-specific transcription-translation feedback41

loops that are integrated across the organism. The evolutionary origin of internal clocks is ancient,42

with circadian clocks being a unifying feature of eukaryotes and cyanobacteria [3], and a new area of43

research in other bacterial lineages [4]. The endogenous circannual clock underlying seasonal rhythms44

is also thought to be evolutionarily conserved, since circannual clocks are found in organisms ranging45

from dinoflagellates [5] to mammals and birds [6, 7].46

An internal representation of time enables the anticipation of favorable environmental conditions,47

ensuring that activities are initiated in advance to match the opportune time. For example, to rear48

offspring at the time of maximal food abundance, many species activate their reproductive system and49

copulate far in advance, potentially under harsh conditions. If individuals initiated breeding activities50

when food abundance was maximal, offspring would be reared outside the optimal environmental win-51

dow [6]. Endogenous biological clocks function in concert with the geophysical cycles to which they52

synchronize [8, 9]. Synchronizing cues (also called zeitgebers) include diel and annual changes in light,53

temperature, and other factors. Jetlag, the overturning of rhythms resulting from changing time zones,54

and the subsequent re-synchronization of the circadian clock, is familiar to many of us. Species and even55

populations vary greatly in the way their clocks interact with the environment. They assume different56

phases, e.g., of activity or reproduction, relative to the environmental cycle, and also differ in the use of57

synchronizing cues. To varying degrees, organisms retain the ability to adjust their rhythms to respond58

to current, less predictable, conditions. While some species’ rhythms show considerable phenotypic plas-59

ticity (e.g., the reproductive rhythm of Great tits, Parus major), other species have rigid rhythms that60

impose fitness costs under rapid environmental change (e.g., the seasonal phenology of Snowshoe hare61

coat color, Lepus americanus) [8, 10, 11]. In addition to phenotypic plasticity, evolutionary malleability62

of biological rhythms is supported by directional evolution of time adjustments in multiple species, which63

include heritable shifts in the seasonal timing of life history events such as reproduction, dormancy, and64

migration [12, 13].65

Biological rhythms are observed across biological processes. In addition to substantial diel and annual66

fluctuations in activity, reproduction, and metabolism, there is also overwhelming evidence for temporal67

structuring of immunity. Importantly, such fluctuations cannot be comprehensively characterized as68

changes in overall immunity; rather, they are a selective re-organization of structural and functional69

aspects of the immune system [14–16]. Differentiated temporal structuring of immune defenses can70

arise from heterogeneous requirements and costs of specific defenses, investment in self-maintenance71

versus immunity, or the integration of immunity with other aspects of physiology [17, 18]. In light of72

this, we review biological rhythms pertinent to host-parasite interactions, and propose that rhythms of73

hosts, parasites, and the environment impose temporal structure on epidemiological and evolutionary74

dynamics.75

Timekeeping in the Host-Parasite Context76

Interactions between hosts and parasites (i.e., microparasites and macroparasites) are embedded within77

environmental rhythms (Figure 1A). In addition to the environment, host immunity imposes selective78

pressure on parasites, whilst parasite-driven morbidity and mortality reduces host fitness. These multiple79

selective forces make optimal timing of allocation of limited resources to survival and reproduction80
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particularly tricky. For hosts, massive investment into parasite resistance, for instance, might only be81

energetically feasible during a resource pulse (i.e., opportunity) also favorable for reproduction, resulting82

in an optimization problem for resource allocation to survival versus reproduction [19]. Yet hosts also83

undoubtedly face the challenge of mitigating the deleterious effects of parasites when resources are84

scarce, a situation that might favor investment into parasite tolerance versus resistance. For parasites,85

not only does the host immune response impose risk, additional risks can be introduced by environmental86

regimes during transmission [20] or environmental life stages [21]; which has led to parasite risk avoidance87

strategies such as climate-driven arrested development [22]. For both hosts and parasites, therefore,88

external environmental conditions impose selective pressure by providing fluctuating opportunity for89

reproduction and risk of mortality. These exogenous factors need not be identical for hosts and parasites,90

although they co-occur in the same physical environment. For example, we need not expect that91

rhythms in parasite reproduction, host reproduction, and host immune investment be synchronized. An92

empirical case of this is the seasonal influence of temperature and humidity on development of the free-93

living nematode parasite (Trichostrongylus) of rabbits, which results in an autumn peak in the force of94

infection; whereas, the rhythm in host immunocompetence has a peak in the springtime [23].95

The temporal structure of host immunity and parasite success suggests that constraints (1) preclude96

hosts from maintaining high levels of parasite resistance, and (2) prevent parasites from sustaining97

high reproductive output (fitness). Such constraints would result in trade-offs between investments in98

opportunity versus risk avoidance [19, 24]. Consequently, we hypothesize that both hosts and parasites99

time their biological processes with reference to both the external environment and each other, and that100

therefore in many cases periodic incidence of infectious disease is a consequence of biological rhythms,101

as has been suggested elsewhere (e.g., [25]). Below, we first lay out empirical evidence for the role102

of rhythms in host-parasite interactions. In order to inspire quantitative study of biological rhythms in103

host-parasite systems, we utilize a transmission model to illustrate the epidemiological consequences of104

rhythms. We then formulate a conceptual evolutionary model for understanding host-parasite dynamics105

embedded within the rhythmic context in which they are evolving.106

Biological Rhythms in Host and Parasite Traits107

The incidence of many infectious diseases displays substantial seasonality [26–28]. Seasonally struc-108

tured disease incidence can be discussed from the viewpoint of hosts or parasites. From a host’s perspec-109

tive, parasite exposure can be influenced by host behavior, such as seasonal aggregation; a contemporary110

example being epidemic seasonality of mycoplasmal conjunctivitis in house finches [29]. However, phys-111

iological factors influencing host susceptibility to infection and symptomatic disease, such as seasonal112

changes in immunity, can also drive disease seasonality [23, 28, 30]. Table 1 summarizes some known113

diel and annual rhythms in host immunity and parasite traits (see [16, 31–34] for extensive reviews).114

Although rhythms in immunity are observed across a broad array of taxa, including plants [35, 36] and115

animals, we focus on mammalian and avian hosts to enhance the link to human health. A very active116

area of biomedical research is characterizing temporal structure in both innate and adaptive immunity,117

and correspondingly, in disease susceptibility [32,33]. For now, biomedical studies use model organisms;118

but in the future should include non-model organisms [37], which are either directly relevant for un-119

derstanding natural host-parasite systems, or enable a broader understanding of within-host dynamics120

of infection. Longitudinal studies of wild or captive animals compare immune parameters during active121

versus resting phases and are typically combined with experimental approaches. In the wild these may122

include repeated immune challenges [38–40], and in captivity may involve constant conditions, shifted123

environmental rhythmicity, or biological clock disruption. Studies of rhythms in immunity under natural124
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conditions—wild immunology—are important for understanding how non-model organisms deal with125

exposure to multiple co-occurring parasites [41]. Studies of wild systems allow us to test, for instance,126

how seasonal allocation into defense against one parasite can result in enhanced susceptibility to an-127

other [42], and whether temporal variation in immune status covaries with other physiological traits and128

is influenced by nutritional status and parasite exposure [18, 43, 44]. Laboratory studies, in turn, are129

necessary for distinguishing between endogenous rhythms in immunity versus variation that occurs as a130

result of patterns of infection or other biotic factors.131

By profiling the response to infection across time, much progress has been made in characterizing132

biological rhythms in immunity. For example, in mice, the circadian rhythmicity of a receptor that rec-133

ognizes pathogens substantially influences the inflammatory response and survival prospects (for details,134

see Box 1). The health implications of circadian rhythms in immunity have also been demonstrated using135

hosts entrained to different light-dark cycles, and mice with genetically modified circadian clocks. Such136

recent studies have revealed that the immune system is fundamentally circadian in nature [33, 45–49],137

which is highlighted by the local circadian clock of macrophages [46], and the feedback between immu-138

nity and molecular, cellular, and behavioral rhythms. The emerging picture is that the immune system139

is an active component of integrated whole-body circadian rhythms in animals [50] and plants [35, 36],140

lending support to the idea that sophisticated mechanisms of immune defense were also present in their141

common ancestor [51].142

Annual cycles in immunity are not as well characterized as circadian cycles because of the time143

scale of experimentation [16, 31] but are epidemiologically relevant [28]. Longitudinal studies under144

controlled captive conditions have revealed substantial annual changes in immune parameters (Table 1).145

These included a down-regulation of key aspects of immunity during the time of reproductive activation,146

induced solely by photoperiodic simulation [14, 16, 34, 52]. Such rhythms might have evolved from a147

trade-off between immune defense and demanding life-cycle stages, and can underlie annual patterns of148

disease incidence, as suggested, for example, by rhythms of bactericidal capacity of whole blood (Box 1;149

Figure 1D [53]). It is important to note, however, based on the existing evidence for both circadian and150

annual immunomodulation, that temporal patterns can differ between innate and adaptive immunity151

and among traits even within the same immune cell subset [16, 33].152

In addition to immunomodulation, several other aspects of host rhythmicity can have population-scale153

consequences for host-parasite dynamics. Relevant host annual cycles include aggregation [29, 54, 55],154

sexual contacts (with regard to STDs), habitat use, migration [56–58], and birth pulses that (1) act155

to replenish the pool of susceptible individuals, (2) can influence the critical community size required156

for parasite persistence, and (3) can determine the geographic synchrony of outbreaks [59–63]. The157

sweeping effects of annual cycles in host physiology on disease incidence are exemplified by White-158

Nose Syndrome (WNS), which is drawing many North American bat species near extinction. A new159

longitudinal study indicated that neither birth pulses nor social behavior affected transmission and160

intensity of WNS. Instead, WNS is associated with hibernation [30], which in mammals that have been161

studied in captivity, is a programmed circannual rhythm [6]. We speculate the link between WNS and162

hibernation is mediated by hibernation-associated changes in immunity. Evidence thus far suggests that163

there are large adjustments in immunity in hibernating mammals, including a 90% decrease in circulating164

white blood cells [64], down-regulation of the acute-phase response to LPS [65], and modifications of165

intestinal immunity [64, 66].166
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Migration is another host rhythmicity receiving attention in infectious disease ecology. In monarch167

butterflies, the protozoan parasite Ophryocystis elektroscirrha displays a seasonal pattern of prevalence168

and a spatial gradient along the monarchs’ migratory flyway. Parasite prevalence declines as monarchs169

migrate, which is likely due to migratory culling [57]. In migratory culling, the coupled energetic170

demands of migration and fighting infection result in increased mortality of infected individuals during171

fall and spring migrations. The uninfected are most likely to survive the journey to the breeding or172

wintering grounds, allowing the destination to be relatively parasite-free. Thus, migratory culling is a173

direct intersection of host seasonal rhythms and disease prevalence [56], and anthropogenically-driven174

disruption of this rhythm results in elevated disease burden [58].175

Taking the parasite’s perspective, rhythmic patterns in parasite dissemination can be influenced by176

fluctuating abiotic and biotic conditions that affect parasite survival and transmission. Clear examples177

of abiotic influences are (1) the role of temperature and humidity in transmission of influenza [67],178

which might be responsible for latitudinal clines observed in influenza incidence [68, 69], and (2) the179

UV sensitivity of sporulation in Isospora, which might have driven the remarkably robust diel pattern of180

oocyst outputs [21]. In addition to abiotic effects, biotic influences can stem from rhythms of vectors [70]181

and other parasites [71]. Effects of vector circadian rhythmicity have been studied in the malaria vector182

Anopheles gambiae, whose rhythmic gene expression persists under constant conditions. Rhythmically183

expressed genes include those implicated in the melanization immune response, which encapsulates184

the Plasmodium parasites, and can thereby affect mosquito to human transmission. Vectors can also185

temporally structure parasite transmission via their diel patterns of feeding [72] and their phenology [73].186

Interspecific influence of parasites on one another’s rhythm, to our knowledge, has only been described187

for Drosophila parasitoids, which gain a fitness advantage by temporally segregating circadian rhythms188

in egg oviposition [71], hypothesized to alleviate competition.189

Perhaps then unsurprisingly, parasites—faced with rhythms in their abiotic environment, hosts, and190

vectors—display what seem to be biological rhythms. Documentation of parasite rhythms dates back191

over 100 years, long before the discovery of biological clocks. In fact, the early observation that192

both malaria parasites and microfilariae are abundant in the blood of hosts at night was instrumental193

to the discovery of mosquitoes as the malaria vector [74]. Experimental studies of parasites report194

diel and annual rhythms, as measured by fluctuations in parasite burden and infectivity (Table 1),195

but disentangling the contributions of host and parasite to these rhythms is difficult [75]. To our196

knowledge, the only described example of a parasite life history event that depends on a host rhythm is197

reproduction in the ectoparasitic rabbit flea, a vector of myxoma virus. To reproduce, rabbit fleas must198

undergo maturation on a pregnant or newborn nestling host, and flea maturation is controlled by host199

hormone cues associated with pregnancy and parturition, thereby synchronizing parasite and host life200

cycles [76–78]. There is solid evidence for adjustment of diel parasite rhythms to those of the host, for201

example from trematodes like Schistosoma mansoni—an agent of schistosomiasis in humans—whose202

emergence from snail hosts is initiated by light [79, 80]. These parasites display diel cycles that shift to203

match perturbations in their hosts’ circadian rhythm [81]. Similar results were found in rodent-infecting204

Trypanosomes. Rats infected with T. lewisi and housed under a normal light-dark cycle (LD 12:12205

h) experienced a peak in circulating T. lewisi during the early part of night and a trough in the early206

morning. However, when the host photoperiod was inverted, the parasite rhythm was also reversed [82].207

In Isospora, the characteristic diel pattern of oocyst output persisted under continuous light in the high208

Arctic, although feeding and activity rhythmicity of their avian hosts was greatly diminished, suggesting209

synchronization to subtle host rhythms or possibly self-sustained parasite rhythms [21].210
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Experimental studies give clear evidence that synchronization to host rhythms impacts parasite fit-211

ness. For example, murine host rhythms were experimentally mismatched to that of their malaria parasite212

(Plasmodium chabaudi). This mismatch resulted in a 50 per cent reduction in both parasite replication213

and production of transmissible life-stages [83]. Follow up experiments have now revealed additional214

complexities, with the effect of mismatch manifesting differently between parasite life stages, and down-215

stream effects on host disease severity. Mismatch can confer a substantial cost to the parasite, and this216

cost is experienced at the onset of infection, rather than acquired throughout infection [84, 85]. This217

suggests there can be intense selective pressure on parasites to maintain a specific phase position relative218

to their host rhythms, or to vector rhythms, since parasite ability to infect vectors is also time-of-day219

dependent [72]. Fortunately, the amassing knowledge of biological clocks might help identify host cues220

used for entrainment of parasite rhythms. For example, the nocturnally-peaking hormone melatonin221

is a core circadian feature of many vertebrates, and applying this knowledge produced indication that222

parasites might be using melatonin to synchronize their circadian cell cycle [21, 86].223

While we still lack unambiguous evidence for endogenous circadian or circannual rhythms of parasites,224

recent research suggests the intriguing possibility that parasites can actively manipulate host and vector225

rhythms to their advantage. For example, various parasites interrupt host diel activity at specific times226

of day to enhance transmission [87,88]. The diel timing and synchrony of host behavioral manipulation,227

along with candidate molecular mechanisms of manipulation, strongly implicate circadian clock pathways228

[87, 89]. By integrating chronobiology with infectious disease ecology, we might be able to identify,229

for example, the mechanism by which the trematode Dicrocoelium manipulates diel host behavior,230

inducing suicide, and facilitating trophic transmission [90], and how the notoriously manipulative fungus231

(Ophiocordyceps unilateralis s.l.) seemingly breaks the host circadian clock to perpetuate transmission232

[87]. Transkingdom cross-regulation between prokaryotic and eukaryotic rhythms is plausible because233

it has already been documented for other systems (e.g., in bioluminescent squid light organ symbionts234

and in mammalian gut microbiota) [4, 91].235

Despite our knowledge of (1) rhythmic host immunity and physiology, (2) rhythms in parasite repro-236

duction and transmission, and (3) enticing evidence that host rhythms can impact parasite fitness and237

be exploited by parasites, the effects of biological rhythms on host-parasite dynamical processes remain238

poorly understood. We surmise that careful consideration of biological rhythms in infectious disease239

ecology and evolution will provide a better understanding of (1) daily and annual patterns of diseases,240

(2) within-host parasite dynamics, and (3) parasite transmission.241

Models for Investigating Host-Parasite Contributions to Rhythms in In-242

fectious Disease243

In order to determine how biological rhythms impose temporal structure on host-parasite dynamical244

processes, we can integrate empirical data on host and/or parasite rhythms into epidemiological and245

evolutionary models. Biological rhythms research has great potential for feedback between laboratory246

studies, field ecology, and dynamical systems modeling. First, rhythms in immunity characterized under247

laboratory or field conditions can be used in transmission models to make predictions about the epi-248

demiological consequences of those rhythms in nature. Second, observations of diel and annual cycles in249

infection—characterized via disease incidence, parasite abundance, or host serological markers of infec-250

tion history—can be used to make predictions regarding rhythms generating such patterns. A new study251

of the first type [92] explores the effect of annual and biannual rhythms in births (in bats) on the per-252

sistence of filoviruses (i.e., Marburgvirus and Ebolavirus). Transmission models predict that filoviruses253
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can persist in species with biannual birth pulses—making them potential reservoirs of infection—and254

this prediction is supported by serology data showing that species with biannual birth pulses are more255

likely to be seropositive for filoviruses; demonstrating that explicit consideration of host rhythms can256

inform targeted surveillance and control of emerging zoonotic diseases. A study of the second type is257

that of [23], in which long-term field data on nematode infections in European rabbits were used to258

discriminate among multiple potential seasonal rhythms in the host-parasite system. This led to identi-259

fication of epidemiologically relevant seasonality in host immunity; the endogenous nature of which can260

be tested in the lab.261

Building upon the examples above, as well as other transmission models that incorporate reproduc-262

tive rhythms [59–61,93,94], here we provide a Susceptible-Infected-Recovered (SIR) model of a directly263

transmitted hypothetical bacterial infection in the Siberian stonechat to illustrate the numerous entry264

points for biological rhythms into epidemiological processes (Figure 1B). We narrate our model with265

seasonal rhythms in mind; however, this can be extended to circadian rhythms. The model incorporates266

ambient temperature as a covariate influencing parasite transmission as well as empirical data on host267

circannual cycles in reproduction, immunity and migration (Figure 1CD; cf. Box 1) [53,95]. For migra-268

tion, the timing is defined empirically, while the model assumes migratory culling of infected individuals269

only during the autumn migration, when host bacterial killing activity is lowest [53]. Importantly, we270

propose that circannual cycles in host immunity can influence (1) the transmission rate, (2) the recovery271

rate, and (3) the pathological consequences of infection, which manifests as symptomatology and en-272

ters the model as the report rate. The multiple rhythms: temperature, births, bacterial killing activity,273

and migratory culling act collectively to shape the observed incidence of disease, which is the model274

output shown in Figure 1E. We define the resulting seasonal window of elevated disease incidence as275

the parasite’s temporal niche. The seasonal incidence that arises from this model matches the expec-276

tations from the underlying data. However, in contrast to most models of seasonal infectious diseases,277

which only place sinusoidal seasonality in the transmission rate, it contains multiple axes of seasonal278

forcing. Thus, we provide this model to encourage the inclusion of empirically characterized rhythms279

into models as covariates. Such models can be used to explore the epidemiological consequences of host280

and parasite rhythms, although for simplicity the parasite is not explicitly modeled here. Host-parasite281

systems where modeling parasite rhythms is particularly compelling include nematodes with seasonal282

arrested development [22, 96], microfilariae which display both circadian and seasonal cycles [97], and283

Plasmodium within-host circadian cycles [75]. Major challenges of incorporating biological rhythms284

into epidemiological or within-host models, will be (1) recognizing which host and/or parasite rhythms285

are epidemiologically relevant, and (2) identifying the functional relationships between rhythms and286

epidemiological parameters, including: transmission, recovery, and symptomatology.287

In addition to the epidemiological consequences of rhythms, we can benefit from understanding the288

feedback between host and parasite rhythms and the multiple axes that shape their temporal structure.289

Thus, we provide a conceptual evolutionary model for understanding how hosts and parasites time their290

biological processes with reference to each other while being embedded in environments with temporally291

structured risk and opportunity. We pose this model in evolutionary terms, but depending on the varying292

degrees of plasticity of biological rhythms, individuals may also adjust their rhythms during their life.293

Our evolutionary model illustrates three idealized scenarios of how host immune defense varies sea-294

sonally, relative to fluctuating environmental conditions (Figure 2A–C). These scenarios are motivated295

by life history theory and by empirical observations of seasonal immunity in mammals and birds (Table296

1). The scenarios assume that immune defense, specifically, parasite resistance, either parallels the297
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availability of resources (A, “resource-driven”), or is reduced when resources are used for reproduction298

(B, “traded-off”). The third is an extension of the “resource-driven” scenario with modulation related299

to life history events that can lead to complicated, but potentially important, annual patterns. In our300

example of migration (C) we assume down-regulation of immune defense during migration (see Figure301

1; this could also occur during other vulnerable times such as molting or hibernation [65]), and a shal-302

low trough under favorable conditions in the wintering grounds. We then (D) switch to the parasite’s303

perspective and illustrate how parasites are subject to two axes of seasonal fluctuations: (i) seasonal304

environmental conditions outside the host and, (ii) seasonal immune defense of the host. We propose305

that together the two seasonal axes shape parasite transmission (i.e., parasite fitness; which is captured306

by the basic reproductive number).307

The last and crucial component of our model is the evolutionary feedback between host and parasite308

rhythms. We propose that due to parasite-induced host morbidity and mortality, selection can drive309

changes in host seasonal immune defense. Subsequently, since host immune defense is one of the310

seasonal axes influencing parasites, selection will favor changes in the parasite rhythm. This interplay311

can continue, driving hosts and parasites to sequentially alter their seasonal rhythms while working312

within the constraints of environmental conditions. Figure 2E shows these steps.313

We suggest that under certain conditions this can escalate into an evolutionary arms race. In this314

framework, the prerequisite for an arms race is that parasite fitness is sufficiently impacted by the315

temporal structure of the host immune response, and that the host immune response is predictably316

rhythmic. To be clear, when considering the temporal structure of immune defense, reference to “low”317

host immune defense pertains to the parasite in question. However, it must be appreciated that a318

time of diminished resistance to one parasite (e.g., a helminth) can be a time of high investment into319

fighting another (e.g., a virus). Furthermore, infection with one parasite can seasonally elevate host320

susceptibility to another, as is exemplified by concomitant infections of myxoma virus and nematodes [98]321

and increased susceptibility to bovine TB resulting from helminth coinfection [18]. The arms race itself322

has two requirements. First, hosts must be able to shift their immune defense to counter exploitation323

by parasites (host changes in Figure 2E). Changes in host rhythms then translate into a new landscape324

of time-structured risk and opportunity for parasites. Upon experiencing a new temporal landscape, a325

dynamic host-parasite arms race can arise only if the second requirement is met: parasites shift their326

rhythm by changing reproduction within hosts, or release from hosts (parasite changes in Figure 2E).327

As with other host-parasite arms races, an arms race in the temporal domain is subject to tradeoffs for328

both the host and the parasite that might constrain the extent to which their rhythms can be altered.329

Host tradeoffs can include an immunity-reproduction tradeoff [99]; whereas, tradeoffs for the parasite330

can include a transmission-virulence or transmission-recovery tradeoff [99–101]. Also, due to the rapid331

generation time of parasites, relative to hosts, evolution of host rhythm shifts might be slow relative to332

the evolution of parasite rhythms, but this would not preclude an arms race from occurring.333

Conclusion334

There is enticing evidence that biological rhythms are structuring elements of host-parasite interac-335

tions, both in within-host processes and in epidemiological dynamics. Host circadian rhythms in the336

immune system influence the progression of infection and parasite burden, and annual rhythms might337

have similar effects [23, 30]. The existing evidence leads us to conclude that the effects of biolog-338

ical rhythms on the perpetuation of parasites, and on host reactions during infection, can generate339
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population-level rhythms in infectious disease incidence [25], which we here define as the parasite’s tem-340

poral niche. To formalize temporal niches across parasite taxa and life history strategies, we will need341

novel integration of epidemiological, immunological, and life history data of both hosts and parasites.342

Importantly, circadian rhythms in immunity have direct implications for transmission, and practical343

application for (i) timing of antibiotic, antiviral, and anthelmintic treatment, and (ii) managing im-344

munopathology, such as cytokine storms. The rhythms of parasites themselves can drive patterns of345

exposure and illness, as is evident in malaria and filarial infections. Similarly, rhythms in parasitemia346

and parasite release from hosts can impose temporal structure on transmission, which can be leveraged347

for interventions such as deworming campaigns.348

We believe that a multi-disciplinary approach at the intersection of Chronobiology, Disease Ecology349

and Evolutionary Biology holds the key to understanding how biological rhythms influence host-parasite350

interactions. We have outlined open questions that will bring us closer to understanding the underlying351

biological interactions in the temporal domain (refer to Outstanding Questions Box). We hope that352

this Opinion will generate discussion on how to leverage rhythms for translational medicine, for instance353

to counter the evolution of resistance; and we hope the insights provided here inspire new avenues for354

interrogating transmission models with host-parasite data from the laboratory and the field, ultimately, to355

better understand the forces structuring disease incidence and the immunology of non-model organisms.356

Finally, although it is beyond the scope of this Opinion, the importance of accounting for biolog-357

ical rhythms is accentuated by the accumulating data on anthropogenically-driven disruptions and358

mismatches of biological rhythms that are occurring across taxa. Circadian disruption due to light-359

at-night [102] and altered environmental seasonality due to climate change [13] are challenging the360

plasticity of rhythms and modifying the fitness advantages of their endogenous basis. For example, the361

adverse effects of circadian disruption have already been seen in human health and gut microbiota [91].362

Given the pervasiveness of rhythms in host immunity, vectors and parasites, we might soon be faced363

with palpable effects of rhythm disruptions on infectious diseases [73, 103, 104].364
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Figure 1: Rhythms and Temporal Niche. (A) The timing of host and parasite activities falls in the intersection
of environmental rhythms, host life history, host immunity rhythms, and parasite rhythms. This intersection is
embedded within geophysical rhythms, diel and annual cycles. (B) Biological and environmental rhythms can
enter into epidemiological models in multiple ways. The schematic shows a Susceptible-Infected-Recovered
model, SIR, with natural and disease-induced deaths, D. The model distinguishes between infections, I, and
the subset of infections that are observed as symptomatic cases, C. The model is parameterized using the life
history of Siberian stonechats. Four seasonal rhythms enter into the model (births, temperature, immunity, and
migration). Host births, Bt, are seasonal. The transmission rate, βt, is a function of (1) an environmental
rhythm (i.e., temperature) that influences parasite transmissibility, and (2) the seasonal immune status of hosts.
We assume seasonal immunity also influences the recovery rate, γt, and the probability of symptoms, ρt. We
also assume infected individuals suffer disease-induced mortality, κt, associated with the autumn migration (i.e.,
migratory culling), which multiplies the (here constant) rate of natural mortality δ. (C) Annual fluctuations in
temperature and birth seasonality in Siberian stonechats [95]. (D) Annual host immunity is based on bacterial
killing activity [53], elevated mortality during autumn migration is inferred from natural migratory timing. (E)
Incidence of symptomatic cases assuming: temperature has a positive correlation with transmission, bacterial
killing activity reduces transmission, reduces the probability of symptoms, and increases the recovery rate. The
four seasonal rhythms act collectively to determine the parasite’s temporal niche, the time of year when the
parasite is abundant and disease outbreaks occur.
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Figure 2: Conceptual model for investigating host-parasite contributions to rhythms in infectious disease.
(A) Host immune defense is resource-driven and tracks the host’s environmental conditions (i.e., host resource
availability). (B) Host immune defense has an inverse relationship with environmental conditions; this could
occur due to a trade-off against investment into reproduction during high resource availability. (C) Resource-
driven immune defense in a migrating species that has reduced immune defense during migration. Migrations
(indicated by black points) result in shallower environmental troughs since individuals migrate to regions with
higher resource availability. For all scenarios, we consider immune defense to be resistance to the parasite in
question, although we acknowledge that this simplifies the complexity of the immune system (e.g., independent
immunomodulation of innate or adaptive immune parameters). For the resource-driven host immune defense
strategy, in (D) we show seasonal parasite fitness shaped by both environmental conditions and seasonal host
immune defense. Although host and parasite co-occur in the same physical environment, the environmental
rhythms pertinent to the parasite need not be identical to the environmental rhythms pertinent to the host, which
is why we distinguish host versus parasite environmental rhythms. (E) Arms race between host and parasite. For
illustrative purposes, the arms race is initiated with resource-driven host immune defense and parasite seasonality.
The host changes the seasonal timing of peak immune defense to coincide with peak parasite fitness. We then
switch to the parasite perspective to consider the parasite’s environment. In response to the new host seasonality,
the parasite changes its timing of peak reproductive output. These cycles can continue, with both host and
parasite seasonality shifting within the bounds of their respective environmental constraints.
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Table 1: Rhythms in Hosts and Parasites. Diel (circadian) and annual (circannual/seasonal) rhythms in host
immunity, parasite reproduction, and parasite release.

Type Period Host Trait
or Parasite Description

Organism/
Species

Rhythm Citation

Immunity Diel Macrophages (detection and restric-
tion of parasite invasion)

Mice 8% of transcripts are circadian;
autonomous macrophage circadian
clock controls rhythm

[46]

Immunity Diel Natural Killer Cells (early defense
against viruses and intracellular bac-
teria)

Humans Circadian trafficking between the
blood and organ compartments; in-
verse trafficking compared to T-
lymphocytes

[105]

Immunity Diel Toll-like receptor 9 (evolutionarily
conserved receptor that recognizes
bacteria and viruses)

Mice Expression and function controlled by
circadian clock

[47]

Immunity Diel T-lymphocytes (surveillance for in-
fected cells)

Humans Cytokine production [106, 107]

Immunity Diel Leukocytes Humans Abundance in the blood follows a cir-
cadian rhythm for neutrophils, lym-
phocytes, monocytes, and eosinophils

[108]

Immunity Diel Whole blood response to LPS stimu-
lation

Humans Cytokine and chemokine production
is circadian in an environment free of
time cues

[109]

Immunity Diel Salmonella colonization and host cy-
tokine response to infection

Mice Mice have a different immunological
response to infection depending on
whether infection challenge occurs at
day or night; infection during the day
results in more inflammation; this ef-
fect is due to clock-controlled gene
expression

[49]

Immunity Diel Clock genes and pro-inflammatory
cytokines in spleen; inflammatory re-
sponse

Birds
(captive)

mRNA of cytokines and clock genes
are rhythmic under LD cycles and
constant conditions; inflammation is
rhythmic under LD cycles

[110]

Immunity Diel Cellular (PHA) and humoral immune
response

Birds
(captive)

PHA response and antibody produc-
tion depend on time of challenge, but
their peaks are phase-inversed

[17]

Immunity Annual Bacterial killing activity Birds
(captive),
turtles
(wild),
humans

Lower bactericidal activity during mi-
gration, especially in autumn (birds);
Higher bactericidal activity during
breeding season (turtles); Higher bac-
terial killing by neutrophils in summer
(humans)

[53, 111–113]

Immunity Annual Leukocytes Birds
(captive)

Annual cycles in several immune
traits, no effect of Coccidia on annual
cycle of immune measures

[114]

Immunity Annual Lysis Birds (wild) Lower ability of plasma to lyse foreign
cells during migration and winter

[38]

Immunity Annual Sickness behavior in response to LPS Birds
(captive and
wild),
hamsters

Repression of sickness behavior dur-
ing reproduction in summer (birds);
repression of sickness behavior during
winter (hamsters)

[39, 115]

Immunity Annual Acquired Immunity Rabbits
(wild)

Resistance against nematodes [23]

Immunity Annual Spleen size (spleen is important for
both innate and adaptive immunity)

Birds
(wild)

Regression of spleen during migration [116]

Continued on next page
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Type Period Host Trait
or Parasite Description

Organism/
Species

Rhythm Citation

Immunity Annual Cytokine production stimulated by
bacterial endotoxin

Humans,
rats,
hamsters

Seasonal differences in pro- and
anti-inflammatory cytokine produc-
tion (humans); Summertime pho-
toperiod increases production of pro-
inflammatory cytokine TNF-α and
extends (rats) or elevates (hamsters)
disease symptoms

[117–119]

Immunity Annual Vaccine response Humans Seasonal variation in symptoms fol-
lowing live influenza vaccine

[120]

Immunity Annual Intestinal immunity Ground
squirrels
(captive)

Increase in intestinal leukocytes, pro-
and anti-inflammatory cytokines dur-
ing hibernation

[66]

Susceptibility Diel Bacterial burden, pathogenesis,
and/or virulence of infection

Mice Timing of infection can affect: (a)
bacterial burden due to circadian vari-
ation in monocyte trafficking and/or
gene expression at site of infection,
(b) disease severity from sepsis due
to circadian TLR9 expression, and (c)
virulence

[45, 47, 49,
121, 122]

Susceptibility Annual Susceptibility to fungal growth Bats (wild) Hibernating bats have temperatures
that match that of hibernacula, al-
lowing explosive growth of WNS fun-
gal pathogen Pseudogymnoascus de-
structans

[30]

Parasite
reproduction

Diel Plasmodium species (Malaria para-
site) asexual reproduction

Various
mammalian
hosts

Parasite cohorts of millions of indi-
viduals synchronously burst from red
blood cells at a particular time in LD
cycle

[75]

Parasite
reproduction

Annual Microfilariae (heartworm) Dogs Strong seasonal rhythm in microfi-
laria abundance in dogs infected in
the lab

[97]

Parasite
development

Annual Nematodes (parasitic roundworms) Domestic
mammals

Parasites engage in seasonal hypo-
biosis, arrested development within
hosts that allows for persistence
when environmental conditions are
unfavorable for transmission between
hosts

[96]

Parasite
discharge

Diel Coccidia Birds (wild
and captive)

Oocyte release is strictly circadian;
although parasites are vulnerable to
sun exposure the rhythmic pattern
persists under continuous light dur-
ing the Arctic summer

[21, 123]

Parasite
discharge

Diel Echinostoma (parasitic flatworms),
Pinworms, Schistosoma

Echinostoma
in mice,
Pinworms
and
Schistosomes
in humans

The release of Echinostoma eggs by
hosts occurs during night when mice
are active. Human pinworms migrate
out of anus during the night to lay
eggs. In contrast, Schistosoma eggs
are discharged in urine during the day.

[74, 124]

Parasite
discharge

Annual Nematodes (roundworms) Dall’s Sheep
(wild)

Seasonal variation in intensity of par-
asite larvae shed in feces

[125]

Continued on next page
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Type Period Host Trait
or Parasite Description

Organism/
Species

Rhythm Citation

Parasite
manipulation
of host
behavior

Diel Dicrocoelium trematode Ants
(intermediate
host)

In the evening infected ants affix
themselves to the top of blades of
grass and enter torpor until the
next morning, allowing them to be
eaten by grazing mammals (definitive
hosts)

[90]

Parasite
manipulation
of host
behavior

Diel Manipulating fungus Ophiocordyceps Ants Ophiocordyceps manipulates host be-
havior and causes host death at char-
acteristic times of day

[87]

365

Box 1. Circadian and Seasonal (circannual) Modulation of Host Immune366

Defense.367

Circadian Immune Cycles. In order for hosts to mount an immune response against an infecting368

pathogen, the immune system must first detect the presence of the pathogen. One way that animals369

detect pathogens is by immune surveillance for pathogen-associated molecular patterns (PAMPs), which370

are shared across groups of pathogens. Host cells express pattern recognition receptors (PRRs) that371

recognize PAMPs. Toll-Like Receptor 9 (TLR9) is an important PRR that can recognize both viruses372

and bacteria, and is highly evolutionarily conserved. In 2012 Silver et al. discovered that the expression373

of TLR9 by macrophages and B cells follows a circadian rhythm. Importantly, the circadian rhythm of374

TLR9 has a significant effect on the immune response and disease severity because the rhythm of TLR9375

also produces a rhythm in inflammatory cytokines. The implications were experimentally demonstrated376

by inducing sepsis. Sepsis can occur during bacterial infections when a severe inflammatory immune377

response causes damage to the host. Bacterial infection was induced in laboratory mice using a puncture378

that allowed commensal bacteria to enter the body cavity from the intestine. Mice were entrained to a379

light-dark cycle (LD 12:12 h), and infection was induced either at the midpoint of the light period or380

of the dark period. Mice that were infected during the night, when the TLR9 inflammatory response381

was elevated, had higher bacterial burdens, earlier mortality, and worse disease scores, hypothermia, and382

tissue damage than mice that were infected during the day. This study demonstrated that the functional383

response of the immune system varies according to a circadian rhythm, and this variation is biologically384

relevant because it can have a significant effect on the dynamics of infection [47].385

Annual Immune Cycles. Faced with stark annual fluctuations in environmental conditions and386

resources, many avian and mammalian species partition life history events such as reproduction, growth,387

and hibernation into distinct times of year, and their immune system also undergoes seasonal changes.388

Versteegh et al. 2014 set out to investigate whether annual variation in immunity is due to seasonal389

adjustments directly driven by environmental or physiological conditions, or originates from a genetically-390

based circannual rhythm that allows organisms to prepare for changes in the environment. They looked at391

5 different immune measures, including bactericidal competence of whole blood as a proxy for functional392

implications.393

To determine whether seasonal immunity is a genetically encoded circannual rhythm, genetically394

distinct subgroups of a widespread songbird, the stonechat (Saxicola torquata), were bred and raised395

in a common garden experiment. The subgroups chosen for this experiment differ in their seasonal life396
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history and traits. They included a (i) long-distance migrant, (ii) short-distance migrant, and (iii) a397

non-migrant, along with hybrids. The prediction was that if seasonal immunity is a direct response to398

seasonal environmental conditions and energy demands, then by raising birds in an environment where399

(a) they have ample food, (b) they are not allowed to migrate or breed, and (c) the only fluctuation to400

which they are exposed is changing day length, their annual rhythms in immunity would be lost.401

The authors found that not only did the annual rhythm in immunity persist under these controlled402

conditions but also that the subgroups and hybrids of the birds showed specific patterns. The long-403

distance migrants displayed seasonality in 4 immunity parameters, which included bacterial killing ability404

(Figure 1D). The short-distance migrants displayed seasonality in only 3 immunity parameters, and the405

non-migrants displayed seasonality in only 2 parameters. Furthermore, the amplitude of the annual406

fluctuation was greatest in the long-distance migrants. The inheritance of the rhythm in hemolysis (the407

ability of antibodies and their compliment system to lyse foreign cells) was also quite striking. Both408

the long- and short-distance migrants showed reduced hemolysis during the time of the natural autumn409

migration. The reduction in hemolysis in the long-distance migrants was much more extreme than that410

of the short-distance migrant, and intermediate in F1- hybrids. Together, this work demonstrates that411

an inherited, biological clock controls seasonal immunity in stonechats, and these rhythms vary across412

groups that differ in their seasonal life history [53]. Related avian studies generally confirm annual cycles413

in immune parameters, and although species differ, there is a common tendency for greater seasonal414

immunomodulation with increasing migratory lifestyle.415

Outstanding Questions.

1. Are rhythms in the immune system adaptive for fighting infection?
2. Are parasite rhythms adaptive for dealing with host rhythms or environmental conditions?
3. Are observed parasite rhythms truly endogenous?
4. If parasite rhythms are endogenous, are they entrained by host rhythms?
5. Are host circannual rhythms in immunity an adaptive response to (a) seasonal parasite exposure or (b) resource
limitations and life history trade-offs?
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Glossary.

Adaptive immune system - cells of the adaptive immune system include B cells and T cells. The initiation of

the adaptive immune response occurs after the initiation of the innate immune response. Receptors of adaptive

immune cells require genetic recombination and alteration to generate, resulting in antigen specificity and immunological

memory [126, 127].

Annual cycle - cycle with a length of approximately 1 year, with phases occurring consistently at a particular time every

year, on an annual/seasonal basis

Circadian - cycle that occurs with an approximate 24-hour period, used in reference to endogenous rhythms

Circannual - cycle that occurs with a period of approximately 1 year, used in reference to endogenous rhythms

Diel cycle - cycle with a length of approximately 1 day, with phases occurring consistently at a particular time during

the day-night cycle

Immune defense - immune defense includes (1) resistance against the establishment of infection and the reproduction

of parasites, and (2) parasite tolerance, in which the host mitigates the pathological consequences of infection, but

tolerates infection

Innate immune system - cells of the innate immune system include macrophages and neutrophils. Innate immune

cells are immediate responders to infection. A fundamental distinction between innate and adaptive immune cells is

that innate immune cell receptors responsible for immune recognition are encoded in the germline; whereas, receptors

of adaptive immune cells require genetic recombination and alteration to be generated. It was previously thought that

the innate immune response is not parasite-specific and lacks memory, but that characterization is now considered

incorrect [127].

LD-cycle - cycle in which light and darkness alternate, and each last for a given duration, for example in LD 12:12 h,

light and darkness both last for 12 hours

LPS - Lipopolysaccharide is a component of the outer membrane of Gram-negative bacteria that is used in experiments

to elicit an anti-bacterial immune response

Macroparasites - parasites that are large and typically metazoans (e.g., helminths)

Microparasites - parasites that are small and often unicellular (e.g., pathogenic viruses, bacteria, and fungi)

Macrophage - phagocytes, often referred to as big eaters because they engulf invading bacteria and are responsible for

clearance of dead (apoptotic) cells. Macrophages are one of the cells responsible for detection and restriction of parasite

invasion.

Parasite Resistance - The ability of the host’s immune response to prevent infection from establishing or limit parasite

replication. Parasite resistance has a negative impact on parasite fitness [128].

Parasite Tolerance - The ability of the host to mitigate the pathological consequences of infection, rather than mitigate

infection itself. Parasite tolerance does not necessarily have a negative impact on parasite fitness [128].
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