12,270 research outputs found

    Automatically Discovering, Reporting and Reproducing Android Application Crashes

    Full text link
    Mobile developers face unique challenges when detecting and reporting crashes in apps due to their prevailing GUI event-driven nature and additional sources of inputs (e.g., sensor readings). To support developers in these tasks, we introduce a novel, automated approach called CRASHSCOPE. This tool explores a given Android app using systematic input generation, according to several strategies informed by static and dynamic analyses, with the intrinsic goal of triggering crashes. When a crash is detected, CRASHSCOPE generates an augmented crash report containing screenshots, detailed crash reproduction steps, the captured exception stack trace, and a fully replayable script that automatically reproduces the crash on a target device(s). We evaluated CRASHSCOPE's effectiveness in discovering crashes as compared to five state-of-the-art Android input generation tools on 61 applications. The results demonstrate that CRASHSCOPE performs about as well as current tools for detecting crashes and provides more detailed fault information. Additionally, in a study analyzing eight real-world Android app crashes, we found that CRASHSCOPE's reports are easily readable and allow for reliable reproduction of crashes by presenting more explicit information than human written reports.Comment: 12 pages, in Proceedings of 9th IEEE International Conference on Software Testing, Verification and Validation (ICST'16), Chicago, IL, April 10-15, 2016, pp. 33-4

    ChimpCheck: Property-Based Randomized Test Generation for Interactive Apps

    Full text link
    We consider the problem of generating relevant execution traces to test rich interactive applications. Rich interactive applications, such as apps on mobile platforms, are complex stateful and often distributed systems where sufficiently exercising the app with user-interaction (UI) event sequences to expose defects is both hard and time-consuming. In particular, there is a fundamental tension between brute-force random UI exercising tools, which are fully-automated but offer low relevance, and UI test scripts, which are manual but offer high relevance. In this paper, we consider a middle way---enabling a seamless fusion of scripted and randomized UI testing. This fusion is prototyped in a testing tool called ChimpCheck for programming, generating, and executing property-based randomized test cases for Android apps. Our approach realizes this fusion by offering a high-level, embedded domain-specific language for defining custom generators of simulated user-interaction event sequences. What follows is a combinator library built on industrial strength frameworks for property-based testing (ScalaCheck) and Android testing (Android JUnit and Espresso) to implement property-based randomized testing for Android development. Driven by real, reported issues in open source Android apps, we show, through case studies, how ChimpCheck enables expressing effective testing patterns in a compact manner.Comment: 20 pages, 21 figures, Symposium on New ideas, New Paradigms, and Reflections on Programming and Software (Onward!2017

    Reverse Engineering and Testing of Rich Internet Applications

    Get PDF
    The World Wide Web experiences a continuous and constant evolution, where new initiatives, standards, approaches and technologies are continuously proposed for developing more effective and higher quality Web applications. To satisfy the growing request of the market for Web applications, new technologies, frameworks, tools and environments that allow to develop Web and mobile applications with the least effort and in very short time have been introduced in the last years. These new technologies have made possible the dawn of a new generation of Web applications, named Rich Internet Applications (RIAs), that offer greater usability and interactivity than traditional ones. This evolution has been accompanied by some drawbacks that are mostly due to the lack of applying well-known software engineering practices and approaches. As a consequence, new research questions and challenges have emerged in the field of web and mobile applications maintenance and testing. The research activity described in this thesis has addressed some of these topics with the specific aim of proposing new and effective solutions to the problems of modelling, reverse engineering, comprehending, re-documenting and testing existing RIAs. Due to the growing relevance of mobile applications in the renewed Web scenarios, the problem of testing mobile applications developed for the Android operating system has been addressed too, in an attempt of exploring and proposing new techniques of testing automation for these type of applications

    Uncovering Bugs in Distributed Storage Systems during Testing (not in Production!)

    Get PDF
    Testing distributed systems is challenging due to multiple sources of nondeterminism. Conventional testing techniques, such as unit, integration and stress testing, are ineffective in preventing serious but subtle bugs from reaching production. Formal techniques, such as TLA+, can only verify high-level specifications of systems at the level of logic-based models, and fall short of checking the actual executable code. In this paper, we present a new methodology for testing distributed systems. Our approach applies advanced systematic testing techniques to thoroughly check that the executable code adheres to its high-level specifications, which significantly improves coverage of important system behaviors. Our methodology has been applied to three distributed storage systems in the Microsoft Azure cloud computing platform. In the process, numerous bugs were identified, reproduced, confirmed and fixed. These bugs required a subtle combination of concurrency and failures, making them extremely difficult to find with conventional testing techniques. An important advantage of our approach is that a bug is uncovered in a small setting and witnessed by a full system trace, which dramatically increases the productivity of debugging

    Extending and Relating Semantic Models of Compensating CSP

    No full text
    Business transactions involve multiple partners coordinating and interacting with each other. These transactions have hierarchies of activities which need to be orchestrated. Usual database approaches (e.g.,checkpoint, rollback) are not applicable to handle faults in a long running transaction due to interaction with multiple partners. The compensation mechanism handles faults that can arise in a long running transaction. Based on the framework of Hoare's CSP process algebra, Butler et al introduced Compensating CSP (cCSP), a language to model long-running transactions. The language introduces a method to declare a transaction as a process and it has constructs for orchestration of compensation. Butler et al also defines a trace semantics for cCSP. In this thesis, the semantic models of compensating CSP are extended by defining an operational semantics, describing how the state of a program changes during its execution. The semantics is encoded into Prolog to animate the specification. The semantic models are further extended to define the synchronisation of processes. The notion of partial behaviour is defined to model the behaviour of deadlock that arises during process synchronisation. A correspondence relationship is then defined between the semantic models and proved by using structural induction. Proving the correspondence means that any of the presentation can be accepted as a primary definition of the meaning of the language and each definition can be used correctly at different times, and for different purposes. The semantic models and their relationships are mechanised by using the theorem prover PVS. The semantic models are embedded in PVS by using Shallow embedding. The relationships between semantic models are proved by mutual structural induction. The mechanisation overcomes the problems in hand proofs and improves the scalability of the approach

    Software redundancy: what, where, how

    Get PDF
    Software systems have become pervasive in everyday life and are the core component of many crucial activities. An inadequate level of reliability may determine the commercial failure of a software product. Still, despite the commitment and the rigorous verification processes employed by developers, software is deployed with faults. To increase the reliability of software systems, researchers have investigated the use of various form of redundancy. Informally, a software system is redundant when it performs the same functionality through the execution of different elements. Redundancy has been extensively exploited in many software engineering techniques, for example for fault-tolerance and reliability engineering, and in self-adaptive and self- healing programs. Despite the many uses, though, there is no formalization or study of software redundancy to support a proper and effective design of software. Our intuition is that a systematic and formal investigation of software redundancy will lead to more, and more effective uses of redundancy. This thesis develops this intuition and proposes a set of ways to characterize qualitatively as well as quantitatively redundancy. We first formalize the intuitive notion of redundancy whereby two code fragments are considered redundant when they perform the same functionality through different executions. On the basis of this abstract and general notion, we then develop a practical method to obtain a measure of software redundancy. We prove the effectiveness of our measure by showing that it distinguishes between shallow differences, where apparently different code fragments reduce to the same underlying code, and deep code differences, where the algorithmic nature of the computations differs. We also demonstrate that our measure is useful for developers, since it is a good predictor of the effectiveness of techniques that exploit redundancy. Besides formalizing the notion of redundancy, we investigate the pervasiveness of redundancy intrinsically found in modern software systems. Intrinsic redundancy is a form of redundancy that occurs as a by-product of modern design and development practices. We have observed that intrinsic redundancy is indeed present in software systems, and that it can be successfully exploited for good purposes. This thesis proposes a technique to automatically identify equivalent method sequences in software systems to help developers assess the presence of intrinsic redundancy. We demonstrate the effectiveness of the technique by showing that it identifies the majority of equivalent method sequences in a system with good precision and performance
    corecore