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Abstract

Software systems have become pervasive in everyday life and are the core component of
many crucial activities. An inadequate level of reliability may determine the commercial
failure of a software product. Still, despite the commitment and the rigorous verification
processes employed by developers, software is deployed with faults. To increase the
reliability of software systems, researchers have investigated the use of various form of
redundancy. Informally, a software system is redundant when it performs the same func-
tionality through the execution of different elements. Redundancy has been extensively
exploited in many software engineering techniques, for example for fault-tolerance and
reliability engineering, and in self-adaptive and self-healing programs. Despite the many
uses, though, there is no formalization or study of software redundancy to support a
proper and effective design of software.

Our intuition is that a systematic and formal investigation of software redundancy
will lead to more, and more effective uses of redundancy. This thesis develops this
intuition and proposes a set of ways to characterize qualitatively as well as quantitatively
redundancy. We first formalize the intuitive notion of redundancy whereby two code
fragments are considered redundant when they perform the same functionality through
different executions. On the basis of this abstract and general notion, we then develop a
practical method to obtain a measure of software redundancy. We prove the effectiveness
of our measure by showing that it distinguishes between shallow differences, where
apparently different code fragments reduce to the same underlying code, and deep
code differences, where the algorithmic nature of the computations differs. We also
demonstrate that our measure is useful for developers, since it is a good predictor of
the effectiveness of techniques that exploit redundancy.

Besides formalizing the notion of redundancy, we investigate the pervasiveness of
redundancy intrinsically found in modern software systems. Intrinsic redundancy is a
form of redundancy that occurs as a by-product of modern design and development
practices. We have observed that intrinsic redundancy is indeed present in software
systems, and that it can be successfully exploited for good purposes. This thesis proposes
a technique to automatically identify equivalent method sequences in software systems
to help developers assess the presence of intrinsic redundancy. We demonstrate the
effectiveness of the technique by showing that it identifies the majority of equivalent
method sequences in a system with good precision and performance.
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Chapter 1

Introduction

Redundancy is an essential mechanism in engineering. Different forms of redundant
design are the core technology of well-established reliability and fault tolerant mecha-
nisms in traditional as well as software engineering. Despite its widespread use and
importance, software redundancy has never been formalized and investigated by and of
itself. This dissertation presents the first systematic investigation of software redundancy,
and in particular it proposes a formalization of the general notion of redundancy, a
practical measure of redundancy, and an approach to automatically identify functionally
equivalent method sequences.

A software system is redundant when it contains different elements that perform
the same functionality. A software system may include various versions of the same
functionally equivalent algorithm. For example, a container library may expose two or
more sorting algorithms: one optimized for small sequences of data, such as insertion
sort, and a more complex but asymptotically faster algorithm like Timsort for larger
sequences. Even algorithmically equivalent operations could be performed in different
ways. For instance, a program may generate a matrix by filling the data structure by row,
or by adding the values by column. A system may even contain replicas of exactly the
same functionality and sometimes that might be the result of good design principles. For
example, the API to access the file system of a utility library may have been refactored
to improve their usage experience, but the library may also retain the old versions for
backward compatibility. In contrast, copy-and-paste code clones cannot be deemed as
redundant. Code clones perform the same functionality, but there is no difference in
their execution since they are often exact copies of the same code.

In the aforementioned cases—whenever a system is capable of performing the
same equivalent functionality by executing different code elements—we say that the
software system is redundant. Redundant elements can be present in different forms
and at different level of abstraction, from simple code fragments, such as different
algorithm implementations, to components and even entire software systems, as in the
case of web services, where we can retrieve several implementations of the same service.

1
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Redundancy is sometimes introduced systematically, by design, into software systems,
while in other cases it arises naturally as a by-product of other design and development
disciplines.

Redundancy has been used as the key ingredient of the majority of the runtime
mechanisms that prevent or mask failures. Researchers have proposed approaches
based on the deliberate introduction of redundancy through the independent design and
implementation of multiple versions of the same components [Avi85, LBK90, Ran75].
More recently, researchers have proposed self-healing approaches to detect and react
“autonomically” to functional failures in order to avoid or at least alleviate those failures.
Several proposed techniques exploit a form of redundancy that is intrinsically found in
software systems at various levels of abstraction, from method calls [CGM+13, CGPP15],
to entire software components [BGP07, Dob06, STN+08].

The use of software redundancy has been recently extended to other research areas of
software engineering, such as software testing and automatic program repair. In software
testing, the availability of redundant alternatives—either deliberately introduced or
intrinsically present in the system—can be used as test oracles: each test is executed by
all different alternatives, and if all executions produce the same results and lead to the
same states, then the test is considered passed, while any discrepancy in the behavior of
a different implementation is considered a failed test [CGG+14, DF94, MFC+09, Wey82].
In automatic program repair, intrinsic redundancy is the main ingredient to overcome
failures and fix faults: when a failure is detected, the code is “evolved” by replacing code
fragments with alternative (redundant) code snippets towards the correct functionality,
as defined by an acceptance test suite [AY08, WNGF09].

Regardless of the source of software redundancy (deliberate or intrinsic), its level of
abstraction (method, component, system, etc.), and its potential use (fault tolerance,
testing, automatic repair, etc.) there is no definition of what is software redundancy,
that is there is no formalization of the intuitive concept of redundancy. In addition, a
common limitation of all the techniques that use redundancy is that, while they seek
to exploit redundancy, they provide no mechanisms to assess how much redundancy is
actually there to be exploited. For example, different teams may work on independent
versions of the same component for a safety critical system, but the resulting versions
may turn out to be based on the same underlying algorithm, and therefore they might
be susceptible to correlated failures [BKL90, Hat97, KL86]. In essence, the developers
are not able to assess the level of independence of the several versions, and thus the
effectiveness of the fault tolerance capability of the system.

In the context of intrinsic redundancy, the issue of effectively exploiting redun-
dancy is exacerbated by the unavailability, at design time, of the set of the alternative
implementations. In fact, due to the nature of this form of redundancy, the various
alternatives stem spontaneously in the system and there is no formal documentation on
such redundant functionalities, as opposed to N-version programming. As a result, the
developers have to manually identify where are the alternative implementations. This
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is a tedious and error-prone operation, and it is a showstopper for the extensive and
profitable use of intrinsic redundancy.

This thesis proposes to investigate software redundancy, defining approaches to
characterize quantitatively as well as qualitatively redundancy. The intuition is that a
systematic and formal investigation of software redundancy will lead to more, and more
effective uses of redundancy. The first major contribution of the thesis is the formulation
of a notion of software redundancy. We are interested in the redundancy at the code
level. More specifically, we define redundancy as a relation between fragments of
code. In essence, two code fragments are redundant if they perform the same equivalent
functionality and at the same time their executions differ. We say that two code fragments
are functionally equivalent when their execution produces the same result and does not
cause any difference in the behavior of the system. In other words, the two fragments
produce the same result and equivalent state changes. Two executions are different
when the code fragments perform dissimilar sequences of instructions. Specifically, two
execution traces may differ in the set of executed instructions, in the order at which the
instructions are executed, or both. For example, in a concurrent system the interleaving
leads to execution traces that contain the same instructions but in a different order, even
if the code being executed is identical.

Our notion of redundancy is general and abstract, but it is ultimately undecidable
and thus not directly usable in practice. In fact, equivalence alone is undecidable in
the general case, and the dissimilarity between executions should be computed over an
infinite set of possible traces. We thus propose a practical measure of redundancy based
on our notion, but that is feasible and efficient. To measure functional equivalence
between code fragments, our measure limits the space of possible executions to a finite
set of executions that we obtained from both automatically generated and developers’
hand-written tests. To compute diversity between executions, we use a particular form
of execution traces in which we log the read and write operations performed during the
execution that resulted in changes to the application’s state, and a specific form of edit
distance between such traces.

We show through an extensive empirical evaluation that our measure, and therefore
our notion of redundancy, is both consistent and useful. First, we validate our measure
through micro-benchmarks to confirm the correctness and effectiveness of our notion of
redundancy. We then use the method to quantify the level of redundancy in a number of
case studies to assess the usefulness and significance of the proposed measure itself. The
results obtained show that our measure is a good indicator of redundancy. In particular,
our measure distinguishes shallow redundancy—where two apparently different code
fragments reduce the same code being executed underneath—from deeper redundant
code, from algorithmic redundancy, where not only the code being executed is different
but also the algorithmic nature of the computation differs considerably. Furthermore, we
also demonstrate that our measure is a good predictor of the effectiveness of techniques
that exploit redundancy, for example the Automatic Workarounds technique [CGM+13,
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CGPP15].
The second major contribution of the thesis is the definition of a technique to

automatically identify redundancy in software systems. More specifically, we aim to
automatically identify the alternative implementations already available in a software
system. Such a technique can help to both spread the use of those techniques based on
intrinsic redundancy, and help studying the pervasiveness of such form of redundancy.
Our approach automatically extracts methods or sequences of methods that are func-
tionally equivalent to a target input method. For example, given a method that adds
values on the top of a stack, we are interested in identifying the complete set of methods
or combination of methods that perform the same equivalent functionality.

We define an approach that can efficiently explore the search space to effectively
identify equivalent method sequences. As for our measure of redundancy, our technique
synthesizes equivalent code fragments by restricting the number of possible executions
to a finite set, that we call execution scenarios. First, we generate a candidate solution
that computes the same result and exhibits equivalent side-effects on the application’s
state when executed on the chosen execution scenarios. We then validate the candidate
solution through a second step in which we explore new, additional execution scenarios.
If the approach identifies an execution that invalidates the equivalence, we prune the
search space from such a spurious result. Otherwise, we deem the synthesized code frag-
ment as likely-equivalent, to indicate that they may behave differently for executions not
considered in the process. We demonstrate through an exhaustive empirical validation
that our approach is both effective and efficient in identifying equivalent methods or
combination of methods. In particular, we show that such technique correctly identifies
a large amount of the possible equivalences where redundancy was known to exist.

1.1 Research Hypothesis and Contributions

The main research hypothesis of this thesis is that:

Software systems are redundant, in the sense that they can provide the same
functionality though different executions, that is they execute a different se-
quence of actions that leads to indistinguishable states and results. Redundancy
can be automatically identified, measured, and exploited in different ways.

The first part of the hypothesis describes the main motivation for this thesis, which
is that software systems contain various forms of redundancy, and at different levels
of abstraction. Although numerous studies have directly or indirectly discussed or
used redundancy, nobody has ever formalized or investigated redundancy as a notion
interesting by and of itself.

The second part of the research hypothesis concerns how to effectively support the
use of software redundancy. There is currently no comprehensive study on how to
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qualitatively and quantitatively assess redundancy. Furthermore, there are only a few
studies on how to assess the semantic similarity of code fragments within a system [HK14,
JS09]. Our idea is that a comprehensive investigation on how to automatically identify
and measure software redundancy will lead to more, and more effective approaches
that exploit redundancy. This intuition comes from some studies on the effectiveness of
N-version programming [KL86, Hat97], and is built upon our experience in the design
and implementation of techniques that exploit intrinsic redundancy to automatically
generate and deploy test oracles [CGG+14], and to automatically avoid failures at
runtime [CGPP10, CGM+13].

This thesis makes two major contributions:

A notion and measure of redundancy: The first contribution is the formalization of
the notion of redundancy in software systems. More precisely, we propose an
abstract and general notion of software redundancy at the code level. Two code
fragments are redundant when they perform the same equivalent functionality,
and at the same time their executions are different. Then, on the basis of such
formalization, we propose a practical and efficient measure of software redun-
dancy. Finally, we demonstrate the significance and correctness of the redundancy
measure by correlating the measurements with the success of techniques that
exploit redundancy, such as the Automatic Workarounds technique.

Automatic identification of redundancy: The second contribution of this thesis is a
technique to automatically identify equivalent functionalities. In particular, we
define an approach to identify methods or combination of methods that are func-
tionally equivalent to a given target method. We propose a general approach, and
a concrete implementation for Java applications and libraries. We then evaluate
the effectiveness of the technique on a set of case studies where redundancy was
known to exist. For each case study, we provide the list of equivalences identified
and a comparison with the manual identification.

1.2 Structure of the Dissertation

The remainder of this dissertation is structured as follows:

• Chapter 2 provides an overview of the several techniques related to software
redundancy. We present the techniques that identify redundancy in software, and
techniques that exploit some form of redundancy to test programs, handle failures
at runtime, or automatically repair programs.

• Chapter 3 presents the notion of software redundancy. It details our formalization
of the intuitive concepts of redundancy as fragments of code being functionally
equivalent and at the same time performing different executions.
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• Chapter 4 presents our practical measure of software redundancy. It describes the
issues of the general and abstract notion of redundancy, and provides a detailed
description of the trade-offs applied to develop a practical and efficient measure.
Furthermore, it presents our empirical validation on the significance and usefulness
of the measure.

• Chapter 5 describes our technique to automatically identify equivalent methods
or combination of methods, presents both the prototype implementation and the
empirical results of the experiments we performed on Java Stack, Graphstream,
and Google Guava to show the effectiveness and efficiency of the technique.

• Chapter 6 summarizes the contributions of this dissertation, and discusses future
directions.



Chapter 2

Redundancy in Software Engineering

Software redundancy is the key ingredient of many techniques in several
areas of software engineering, especially fault tolerance, software testing, and
automatic program repair. This chapter overviews the main software engi-
neering techniques that either rely on or identify redundancy. We start with
a categorization of the forms of redundancy in a software system, and then
describe the techniques that either identify or exploit redundancy, highlighting
their limitations and motivating the main contributions of this dissertation.

In engineering, redundancy is a well-known design paradigm when safety and
reliability are key requirements. In hardware and software engineering, redundancy is
achieved through the replication of hardware components and software functionalities.
Redundant hardware has been developed since the sixties to tolerate physical faults
in circuits [LV62, PGK88]. The rationale is to design hardware that contains multiple
replicas of the same components. RAID, for example, is a very successful approach
that overcomes faults by replicating and allocating data on an array of disks. When
a fault compromises one component, its counterpart can continue operating, and the
functionality of the overall system is preserved.

The successful results obtained by using redundancy to increase hardware reliabil-
ity led researchers to apply the same principles to software, in particular to increase
reliability. A software system is redundant when it can perform the same functionality
through different executions. The presence of alternative execution paths or execution
environments is the primary ingredient of all those techniques that exploit redundancy.
Differently from hardware systems, the simple replication of software functionalities
cannot deal with many failures that derive from development and integration prob-
lems that often occur in software systems. For this reason, researchers have proposed
several approaches based on the independent design and implementation of multiple
versions of the same components [Avi85, LBK90, Ran75]. These techniques are based
on the assumption that programming faults are not correlated, and therefore several
independently designed and implemented versions are unlikely to fail on the same input

7
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and system’s state. These multiple versions are then executed independently, and the
output of the system is determined by a majority voting algorithm from the output of
the various versions.

Software redundancy has been also exploited to generate test oracles, and to auto-
matically fix faults. For example, Weyuker proposes to generate test oracles for complex,
“non-testable” programs by providing an independently developed version that fulfills
the same specifications [Wey82]. The testers then run both programs on identical input
data and compare the final outcomes. Yet another use of redundancy was proposed by
Carzaniga et al. with the Automatic Workarounds approach to automatically recover
from runtime failures. The technique avoids failures at runtime by substituting a failing
method with a redundant alternative implementation that is intrinsically present in the
system.

The techniques presented so far exploit a form of redundancy present in the code.
Other approaches exploit redundancy present in different forms and at different abstrac-
tion levels, such as redundancy present in the environment or in the data.

Rejuvenation techniques exploit a form of redundancy rooted in the execution
environment. Rejuvenation techniques periodically re-execute some of the initialization
procedures of the application to produce a fresh execution environment, to increase the
system reliability and prevent potential failures [GT07, HKKF95].

Yet other approaches rely on redundancy in the data used in the computation, and
not in the computation itself. For example, data diversity techniques apply deliberate
data redundancy to cope with failures that depend on the input conditions [AK88].
The techniques rely on some user-defined functions that given an input can generate
logically equivalent data sets.

In this chapter, we survey the existing software engineering techniques that exploit
software redundancy for various purposes. Among the various levels of redundancy
that researchers have investigated—either code, environment, or input data—we focus
at the code level, since it is the main concern of this dissertation. We introduce the
concepts of deliberate and intrinsic redundancy in Section 2.1. We analyze the main
techniques that exploit such forms of redundancy for various purposes in Section 2.2.
We discuss the techniques that can be used to automatically identify redundancy in a
software system in Section 2.3.

2.1 Software Redundancy

Redundancy can be either deliberately introduced in the design or intrinsically present in
the system. The main difference between deliberate and intrinsic redundancy is in the
developer’s intention. In the case of deliberate redundancy, a developer intentionally
introduces redundancy in the system for a specific ultimate purpose. In contrast, intrinsic
redundancy naturally stems as consequence of the combination of several aspects of the
design and development process, and can be exploited for other ultimate purposes.
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Different design decisions and purposes may lead to different redundancy categoriza-
tions. In this thesis, we focus on the reliability of software systems, and we thus consider
redundancy as deliberate only if it was explicitly added to improve the reliability of the
system.

Deliberate redundancy. Some techniques deliberately add redundancy to the system.
This is the case of all those techniques that replicate the design process to produce
redundant functionalities. N-version programming, for example, proposes to deliberately
design the system with N replicas of the same component as part of the fault-tolerance
infrastructure that enables the system to operate and provide correct outputs despite
the presence of faults [Avi85]. Each version in an N-version system is a complete
implementation of the same specification designed and developed independently from
the N-1 other versions.

Figure 2.1 presents an example of N-version programming by Chen and Avizie-
nis [CA78]. The code presents a function that converts an array of 10 ASCII coded digits
into a binary number. The conversion function is replicated in three different procedures
such that the overall system can tolerate one, and only one, failure. Each independent
version contains supplementary boilerplate code that wraps the main functionality and
calculates the final result through majority voting. In particular, lines 12-14 are the
core fragment of the function and are designed in the replicas to use different algo-
rithms to convert the array of digits. By developing several versions separately, it is
assumed that they will be based on designs that are different, and thus not susceptible
to correlated failures. Deliberately introducing redundancy into software system for
reliability purposes is generally expensive. In particular, separate teams must work on
independent code bases, and all the artifacts must pass through the entire development
life cycle. This is the main reason why techniques based on the deliberate introduction
of redundancy in the system have been applied primarily in those industrial settings
where the cost of failure is not acceptable, such as the aerospace industry.

Intrinsic redundancy. Redundancy can also be intrinsically present in a system. Con-
sider, for example, the methods put(K key, V value) and putAll(K key, Iterable<? extends
V> values) of the AbstractMultimap<K,V> class of the popular Google Guava library.1

The put and putAll methods associate a given key with a value and collection of values,
respectively. This suggests that put(k,v) would be equivalent to putAll(k,c) with the same
key k and a collection c containing a single value v. Figure 2.2 reproduces the code
of the two methods with cosmetic code formatting changes. The structure of the two
methods is dissimilar, however the execution of the two methods may in turn invoke the
same underlying code. Consider for example line 12 of put and line 13 of putAll where,
depending on the dynamic binding, both methods may invoke the same implementation
of add(value) for Java collections. Another similar example regards line 4 of put and line

1https://github.com/google/guava
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1 CONVERSION1: PROCEDURE OPTIONS (TASK);

2 DCL DIGITS(10) BINARY FIXED(6) EXTERNAL;

3 DCL NUMBER1 BINARY FIXED(31) EXTERNAL;

4 DCL (SERVICE1,COMPLETE1) EVENT EXTERNAL;

5 DCL (DISAGREE1,GOODBYE) BIT(1) EXTERNAL;

6 DCL FINIS BIT(1) INIT(’0’B);

7 DO WHILE (¬FINIS);
8 WAIT (SERVICE1) ;

9 COMPLETION (SERVICE1) = ’O’B;

10 NUMBER1 = 0;

11 IF ¬GOODBYE & ¬DISAGREE1
12 THEN DO I = 1 TO 10;

13 NUMBER1=NUMBER1*10+DIGITS(I)-60;

14 END;

15 ELSE FINIS = ’1’B;

16 COMPLETION (COMPLETE1) = ’1’B;

17 END;

18 END CONVERSION1;

1 CONVERSION2: PROCEDURE OPTIONS (TASK);

2 DCL DIGITS(10) BINARY FIXED(6) EXTERNAL;

3 DCL NUMBER2 BINARY FIXED(31) EXTERNAL;

4 DCL (DISAGREE2,GOODBYE) BIT(1) EXTERNAL;

5 DCL (SERVICE2,COMPLETE2) EVENT EXTERNAL;

6 DCL FINIS BIT(1) INIT(’0’B);

7 DO WHILE (¬FINIS);
8 WAIT (SERVICE2) ;

9 COMPLETION (SERVICE2) = ’O’B;

10 NUMBER2 = 0;

11 IF ¬GOODBYE & ¬DISAGREE2
12 THEN DO I = 1 TO 10;

13 NUMBER2=NUMBER2*10+MOD(DIGITS(I),60);

14 END;

15 ELSE FINIS = ’1’B;

16 COMPLETION (COMPLETE2) = ’1’B;

17 END;

18 END CONVERSION1;

1 CONVERSION3: PROCEDURE OPTIONS (TASK);

2 DCL DIGITS(10) BINARY FIXED(6) EXTERNAL;

3 DCL NUMBER3 BINARY FIXED(31) EXTERNAL;

4 DCL (DISAGREE3,GOODBYE) BIT(1) EXTERNAL;

5 DCL (SERVICE3,COMPLETE3) EVENT EXTERNAL;

6 DCL FINIS BIT(1) INIT(’0’B);

7 DO WHILE (¬FINIS);
8 WAIT (SERVICE3) ;

9 COMPLETION (SERVICE3) = ’O’B;

10 NUMBER3 = 0;

11 IF ¬GOODBYE & ¬DISAGREE3
12 THEN DO I = 1 TO 10;

13 NUMBER3 = NUMBER3+(DIGITS(I)-60)*10**(10-I);

14 END;

15 ELSE FINIS = ’1’B;

16 COMPLETION (COMPLETE3) = ’1’B;

17 END;

18 END CONVERSION3;

Figure 2.1. An example of N-version programming implementation of a function that
converts an array of 10 ASCII coded digits into a binary number [CA78].
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1 public boolean put(K key, V value) {

2 Collection collection = map.get(key);

3 if (collection == null) {

4 collection = createCollection(key);

5 if (collection.add(value)) {

6 totalSize++;

7 map.put(key, collection);

8 return true;

9 } else {

10 throw new Exception();

11 }

12 } else if (collection.add(value)) {

13 totalSize++;

14 return true;

15 } else {

16 return false;

17 }

18 }

1 public boolean putAll(K key,Iterable values){

2 if (!values.iterator().hasNext()) {

3 return false;

4 }

5 Collection c = getOrCreateCollection(key);

6 int oldSize = c.size();

7 boolean changed = false;

8 if (values instanceof Collection) {

9 Collection c2 = Collections2.cast(values);

10 changed = c.addAll(c2);

11 } else {

12 for (V value : values) {

13 changed |= c.add(value);

14 }

15 }

16 totalSize += (c.size() - oldSize);

17 return changed;

18 }

Figure 2.2. Methods put and putAll of the AbstractMultimap<K,V> Class from the
Google Guava library

5 of putAll where, depending on the implementation of the method getOrCreateCollec-
tion(key), both methods may invoke method createCollection(key). Still, despite these
similarities, the put and putAll methods are implemented with substantially different
code, and more importantly, different algorithms.

Compared to deliberate redundancy, the main advantage of using intrinsic redun-
dancy is that it does not incur serious additional costs when it is exploited for reliability
purposes. However, it should be clear that the effectiveness of approaches that exploit
intrinsic redundancy still rely on code redundancy, and is bound to the existence of
such type of redundancy. Therefore, the first main question is whether intrinsic re-
dundancy actually exists in modern software systems. Some studies show that the
presence of semantically equivalent code at the level of code fragments in software
is quite high [GJS08, JS09]. In essence, these studies implicitly suggest that intrinsic
redundancy does exist in real projects.

More recently, Carzaniga et al. performed an empirical study to validate the presence
of intrinsic redundancy at the method level in several Javascript libraries [CGPP10,
CGPP15]. For each case study, they created a collection of code rewriting rules, which
encode pairs of code fragments with the same observable behavior. In particular, two
code fragments have the same observable behavior when they produce the same expected
effect—from the perspective of an external observer—for all relevant inputs. A code
rewriting rule is a syntax-based transformation rule that substitutes a code fragment
with a different code fragment. The authors manually inspected the documentation of
several well-known libraries, such as Google Maps, YouTube, and JQuery, and created a
database of more than 350 rules.

Assessing quantitatively as well as qualitatively the pervasiveness of intrinsic redun-
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Case study Classes considered Rewriting rules found Avg per class
Apache Ant 213 804 3.80
Apache Lang3 5 45 9.00
Apache Lucene 160 205 1.28
Apache Primitives 16 216 13.50
Canova 95 345 3.63
CERN Colt 27 380 14.07
Eclipse SWT 252 1494 5.93
Google Guava 116 1715 14.78
GraphStream 9 132 14.67
Oracle JDK 2 85 42.50
Joda-Time 12 135 11.25
Trove4J 54 257 4.76
Total 961 5813 6.04

Table 2.1. Rewriting rules found for representative Java libraries and applications.

dancy in software systems is an important aspect for effectively studying and exploiting
intrinsic redundancy. We have extended the empirical study by Carzaniga et al. in two
directions.

First, we have extended the investigation from dynamically typed languages, such
as Javascript, to a statically typed language, such as Java. Java is a statically typed
and object-oriented language, by extending the study to other important classes of
programming languages, we have also assessed the relation of intrinsic redundancy
with some features of the programming language used.

Second, we have investigated the pervasiveness of intrinsic redundancy in both
libraries and applications. Software libraries are amenable to contain more redundancy
simply because they are designed to offer the same functionality in different forms
and through different interfaces, and that diversity of forms and interfaces leads quite
naturally to redundancy.

In Table 2.1 we report the results of our investigation where we studied 12 open
source projects. We analyzed three applications, a build process manager (Apache Ant),
a high-performance search engine (Apache Lucene), and a machine-learning system
(Canova). The libraries considered in the investigation provide support for additional
language features (Apache Lang3), supplementary data structures (Apache Primitives,
CERN Colt, Google Guava, Trove4J), additional GUI features (Eclipse SWT), dynamic
graph support (Graphstream), and increased time and date support (Joda-Time). We also
analyzed some classes from the Java Standard library itself (Oracle JDK). In summary,
we analyzed 961 classes taken from the 12 projects and manually extracted a set of
rewriting rules to capture redundancy.

We found 5813 rewriting rules in the considered 961 classes, that is an average
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of more than six rewriting rules for each class. This is a very interesting result since
it shows that there is a good amount of redundancy intrinsically present in software.
Moreover, it is an important outcome for those technique that use redundancy, since it
shows that intrinsic redundancy is not a rare phenomenon.

Despite the fact that we found redundant functionalities in all software systems, the
amount of redundancy varies across projects, and between libraries and application. For
example, Apache Primitives and Trove4J are similar libraries that provide developers
with additional collections optimized for primitive values. However, the rewriting rules
extracted from Apache Primitives per class are on average three times more than those
extracted from Trove4J. Similarly, we can observe that libraries present more redundancy
than programs. In our evaluation, we extracted an average number of 9.04 rewriting
rules per class from the libraries under analysis, while we extracted on average only
2.89 rewriting rules from the applications.

The results of our investigation show that there are plausible and general reasons to
assume that modern software systems, especially modular components, are intrinsically
redundant: design for reusability, performance optimization, backward compatibility,
and lack of software reuse. We now briefly analyze each reason.

Modern development best practices naturally induce developers to design their
libraries with high flexibility to improve reusability. Such design for reusability is a
source of intrinsic redundancy. In fact, the required flexibility of well designed reusable
components leads to interfaces that are intended to offer different ways of executing
the same functionalities. As an example, consider JQuery, a popular and actively
developed library for Web applications.2 JQuery offers many alternatives to display
elements in a Web page: show(), animate(), fadeTo(), fadeIn(), etc. Although these
functions differ in some details, they are essentially equivalent in terms of the end
result. Similarly, many Graphical User Interface libraries provide different methods
for organizing and drawing graphic objects. For instance, the Eclipse SWT library3

provides developers with the ability to draw a rectangle and a line with methods
drawRectangle(Rectangle rect) and drawLine(int x1, int y1, int x2, int y2) respectively.
The SWT library provides also a method drawPolygon(int[] pointArray), to draw a
rectangle, a line or a generic polygon, depending on the number of points given as
argument. Thus, the method drawPolygon(int[] pointArray) is redundant with respect to
methods drawRectangle(Rectangle rect) and drawLine(int x1, int y1, int x2, int y2), since
it provides equivalent functionality. Furthermore, methods drawRectangle, drawLine,
and drawPolygon execute at runtime substantially different code. These methods have
been designed and documented to allow developers to fine-tune the drawing process.

Many other examples are easy to find in container libraries, such as Google’s Guava
library, or the util package of the Java Class Library. Containers typically offer methods
to add single elements (for example, add(Object e)) and methods to add a set of

2http://jquery.com
3https://www.eclipse.org/swt
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elements elements from another container (for example, addAll(Collection c)), which
are redundant when the latter is used with a container that contains a single element.
Conversely, add is redundant with respect to addAll when it is invoked to insert each
element of the collection c, one at a time.

Optimizations of non-functional requirements are another source of intrinsic redun-
dancy. For example, the function StringUtils.endsWith(String s, String suffix) of the
Apache Ant4 application reimplements the method endsWith(String suffix) of the Java
String class more efficiently, the method CollectionUtils.frequency() reimplements Col-
lection.frequency() of the Java Standard library, the method tokenizePathAsArray() of
the SelectorUtils class reimplements tokenizePath(), etc. Similarly, the log4J5 library im-
plements many of the functionalities offered by the standard Java class java.util.Logging
with improved performance.

In other cases, the same library might offer the same service in multiple variants,
each one optimized for different cases. An excellent example is the sorting functionality:
good implementations of a sorting functionality use different algorithms that implement
the same interface function. For example, the GNU Standard C++ Library basic sorting
function implements the insertion-sort algorithm for small sequences, and merge-sort
for the general case. Similarly, different functions may implement the same functionality
with different optimization targets, for instance to minimize the memory footprint or to
compute the result in less time.

Redundancy may stem from the need to guarantee backward compatibility. A library
might maintain different versions of the same components to ensure compatibility with
previous versions. For example, the Java 7 Class Library contains at least 45 classes
and 365 methods that are deprecated and that overlap with the functionality of newer
classes and methods.6

Software redundancy may also be unintentionally included in software due to lack
of software reuse. Sometimes, developers are simply not aware that a functionality is
already available in the system, and may implement the same functionality multiple
times [BEHK14, BVJ14, KR09]. For example, in the same project a developer may rely
on a third-party library for some container implementations, while another developer
may implement the data structure from scratch ignoring the availability of the third-party
library. Similarly, several developers—or even the same developer—might implement the
same equivalent function several times and in different ways for the benefit of simplicity.
Such duplication of logically similar components might be a natural consequence of
stringent time schedules. The poor quality—or the lack—of documentation exacerbates
this problem. Environmental and personal issues among developers, such as lack
of communication and trust, are yet another cause of scarce software reuse, which

4http://ant.apache.org
5http://logging.apache.org/log4j
6http://docs.oracle.com/javase/8/docs/api/deprecated-list.html
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consequently leads to the introduction of redundant functionalities into software systems.

Regardless of the sources of redundancy, software systems are intrinsically redundant,
and software modules expose several operations that are functionally equivalent, or that
can become functionally equivalent once suitably combined. The presence of implicit
redundant elements in software systems has been exploited in several ways that we
briefly survey in the reminder of this section.

2.2 Applications of Software Redundancy

In this section, we survey the main approaches the exploit software redundancy, focusing
on both deliberate and intrinsic redundancy. Deliberate redundancy is mainly used for
guaranteeing high reliability in critical applications by preventing or avoiding failures
at runtime. Intrinsic redundancy has been explored in some different areas, from fault
tolerance to software testing and automatic program repair.

In Section 2.2.1, we survey the main techniques that deliberately introduce redun-
dancy into software systems for various purposes. In Section 2.2.2 we survey the main
techniques that exploit the redundancy intrinsically present into systems for self-healing,
test oracle generation and automatic program repair. In Section 2.2.3 we discuss the
limitations of the techniques that exploit deliberate and intrinsic software redundancy.

2.2.1 Deliberate Redundancy

Deliberate software redundancy is widely exploited at the code level. Classic techniques
as N-version programming and recovery-blocks explore software redundancy to tolerate
software failures. Pseudo-oracles rely on redundancy to reveal faults. Other techniques
exploit redundancy for producing self-checking and self-optimizing code to overcome
either a wide variety of faults, or performance problems. Wrappers represent yet
another form of deliberate redundancy present in various contexts. Recently, deliberate
redundancy has been also explored to automatically repair corrupted data structures.

N-version programming. N-version programming has been originally proposed by
Avizienis et al. and is one of the classic techniques to design fault tolerant systems [Avi85].
N-version programming relies on several versions of the same component that are
executed in parallel. The different versions of the same component shall be designed
and developed independently by different teams to reduce the dependency among
faults in the different versions. The results of the computations are compared, and the
overall result is decided through a voting mechanism. The voting algorithm compares
the results, and selects the final output based on the output of the majority of the
versions. Since the final output needs a majority, the number of redundant alternatives
determines the number of tolerable failures. To tolerate k failures, a system must consist
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of 2k+ 1 versions. For instance, to tolerate two faulty results a system must consist of
five independent versions, and so on.

The original N-version programming mechanism has been extended to different
domains, for example to increase the reliability of Web applications and service-oriented
computing. Service-oriented computing foster the implementation of various versions
of the same service. These implementations are designed and executed independently,
possibly offering different level of quality of service, but all of them complying with a
common interface. The availability of multiple independently developed versions of the
same or similar services has been successfully exploited by researches to improve the
reliability of service-oriented applications.

Looker et al. propose a mechanism to increase the reliability of service-based ap-
plication. The authors define a framework to run several independently-designed Web
services in parallel. The results are then validated on the basis of a majority voting algo-
rithm [LMX05]. Dobson proposes to implement N-version programming as an extension
of WS-BPEL. The services are run in parallel, and the obtained responses are validated
by a voting algorithm [Dob06]. These techniques are effective in case of failures caused
by malfunctioning services or by unanticipated changes in the functionalities offered by
the current implementation.

Gashi et al. describe and evaluate another application of N-version programming
to SQL servers [GPSS04]. In a nutshell, the authors studied four off-the-shelf SQL
servers to understand whether their simultaneous usage could be exploited for fault
tolerance. In their study, the authors selected faults from each of the servers, and tried
to investigate whether the other servers were affected by the same exact fault. They
observed that only four faults were replicable on two different SQL servers, and that no
fault was found in more than two servers. On the basis of this investigation, Gashi et
al. propose an architecture for a fault-tolerant database management system [GPS07].
However, comparing the output and the state of multiple, heterogeneous SQL servers
may not be trivial, due to concurrent scheduling and other sources of non-determinism.

N-version programming has been designed and investigated to overcome develop-
ment faults. However, if N-version programming is combined with distinct hardware
where to run each replica, it can tolerate also some classes of physical faults. This
possibility makes N-version programming particularly attractive in the context of fault
tolerance for service-oriented computing, where redundant services can be executed on
different, geographically separated servers, thus overcoming service unavailability due
to server or network problems.

Recovery-blocks. Recovery-blocks were originally proposed by Randell, and rely on the
independent design and implementation of multiple versions of the same component, but
differently from N-version programming, the various versions are executed sequentially
instead of in parallel [Ran75]. Recovery-blocks execute an alternative version when the
running component fails. If the alternative version fails as well, the technique selects a
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new alternative, and this process continues as long as either the system continues to
fail, or further alternative components are available. The recovery-blocks mechanism
detects failures using acceptance tests, and relies on a checkpoint-recovery mechanism
to bring the state of the application to a consistent state before trying the execution of
an alternative version.

The recovery-blocks core ideas have been extended to Web applications and service-
oriented computing [Dob06, GH04, KPR04]. Dobson applies recovery-blocks to web
applications by exploiting the retry command of the BPEL language to execute alternative
services when the current one fails [Dob06]. Gutiérrez et al. implement recovery-blocks
exploiting agent-oriented programming (AOP), a programming paradigm where the
construction of the software is centered on the concept of software agents. An agent
provides abstractions similar to objects in object-oriented programming, with interfaces
and messaging capabilities at its core. Gutiérrez et al. identify both critical points in
a process and redundant Web services. The developers are responsible to implement
both the invocations of the Web service, as the main functionality of the agent, and the
evaluation of the correctness of the result. At runtime, if an agent fails, the others can
continue operating without affecting the overall functionality of the system. As in the
classic recovery-blocks technique, all these approaches exploit alternative services that
are provided by developers at design time.

Similarly to N-version programming, the recovery-blocks technique targets devel-
opment faults, but differently from N-version programming it executes the redundant
alternatives in sequence and not in parallel.

Self-checking programming. Yau et al. first, and Laprie et al. later, further extend
and enhance the ideas of N-version programming and recovery-blocks by introducing
self-checking programming [LBK90, YC75]. In a nutshell, self-checking programming
augments programs with code that checks the system’s dynamic behavior at runtime.

The general and abstract concept of adding self-checking capabilities to programs
has been implemented in several ways. A self-checking component can be implemented
either as a software component with a built-in acceptance test suite, or as some inde-
pendently designed components that are compared for correctness (similar to N-version
programming). Each functionality is implemented by at least two self-checking com-
ponents that are both designed and developed independently, and then executed in
parallel. If the primary self-checking component fails, the program automatically checks
the results produced by the alternative versions of the component to produce the correct
result. During the execution, the components are classified as either “acting” compo-
nents, which are responsible for the computation, or “hot spare” components, which
are executed in parallel as backup of acting components to ultimately tolerate failures.
An acting component that fails a self-check is discarded and replaced by one of its hot
spares. By implementing this replacement strategy, self-checking programming does not
require any checkpoint and recovery mechanism, which is essential for recovery-blocks,
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but potentially introduces a significant overhead.
As in the case of N-version programming and recovery-block, Dobson implements

self-checking programming for Web application and service-oriented computing. Dobson
implements self-checking programs by calling the several redundant services in parallel
and considering the results produced by the hot spare services only in case of failures of
the main acting service [Dob06].

Similarly to N-version programming and recovery-blocks, self-checking programming
targets development faults.

Wrappers. Deliberate redundancy has been exploited in several different contexts in
the form of wrappers. A wrapper is defined as an element that mediate the interactions
between components to solve integration issues. Using wrappers for fault tolerance
was originally proposed by Voas [Voa98], who proposed the development of protectors
(wrappers) to improve the overall system dependability. The goal is to protect both the
system against erroneous behavior of a Commercial Off-The-Shelf (COTS) component,
and the COTS component against misuses of the system.

Thanks to the generality and flexibility of the idea, the use of wrappers to mediate the
communication has been extended to various contexts. Salles et al. exported the original
idea in the context of operating systems [SRFA99]. They propose wrappers to increase
the dependability of OS microkernels that communicate with COTS components, with
different dependability levels. A wrapper verifies the consistency of constraints against
to executable assertions that model the expected behavior of the functionality. The
executable assertions are specified at design time by developers, requiring additional
effort as in the case of N-version programming and recovery-blocks. Salles et al. apply
wrappers to microkernels, as they are composed of few functional classes (for exam-
ple, synchronization, scheduling, and memory management), whose specifications are
simpler to understand and thus amenable to modeling their expected behavior.

Popov et al. propose wrappers to avoid failures that derive from incomplete spec-
ifications, misuse, or failures in the external system in which the COTS are inte-
grated [PRRS01]. Incompletely specified COTS components may be used incorrectly or
in conditions that are not the ones they have been designed for. The wrappers defined
by Popov et al. detect classic mismatches, for example whether the input is outside the
acceptable value domain, and triggers the correspondent appropriate recovery action,
for example the switch to a redundant alternative as in the recovery-blocks technique.
Chang et al. require developers to release components together with a set of predefined
recovery actions that can deal with failures caused by common misuses of the compo-
nents [CMP08, CMP09]. Similarly, Denaro et al. applies developer-written adapters to
avoid integration problems among Web services [DPT07, DPT13].

Fuad et al. present a technique that introduces self-healing capabilities in distributed
systems by means of wrappers that deal with runtime failures [FDO06, FO07]. Their
wrapper detects and reacts to failures by applying some user-defined actions to overcome
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the failure and re-initialize the computation. The failures that cannot be handled at
runtime cause the termination of the application, and produce a log that can help
developers implement an ad-hoc wrapper to handle the future occurrences of such
failures.

Deliberate redundancy has been exploited to increase the security of software systems
too. Baratloo et al. present two different approaches to prevent buffer overflows on
the stack [BST00]. The first method intercepts all the calls to library functions that
are known to be vulnerable to buffer overflows. A redundant alternative version of
the corresponding function implements the original functionality but ensures that any
memory read and write are contained within the current stack frame. The second
method instruments the binary of the application to force the verification of critical
accesses to the stack before their use.

Fetzer et al. introduce the concept of “healers” to prevent some classes of malicious
buffer overflows on the heap [FX01]. A healer is a wrapper that intercepts all the
function calls to the C library responsible for writing on the heap. The healer performs
suitable checks on the memory boundaries accessed to prevent buffer overflows.

Wrappers deliberately introduce redundancy in software systems to prevent both
development faults, and malicious security attacks.

Exception handling. Exception handling is the most common software mechanism for
catching predefined classes of errors and activating recovery routines [Cri82, Goo75].
The basic mechanism of exception handling has been explored and extended in different
application areas.

Applications of exception handling to service-oriented systems extend the classic
mechanism with a registry of rule-based recovery actions. The registry contains a list
of predefined failures to which the system should react, and a set of rules created
by developers at design time as recovery actions. Baresi et al. and Modafferi et al.
propose registry-based techniques for service-oriented BPEL processes. Both techniques
detect failures at runtime by observing the violation of some predetermined safety
conditions. The approaches differ in the way they define and execute rules and recovery
actions. Modafferi et al. extend a standard BPEL engine with an additional manager
that intercepts the message exchange between the application and Web services and,
transparently to the BPEL engine, influence and replace the Web services based on
the rules [MMP06]. Baresi et al. define the recovery strategies as compositions of
atomic actions called strategy steps that can be combined and executed alternatively or
together [BGP07].

Cabral et al. propose an approach to improve the classic exception handling mecha-
nism by automating some basic recovery actions [Cab09, CM11]. Their idea is based
on a field study on the exception handling practices in Java and C# [CM07]. In such
study, the authors observe that many exceptions are handled with application inde-
pendent recovery actions that can be executed automatically. For instance, when a
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DiskFullException occurs, instead of directly throwing an exception—for which the
programmer has to explicitly provide an exception handling block—the runtime system
tries to remove temporary files to reduce the disk usage. Relying on general predefined
recovery actions can ease the developer’s effort of dealing with application-agnostic
exceptions.

Mechanisms that rely on exception handlers and rule-based recoveries deliberately
add redundant code to address development faults.

Data structure repair. Several techniques exploit redundancy—expressed in form of
specifications—to guarantee the consistency of data structures.

The original idea of data structure repair was introduced by Demsky and Rinard [DR03,
DR05], who propose a framework that use consistency constraints for data structures
specified by developers, to automatically detect and repair constraint violations at run-
time. The approach relies on two different views of the data structure: a concrete view
at the memory level and an abstract view at the level of relations between objects. The
abstract view eases both the specification of high-level constraints and the algorithms
and knowledge required to repair any inconsistencies. Each specification contains a set
of models of the high level data structure and a set of consistency constraints. Given
these rules and constraints, the technique first automatically generates the model, then
inspects the model and the data structures to find violations of the constraints, and finally
repairs any violations. Demsky and Rinard later improved their work by integrating their
framework with Daikon to automatically infer likely consistency constraints [DEG+06].

Elkarablieh et al. presented a similar technique to repair data structures, and a
tool called Juzi [EGSK07, EK08]. The technique relies on program assertions to au-
tomatically detect inconsistencies in complex data structures. The repair procedure
invokes symbolic execution to systematically explore all possible mutations of the data
structure. The repair algorithm uses on-demand dynamic symbolic execution (DSE)
that treats corrupt fields symbolically, and computes path conditions for the corrupted
fields. The algorithm solves the path condition with a theorem prover to determine the
correct value for repairing the field. Similarly, Hussain and Csallner exploit DSE to repair
complex data structures, by mutating the data structure in such a way that the repaired
data structure takes a predetermined (non-failing) execution path [HC10]. The main
difference between the two approaches resides in the way they exploit DSE. Elkarablieh
et al. use DSE to systematically explore all possible mutation aiming to repair the data
structure, whereas Hussain and Csallner use DSE to obtain the faulty path condition.
They obtain the correct repair action by suitably inverting the conjunctions in the faulty
path condition and solving the resulting constraints. In this way, the technique can both
handle generic repairs, and scale to larger and more complex data structures.

Data structure repair techniques verify data structure consistency relying on con-
straints, which are redundant specifications that have been deliberately added to code.
All these techniques focus on identify and fix deterministic development faults.
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Oracles. Deliberate redundancy has been exploited in the context of software testing
to deal with the oracle problem. Weyuker exploits software redundancy for "non-
testable" programs that she defines as programs for which either an oracle does not
exist or is impractical, since it is too complex to determine the correctness of the
outcome [Wey82]. Weyuker addresses the problem by introducing pseudo-oracles that
amount to independently written programs that satisfy the same functional specifications
of the program under analysis. By running both programs on the same input data, it
is possible to reveal the presence of faults if the independently computed results are
not identical. One redundant alternative is sufficient for generating a pseudo-oracle. If
however the goal is to identify the faulty program, the approach requires at least two
alternative versions, as in the case of N-version programming.

Pseudo-oracles share the same principles and intuitions of N-version programming,
and they are thus meant to detect any development fault.

Self-optimizing code. Software redundancy has been exploited to overcome non-
functional failures [DMM04, NG07]. The term self-optimization is commonly used
in the research area of autonomous systems, and refers to an automatic reaction of
a system aimed to either compensate or recover from performance issues. The main
approaches to self-optimization rely on deliberate redundancy. Diaconescu et al. propose
a self-optimization approach based on the development of multiple versions of the same
functionalities, each version optimized for different runtime conditions [DMM04]. The
application performance is collected at runtime to detect potential performance problems,
and the application adapted to emerging performance issues by selecting and activating
the suitable optimal alternative based on the current running context.

Naccache et al. exploit a similar idea in the domain of service-oriented comput-
ing [NG07]. The approach enhances Web services applications with mechanisms that
switch among several implementations of the same service depending on the chosen
quality of the service. Given the required performance characteristics of the Web ser-
vice, the framework automatically selects the most suitable implementation among the
available services.

Self-optimizing techniques are meant to tolerate development faults at runtime, and
in particular non-functional faults.

2.2.2 Intrinsic Redundancy

While deliberate software redundancy has been used since the seventies in a variety
of different contexts, intrinsic redundancy has been explored only recently with very
promising results. Intrinsic redundancy at the code level can stem from good design
principles, such as design for reusability, or simply from the modularity and complexity of
modern software systems. Intrinsic redundancy has been mainly exploited to increase the
reliability of both service-oriented and general-purpose applications. Recently, the use
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of intrinsic redundancy has been extended to improve the reliability of service-oriented
applications, generate program patches and automatically generate test oracles.

Dynamic service substitution. Service-oriented computing is an emerging paradigm
for distributed computing. At the core of service-oriented computing are services that
provide independent computational elements that can be published, discovered, orches-
trated, and invoked to build distributed and collaborating applications. The vision of
service-oriented computing is to foster the implementation of alternative, functionally
equivalent services. In recent years, popular services have often become available in
multiple implementations. Each implementation is designed and deployed indepen-
dently, offer various levels of quality of service, but ultimately complies with a standard
common interface. Some researches have proposed to take advantage of this form of
intrinsic redundancy by exploiting the availability of the independent implementations
of the same service to increase the reliability of service-oriented applications. The most
relevant research work has focused on those failures that may be caused either by
malfunctioning services or by unforeseen changes in the functionalities offered by the
current reference implementation.

Sadjadi et al. propose to increase the reliability of Web services by augmenting
applications with self-managing capabilities. They propose to automatically substitute
similar service implementations by weaving alternative services invocation at runtime,
thus avoiding manual modification of the original code [SM05].

Taher et al. enhance runtime service substitution to find at runtime services by
both implementing similar interfaces and introducing suitable converters that, although
different, are sufficiently similar to admit to a simple adaptation [TBFM06].

Subramanian et al. enhance BPEL with new constructs to identify alternative service
implementations of the same identical interfaces in order to deal with unexpected
responses or unavailability issues [STN+08].

Mosincat and Binder propose a framework for runtime service adaptation that
supports both stateless and stateful Web services [MB08].

In summary, dynamic service substitution amounts to take advantage of the redun-
dancy at the code level intrinsically present in service-oriented computing to tolerate
both development and physical faults.

Automatic program repair. Automatic program repair has recently gained consid-
erable attention in the software engineering and programming languages communi-
ties. The expression automatic program repair refers to techniques that aim to auto-
matically generate a fix for a fault. Researchers have explored several solutions to
automatically repair programs: symbolic execution [NQRC13, TR15, MYR15], SMT
solvers [DXLBM14, LR15, MKIE15], source code transformations [CH13, KNSK13,
QML+14, Sha14, OPM14], machine learning [LR16] and intrinsic redundancy [AY08,
CGM+13, CGPP15, DW10, LDVFW12, LNFW12, SDLLR15, WNGF09].
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Automatic program repair is a broad research area that can be partitioned in two
main categories: code repair and runtime repair. Automatic code repair techniques aim
to generate patches for the faulty code under analysis. In essence, given the source code
of the application and at least one failing execution, code repair techniques generate a
patch that allows the application to successfully compute the desired functionality also
in the failing executions.

The seminal work on automatic code repair was proposed by Weimer et al. and
Arcuri et al. who investigated genetic programming as a way of automatically fixing
software faults [AY08, WNGF09, LDVFW12, LNFW12]. Both approaches assume the
availability of a test suite that is used to approximate the correct behavior, with at
least one failing execution. The goal of these approaches is to modify the code of the
application such that all test cases pass by exploiting genetic algorithms. A genetic
algorithm works by first generating a set of variants of the application’s source code.
The algorithm then evolves the variants by exploiting some repair operators. The search
terminates as soon as a new “correct” version of the program is generated.

The techniques defined by Weimer et al. and Arcuri et al. apply mutations to the
faulty statements by copying similar statements defined elsewhere in the code as repair
operators. The underlying assumption of these approaches is that the code fragment
that implements the correct behavior is already present in the system. Barr et al.
presented an empirical validation of such assumption, showing that a large quantity of
the code fragments to patch the fault can be intrinsically found in the same version of
the system [BBD+14]. Sidiroglou-Douskos et al. have recently proposed an approach for
automatic code repair that collects code fragments for code repair from external “donor”
applications [SDLLR15]. Debroy et al. defined a technique for automatic code repair
which relies on a set of predefined source code mutations as repair operators [DW10].

While automatic code repair focuses on the code, automatic runtime repair techniques
aim to avoid or, at least, to minimize the effect of failures on the current execution.
This category of automatic program repair techniques is inspired by the research work
on fault tolerance and self-healing systems. Several techniques for automatic runtime
repair rely on either specifications or inferred behavioral models to fix faults dynamically.
Dallmeier et al. developed an approach to automatically build behavioral models for
Java classes by running a set of passing and failing test cases [DZM09]. Their tool,
called Pachicka, compares the behavioral model inferred on the passing test cases to the
model of the failing runs. Pachika then tries to produces possible fixes that amount to
modifications of the model of the failing runs to make it as similar as possible with the
model of the successful runs. The supported modifications on the model are limited to
inserting and removing transitions, and thus can only fix a limited set of fault type.

Wei et al. propose a similar approach called Autotest that automatically detects
failures in Eiffel classes, and suggests potential fixes by comparing the outcome of the
passing runs to the outcome of the failing run [MFC+09, WPF+10]. Autotest relies on
class specifications expressed in the form of Eiffel contracts, that consist of precondi-
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tions, post-conditions, assertions, and invariants. The tool builds finite state machines
representing the behavior inferred during the executing of either successful or failing
test cases, and then compares the models to propose fixes. Autotest supports complex
model modifications to the faulty classes, and thus they can successfully deal with more
types of faults than Pachika.

Perkins et al. proposed a tool called ClearView that uses dynamic analysis to detect
failures and fix faults at runtime. ClearView relies on dynamically inferred invariants
computed with Daikon to automatically detect buffer overflows and illegal control flows
caused by malicious security attacks [PKL+09]. ClearView builds the invariants of the
correct behavior during a training session in which benign inputs and interactions where
used. When deployed, ClearView re-writes the value of registers whenever the current
execution violates any of the invariants.

Carzaniga et al. propose Automatic Workarounds, a technique that recover from
runtime failures by automatically replacing the failing method with a redundant ver-
sion [CGPP10, CGPP15, CGM+13]. Automatic Workarounds exploit the intrinsic redun-
dancy of software systems, focusing on redundancy at the method level, which relies
on the presence of redundant methods or method sequences. The authors propose to
express those alternative methods as rewriting rules that capture the redundancy of
a pair of method sequences. Therefore, if the execution of a method fails, the Auto-
matic Workarounds technique first restores the state of the system prior to the failure,
then replaces the failing method with an alternative implementation, and finally re-
executes the code. If the execution fails again, the technique tries with a different
equivalent sequence, otherwise the application continues to execute without any further
intervention.

Automatic program repair techniques largely exploit intrinsic redundancy. Automatic
code repair approaches exploit intrinsic redundancy at the statement level to generate
patches for development faults located in code under analysis. Whereas automatic
runtime repair approaches exploit intrinsic redundancy at various levels. Pachika,
Autotest and ClearView exploit code redundancy at the statement level, because they
are changing the code in the application to reproduce a behavior that has been already
observed in previous correct executions. The Automatic Workarounds approach exploit
intrinsic redundancy at the level of method calls, expressed as equivalent sequences.
Automatic program repair techniques can deal with all the types of faults that span from
development to interaction.

Automatic oracle generation. As in the case of deliberate redundancy, intrinsic re-
dundancy has been explored to automatically generate oracles for test cases. Doong
and Frankl first, and Gotlieb later, have exploited the symmetry intrinsically present in
programs to check the correctness of test case execution.

Doong and Frankl proposed ASTOOT, a technique that relies on algebraic specifica-
tions of the component under analysis to derive self-checking test cases [DF94]. Each
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test case consists of a pair of sequences of operations on the same component, along
with a tag indicating whether these sequences are expected to have the same side-effects
on the internal state of the component. ASTOOT automatically generates a test driver,
which in turn executes the tests by first invoking the sequences of operations, and by
later running an equivalence check provided by the developers to compare the resulting
states. Any inconsistency between the expected result (expressed by the tag) and the
equivalence check reveals a fault.

Gotlieb exploited symmetries of the program present in the form of permutations
of operations to automatically check the results of the test case executions [Got03].
An example of program symmetry is a function that multiplies two input values a and
b that shall produce the same output on a permutation of its input parameters. The
approach generates test inputs, and exploits the symmetries identified by the developers
to identify incorrect results.

Carzaniga et al. proposed a similar method that is also rooted in the idea of a pseudo-
oracle [CGG+14]. They generate what they call cross-checking oracles by exploiting the
intrinsic redundancy of software systems. The technique transforms redundant method
pairs that developers encode in the form of rewriting rules into oracles that can be
automatically deployed within a test suite. For example, the technique uses redundant
alternatives to instrument the code of a test case by pairing the call to a method with a
call to its redundant implementation and cross-checking that both executions are indeed
equivalent. The equivalence check inspects both the outcome and the state to identify
any discrepancy between the two executions.

Techniques that exploit intrinsic redundancy for testing purposes are suitable for
discovering development faults.

2.2.3 Open Challenges for Software Redundancy

Deliberate redundancy has been extensively exploited in software engineering in both
hardware and software. Deliberately introducing redundancy into software systems may
raise costs without increasing reliability. Deliberate redundancy introduces additional
development costs, since independent teams shall design and develop multiple version
of the same components, and each version must pass through the whole development life
cycle. The reliability improvements depend on the independence of the failures in the
different versions. Faults may exhibit some level of correlation even across components
that are developed completely in isolation, since the independent development teams
may rely on the same algorithms, and therefore the various versions may be susceptible
to correlated failures. For instance, three independent teams may work on three different
versions of a component, but the resulting versions may all use merge-sort to order the
internal elements, and be thus affected by similar errors.

Several studies indicate that the assumption that faults occur independently in differ-
ent versions is not realistic [BKL90, Hat97, KL86]. Kelly et al. address this problem by
extending the original definition of N-version programming [KMY91]. They propose to
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distinguish between two different forms of diversity introduced through the independent
design of several versions: random and enforced diversity. Random diversity refers to
the independent design and implementation process as described by Avizienis et al.
in their seminal work. The underlying assumption is that different programmers and
designers will independently choose distinct approaches to solve a problem. Conversely,
in enforced diversity there is an explicit effort by programmers and designers to design
and implement multiple, diverse algorithms and data structures. In this case, the main
assumption is that diverse data structures and algorithms are less likely to fail on the
same inputs and environment conditions.

Quantifying the redundancy level between the various implementations, for example
in an N-version system, still remains an open challenge. This problem arises also for
intrinsic redundancy, for example a system may try to avoid a failure by applying an
automatic workaround by replacing a failing method with a supposedly equivalent
but hopefully non-failing alternative. In all these cases the fundamental question is:
How redundant is the chosen alternative? And thus, how likely is it that the chosen
alternative would avoid the failure? More in detail, is the alternative version executing
substantially different code, or is it a mere different interface for the same underlying
code? And even if the code is different, is the alternative radically diverse, or is it using
essentially the same algorithm?

In this dissertation, we address all these questions. In Chapter 3 we provide a
general and abstract notion of redundancy, and in Chapter 4 we define and implement
a practical measure of redundancy based on such abstract notion.

Although not fully explored and exploited yet, intrinsic redundancy is attracting
a growing interest in software engineering. As already discussed, while deliberate
redundancy requires significant development effort to increase the reliability of a system,
intrinsic redundancy can be exploited for the same purposes with negligible cost, once
suitably identified and harnessed. To fully exploit intrinsic software redundancy, we
need to address few fundamental issues about its presence, relevance, and identification.

First, although implicitly present into systems, the effectiveness of techniques that
exploit intrinsic redundancy is bound to the existence of such form of redundancy.
Intrinsic redundancy is likely to be incomplete, that is, it is not plausible that even the
majority of code fragments in a general-purpose software system have a redundant
alternative without an explicit intent of the developers. In essence, since there is no
control or deliberate decisions to introduce such form of redundancy, all those techniques
that want to exploit intrinsic redundancy must be opportunistic by design.

Second, as already said, it is still indispensable to quantify if and to what extent two
code fragments are intrinsically redundant.

Finally, the main prerequisite for effectively use intrinsic redundancy is its identifica-
tion. In fact, differently from deliberate redundancy—that is introduced consciously
and by design into the system—intrinsic redundancy is the result of the combination of
several factors in the development process. Redundant functionalities are thus present
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in the system but they are not documented as such. It is thus necessary to first identify
where is such form of redundancy in the system. Manual approaches based on artifacts
(such as specifications) or code are time consuming, tedious, and more importantly
error-prone. Automating the identification of redundancy can thus lead to both a wide-
spread adoption of intrinsic redundancy, and a more effective use. In the next section,
we survey the existing approaches to automatically identify redundancy in software.

2.3 Techniques to Identify Redundancy

Despite the increasing use of redundancy in different approaches, the problem of identi-
fying redundancy in software systems has not been satisfactorily addressed yet. So far,
there are no available approaches to automatically identify functionally equivalent code
fragments whose executions are diverse. More specifically, the problem of identifying
redundancy has not been only partially explored. In fact, most of the research work fo-
cuses on the identification of syntactically identical (or almost identical) code fragments,
known as code clones, while the identification of semantically equivalent code has been
investigated less. Besides techniques to identify semantic code clones, several types of
specifications can be exploited to derive semantically equivalent code fragments, such
as finite state machines, program invariants, and other formal specifications. Therefore,
any technique that can infer these specifications can be used in a technique to identify
software redundancy.

In Section 2.3.1 we survey semantic code clone detection techniques, while in
Section 2.3.2 we survey some techniques that can infer finite state machines, program
invariants, and algebraic specification through dynamic analysis.

2.3.1 Code Clones Detection

The research literature contains various studies on the occurrence of redundancy in
software. The largest body of work in this area is focused on the identification and
study of code clones. A code clone is defined as a fragment of program code that is
syntactically identical, or very similar, to other code fragments either in the same project,
or even in other software systems. Most of such code duplications can often be attributed
to poor programming practices, caused by developers that copy-paste code to quickly
develop identical or similar functionalities.

Although most of the literature work focuses on syntactic code clone [Bak95,
Bak97, BPM04, CYC+01, DER10, GJS08, JDHW09, KKI02, KSNM05, KDM+96, LLMZ04,
PTK13, RBD12], some researchers have proposed ideas and concrete techniques to as-
sess the semantic similarity of code fragments within a system [GJS08, KH01, MM01].
The most relevant work is that of Jiang and Su, who consider the problem of identifying
semantic clones [JS09]. Their definition of clones is based on a notion of equivalent
code fragments. In essence, Jiang and Su consider two code fragments as equivalent
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when they have identical effects, based on the comparison of their output values. More
in detail, the authors extract code snippets from the program under analysis. Each
snippet is compared to all those code fragments that have compatible input values,
that is their parameter types are a permutation of the types of the selected snippet.
Then, they use random input generation to execute the code snippets. Two snippets
are considered identical if they compute the same output values given the same inputs.
These techniques to identify semantic code clones can naturally be used to identify
equivalent operations.

2.3.2 Specification Inference

Several techniques to infer specifications from dynamic analysis can be used to identify
semantic equivalence in software systems.

Specification inference finds its roots in the pioneering work of Ernst et al. who pro-
posed Daikon to infer likely program invariants from a finite set of executions [ECGN01].
Daikon inspects a program’s variable during execution and generalizes the observed
behavior to preconditions, post-conditions, method and class invariants. To generate
such specifications, Daikon executes an instrumented version of program and analyzes
the produced execution traces. On the generated traces, Daikon checks the program
states collected in the traces to validate a set of invariants to see which ones hold and
compute candidate program invariants. By comparing invariants, preconditions, and
post-conditions collected for different methods, it is possible to identify semantically
equivalent methods, although the correctness of the inferred specifications is highly
dependent on the quality of the test suites used.

Csallner et al. propose DySy, a technique to increase the quality of the inferred
invariants by exploiting dynamic symbolic execution [CTS08]. DySy builds the invariants
through the symbolic path conditions explored while executing a user-supplied test suite.
DySy then summarizes the generated path conditions as invariants. A key difference
between Daikon and DySy is that techniques starting with predefined set of candidate
invariants, such as Daikon, may over-approximate the inferred invariants if the set of
test traces does not provide enough information to refute the generated candidates.
Whereas techniques that build invariants from the observed executions, such as DySy,
can generate a more precise set of invariants. However, DySy generates invariants that
are more similar to symbolic summaries. Similarly, Xie et al. and Zhang et al. propose
a feedback loop framework that refines the likely invariants inferred with Daikon to
improve their correctness [XN03, ZYR+14]. The intuition is to either use a test case
generator, or symbolic execution, to create new, addition test cases. Such test cases can
then be executed to help refining the invariants generated by Daikon.

Other specification mining techniques infer finite state machine models from various
types of execution traces. Dallmeier et al. propose ADABU to infer finite state machines
for entire Java components, and that represent how the component changes the concrete
program state after the execution of each method [DLWZ06]. The authors also propose
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to exploit test case generation to explore unobserved behavior [DKM+12]. ADABU
generates behavioral models that can be used to identify likely semantically equivalent
methods in a software component, although the high level of abstraction they use
may impact on the precision of the final result. Lorenzoli et al. propose the GK-tail
technique to infer finite state machine models that represent the protocol of software
components [LMP08]. In particular, the GK-tail algorithm produces FSAs annotated
with data constraints. Beschastnikh et al. proposed a framework to specify model
inference algorithms declaratively [BBA+13]. Although finite state machines can express
equivalence among different operations, they typically abstract from the concrete events
observed in the program execution. Consequently, the equivalent event sequence that
can be obtained from the inferred models hold for the abstract state, but not necessarily
for the complete, concrete one.

Algebraic specifications formalize component behavior in terms of functions on
objects and axioms that describe the mutual relationship among such functions. Henkel
et al. use reflection to get the list of methods in a Java class, and then they generate
executions to infer algebraic specifications for such class [HRD08]. The axioms that they
generate to describe the behavior of the class include information that can be used to
infer the equivalence of method sequences. Ghezzi et al. generalize finite-state models
by means of graph-transformation systems, whose rules correspond to equations of
algebraic specifications [GMM09]. The main difference between the two approaches is
that Ghezzi et al. produce models with a different abstraction that makes the semantic
equivalence representation more precise.

2.3.3 Open Challenges for Automatically Identifying Redundancy

Software redundancy can be identified either automatically or manually. Equivalent
functionalities can be derived automatically from formal specifications that—when
properly extracted, expressed, and verified—offer a sound and complete description
of the semantic of the software systems. Formal specifications can be provided at
development time, especially for critical applications, or can be inferred from system
executions.

Developers can write sets of redundant functionalities manually as an additional
form of specification for their software, or identify equivalent functions from the docu-
mentation written in natural language. Such additional activity potentially impacts less
on developers who are familiar with the software, since according to our experience
they can write a set of correct equivalent functionalities in few hours. In contrast, less
experienced developers and users may require more time and effort to effectively and
efficiently write such form of specifications. Regardless of the familiarity of developers
with the system, deriving redundancy specifications is an error-prone activity, especially
when the semantic relation among equivalent code fragments is not trivial or even
counter-intuitive. For instance, consider methods clear() and retainAll(Collection<?>
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816 /**
817 * Removes all of the elements from this Vector. The Vector will

818 * be empty after this call returns (unless it throws an exception).

819 */

820 public void clear() {...}

883 /**
884 * Retains only the elements in this Vector that are contained in the

885 * specified Collection. In other words, removes from this Vector all

886 * of its elements that are not contained in the specified Collection.

887 *
888 * @param c a collection of elements to be retained in this Vector

889 * (all other elements are removed)

890 * @return true if this Vector changed as a result of the call

891 */

892 public boolean retainAll(Collection<?> c) {...}

Figure 2.3. Documentation of methods clear and retainAll of the class Stack

c)) of the class Vector of the Java Class Library.7 The clear() method removes all the
elements contained in the container, while retainAll(c) retains all the elements of the
container that are present in the collection c and removes all the others, as described
by the Javadoc documentation in Figure 2.3. Although methods clear and retainAll
provide almost complementary functionalities, they are functionally equivalent when the
method retainAll is invoked with an empty collection, causing the method to retain no
elements. Such peculiar equivalence relation is likely to be missed even by experienced
developers, since it is counter-intuitive with respect to the functionality provided by the
retainAll method.

To alleviate the error-proneness of manual approaches, we presented several tech-
niques that can be used to automatically identify redundancy in a software system.
Most of the research work on automation focuses on the identification of code clones.
Techniques to detect semantic code clones can detect only a limited amount of equivalent
functionalities in software systems. In fact, they rely either on abstractions of the source
code being analyzed, or they focus on simplistic relations between code fragments,
such as input/output equivalence. As a result, only a limited amount of equivalent
functionalities can be identified by current approaches, and in addition such approaches
are not sound, that is, some code fragments categorized as equivalent might exhibit
different non-equivalent behaviors when executed in previously unseen environments
or execution conditions.

When formal specifications are not provided, several techniques propose to infer
them from the execution of the software system. However, in general models that are
inferred from program execution are neither complete, as they build the information on
the basis of the observed behavior only, nor sound, as they may either represent also
failing behaviors that have been observed, or abstract and generalize over observed

7http://docs.oracle.com/javase/8/docs/api/java/util/Vector.html
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values. Therefore, inferred models can be used to identify equivalent functionalities,
but they may lead to incorrect results and are thus subject to the approval of developers,
impacting on the efficiency of the overall approach.

In this chapter, we have surveyed how various forms of redundancy can be exploited
for different purposes, from fault tolerance to software testing. Although redundancy
has been exploited successfully in many areas and for various purposes, the notion of
redundancy by and of itself has not been explored and studied. In particular, there is no
formal definition of the concept of redundancy. In Chapter 3 we provide an abstract
and general notion of software redundancy. We then provide a meaningful measure of
software redundancy based on such notion in Chapter 4, as well as an effective approach
to identify equivalent functionalities in Chapter 5.
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Chapter 3

A Notion of Software Redundancy

Software redundancy has been extensively exploited in software engineer-
ing for various purposes, from fault tolerance to testing, optimization, and
automatic repair. Despite the considerable number of techniques that make
use of redundancy, a formal notion of redundancy is still missing. Intuitively,
two code fragments are redundant when they perform the same functionality
and yet their execution is different. In this chapter we present a formal notion
of redundancy, which is composed of a notion of observational equivalence
between code fragments and a notion of diversity between executions. The
resulting formalization of software redundancy is general, since it focuses at the
code level, and abstracts over implementation details or peculiar programming
language features.

In the previous chapter, we introduced the various forms of redundancy that can be
deliberately introduced, or intrinsically present in a software system. We also presented
the numerous techniques that exploit software redundancy for several purposes: fault
tolerance, test oracle generation, self-optimization, and automatic repair. In this section,
we propose a formalization of software redundancy that captures an abstract and
general notion of redundancy, and that constitutes the basis for defining a meaningful
and quantitative measure of redundancy that we will present and exploit in Chapter 4.

Informally, we say that a system is redundant when it provides the same functionality
in different ways. In particular, a software system is redundant when it produces
functionally equivalent results through different executions.

Two executions are functionally equivalent when, starting from the same initial
state and taking the same input values, they produce equivalent results and they lead
to equivalent system states. Two states or two results are equivalent if they are either
identical or observationally indistinguishable. More in detail, two states (or results)
are identical if they are exactly the same state. However, we consider a broader notion
of equivalence that we refer to as observational equivalence, as shown in Figure 3.1.
We say that two states (or results) are observationally equivalent when they can not be
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Figure 3.1. Informal visualization of functional equivalence
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Figure 3.2. Informal visualization of execution diversity

distinguished by an external observer, that is, informally, through the system’s public
interface. Thus, two identical states are also observationally equivalent, but there might
also be equivalent states that are not identical.

Two executions are different when they either execute different code elements
or, as a minimum requirement, execute the same elements in different ways. The
same code fragment can be executed in different ways due to changes in the execution
environment. For instance, many programming languages provide functions to influence
either the timing or the scheduling of the execution. This is the case, for example, of
the sleep(int milliseconds) and setTimeout(function, milliseconds) methods in Java and
Javascript respectively, which control the timing of the execution of other functions.
Such methods do not alter the sequence of instructions executed by a thread, which are
the exactly same, but rather change the interleaving with other threads. For instance,
put(key, value) and sleep(500); put(key, value) execute the same functional code with
different scheduling and the timing. Previous studies have shown that such methods are
useful to create method sequences that are functionally equivalent but with different
executions, and can be effectively exploited to reveal, analyze, or avoid concurrency
faults like race conditions and deadlocks [EFN+02, KLNB+09, NBTU08]. In conclusion,
we are characterizing the execution of different code as well as the exact same code



35

linkage: int x; int y;

int tmp = x;

x = y;

y = tmp;

x ^= y;

y ^= x;

x ^= y;

linkage: AbstractMultimap<K,V> map; K key; V value;

map.put(key, value); List list = new ArrayList();

list.add(value);

map.putAll(key, list);

Figure 3.3. Examples of redundant code fragments

but with a different execution schedule, as different executions. Figure 3.2 summarizes
such notion of execution diversity with respect to functional equivalence as previously
described.

We define redundancy as a relation between two code fragments within a larger
system. A code fragment is any portion of code together with the necessary linkage
between that code and the rest of the system. A fragment can be seen as the in-line
expansion of a function with parameters passed by reference, where the parameters
are the linkage between the fragment and its context. The linkage can be seen as the
portion of the state that encapsulates all the possible side-effects of the execution of the
code fragment. Figure 3.3 presents two examples of redundant code fragments. The
figure indicates the fragments with the linkage between them and the rest of the system
by listing the variables in the fragments that refer to variables in the rest of the system.
All other variables are local to the fragments.

The example at the top of the figure is a code fragment that swaps two integer
variables. The code fragment on the left-hand side uses a temporary variable, while
the code fragment on the right side swaps the same variables by using the bitwise
xor operator. The example at the bottom of the figure refers to the container class
AbstractMultimap<K,V> of the Google Guava library in which one can add an individual
key-value mapping for a given key or multiple mappings for the same key with methods
put and putAll respectively. The methods implement different code and different
algorithms, as indicated in Figure 2.2 at page 11. In both the examples reported in
Figure 3.3 the code fragments are different but compute the same functionality, thus
illustrating our definition of redundancy: two fragments are redundant when they are
functionally equivalent and at the same time their executions are different. We now
formalize these two constituent notions.
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3.1 An Abstract and General Notion of Redundancy

We propose to formalize the notion of software redundancy at the code level. For
instance, referring to the code fragments in Figure 3.3 we want to express the notion
that it is possible to substitute every call to put(key, value) with a call to put(key, list)
(where list contains only the element value) and the software system would preserve
its original functionality. In essence, we want to express the notion that replacing a
fragment A with a redundant fragment B within a larger system does not change the
functionality of the whole system, that is executing B produces the same results as
executing A without any noticeable difference in the future behavior of the system. In
other words, we want B to have the same result and equivalent side-effects—or more in
general equivalent state changes—as A.

Other studies on semantically equivalent code adopt a purely functional notion of
equivalence, and therefore assume no visible state changes [DF94]. Yet others consider
state changes to be part of the input/output transformation of code fragments, but
then accept only identical state changes [JS09]. Instead, we would still consider two
fragments to be equivalent even if they produce different state changes, as long as the
observable effects of those changes are identical.

With the expression “observable effects” we indicate that the two code fragments
have the same effect from the perspective of an external observer, that is, any element
that interacts with the component. For instance, two container implementations may use
different algorithms to sort the elements present in the data structure. Such algorithms
may have asymptotically different performance profiles, and they may store data using
different internal structures. Nevertheless, they still may be redundant from an external
viewpoint if they both return a sorted set as expected by an external observer, who has
no access to the internal state and therefore may not notice any difference in the result,
or in any case tolerate performance differences.

This notion of equivalence is inspired by the testing equivalence of De Nicola and
Hennessy [DH84] and the weak bisimilarity of Hennessy and Milner [HM80]. We now
formulate an initial definition of equivalence between code fragments.

3.1.1 Basic Definitions

To formalize the intuitive notion of software redundancy at the code level, we need an
abstract and general model of software systems. We model a software system as a state
machine, and we denote with S the set of states, and with A the set of all possible actions
of the system. Under this model, the execution of a code fragment C starting from
an initial state S0 amounts to a sequence of actions α1,α2, . . . ,αk ∈ A. This sequence
of actions may depend on the initial state and induces a sequence of state transitions

S0
α1−→ S1

α2−→ · · ·
αk−→ Sk. In our notion we only consider code fragments with sequential

and terminating—and therefore finite but perhaps unbounded—executions, and without
loss of generality we consider the input as being part of the initial state.
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!1 !2 !kS0 S1 Sk

C

Out1 Out2 Outk

Figure 3.4. Abstract representation of the execution of a generic code fragment C

We use O to denote the set of all possible outputs, that is, the set of all externally
observable effects of an execution. The set of externally observable effects may also
include I/O operations such as reading or writing files, sockets, etc. We use Out(S,α) ∈O
to denote the output corresponding to the execution of action α starting from state S,
and, generalizing, we denote with Out(S0, C) ∈O∗ the output of the sequence of actions
α1,α2, . . . ,αk corresponding to the execution of C from state S0. Note that the cardinality
of the output set does not have to necessarily match the cardinality of performed actions,
that is, some actions may not produce any output but only a change of state. This
abstract model of the execution of a software system is represented in Figure 3.4.

Our model of software systems is abstract, general, and applicable to any code
fragment. In Figure 3.5 we represent the execution of some redundant code fragments
using as reference the examples in the first row of Figure 3.3. The two redundant code
fragments CA and CB swap the values of two variable x and y . The fragment CA uses a
temporary variable, whereas CB uses the bitwise xor operator. The execution of the two
different code fragments starts from an identical initial state S0. Since the fragments are
implemented with different algorithms, the two executions perform different actions and
thus induce different state changes. Nevertheless, since the fragments are functionally
equivalent, the final state S3 reached by the two computations is the same. In this
example, the complexity of the code fragments is modest, and claiming the equivalence
of their final state is trivial. In general, we would like to include the possibility that the
final states reached by the two computations may differ, so long as this difference is
not observable. We now formalize such notion of observational equivalence between
program states.

3.1.2 Observational Equivalence

We want to express the notion that two code fragments are functionally equivalent
when, starting from the same initial state and with the same input, the two code
fragments compute the same results and their executions lead to equivalent system
states. In particular, the resulting states should be deemed as equivalent even if their
internal representation differs, but such difference can not be exposed by any noticeable
difference in the functionality of the system. Intuitively, it should not be possible
to distinguish the two supposedly equivalent code fragments by executing any code
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S0

S1
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Figure 3.5. Representation of the execution of the redundant code fragments at the top
of Figure 3.3

fragment that interacts with them.

More formally, we say that two code fragments CA and CB are observationally
equivalent from an initial state S0 if and only if, for every code fragment CP , which
we refer to as probing code, the output Out(S0, CA; CP) is the same as Out(S0, CB; CP),
where CA; CP and CB; CP are code fragments obtained by concatenating CA and CB

with the probing code CP , respectively. Figure 3.6 abstractly represents this notion of
observational equivalence.

This definition requires that the two code fragments and the follow-up probing
code produce exactly the same output. This in turn does not take into account the
intended semantics of the system whereby different output sequences may be equally
valid and therefore should be considered equivalent. For example, consider the case
of the HashSet<E> class of the Java Class Library that implements an unordered set of
elements. Suppose to instantiate an HashSet of integers that in state S0 represents the
set {10}. Consider now a fragment CA that adds element 20 to the set, and a supposedly
equivalent fragment CB that also adds 20 to the set but with a different internal state
transformation: CA leaves the set in a state such that an iteration would first go through
10 and then 20, while CB causes the same iteration to first go through 20 and then 10.
In the end, although semantically and functionally equivalent, CA and CB would not be
considered observationally equivalent according to the definition above, since a probing
code that iterates through the elements of the set would expose a difference.

To account for the semantics of the system, we have to define an equivalence
relation between output sequences that is more specific than the identity relation. We
thus consider a more general definition of equivalence that requires the output of the
two fragments and the follow-up probing code to be equivalent according to an oracle
relation that embodies the semantics of the system. Let TS0,CA,· be a family of equivalence
relations (hereafter oracles) that, depending on S0 and CA, and for every valid probing
code CP defines an equivalence oracle TS0,CA,CP

⊆O∗ ×O∗ that essentially says whether
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Figure 3.6. Observational equivalence between two code CA and CB

two output sequences are both correct (and therefore equivalent) for the execution
of CA from S0 with probing code CP . Notice that such oracles are not symmetric with
respect to CA and CB, since they define an equivalence between output sequences for the
semantic of a specific code fragment, in this case CA. Therefore we say that CB can replace
CA when the output of CB and CA are equivalent according to TS0,CA,CP

, and vice-versa
CA can replace CB when the outputs are equivalent according to TS0,CB ,CP

. Finally, we
say that CA and CB are observationally equivalent in a semantically meaningful sense
from an initial state S0 when for every probing code fragment CP they can replace each
other. More specifically, the output sequences Out(S0, CA; CP) and Out(S0, CB; CP) are
equivalent according to both oracles TS0,CA,CP

and TS0,CB ,CP
. Notice that the former and

more strict definition is a special case in which the oracles reduce to the identity relation.
The readers should notice that in our notion of observational equivalence, the

quantity and length (calculated as number of actions for each probing code) of probing
code CP executed are not explicitly defined and might be not bounded. Moreover, our
notion of behavioral equivalence is not decidable in the most general computational
model, and even considering a bounded notion of observability (that is, with a bounded
sequence of actions in the probing code) the verification of the equivalence relations
may be computationally very expensive. However, it should be clear that our objective
in formulating a notion of equivalence is not to facilitate the automated checking of
such a property. Rather, we want to provide the ability to specify an equivalence relation
regardless of the relation that may or may not exist at the implementation level. In other
words, as for other forms of specifications (for example, assertions) the specification
expresses an intent to which the implementation should adhere.

3.1.3 Software Redundancy

Our definition of software redundancy combines two notions: functional equivalence
and execution diversity. We previously defined a semantically meaningful notion of
observational equivalence. We now define a notion of execution diversity and we then
put these two notions together to ultimately define a notion of software redundancy.

We say that the executions of two code fragments CA and CB from an initial state
S0 are different if the sequence of actions αA,1,αA,2 . . . induced by CA differs from the
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sequence αB,1,αB,2 . . . induced by CB. For instance, let us consider the two equivalent
sequences of actions in Figure 3.5. We consider those as different executions because
the actions performed by the two code fragments during the execution are completely
different. We explore and experimentally evaluate several alternative approaches for
quantifying the difference between sequences of actions in Chapter 4.

In summary, two code fragments CA and CB are redundant in state S0 when they
produce observationally equivalent results, and execute different actions or the same
actions but in different order. Two code fragments CA and CB are always redundant if
they are redundant in every valid state S (every syntactically valid application of the
fragments with every valid input).

This model of redundancy is built upon our practical experience in developing various
concrete techniques to capture and exploit software redundancy [CGG+14, CGM+13,
CGPP15, GGM+14], and generalizes to software redundancy in other contexts, such as
N-version programming [ALRL04] and recovery blocks [Ran75].

We formulated an abstract and general model of software redundancy that abstracts
from a specific technique to capture the essence of software redundancy. This is the first
and necessary step for understanding the nature of redundancy in software systems,
and using it systematically to improve the reliability of software systems.

From this abstract model, we derive a concrete method to characterize the redun-
dancy of a system, and to obtain a measure that would captures the attainable benefits
of the redundancy present within a system. In Chapter 4, we present a definition and
implementation of a practical and useful measure of software redundancy that is one of
the main contribution of this dissertation.

3.2 Behavioral Equivalence and Execution Diversity

Our formalization of redundancy is built upon two distinctive notions: a notion of
behavioral equivalence, and a notion of execution diversity. Researchers have already
presented definition, approaches, and techniques that study and explore these two
constituent notions of redundancy. In Section 3.2.1 we present the most significant
definitions of behavioral equivalence in process algebra, and some recent definitions
used in software engineering literature. In Section 3.2.2 we present the most influential
work on execution diversity.

3.2.1 Behavioral Equivalence

The notion of behavioral equivalence is one of the most fundamental and pervasive no-
tions in computer science. In particular, researchers in the field of process algebra defined
several equivalence relations [BR83, DH84, HM80, Hoa80, HBR81, Mil82, Par81]. In
this section, we survey the definitions that inspired our notion of observation equivalence
among code fragments.
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Trace equivalence. The classic definition of behavioral equivalence was proposed by
Hoare [Hoa80], who defines a notion of equivalence between processes based on the
concept of traces. A trace is defined as a finite sequence of symbols recording the actual
or potential behavior of a process from its beginning up to some moment in time. Since
any process P is characterized by the set of all possible traces, two processes P and Q
are trace equivalent if they have the same sets of possible traces, that is, they expose the
same behaviors.

The main limitation of trace equivalence is that it does not discriminate between a
process that terminates and a process that enters in a deadlock state. Completed trace
equivalence extends the notion of trace equivalence to cope with this case [JAB01]. A
completed trace of a process P is a sequence of actions that leads to some process Q that
has no further possible action, that is, whose set of actions is the empty set. An empty
set of actions expresses the termination of a process, and a trace that terminates is not
equivalent to a trace that leads to a deadlock (where the set of actions is non-empty).
Two processes P and Q are completed trace equivalent if they are trace equivalent and
have the same completed traces.

Brookes et al. proposes an extension to trace equivalence referring to failures instead
of traces [BHR84]. A failure is defined as a state in which a process may be unable
to perform any other transitions as the result of a non-deterministic decision. Two
processes are failure trace equivalent if they have identical failing state sets.

Testing equivalence. Close to the notion of failure equivalence, De Nicola and Hen-
nessy formalize the notion of testing equivalence [DH84]. Testing equivalence of com-
municating processes is built upon the notion of observers. intuitively, an observer is an
external agent that tests the processes. To decide if a process passes a test, we need a
specification of the subset of the possible states that are considered successful states.
A computation is deemed as successful if it contains at least one successful state and
unsuccessful if it does not contain any successful state. Based on these notions, two or
more processes are equivalent (with respect to the set of observations applied) if and
only if they pass or fail the same set of tests.

Strong and weak bisimilarity. Bisimulation is defined as a binary relation between
labelled transition systems. A bisimulation is a relation that associates two states, sP

and sQ belonging to two transition systems P and Q under consideration, if any possible
action in sP can be executed in sQ and vice-versa. Two systems P and Q are bisimilar if
and only if for each state in P and Q there exists a bisimulation that relates them.

The difference between strong and weak bisimulation concerns the set of actions
considered in the relation. Strong bisimulation takes into consideration all possible
actions in a labelled transition system, including internal actions that are actions that
hide the internal behavior of a system. Thus, strong bisimulation requires a complete
equivalence between systems [Par81]. Weak bisimulation (better known as observational
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equivalence) takes into consideration only visible actions, that is, all but the internal
possible actions of the systems. Therefore, observational equivalence abstracts from
the internal representation by comparing systems on the basis of their observable
behavior [HM80].

Behavioral equivalence in software engineering literature. The definitions of behav-
ioral equivalence have been extended to cope with practical software engineering
problems. Doong and Frankl defined a notion of observational equivalence for object-
oriented programming languages [DF94]. Their notion applies to pairs of objects O1

and O2 of a class C , is inspired by the notion of weak bisimulation, and presents some
similarities with the notion of observational equivalence that we presented in Section 3.1.
Doong and Frankl’s equivalence is defined as follows: if C is a primitive type, two objects
O1 and O2 are considered equivalent if they have identical values. Conversely, if C is a
user-defined class, two objects O1 and O2 are equivalent if and only if for any sequence of
methods S that returns two objects O′1 and O′2, O′1 and O′2 are observationally equivalent.

Jiang and Su proposed a definition of functional equivalence between code fragments
based on the input/output behavior of the fragments [JS09]. Two code fragments are
equivalent if they compute the same output values when executed with the same input
values. The technique compares only code fragments that accept the same set of input
data types. Two fragments are then considered functionally equivalent if there exists at
least one permutation of the input variables for which the outputs are equivalent on all
the generated input

3.2.2 Execution Diversity

Researchers have exploited quantitative distance metrics on program executions in
different areas: verification of the correctness of an implementation with respect to its
requirements [vHR12], intrusion detection [GRS06], test case reduction [HAB13], field
failure replication [JO12, RZF+13] fault localization techniques [JHS02, RR03]. In this
section, we survey the most relevant metrics that are closely related to our notion of
redundancy, and in particular with our notion of execution diversity. We distinguish two
classes of distance metrics: static and dynamic metrics.

Static distance metrics. Static distance metrics are defined on the basis of some kind of
static analysis on either artifacts related to the code, such as models of the specifications,
or directly the code itself.

A relevant representative of static distance metrics is the notion of simulation distance
developed by Černý et al. [vHR12], who propose a new notion of correctness that
they define as as a real-value distance function between an implementation and the
specification. The more an implementation does not satisfy its requirements, the higher
is its distance from its specifications. Such quantitative definition of correctness can
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also serve as a distance metric between code fragment executions: the more the two
fragments are distant, the more the code is likely to be different.

The approach of Černý et al. abstracts from low-level details and is therefore general,
but requires to derive precise finite state machine models of both the requirements and
the implementation. Imprecise models can lead to inexact distances and may result
in both false positives and false negatives. The approach is limited by the high cost of
extracting precise models from the code and the requirements, and by definition does
not capture dynamic aspects of the execution, such as the different execution scheduling.

Dynamic distance metrics. Dynamic distance metrics are defined on some artifacts
extracted from the executions of the system under analysis, such as behavioral models
or execution traces.

Gao et al. proposed an intrusion detection technique based on the behavioral dif-
ference between two executions [GRS06]. They define a distance metric between
sequences of system calls inspired from DNA alignment algorithms, and use such metrics
to identify malicious attacks. A significant distance between the original and the current
traces could indicate a previously unseen behavior that may be due to a malicious attack.

Hemmati et al. defined an approach to minimize the number of test cases gener-
ated through model-based test case generation [HAB13]. They propose to adjust the
size of the test suite based on the selection of the most diverse subset of test cases.
They evaluated many similarity-based metrics inspired from information retrieval and
bioinformatics.

Dynamic distance metrics have been proposed also in the context of spectra-based
fault detection techniques [JHS02, RBDL97]. Spectra-based techniques record the
execution information of a program in certain aspects (for example, statements or
paths) to track program behavior. When the execution fails, these approaches use
this information to identify the suspicious code that may be responsible for the failure.
Renieris and Reis propose a fault localization technique based on a distance metric
between traces [RR03]. They measure the distance between correct and failing program
executions as the sequence of statements that are executed in the failing run but not in
the successful run, and use the metric to select a successful run as similar as possible to
the failing one.



44 3.2 Behavioral Equivalence and Execution Diversity



Chapter 4

A Measure of Software Redundancy

In this chapter we present a novel method to measure redundancy that is
based on our abstract notion of software redundancy but is practical and can
be efficiently computed. The method uses a specific projection of a finite set of
execution traces that logs memory changes, and measures a specific form of edit
distance between traces. Our experimental analysis shows that our measure
distinguishes code that is only minimally different from truly redundant code
where the algorithmic nature of the computation differs. We also show that
the measurement can help predict the effectiveness of techniques that exploit
redundancy.

In the previous chapter, we introduced an abstract and general notion of software
redundancy that conjugates a notion of functional equivalence between code fragments
with a notion of execution diversity. In this chapter, we introduce a practical approach
that approximates the redundancy of a system. In particular, we define a measure that
reflects the attainable benefits of the redundancy present within a system.

Intuitively, we would like a more informative measure that ranks the amount of
redundancy of differently designed code fragments. Such a meaningful and significant
measure of redundancy presents two main challenges related to the decidability of the
measure and the possibility of quantifying the difference between code fragments. First,
our abstract notion of redundancy presented in the previous chapter is not decidable,
since it subsumes a basic form of equivalence between programs that amounts to a
well-known undecidable problem by Rice’s theorem [Ric53]. We therefore need to either
limit the expressiveness of the model or somehow accept an incomplete or imprecise
decision procedure. Second, our model expresses a binary decision: two code fragments
are either redundant or not. We must therefore enrich the model with a form of distance
and we must define a corresponding measurement method.

The problem of the decidability of equivalence has been studied extensively from a
theoretical perspective independently from its relation to the notion of redundancy [DH84,
Hoa80, HM80]. We experienced the problem of quantifying equivalence from a practical

45
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perspective, and specifically in relation to redundancy, when we identified equivalent
code fragments that we used to annotate potential sources of redundancy in code frag-
ments of significant size and complexity [CGPP10, CGM+13, CGPP15]. We overcome
the problem by approximating the abstract and undecidable notion of equivalence by
relying on a bounded notion of observational equivalence inspired by the definition
of Doong and Frankl [DF94]: Two states are observationally equivalent when a finite
sequence of public method calls invoked on the two states produces indistinguishable
results. We developed a method to automatically test the equivalence of code fragments
in the specific context of test oracles using a bounded search approach [CGG+14] fo-
cusing on the problem of establishing whether two system states were equivalent or
not.

We would then like to define a measure that discriminates code fragments whose
executions differ substantially. As previously discussed in Chapter 2, the assumption
that different code fragments provide strong guarantees to increase the reliability of
a system is not realistic, even if the code fragments are designed and implemented
independently. In fact, as shown by Knight and Leveson, two independent teams may
ultimately rely on the same identical algorithms, and therefore the two versions may be
susceptible to correlated failures [KL86]. For this reason, an ideal measure of execution
difference should consider both the executed code and the algorithmic nature of the
computations. In other words, we would like to somehow measure the difference
between the algorithms implemented by two fragments.

We discuss in details this bounded-search method to decide equivalence in Sec-
tion 4.1.2. In Section 4.1 we introduce a non-binary measure of redundancy, which is
one of the main contribution of this dissertation. In Section 4.2 we present the results of
an extensive experimental analysis that indicate that our measure of redundancy indeed
distinguishes code that is only minimally different, from truly redundant code, and that
distinguishes low-level code redundancy from high-level algorithmic redundancy. We
also show that the measurement is significant and useful for the designer, as it can help
predict the effectiveness of techniques that are built upon software redundancy.

4.1 A Practical Measure of Redundancy

Redundancy is present when two code fragments induce different executions with
the same functional effect on a system. In this section, we extend this abstract binary
condition to a more general and useful measure of the redundancy of two code fragments,
where by “useful” we mean a measure that is indicative of either some interesting
property or some design objective related to redundancy. For example, if we use
redundant fragments in an N-version programming scheme to increase the reliability of
a system, then a useful measure of redundancy correlates with the gain in reliability. In
Section 4.1.1 we formulate a general non-binary measure of redundancy. In Section 4.2
we specialize the general measure with different metrics that we experimentally evaluate.
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4.1.1 A Non-Binary Measure of Redundancy

We define a useful measure of redundancy by first turning the binary condition into
a richer non-binary metric. In particular, we introduce non-binary measurements of
redundancy of two code fragments by combining a measure of the degree of equivalence
of the fragments with a measure of the degree of diversity between their executions.
We define the two measures with respect to a starting execution state, and generalize
the measure to a code fragment by aggregating the results computed over a set of
representative initial states.

We denote the degree of equivalence between the execution of two code fragments
CA and CB from a state S as eS(CA, CB) ∈ [0, 1]. This degree of equivalence is based on
the notion of observational equivalence that we introduced in Section 3.1.2: CA and
CB are observationally equivalent if and only if the output Out(S0, CA; CP) is the same
as Out(S0, CB; CP) for every probing code CP . Intuitively, the degree of equivalence
eS(CA, CB) can be seen as the probability that a probing code CP would not expose any
difference between the executions of CA and CB from any state S.

We denote the degree of diversity between the executions of CA and CB from a state
S as dS(CA, CB) ∈ [0,1]. Such degree of diversity is based on the abstract notion of
execution diversity that we presented in Section 3.1.3. In essence, the degree of diversity
quantifies the difference between sequences of actions or, more concretely, between
executions when starting from a state S.

Both degrees are normalized in the range [0, 1]. eS(CA, CB) = 1 indicates two func-
tionally equivalent code fragments while eS(CA, CB) = 0 indicates completely different
functionalities. Similarly, dS(CA, CB) = 0 indicates two identical execution traces while
dS(CA, CB) = 1 indicates completely different executions.

Given these degrees of equivalence and diversity, we define a general measure of
redundancy of the execution of two code fragments CA and CB from a state S as the
product of the degrees of equivalence and diversity: RS = eS(CA, CB) · dS(CA, CB).

This measure of software redundancy is the first attempt towards the definition of
measures that can help software engineers successfully exploit software redundancy. Our
formulation of redundancy is driven primarily by our experience in exploiting software
redundancy [CGM+13, CGG+14, CGPP15]. Our formula to compute a measure of
redundancy may thus be suboptimal in other contexts. Nevertheless, the choice of
computing the product of the two constituent elements satisfies an intuitive and yet
fundamental property of redundancy: two code fragments are not redundant at all if
they either implement different functionalities (RS = 0 · dS(CA, CB) = 0), or execute the
same identical code (RS = eS(CA, CB) · 0= 0). In Section 4.2 we present an extensive
set of experimental results that confirm the consistency and usefulness of this measure
in the context of software engineering.

The two constituent degrees of the redundancy measure are computed on an execu-
tion that start from a state S. To compute an ideal measure of redundancy, we should
compute the expected value of RS for all possible states S. An exhaustive set of initial set
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input: code fragments CA, CB

repeat n times:
1: S← choose from S // sample the state space

2: e← eS(CA, CB) // measure equivalence

3: d ← dS(CA, CB) // measure difference

RS ← e · d
4: return aggregate all RS // RS in expectation

Figure 4.1. General algorithm to measure redundancy.

leads to a perfect measure of redundancy, but is not feasible. In practice, we aggregate
over a finite sample of the state space.

Figure 4.1 presents the algorithm for measuring the redundancy of two code frag-
ments. The algorithm iterates over the state space sample of size n of the two input code
fragments CA and CB. At each iteration, (i) we sample the state space by choosing a valid
state S, that is, a state in which both code fragments can be executed without violating
their specifications (line 1), (ii) execute both code fragments CA and CB form state
S, (iii) measure the degree of equivalence by applying our definition of observational
equivalence, that is by generating probing codes (line 2), (iv) measure the degree of
diversity by obtaining their execution traces and by measuring their dissimilarity (line 3),
(v) compute the degree of redundancy by multiplying the two degrees of equivalence
and diversity, (vi) aggregate the degrees of redundancy produced for the different states
to compute the redundancy of the two code fragments (line 4).

4.1.2 Sampling the State Space

The first step of the algorithm samples the state space of the input fragments to identify
the system states from which to execute the two code fragments CA and CB. In a general
system and without particular references to a specific programming language, this first
step amounts to generating a concrete state for the system from which we can execute the
two fragments (either one). A concrete state is the set of global variables and function
parameters that are required to execute the code fragments (again, either one of them).

As previously discussed, we ideally want an exhaustive set of the execution space
that captures all possible behaviors of the code fragments under analysis. We can
generate a set of significant concrete states by exploiting various approaches, depending
on the available artifacts. For instance, if we had models of the system, such as a finite
state machine, we could sample the set of admissible states. Or if we had test cases
released by the developers, we could use those tests to produce concrete states. In our
experiments, we assume we only have the code itself, and we rely on automatically
generated test inputs to produce the concrete states.1

1In the remaining of this section we use the term “test case” to indicate a “test input”, that is a set of
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218 @Test

219 public void test10_RandoopTest7() throws Throwable {

...
285 ArrayListMultimap var82 = ArrayListMultimap.create(10, 0);

286 ArrayListMultimap var83 = ArrayListMultimap.create();

287 var83.clear();

288 ArrayListMultimap var86 = ArrayListMultimap.create();

289 ArrayListMultimap var89 = ArrayListMultimap.create();

290 var89.clear();

291 boolean var91 = var89.isEmpty();

292 boolean var92 = var86.putAll((Multimap) var89);

293 List var94 = var86.removeAll((Object) "hi!");

294 boolean var95 = var83.putAll((Object) (short) (-1), (Iterable) var94);

295 boolean var96 = var3.put((Object) var82, (Object) var94);

296 int var97 = var82.size();

297 ArrayListMultimap var98 = ArrayListMultimap.create((Multimap) var82);

298 var82.clear();

299 }

Figure 4.2. Example of random test case generated with Randoop for the ArrayList-
Multimap class of Google Guava. The invocation of the method put(key, value) is
highlighted at line 295.

We chose to rely mainly on automatic test case generation since it has the main
advantage of generating a large corpus of test cases without significant effort. Moreover,
it is possible to easily evaluate the thoroughness of the generated set through proxy
measures such as code coverage criteria. Since in our experiments we target Java
programs, we use Randoop [PLEB07] and EvoSuite [FA13] to generate test cases. To
completely automate the process, we let the test generator insert the code fragments
directly into the test case. That is, we generate many test cases and select those that
already contain CA, and, for those with multiple instances of CA, we consider as an initial
state the state right before each invocation of CA. Figure 4.2 shows an example of test
case automatically generated with Randoop2 for method put(key, value) of the class
ArrayListMultimap of the Google Guava library. The invocation of the method under
analysis is highlighted at line 295.

In some experiments, we generate test cases following the category-partition ap-
proach [OB88]. In particular, we manually categorize the input to the system so as to
represent classes of equivalent inputs. We then compile a list of tests that cover each
category, and then use these tests as operational definitions of the initial state. The
advantage of this manual sampling is that it leads to a more representative distribution
over the state space than randomly generated suites, although it requires a significant
effort even to produce a modest set of test cases.

input values for the code under test, regardless of the availability of proper oracles.
2https://github.com/randoop/randoop
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4.1.3 Measuring Observational Equivalence

We measure the degree of observational equivalence eS(CA, CB) by directly applying its
definition: Two states are observationally equivalent when all finite sequences of public
method calls invoked on the two states produces indistinguishable results. We thus
generate a large number of probing code fragments CP that we execute right after CA

and CB, respectively, and compare the results of each pair of executions to compute the
percentage of executions that produce the same observable results.

In essence, probing code fragments amount to random test cases, specifically for
the variables corresponding to the linkage of the two fragments. We therefore modified
Randoop to implement a specialized, random-test generator that starts from a pool
of variable descriptors, each indicating name and type. For example, considering the
second example in Figure 3.3, the generator would start from the three variables:
AbstractMultimap map, String key and Object value. At each step, the generator selects
a variable from the pool, say map, together with a public method to call on that variable,
say isEmpty(), and adds that call to the test. If the method returns a primitive value
or if the variable is itself of a primitive type, the generator adds a statement to output
the value. If the method returns another object, the generator assigns the result of the
call to a newly declared variable, and adds a descriptor for the new variable (name
and type) to its pool of variables. The generator also adds the necessary code to catch
and output any exception that might be raised at each step of the test. The generator
terminates and outputs the generated test after a given number of steps. Figure 4.3
shows an example of a generated probing code fragment for a code fragment similar to
the second example of Figure 3.3.

Our specialized test generator might generate test cases that might time-out due
to blocking operations, for example those methods that require any interaction with
the user. Moreover, we compare the output of the generated probing code fragments
using a simple equality test that in general leads to a conservative form of observational
equivalence, as discussed in Section 3.1.2. Still, this method is both practical and
efficient, and it is also exact (no false negatives) for all the subjects considered in our
evaluation (Section 4.2).

4.1.4 Measuring Execution Diversity

We measure the degree of execution diversity dS(CA, CB) by measuring the differences
between the executions of the two code fragments CA and CB starting from an initial
state S. An execution is a particularly rich source of information, since it gives access to
a wide variety of dynamic data. Recording and measuring the distance between two
rich execution traces may become quickly impractical on large executions. We therefore
measure the difference on a projection of the executions. A projection of an execution
trace α1,α2, . . . ,αk logs a subset of the information associated with each action αi . We
define and experiment with many distance measures by combining various dissimilarity
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1 // ... testing code to set up initial state...

2
3 // Code fragment A

4 boolean result = map.put(var1, var2);

5
6 //LINKAGE: boolean result; ArrayListMultimap map; Object var1; Object var2;

7
8 // generated probing code:

9 System.out.println(result);

10 boolean x0 = map.isEmpty();

11 System.out.println(x0);

12 map.clear();

13 java.util.Map x1 = map.asMap(); // x1 added to the pool

14 int x2 = map.size();

15 System.out.println(x2);

16 int x3 = x1.size();

17 System.out.println(x3);

18 java.util.Set x4 = x1.entrySet(); // x4 added to the pool

19 java.util.Iterator x5 = x4.iterator(); // x5 added to the pool

20 boolean x6 = x4.isEmpty();

21 System.out.println(x6);

22 try {

23 x5.remove();

24 } catch (java.lang.IllegalStateException e) {

25 System.out.println(e);

26 }

Figure 4.3. Example of a generated probing code executed immediately after one of
the code fragments (A) under measurement. The linkage between the code fragment
and the probing code is highlighted at line 6.

measures with various projections. In particular, we experimented with two categories
of projections, code and data projections.

In code projections, we log some aspects of the code executed in each action αi.
Dynamic analysis, combined with debug information, offers a rich variety of data to log.
We experimented with a number of code projections, for example the signature of the
method being executed, the source code line identifier, or the line of code jointly with
its depth in the call stack or with the full call stack.

In data projections, we log the read and write operations performed in each action
αi on either object fields or static fields. The individually logged read and write entries
consist of an address and a data item. The address identifies the field being read or
written, whereas the data item identifies the read or written value. We specialize this
projection by encoding different information in the address and data item. For the
address, we log the field name and the class name or type of the field, as well as a
number of their combinations. For the value, we log either its string representation for
basic types or arrays of basic types, or no value at all.

We experimented with various combinations of code and data projections, and with
slightly more elaborate variants of each. For example, for write operations can log
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the old value as well as the new value. Table 4.1 summarizes the most significant
projections that we used in our experiments. The examples refer to the simple code
fragment boolean x = map.put(k,v). We evaluate the effectiveness of these projections
in Section 4.2.

Given two execution logs, we want to measure their dissimilarity. For this reason,
it is crucial to obtain a clean execution log, that is a log in which we prune all entries
corresponding to platform-related actions that are irrelevant and potentially confusing
for our purposes. For example, in our implementation, which is in Java, we discard all
the actions of the class loader. For different code fragments, the class loader may load a
class at different points of the execution, and still the two executions are equivalent.

We use the logs to compute the measure of difference between code fragments. Let
LS,A and LS,B be the logs of the execution of fragments CA and CB from state S. We
compute the diversity measure dS(CA, CB) = 1− similarity(LS,A, LS,B) where similarity is
a normalized similarity measure. Intuitively, the normalization of the similarity measures
takes into account the length of the logs, but in general each measure has its own specific
normalization procedure. In the application of the similarity measure, we consider each
entry as an atomic value that we simply compare (equals) with other entries.

Given a pair of executions logs, we use different similarity measures to compute their
degree of diversity. A similarity measure is usually defined on either sets or sequences
of elements. Set-based similarity measures do not consider the order of elements, while
sequence-based measures do. For example, suppose that from the execution of two
fragments of code we extract the following abstract execution logs LS,A = [A, B, C , D]
and LS,B = [C , D, B, A]. A set-based similarity measure assumes that the two logs LS,A

and LS,B are identical since the elements in the vectors are the same. In contrast, a
sequence-based similarity measure would recognize that the two logs are dissimilar, since
the order of elements in the two vectors is different. Table 4.2 lists the most effective
similarity measures we experimented with, divided into set-based and sequence-based.

4.1.5 Aggregating the Measures of Redundancy

Ideally we would like to obtain the expected redundancy of two fragments CA and CB from
the developer’s point of view. However, we also would like to use a general aggregation
method, independently from the particular distribution of the considered input samples.
We therefore simply compute the average of the redundancy measures over the sample
of initial states. We also experimented with other intuitive aggregation functions, such
as minimum, maximum, and other quantiles, without noticing any improvement over
the simple average.
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Type Projection Example from an actual execution(a)

Code statement ArrayListMultimap.put(LObject;LObject;)Z@66
AbstractListMultimap.put(LObject;LObject;)Z@95
AbstractMultimap.put(LObject;LObject;)Z@200

depth, statement 3:ArrayListMultimap.put(LObject;LObject;)Z@66
4:AbstractListMultimap.put(LObject;LObject;)Z@95
5:AbstractMultimap.put(LObject;LObject;)Z@200

Data type, value Ljava/util/Map;→{}
Ljava/util/Set;→[]
Ljava/util/HashMap;→{}
I→1
I←1

field, value map→{}
map→{}
entrySet→[]
this$0→{}
modCount→1
expectedModCount←1

class, field, value AbstractMultimap.map→{}
HashMap.entrySet→[]
HashMap$EntrySet.this$0→{}
HashMap$HashIterator.modCount→1
HashMap$HashIterator.expectedModCount←1

class, type, value AbstractMultimap.Ljava/util/Map;→{}
HashMap.Ljava/util/Set;→[]
HashMap$EntrySetLjava/util/HashMap;→{}
HashMap$HashIterator.I→1
HashMap$HashIterator.I←1

field, old value map→{}
entrySet→[]
this$0→{}
modCount→1
expectedModCount 0←1

type, no value Ljava/util/Map;→
Ljava/util/Set;→
Ljava/util/HashMap;→
I→
I←

(a)Code fragment: boolean x = map.put(k,v);
Legend: → and← represent read and write operations respectively
Abbreviations:
ArrayListMultimap stands for com.google.common.collect.ArrayListMultimap
AbstractMultimap stands for com.google.common.collect.AbstractMultimap
HashMap stands for java.util.HashMap
Object stands for java.lang.Object

Table 4.1. Projections used to derive action logs
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Metric Abbreviation

Se
qu

en
ce

-b
as

ed

Levenshtein [Nav01] (Lev)
Damerau–Levenshtein [Nav01] (DamLev)
Needleman–Wunsch [Sel74] (Need)
Cosine similarity [CRF03] (Cos)
Jaro [Jar95] (Jaro)
Jaro–Winkler [Jar95] (JaroW)
Q-Grams [CRF03] (qGrams)
Smith–Waterman [DEKM99] (SmithW)
Smith–Waterman–Gotoh [DEKM99] (SmithG)
Overlap coefficient [CC10] (Ovlp)

Se
t-

ba
se

d

Jaccard [CRF03] (Jaccard)
Dice [CRF03] (Dice)
Anti-Dice [CRF03] (ADice)
Euclidean [CC10] (Euclid)
Manhattan [CC10] (Man)
Matching coefficient [CC10] (MC)

Table 4.2. Similarity measures applied to execution logs. The abbreviations on the
right side identify the measures in the experimental evaluation in Section 4.2.

4.2 Experimental Validation

We experimentally validate the measurement method by studying its consistency and
significance. In particular: (Q1) we evaluate the consistency of our measures by verifying
the stability of the measurements with respect to both common semantic-preserving code
transformations (such as refactoring) and to sampling of the state-space from a domain
of semantically similar inputs; (Q2) we evaluate the significance of the measurements in
terms of the support to developers in the process of making design decisions related to
the redundancy of their system. Thus, we judge the significance and utility by correlating
the measurements with some uses of redundancy.

4.2.1 Experimental Setup

We conduct a series of experiments with a prototype implementation of the measurement
method described in Section 4.1. We consider a set of subject systems (described below)
for which we consider a number of pairs of code fragments (also detailed below). For
each system, we generate a set of test cases either manually using the category partition
method [OB88], or automatically with either Randoop [PLEB07] or Evosuite [FA13]
depending on the experiment. We execute the test cases generated for each system
on all the pairs of redundant code fragments to sample the input space as described
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in Section 4.1.2. For each pair of fragments and for each initial state (test case) we
measure the observational equivalence as discussed in Section 4.1.3. For each pair of
fragments and initial state, we trace the executions of the two fragments using the DiSL
instrumentation framework [MVZ+12]. For each of these traces, we then consider the
projections described in Section 4.1.4, and for the resulting logs we compute a number
of similarity measures using a modified version of the SimMetrics library.3 Finally, we
compute the redundancy measure for each initial state, and aggregate with its overall
average and standard deviation.

We experiment with two sets of programs:

• Benchmark 1 is a set of different implementations of two search and four sorting
algorithms taken from various websites. We chose these subjects to create a ground-
truth for our measure to help us evaluate the consistency and significance of our
measure. In fact, all the algorithms within the same category are functionally
equivalent, and yet their execution differs. This is exactly our notion of redundancy.
Table 4.3 lists the implemented algorithms and the number of implementations. We
incorporated each code fragment within a Java class, as reported in Appendix A.2.
In the case of Benchmark 1, we consider each whole system as a code fragment and
we compare code fragments of the same category. For example, we may compare
one implementation of bubble sort with one of quicksort, or two implementations
of binary search.

• Benchmark 2 is a set of classes of the Google Guava library. The set of Guava
classes contains methods that can be substituted with other code fragments that
are equivalent according to the documentation. We consider all pairs of fragments
consisting of a method (CA) and an equivalent fragment (CB). Table 4.4 lists
all the subject class with the number of methods for which we have equivalent
fragments, and the total number of equivalent fragments.

The readers can inspect the artifacts of the experiments in Appendix A, in particular
all the generated plots in Section A.1 and all the implementations of the programs of
Benchmark 1 in Section A.2.

4.2.2 Internal Consistency (Q1)

We check the internal consistency of the measurement method with three experiments:
two experiments to validate two fundamental properties of the redundancy measure,
namely non-reflexivity and stability, and a third experiment to verify the consistency of
the observational-equivalence method.

3https://github.com/Simmetrics/simmetrics, the modifications are to reduce the space complexity
of several measures. For example, the Levenshtein distance in SimMetrics uses O(n2) space, which is
necessary to output the edit actions that define the distance. However, since we only need to compute the
numeric distance, we use a simpler algorithm that uses O(n) space.

https://github.com/Simmetrics/simmetrics
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Algorithm Implementations
Binary search 4
Linear search 4
Bubble sort 7
Insertion sort 3
Merge sort 4
Quicksort 3

Table 4.3. Benchmark 1: Different implementations of search and sorting algorithms

Class Methods Equivalences
ArrayListMultimap 15 23
ConcurrentHashMultiset 17 29
HashBimap 10 12
HashMultimap 15 23
HashMultiset 17 29
ImmutableBimap 11 17
ImmutableListMultimap 11 16
ImmutableMultiset 9 27
Iterators 1 2
LinkedHashMultimap 15 23
LinkedHashMultiset 18 30
LinkedListMultimap 15 23
Lists 8 20
Maps 12 29
TreeMultimap 13 21
TreeMultiset 17 29

Table 4.4. Benchmark 2: Guava Classes, number of considered methods and equivalent
implementations considered
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Non-reflexivity The first experiment checks the obvious condition that a fragment is
not redundant with itself, since the two executions should be identical. We conduct
this experiment using the programs of Benchmark 1. We run each program twice and
we compute the redundancy measure between the two execution traces. For each
combination of program, execution projection, and similarity measure used we obtain a
redundancy measure of 0.0.

Stability With the second experiment we check that the measurements are stable with
respect to semantic-preserving program transformations, as well as with semantically
irrelevant changes in the input states. In essence, measurements for semantically
equivalent code fragments should be 0.0 or very close to it. We experiment with
Benchmark 1 and we divide the stability experiment in two sub-experiments.

In a first set of experiments, we apply refactoring operations on the program under
analysis. In principle, an ideal method to measure redundancy should be stable with
respect to semantic-preserving code transformations. We thus apply all the automatic
refactoring operations available within the Eclipse IDE (Extract to Local Variable, Extract
Method, Inline Expression and Change Name) to all the eligible expressions in the
programs, modifying only one expression for each refactored variant. We then measure
the redundancy between the original and the four refactored programs.

Figure 4.4 and Figure 4.5 show the results of an indicative subset of the experiments.
In particular, we show the redundancy of one implementation of binary search and one
implementation of linear search from Benchmark 1 against their respective refactored
variants. The experiment produces consistent data for all the other implementations in
the benchmark. As in the first experiment, each figure is divided into data and code
projections. Figure 4.4 shows the results for binary search, while Figure 4.5 shows the
results for linear search. The Y-axis in the plots corresponds to the redundancy measure
obtained for a specific refactoring operation, identified by the color of the bar. The
X-axis indicates the similarity measure used to compute the redundancy.

We notice immediately that code projections are inconsistent, and are negatively
affected by essentially all refactoring operations under every similarity measure. By
contrast, data projections have an excellent consistency and stability, and correctly report
zero or near-zero redundancy under all refactorings and with all similarity measures. An
analysis of the results reveals that data projections based on type rather than field name
or class name are particularly robust for some refactoring activities, such as “Extract
Method” and “Change Name”. Data projections are less robust with respect to others
that may change the execution of read/write actions. For example, if we apply the
“Extract to Local Variable” operator to the variable in a for loop condition that checks
the length of an array field, then that changes the number of field accesses and thus the
data projections.

In a second set of experiments, we measure the redundancy between different
execution traces of the same identical program executed with different test cases, that
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Figure 4.4. Stability of the redundancy measure on an implementation of binary search
(Benchmark 1).
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Figure 4.5. Stability of the redundancy measure on an implementation of linear search
(Benchmark 1).
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represent different but semantically equivalent initial states. This experiment aims to
verify the stability of the measurement with respect to small (insignificant) variations in
the initial state. We experimented with test cases generated with the category partition
approach and measured the redundancy of pairs of executions with test cases that
belong to the same choice of categories. We report the results of these experiments also
in Figure 4.4 and Figure 4.5 in the rightmost bar in each group (darkest color, labeled
“Equivalent input”). The results are in line with those of the other consistency checks,
that is, data projections have excellent consistency and stability, while code projections
are inconsistent.

Figure 4.6 summarizes the redundancy measures obtained on the stability experi-
ments by employing all data projections with a selected subset of similarity measures.
The results indicate that data projections that keep track of read and written values
(plots (a)–(e)) are not robust with respect to equivalent inputs, and data projections
that logs class or field names (plots (b), (c), (e), (g), (h)) are not robust with respect to
name changing operations. Our experiments show that the most robust data projection
traces only the type and the operation on the fields (plot (f)).

Observational equivalence With the third consistency experiment, we focus specifi-
cally on the measure of the degree of equivalence, which corresponds to the probability
that a probing code would not reveal a difference (see Section 4.1.3). We evaluate
the consistency of observational equivalence with our specialized random test gener-
ator with an increasingly higher limit on the length of the probing code from 50 to
300 without any noticeable difference on the outcomes of the experiments. For this
experiment, we cannot use the programs from Benchmark 1, since we know that those
are all equivalent. We therefore focus on the particular case of the ArrayListMultimap
class taken from Benchmark 2. Table 4.5 lists all the methods that define our first code
fragment (CA) for ArrayListMultimap. For each one of them, we report in the table the
degree of observational equivalence between the method and all the corresponding
programs in Benchmark 2 as the average over several fragments CB and over all initial
states. The degree of equivalence is exactly 1.0 for all methods, which is what we
expected, except for the method keys.

A closer examination indicates that keys is paired with a fragment that uses keySet.
The two methods are similar but not completely equivalent, since keys returns duplicates
when the multimap contains multiple values for the same key while keySet does not.
To better analyze the case, we repeated the experiment with 106 probing codes CP of
variable length up to 300 method invocations starting from 7 different initial states
S1, . . . , S7. The results show that the measure correctly quantifies the differences in the
sequences of actions, and that the results are consistent across initial states and probing
codes.

In summary, the results of the experiments demonstrate the internal consistency
and robustness of the measurement, and identify the best projections. In the next
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Figure 4.6. Comparison among data projections on binary search (Benchmark 1).



62 4.2 Experimental Validation

Method (CA)
Equivalence
(average)

clear() 1.00
containsEntry(Object,Object) 1.00
containsKey(Object) 1.00
containsValue(Object) 1.00
create() 1.00
create(int,int) 1.00
isEmpty() 1.00
keys() 0.61(a)

put(Object,Object) 1.00
putAll(Multimap) 1.00
putAll(Object,Iterable) 1.00
remove(Object,Object) 1.00
removeAll(Object) 1.00
replaceValues(Object,Iterable) 1.00
size() 1.00
(a)For the details of the measure see Table 4.6

Table 4.5. Observational equivalence for the methods of the class ArrayListMultimap
from the Google Guava library (Benchmark 2).

Initial state generated CP failed CP Equivalence
S1 13 6 0.54
S2 16 5 0.69
S3 16 5 0.69
S4 15 5 0.67
S5 14 6 0.57
S6 16 7 0.56
S7 16 7 0.56

Average: 15.14 5.86 0.61 (median: 0.57)

Table 4.6. Equivalence measures of methods keys() and keySet() of class ArrayListMul-
timap (Benchmark 2).
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experiments, we use data projections that trace the type and the operation performed
on the fields.

4.2.3 Significance (Q2)

We evaluate the significance of our redundancy measure as the ability to identify differ-
ences at various levels of abstractions. Specifically, we want to show that our measure
distinguishes code that is only minimally different, from truly redundant code where
the algorithmic nature of the computation differs. Furthermore, we evaluate the abil-
ity of our measure to predict the effectiveness of a particular technique that exploit
redundancy.

Low- and high-level redundancy We assess the ability of the measure to identify redun-
dancy at various levels of abstractions, and more specifically low-level code redundancy
versus high-level algorithmic redundancy. With the expression low-level redundancy
we refer to different implementations of the same algorithm, for example several im-
plementation of the bubble-sort algorithm. Whereas, with the expression high-level
redundancy we refer to implementations of different algorithms that solve the same task.
For example, in the case of sorting, implementations of the bubble sort, insertion sort,
and merge sort algorithms.

In this experiment, we assess the ability of our measure to assign higher level of
the redundancy measure to different algorithms belonging to the same category, rather
than to different implementations of the same algorithm. We conduct this series of
experiments on the case studies of Benchmark 1.

Figure 4.7 compares the measurements of the redundancy between programs that
implement exactly the same algorithm (left-hand side column, marked with ?), and
the measurements of the redundancy between programs that implement different
algorithms (right-hand side column, marked with †). Each plot shows groups of values
representing the average and standard deviation over the measurements between each
selected implementation. The Y-axis represents the redundancy measure obtained,
while the X-axis represents a subset of the most representative similarity functions used.
For example, histogram a? shows the redundancy measures obtained by measuring
one implementation of binary search against the other three implementations under
analysis. On the other hand, histogram a† shows the redundancy measure obtained by
measuring redundancy between one implementation of binary search against all four
implementations of the linear search algorithm.

In the case of measurements between different implementation of the same algo-
rithms (histograms a?–f?), we observe that in general the redundancy measures are low,
which makes sense, since all the fragment pairs implement the same algorithm and can
only have low-level code differences. Moreover, notice that in all the case studies, some
of the results are zero and therefore do not appear in the histogram. For example, the
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Figure 4.7. Redundancy between implementations of the same algorithm (?) and
between different algorithms (†).
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third histogram (c?) shows the case of the seven implementations of bubble sort (see
Table 4.3), two of which have zero redundancy with respect to the selected one, and
therefore the histogram shows only four bars for each similarity measure.

Histograms a†–f † show the redundancy between fragments that implement different
algorithms. Here each histogram represents one particular algorithm, and shows the
comparisons between each implementation of that algorithm and every other imple-
mentation of another algorithm in the same category (sorting and searching). Here
the measures are relatively high, indicating a high degree of redundancy, which makes
sense, since all the fragment pairs implement different algorithms, and therefore should
have significant differences.

To better analyze the significance of the differences between redundancy measure-
ments on the same and different algorithms, we report in Table 4.7 the results of the
statistical tests for the measurements in Figure 4.7. The interested reader can find the
complete set of statistical test results in Appendix A.3.

To determine if there exists a statistically significant difference between redundancy
measurements among the same algorithms or among different algorithms, we employ
the Wilcox-Mann-Whitney U-test as suggested also in previous work [AB11]. We use
the U-test because it is a non-parametric test and we cannot make assumptions on
the underlining distribution of the data. Our null hypothesis H0 states that there is
no difference between the redundancy measured among different implementations of
the same algorithm, and redundancy measured among implementations of different
algorithms that solve the same task (searching or sorting). We apply the widely-used
significance level of α= 0.05 for rejecting the null hypothesis H0.

In addition to the significance U-test, we also apply Vargha and Delaney’s Â12 ∈ [0, 1]
non-parametric effect size measure to assess the magnitude of the improvement [VD00].
In our context, Â12 measures the probability that the measurements of algorithm A
yields higher redundancy values than those of algorithm B. If the two measures are
equivalent, then Â12 = 0.5. If the redundancy measure is greater between two different
algorithms, then Â12 > 0.5.

In Table 4.7 we report the Â12 measure and its p-value for each benchmark (col-
umn Algorithm) and for each similarity measure applied (column Similarity). In any
benchmark and for every similarity measure, the difference between the two measure-
ments is statistically significant, with a p-value smaller than 0.001. We thus reject the
null hypothesis H0 and state that there is statistically significant difference between
the two measurements. The effect size measure Â12 shows that first, the measures
obtained among different algorithms are statistically higher than the ones obtained
among different implementation of the same algorithm, since Â12 > 0.5. Second,
the magnitude of their difference can be generally considered as “medium”, since
0.64≤ Â12 < 0.71 [VD00].

The effect size is medium for two plausible reasons: First, our sampling of the state
space might be sub-optimal. We compare different—although semantically equivalent—
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Algorithm Similarity Â12 p-value

Binary search
Jaro 0.67 ≤ 0.001
Lev 0.67 ≤ 0.001
NeedW 0.66 ≤ 0.001
SmithW 0.66 ≤ 0.001

Linear search
Jaro 0.67 ≤ 0.001
Lev 0.67 ≤ 0.001
NeedW 0.68 ≤ 0.001
SmithW 0.66 ≤ 0.001

Bubble sort
Jaro 0.63 ≤ 0.001
Lev 0.65 ≤ 0.001
NeedW 0.65 ≤ 0.001
SmithW 0.66 ≤ 0.001

Insertion sort
Jaro 0.59 ≤ 0.001
Lev 0.61 ≤ 0.001
NeedW 0.61 ≤ 0.001
SmithW 0.66 ≤ 0.001

Merge sort
Jaro 0.67 ≤ 0.001
Lev 0.67 ≤ 0.001
NeedW 0.67 ≤ 0.001
SmithW 0.66 ≤ 0.001

Quicksort
Jaro 0.66 ≤ 0.001
Lev 0.65 ≤ 0.001
NeedW 0.66 ≤ 0.001
SmithW 0.64 ≤ 0.001

Table 4.7. Statistical significance of the results in Figure 4.7. We omit from the results
the DamLev similarity metric since it is identical to Lev.

algorithms that handle some corner cases in similar ways. For example, both search
and sort algorithms perform an initial check on the size of the array, and terminates
if true. The traces extracted from empty lists will all appear as identical, despite the
fact that are obtained from different algorithms. Second and more important, some
implementations of the same algorithm might be largely different. For example, more
than half of the bubble sort implementations contain various optimizations to lower the
number of comparisons, and that are not present in the standard algorithm. In particular,
one version implements a sliding search window to minimize the swaps that result in
the highest redundancy measure among bubble sort implementations (Figure 4.7 (c?),
the darkest bar). Such optimizations naturally introduce noise in our measurements,
nevertheless our measure of redundancy can successfully distinguish low- and high-level
redundancy also in a statistically meaningful way and with a good effect size.
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Predictive ability The last series of experiments assess the significance of the measure-
ment in terms of its predictive ability. We evaluate the ability of our measure as indicator
of the effectiveness of a specific technique that exploit redundancy by analyzing the
redundancy of some equivalent fragments that we used as automatic workarounds with
a technique intended to increase the reliability of systems [CGM+13]. The Automatic
Workarounds technique recovers from failures by substituting a failing method with an
equivalent sequence at runtime. An equivalent sequence expresses alternative methods
as rewriting rules that capture the redundancy of a pair of method sequences. In our
experiment, we consider all possible equivalent sequences that are used with varying
degrees of success as workarounds. We then measure the redundancy for each pair, and
observe how that correlates with the success ratio.

Table 4.8 reports for the two systems analyzed Carrot and Caliper (column System),
the list of all the methods we analyzed (column Method (CA)) paired with its equivalent
sequence (column Equivalent Sequence (CB)). For each pair of code fragments< CA, CB >

the table reports the success of the equivalent sequence as a potential workaround (col-
umn Success ratio) measured as the frequency the fragment CB was indeed a successful
workaround over the total number of substitutions in the experiments in response to a
failure in the fragment CA. The last column Redundancy reports the redundancy mea-
surements between the code fragments CA and CB as average and standard deviation
using the data projection that trace the type and the operation performed on the fields,
and the Levenshtein distance as similarity measure. For each subject system we sort the
equivalent pairs by their success ratio to highlight the correlation with the measure of
redundancy.

The most obvious cases in our experimental results are when the two code frag-
ments (CA and CB) are either not redundant at all or completely redundant. When
there is no redundancy, as in the case of LinkedHashMultimap.create() in Caliper or
Lists.newArrayList() in Carrot, the equivalent sequence is also completely ineffective to
obtain workarounds. Conversely, when we obtain a measure of complete redundancy
in the case of Iterators.forArray(a) in Caliper, the equivalence is always effective as a
workaround.

The redundancy measure is also a good indicator of the success of a workaround
in the other, non extreme cases. Consider for example the case of ImmutableMulti-
set.of(Object..c) in Carrot where the first equivalent alternative has a higher redundancy
measure and a higher success ratio than the second one: 0.56± 0.07 and 0.59 for the
first sequence, and 0.24± 0.12 and 0.31 for the second one. This case shows that the
redundancy measure can be an effective predictor to select or rank alternative fragments
for use as workarounds.

Overall we obtain a positive correlation of 0.9523 using Pearson’s r linear correlation
coefficient (p-value less than 0.001) from which we conclude that our redundancy
measure is indeed a good indicator and predictor for the designers, as it can help predict
the effectiveness of techniques that are built upon software redundancy.
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4.3 Limitations and Threats to Validity

Our measure of redundancy is limited primarily by the fact that the model considers only
single-threaded code fragments. Notice in fact that the model, as well as the measure
of dissimilarity, is based on the notion of an execution consisting of one sequence of
actions. One way to model multi-threaded code would be to linearize parallel executions,
although that might be an unrealistic oversimplification.

Another limitation of our measure of redundancy stems from the use of dynamic
analysis. Our approach exploits dynamic analysis to measure both the degree of equiva-
lence and the degree of execution diversity. Therefore, any incompleteness or inability
to successfully execute a code fragment negatively impacts our measurements.

The issue arises from the choice of using automatic test generation as main approach
to both sample the state space and generate code probes to assess observational equiva-
lence. To limit such issues, we use code coverage criterion to evaluate the exhaustiveness
of the generated code. Such proxy measure gives an overview of the effectiveness of
the generated test suite in exploring the code under analysis. To increase the reliability
of our measurements, in some experiments we augmented the automatically generated
tests with some hand-written test cases.

On the other hand, the code under analysis might include blocking functions, for
example to obtain inputs from the user, or interactions with the execution environment,
for example for I/O operations, and it might prevent the correct execution of the test. We
envision the use of our measure to assess the redundancy level directly by developers to
evaluate the design choice made. It is thus reasonable to assume the project to provide
the necessary mechanism to stub and mock the troublesome calls and effectively run
the code.

We acknowledge potential problems that might limit the validity of our experimental
results. The internal validity depends on the correctness of our prototype implemen-
tations, and may be threatened by the evaluation setting and the execution of the
experiments. The prototype tools we used are relatively simple implementations of well
defined metrics computed over execution logs and action sequences. We collected and
filtered the actions of interests with robust monitoring tools and we carefully tested our
implementation with respect to the formal definitions.

Threats to external validity may derive from the selection of case studies. We present
results obtained on what we would refer to as “ground truth,” that is, on cases with
clear and obvious expectations that would therefore allow us to check the significance
and robustness of the proposed metrics.
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Chapter 5

Automatic Identification of
Equivalences

In this chapter we present a technique to automatically identify methods or
sequences of methods that are functionally equivalent to a target input method.
In particular, the technique synthesizes sequences of method invocations that
are equivalent to a target method within a finite set of execution scenarios. Our
experimental analysis shows that the proposed approach correctly identifies
equivalent method sequences in the majority of the cases where redundancy
was known to exist, with acceptable precision and performance.

In the previous chapters, we presented how deliberate and intrinsic redundancy find
many useful applications. In the context of intrinsic redundancy, the issue of effectively
exploiting redundancy is exacerbated by the unavailability at design time of the set of the
alternative implementations. Due to the nature of this form of redundancy, the various
alternatives stem spontaneously in the system and there is thus no documentation.
While redundancy can be effectively measured with the approach discussed in the
previous chapter, there are no techniques that can effectively identify equivalent method
sequences. As a result, the developers have to manually identify where are the alternative
implementations.

Similarly, equivalent method sequences find many useful applications, from the
automatic generation of test inputs [CKTZ03], to the design of automatic repair tech-
niques [CGM+13, CGPP10], and the automatic generation of test oracles [CGG+14]. As
for the previously discussed applications, the equivalence is exploited automatically, but
must be identified manually.

The manual identification of equivalent method sequences is a non-trivial and error-
prone activity that may represent a showstopper to the practical applicability of all
discussed techniques. In this chapter, we propose a technique that can automate the
identification of equivalent method sequences.

Deciding whether two methods are equivalent for all the possibly infinite execution
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scenarios is an undecidable problem. However the decidability of equivalence becomes
computationally feasible by limiting the number of scenarios to a finite set. We synthesize
equivalent methods or combinations of methods by examining the program behavior on
a finite set of execution scenarios. We refer to the synthesized methods or combinations
of methods as likely-equivalent, to indicate that they may behave differently for inputs
not considered in the synthesis process.

Given a target method and an initial set of execution scenarios, our technique
automatically synthesizes method sequences that are likely-equivalent to the target
method. The synthesized method sequences are equivalent with respect to the set of
execution scenarios, and are expected but not guaranteed to be equivalent in the general
case. The synthesis proceeds in two phases: In the first phase, the search goal is to
synthesize a candidate method sequence to be likely-equivalent to the target method;
In the second phase, the search goal is to synthesize a counterexample showing that the
candidate method sequence is not equivalent to the target method on some previously
unexplored scenarios. The two phases iterate, with the counterexamples added to the
execution scenarios, until the second phase fails to find a new counterexample. At this
point, the synthesized method sequence is deemed as likely-equivalent to the target
method.

Our technique is fully automatic and requires only as few as one test input (the
initial execution scenario) that may be either provided by the developers or generated
automatically. Our experiments indicate that the technique is effective in synthesizing
equivalent method sequences, and at the same time is reasonably efficient. On 266
methods belonging to 23 different classes for which equivalent method sequences were
known to exist, our approach synthesizes 74% of the known equivalences, finding one
or more equivalent sequences for each target method, with limited false positives and
with an execution time that significantly outperforms the manual approach.

We introduce and discuss the basic and essential characteristics of search-based
techniques in Section 5.1. In Section 5.2 we introduce an approach to automatically
identify equivalent method sequences, which is one of the main contribution of this
dissertation. In Section 5.3 we present SBES, our tool that implements our automatic
approach for Java, and discuss the technical challenges in detail. In Section 5.4 we
present the results of an extensive experimental analysis that indicate that our tool SBES
indeed correctly identify a large amount of equivalences, with reasonable precision and
performance.

5.1 Background

Search-based software engineering is an emerging field that consists in applying meta-
heuristic optimization algorithms to software engineering problems [Har07]. In recent
years, search-based engineering has produced interesting results, especially in the area
of automatic test case generation [McM04]. Search-based approaches can be partition
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in three main categories based on their search strategies: local, global, or memetic.

Local Search Algorithms A local search algorithm considers only the neighborhood of
a candidate to generate the solution [Arc09]. An example of local search algorithm is the
hill-climbing algorithm [RN03]. Hill-climbing usually starts with a random candidate
solution, and evaluates all the candidate neighbors with respect to their fitness for
the search objective. It then searches either the first neighbor that has improved the
fitness, or the best neighbor. The algorithm proceeds by considering recursively the
neighborhood of the new candidate solution. A local search algorithm can easily get
stuck in local optima, that is solutions that optimize the fitness function solely in the
considered neighborhood. Local optima are typically overcome by either restarting
the search with new random values, or with some other form of escape mechanism
(for example, by accepting a worse solution temporarily as performed by Simulated
Annealing [RN03]).

Global Search Algorithms Global search algorithms try to overcome local optima
to ultimately find more globally optimal solutions. Among the several global search
algorithms proposed in literature, Genetic Algorithms (GAs) play a dominant role mostly
because of their effectiveness [HM10, McM04].

GAs are inspired by the natural laws of evolution discovered by Charles Darwin, and
in particular by the “survival of the fittest” principle. Informally, GAs look for approxi-
mate solutions to optimization problems whose exact solutions cannot be obtained at
acceptable computational cost. In a nutshell, a GA aims to either minimize or maximize
the value of a fitness function that quantifies the distance of the candidate solutions
from the optimal solution. Each candidate solution of the problem is encoded in what
we refer to as a chromosome. A population is a set of chromosomes that iteratively
evolves through generations by means of genetic operators. Genetic operators select and
evolve candidate solutions to produce new “fitter” chromosomes. The genetic opera-
tors commonly employed in GAs have two objectives. First, they select chromosomes
with the best fitness values, that is those candidate solutions to be preserved in the
next generation. Second, they create new chromosomes by introducing variations in
a candidate solution, for example through chromosome mutation and crossover. GAs
terminate when they either find the desired solution or exhaust the time budget for the
search, and return the best solution found during the evolution process.

GAs have been successfully used to generate test cases for both procedural [PHP99]
and object-oriented software systems [FA13, Ton04]. To apply GAs on the problem of
generating test cases, the problem itself is reformulated as an optimization problem.
For example, in the case of test case generation, the problem of generating test cases for
a fragment of code is transformed in searching for inputs that maximize the coverage
metrics associated with the chosen test adequacy criterion, for instance branch coverage.

To apply GAs to an optimization problem, it is necessary to define:



74 5.1 Background

1. a representation of a candidate solution as chromosome,

2. a fitness function, defined on the basis of the chosen candidate representation,
and

3. a set of manipulation operators.

For example, let us consider again the problem of test case generation for object-
oriented systems. When generating test cases, a chromosome is a combination of
invocations of constructors and methods, terminated with the invocation of the method
under test. Primitive values are generated randomly, while the objects needed for the
final call are generated by invoking their constructors. Intermediate method calls are
introduced in a chromosome to change the internal state of an object. Figure 5.1 shows
an example of such kind of chromosomes for the Java programming language.

The manipulation operators used in GAs are categorized in mutation and crossover
operators. Mutation operators are applied to a single chromosome at a time. Some
mutation operators are general, for example the mutation of a primitive value, while
others are designed specifically to manipulate method sequences by inserting, removing,
or replacing method calls. The crossover operator combines pairs of chromosomes,
for instance by swapping their suffixes. Figures 5.2 and 5.3 show some examples of
mutations and crossover operators respectively.

The fitness function commonly employed in the literature to maximize branch
coverage is the sum of the approach level and the branch distance. The approach level
rewards those executions that get close to the target branch, referring to the control
flow graph, while the branch distance quantifies heuristically the distance of a condition
from the opposite boolean value [McM04]. For example, if the predicate is TRUE, then
the branch distance informs on how far the input used in the test case is from an input
that would make that predicate FALSE. By evolving iteratively over generations, GAs
produce test cases with increasing fitness values, until either all branches are covered,
or a time limit is reached.

Memetic Algorithms A Memetic Algorithm (MA) hybridizes global and local search
such that the individuals of a population in a global search algorithm have the opportu-
nity to improve their fitness value through local search. For example, after selection and
crossover have been applied in GA, each individual has the opportunity to improve its
fitness by applying a local search algorithm to reach an optimum local value. Harman
and McMinn analyzed the effects of global and local search, and concluded that MAs
achieve better performance since they can exploit the local information available in the
surroundings of candidate solutions [HM10].

The use of MAs for test case generation was originally proposed by Wang and Jeng
in the context of procedural code [WJ06], and later extended by Arcuri and Yao for
object-oriented code [AY07]. In particular, Arcuri and Yao compared GA, hill climbing,
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1 Stack s = new Stack();

2 s.push(0);

3 int result = s.pop();

Chromosome A

1 Stack s = new Stack();

2 s.push(-81527);

3 s.push(2);

4 int result = s.pop();

Chromosome B

Figure 5.1. Examples of chromosomes for the Stack class of the Java standard library.

1 Stack s = new Stack();

2 s.push(1234566);

3 int result = s.pop();

Chromosome A’

1 Stack s = new Stack();

2 s.push(-81527);

3 s.push(2);

4 Collection c = new Collection();

5 c.add(12);

6 c.add(-4);

7 s.addAll(c);

8 int result = s.pop();

Chromosome B’

Figure 5.2. Examples of mutations applied on the chromosomes of Figure 5.1. The
mutations are located at line 2 on Chromosome A, and at lines 4–7 on Chromosome B.

1 Stack s = new Stack();

2 s.push(1234566);

3 s.push(2);

4 Collection c = new Collection();

5 c.add(12);

6 c.add(-4);

7 s.addAll(c);

8 int result = s.pop();

Chromosome A”

1 Stack s = new Stack();

2 s.push(-81527);

3 int result = s.pop();

Chromosome B”

Figure 5.3. Examples of crossover applied on the mutated chromosomes of Figure 5.2.
The single crossover point is applied between lines 2 and 3.

and a MA defined as the combination of GA and hill climbing, for generating unit tests
that optimize branch coverage for container classes. Their evaluation showed that MA
is more effective in generating high-coverage test cases than global and local searches.
Liaskos and Roper also confirmed that the combination of global and local search
algorithms leads to improved coverage when generating test cases for object-oriented
classes [LR08]. Baresi et al. proposed a hybrid evolutionary search in their TestFul test
case generation tool. The global search aims to maximize coverage on a class as a whole,
while the local search targets the optimization of individual yet-to-be-covered branch
conditions [BLM10, MLB09].

The local search in the MA techniques described so far are mainly focused on the
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local optimization of numerical data types and covering specific testing targets (for
example, a single branch) within a single test case. To overcome such limitations,
Fraser et al. propose MAs for whole test suite generation by combining GAs with hill
climbing [FAM15]. Their approach exploits local search both at the method call level
and at the test suite level.

At the method call level, the local search optimizes primitives, strings, arrays, and
reference values. For primitive types, the original value is modified through the ap-
plication of some predefined patterns. For example, on integer values the first local
move in the neighborhood is the addition of +1 or −1 to the current value. Then, the
successful modification is recursively applied until a (sub-)optimal value is reached.
For strings, the local search is performed only if the string variable has some impact of
the overall fitness value. To determine such condition, the variable is modified with
some random mutations. If the fitness values changes due to such mutations, the local
search on the string variable is performed. The local search tries to optimize the string
by inserting, changing, and deleting characters. For arrays, the first step of local search
is to optimize the length of the array itself. To compute the optimal length, the local
search removes assignments to array slots. That is, each element of the array of length n
is removed, starting from position n−1 and moving to position 0, until the fitness values
remains unchanged. Once the search has found the best length, on each assignment to
the array is performed a local search, depending on the type of the array. For reference
types, the neighborhood of a complex type in a sequence of calls is huge, such that
exhaustive search is not feasible. Therefore, the local search consists of applying a
predefined number of random mutations to the statement. The mutations applied are
the replacement of a method call with another random call returning the same type, the
replacement of a parameter, and a new random call on the returning object.

At the test suite level, the local search tries to optimize the tests with respect to
the overall goal of achieving high code coverage. First, the local search minimizes the
reuse of primitive variables by generating multiple variables with identical values. Such
transformation is beneficial for a later improvement of the individual through a step
of local search on those variables. Second, the local search is used to ensure that each
target branch is covered twice. The fitness function defined in EvoSuite requires each
branch to be covered by two test cases to preserve one of the tests that cover the branch.
Therefore, if a branch is covered only once in a test suite, the local search duplicates
the individual that covers the branch, ultimately improving the fitness value. Last, the
local search improves a test suite by adding test cases that execute yet-to-be-covered
branches. In fact, during the evolution of the population EvoSuite collects all the test
cases that cover a particular branch. If a test suite is not able to cover a peculiar branch,
EvoSuite applies a local improvement by adding the according test case, improving the
overall fitness.

Fraser et al. show through their evaluation that MAs can improve the effectiveness
of the generation process, up to 53% more covered branches. The effectiveness of
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Method m

Synthesis Validation

Execution scenarios Counterexample

Equivalences 
eq, eq', eq''..

Candidate 
equivalence 

eq
Execution 
scenario t

Figure 5.4. High-level representation of our approach to synthesize equivalences.

memetic algorithms largely depends on the frequency at which EvoSuite performs the
local search. If the local search occurs too often, it steals search budget from the global
search. On the other hand, if the local search occurs infrequently, it does not bring
much benefits. Fraser et al. showed through an empirical investigation that the optimal
configuration for EvoSuite with MAs requires the execution of local search every 100
generations, with a search budget of 25 seconds [FAM15].

5.2 Automatic Synthesis of Equivalent Method Sequences

We exploit search-based algorithms to synthesize a sequence of method invocations that
is likely-equivalent to a target method m by means of a two-phase iterative process,
as shown in Figure 5.4. We start with an initial non-empty set of execution scenarios
that represent a sample of the input space of m. The initial execution scenarios may
be as simple as a single test case. In the first phase, we invoke the search algorithm to
generate a likely-equivalent candidate eq for the given set of scenarios. Limiting the
number of scenarios to a finite set introduces potential spurious results. In the second
phase, we validate eq by using the search algorithm to find a counterexample, which
corresponds to an execution scenario for which eq and m behave differently. If we find a
counterexample, we add it to the set of execution scenarios, and we iterate through the
first phase looking for a new candidate eq. Otherwise, we have successfully synthesized
a method sequence eq that is likely-equivalent to m. Method m may be equivalent to
many different method combinations. Therefore, once an equivalent method sequence
has been synthesized, we incrementally remove the methods used in the synthesized
sequence from the search space, and we iterate looking for further equivalences.

The algorithm for identifying a likely-equivalent method sequence for a target
method m is detailed in Figure 5.5. The algorithm needs a non-empty set of execution
scenarios for m. If the method comes with one or more test cases, the algorithm uses
them, otherwise it generates an initial set of execution scenarios (line 1), and then
iterates over the two phases (lines 2-13).

The first phase is detailed with function FIND-EQUIVALENT (lines 14-29). The search-
based algorithm generates a sequence of method invocations that is likely-equivalent to
the input method m for the current set of execution scenarios. The algorithm iteratively
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input: target method m
1: execScenarios := LOAD-INITIAL-TS

2: while time < overall-time-limit do
3: candidate := FIND-EQUIVALENT(m,execScenarios)
4: if candidate is NIL then
5: return NIL
6: end if
7: counterex := FIND-COUNTEREXAMPLE(m,candidate)
8: if counterex is NIL then
9: PRINT(candidate)

10: REMOVE-CALLS(candidate)
11: end if
12: add counterex to execScenarios
13: end while

14: function FIND-EQUIVALENT(m,execScenarios
15: while time < time-limit do
16: candidate := SYNTHESIZE-EQUIVALENT-CANDIDATE

17: candidateFound := true
18: for each e in execScenarios do
19: if ¬EQUIVALENT(m,candidate,e) then
20: candidateFound := false
21: break
22: end if
23: end for
24: if candidateFound then
25: return candidate
26: end if
27: end while
28: return NIL
29: end function

30: function FIND-COUNTEREXAMPLE(m,candidate)
31: while time < time-limit do
32: counterex := SYNTHESIZE-COUNTEREXAMPLE

33: if ¬EQUIVALENT(m,candidate,counterex) then
34: return counterex
35: end if
36: end while
37: return NIL
38: end function

Figure 5.5. General algorithm to synthesize an equivalence.
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generates a candidate sequence of method invocations (line 16), and evaluates the
equivalence of the synthesized sequence with m for all the executions e in the set of
execution scenarios (lines 18-23). If the candidate is equivalent to m for all the execution
scenarios, the phase terminates and returns the candidate (line 25). Otherwise, the
algorithm discards the candidate and generates a new one, which will then be evaluated
for all the execution scenarios. The function EQUIVALENT compares the object attributes
and the return values obtained by executing the original method m and the candidate
method sequence on a given execution scenario. If no candidate equivalent sequence is
found within a given time bound, the first phase terminates (line 28), and the whole
algorithm terminates as well (line 5).

The second phase is detailed in function FIND-COUNTEREXAMPLE (lines 30-38).
During this phase the algorithm validates the candidate through the exploration of
new scenarios in the attempt to violate the equivalence between m and the candidate
equivalent sequence synthesized after the first phase. The search for a counterexample
terminates when either a counterexample is found (line 34), or the search budget
expires (line 37). If this process produces a counterexample, then the candidate is
deemed as not equivalent to m.

The algorithm iterates from the first phase adding the counterexample to the ex-
ecution scenarios. The main iteration (line 2-13) terminates when a timeout expires
and the algorithm fails in synthesizing an equivalent sequence (line 5). If the algorithm
cannot produce new counterexamples, it prints the likely-equivalent sequence (line 9),
removes the method calls used in the synthesis of the candidate (line 10), and iterates
to synthesize new equivalent sequences.

5.3 SBES: A Tool to Synthesize Equivalent Method Sequences

We implemented the algorithm in Figure 5.5 in a Java prototype tool called SBES (Search-
Based Equivalent Synthesis). The key idea of our implementation is to leverage search-
based test case generation techniques to synthesize equivalent method sequences.

The intuition of exploiting search-based test case generation to synthesize equivalent
method sequences stems from the observation that the two problems have some com-
monalities. First, they both aim to generate fragments of code. In fact, the goal of test
case generators is to produce a fragment of code that covers some structural elements
in the code and potentially reveals the presence of a fault in the code. Similarly, we
want to obtain a method or a combination of methods that are likely-equivalent with
respect to a given method. Second, and more relevant, the problem of synthesizing an
equivalent sequence can be easily translated in the problem of satisfying an adequacy
criterion. The idea is to translate the problem of identifying equivalent sequences to
the problem of searching for test cases whose execution covers a branch: if the test
case generator produces a test case that covers a specific branch, this implies that we
have synthesized either an equivalence or a counterexample. We target branch coverage
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Method m

Stub Generator Driver

CounterexampleExecution 
scenario t

Execution scenarios

Execution Scenario 
Generator

Equivalences

EvoSuite

Figure 5.6. Main components of SBES

since it is both supported by search-based test case generators [FA13, LHG13, Ton04]
and computationally feasible.

Figure 5.6 shows the main components of SBES, which exploits EvoSuite as search-
based engine. The Execution Scenarios Generator generates a set of execution scenarios
by invoking EvoSuite. The Stub Generator creates a modified version of the target class
by removing the target method m to enable the synthesis of equivalent sequences. The
Driver iteratively invokes EvoSuite to synthesize equivalent sequences and to search for
counterexamples. EvoSuite natively supports the generation of test cases with method
calls, constructors, arrays of random length, and primitive values. We modified EvoSuite
to better deal with arrays of given length and values. EvoSuite does not generate some
arithmetic operators, loops, and conditional statements, and thus our current prototype
implementation cannot synthesize equivalent sequences that contain these constructs.

In the next sections we detail the generation process, with a particular focus on how
we transformed the identification of equivalences into a search problem.

5.3.1 Initialization: Execution Scenarios

The starting point of our technique are the execution scenarios. Execution scenarios
can be either provided by developers, typically in the form of a test suite for the
target method m, or can be generated automatically with tools such as Randoop and
EvoSuite [FA13, PLEB07].

In the context of Java programs, an execution scenario is a sequence of method
invocations that generates objects by means of constructors, operates on such objects by
means of public and protected methods, and terminates with an invocation of method
m. The following test cases are two examples of valid execution scenarios for the pop()
method of the Stack<T> class:
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1 public void test01() {

2 Stack<Integer> s = new Stack<>();

3 s.push(1);

4 Integer result = s.pop();

5 }

1 public void test02() {

2 Stack<Integer> s = new Stack<>();

3 s.push(1);

4 s.push(1);

5 Integer result = s.pop();

6 }

In our experiments we used test suites when available, and we generated the
execution scenarios with EvoSuite otherwise [FA11]. EvoSuite generates and evolves
test suites in the attempt to cover a set of target branches through the invocation of
any accessible method. Since the tool may generate method invocations that call the
target method m indirectly, we modified EvoSuite to force every generated execution to
include an explicit call to m as its last statement.

As in these examples, most of the classes in Java libraries are implemented us-
ing generic types. Ignoring generic types exacerbates the combinatorial explosion of
methods and parameters, since type erasure substitutes generics with the base class
java.lang.Object. Yet, by considering generic types we must concatenate method calls
that both satisfy and adhere to the generic types specified at class instantiation time,
increasing the complexity of both synthesis and counterexample processes.

In those cases where the execution scenarios declare and use concrete classes rather
than generic types, we exploit such information. For example, given the previous
execution scenarios we can replace the generic type T with the Integer type. This
generic-to-concrete transformation is extremely useful in case of complex generic
types. For example, suppose that we wish to synthesize equivalences for method
Multimap<K,V>.put(key,value), with the following initial execution scenario: Mul-
timap<Integer,String> m=new Multimap();m.put(15, “String”). Since in the execution
scenario the generic types K and V are replaced with Integer and String respectively, we
can safely replace all the occurrences of the generic types with the concrete classes. By
resolving generic types, the search engine obtains more information to guide the search
towards better individuals, without wasting time to find syntactically valid concrete
classes.

5.3.2 First Phase: Candidate Synthesis

The goal of the first phase is to synthesize a sequence of method invocations that is
equivalent to the target method m on a set of execution scenarios. We reformulate the
synthesis goal in a test case generation problem by introducing an artificial method that
contains a single branch. If the test case generator, in our case EvoSuite, can produce a
test case then we have synthesized a fragment of code whose behavior is equivalent to m.
The definition of the branch condition is crucial for the synthesis process and asserts the
equivalence of method m and the synthesized sequence with respect to all the execution
scenarios. The equivalence considers object states reached by the execution as well as
the return values. To allow for the comparison, rely on a stub class.
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The Stub Generator creates a stub for the target class, namely the class that includes
the declaration of the method m. The stub class encloses all the execution scenarios,
and evaluates the equivalence between the target method and the synthesized candidate
sequence. The Driver iteratively synthesizes method sequences by invoking EvoSuite,
and uses the stub class to evaluate whether the generated sequence is equivalent to the
target method m.

Given a class C that declares the target method m, the Stub Generator produces a
new stub class C_Stub that contains additional fields and methods. The additional fields
store the results computed as well as the states reached by both the original method
m and the currently generated test case. In particular, the additional fields are the
following:

expected_states is an array containing one object of type C for each execution scenario.
This data structure stores the state of these objects after the execution of each
scenario.

expected_results is an array containing the return values of each execution scenario
on the target method m.

actual_states is an array containing one object of type C for each execution scenario.
This data structure stores the state of the objects after the execution of the synthe-
sized method sequence on each scenario.

actual_results is an array containing the return values of the execution of the synthe-
sized method sequence on each scenario.

The additional methods included in the stub class have the following functionalities:

class constructors: the constructor of the stub class invokes each scenario on the
objects stored in expected_states, and stores the results in expected_results. It
also invokes all the methods of each scenario on the objects stored in actual_states.
These latter invocations do not include calls to the target method m.

methods proxies: the stub class declares every method originally declared in class
C and every method that C inherits from any of its superclasses. Each of these
methods are simply proxies for the invocation of the corresponding original method
of C on every object in the actual_states array and they return the corresponding
return values of such executions in the form of an array.

set_results: it is a utility method that stores the return values of the synthesized se-
quence in actual_results.

method_under_test: it is the target method for the search-based test case generator.
It contains a single branch, whose condition asserts the equivalence of method
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m and the synthesized sequence with respect to all the execution scenarios. The
equivalence considers both the object states, as stored in expected_states and ac-
tual_states, and the return values, as stored in expected_results and actual_results.

Figure 5.8 shows the automatically generated stub for the Stack class of the Java
standard library. Given the two execution scenarios presented in Section 5.3.1, the stub
class declares two arrays of length 2 for the expected and the actual object states, and
two arrays of length 2 for the expected and the actual execution results. The constructor
at line 7 executes both scenarios, and stores states and results in the expected_states
and expected_results arrays, respectively. The actual_states array contains the object
states obtained by applying each execution scenario up to the invocation of the target
method (for example, pop() in the running example).

Method push (line 25–31) is an example of how our prototype implementation
generates proxy methods. A proxy method redirects the invocations of the original
methods of the Stack class to each and every object stored in actual_states, which
represents the initial state of an execution scenario. SBES generates a proxy method for
every method that was originally declared in the Stack class, with the exception of the
target method, in this example the pop() method.

The artificial method method_under_test at line 185 is the main driver for the
synthesis of a candidate equivalent sequence. By generating an execution that covers
the TRUE branch of this method, we obtain a method sequence that is equivalent to
the target method in all the considered scenarios. We generate such sequence with
EvoSuite [FA11]. The default strategy for branch coverage requires EvoSuite to generate
a test case to cover both the TRUE and the FALSE branches for every possible basic
condition. Since we are interested in a test case that covers the compound branch,
we modified Evosuite so that its only goal is to cover the compound TRUE branch of
method_under_test, so as to execute line 190.

The generation of likely-equivalent method sequences is guided by the fitness func-
tion that quantifies the distance of each candidate sequence from satisfying the condition
at lines 186–189. Since the condition is a conjunction of atomic clauses, the fitness
function is the sum of the branch distances for each single clause, so that the overall
distance is zero when all the clauses evaluate to TRUE. In turn, the branch distances
for the atomic clauses are computed as numeric, object or string distances, depending
on the involved types. When the distance involves objects, the search-based algorithm
cannot guide the evolution, since comparing objects with the boolean method equals
flattens the fitness landscape [HHH+04]. To overcome this problem, we resort to an
object distance that quantifies the difference between two objects, similarly to what
ARTOO [CLOM06] and RECORE [RZF+13] implement.

Our object distance computes the similarity between two objects by recursively
comparing all the object fields through the following cases:

Primitive: distance computed as absolute difference between the two numbers.
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1 class Stack_Stub {

2 Stack expected_states[2] = new Stack[2];

3 int expected_results[2] = new int[2];

4 Stack actual_states[2] = new Stack[2];

5 int actual_results[2] = new int[2];

6
7 public Stack_Stub() {

8 // execution scenario 1

9 expected_states[0] = new Stack();

10 expected_states[0].push(1);

11 expected_results[0] = expected_states[0].pop();

12 actual_states[0] = new Stack();

13 actual_states[0].push(1);

14
15 // execution scenario 2

16 expected_states[1] = new Stack();

17 expected_states[1].push(1);

18 expected_states[1].push(1);

19 expected_results[1] = expected_states[1].pop();

20 actual_states[1] = new Stack();

21 actual_states[1].push(1);

22 actual_states[1].push(1);

23 }

24
25 public int[] push(int[] item) {

26 int result[2];

27 for (int i = 0 ; i < 2 ; i++) {

28 result[i] = actual_states[i].push(item[i]);

29 }

30 return result;

31 }

[...] // all other methods in Stack

179 public void set_results(int result[]) {

180 for (int i = 0 ; i < 2 ; i++) {

181 actual_results[i] = result[i];

182 }

183 }

184
185 public void method_under_test() {

186 if (distance(expected_states[0], actual_states[0]) == 0 &&

187 distance(expected_states[1], actual_states[1]) == 0 &&

188 distance(expected_results[0], actual_results[0]) == 0 &&

189 distance(expected_results[1], actual_results[1]) == 0) {

190 ; // target

191 }

192 }

193
194 }

Figure 5.8. The synthesis stub generated for the Stack class.
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String: distance computed as Levensthein similarity measure between the two strings.

Array: recursively computed as pairwise distance between each array element. In case
of arrays of different size, each missing element is replaced with the maximum
possible value for the type. In case of array of object values, the missing elements
are treated as null.

Object: recursively computed as distance among all the fields. If one object is null, the
distance is set to a configurable value that represents infinity.

The readers should notice that such notion of equivalence based on the identity
between objects is stronger and in fact implies the notion of behavioral equivalence, as
discussed in Chapter 3.

The Driver component of our tool controls all the elements described so far, and
drives the whole process towards the synthesis of a candidate equivalent sequence by
invoking EvoSuite to generate a sequence of method invocations that tries to cover the
target branch in method_under_test, after saving the results of the execution by calling
set_results.

In an attempt to find an equivalent sequence for method pop of class Stack, the
driver may generate the following sequence of method calls:
1 Stack_Stub x0 = new Stack_Stub();

2 int x1[] = x0.remove(0);

3 x0.set_results(x1);

4 x0.method_under_test();

which in turn can be automatically transformed into the candidate sequence:

stack.pop() ≡ stack.remove(0)

This candidate expresses the equivalence between pop(), which removes the object on
top of the stack and returns such object, and remove(0), which removes the first element
in the stack and returns it. This equivalence holds only because the first and the last
elements in the two scenarios considered above are the same (two integer values equal
to 1). This equivalence, though, does not hold in other scenarios. The next section
describes how the second phase can invalidate such a spurious candidate.

5.3.3 Second Phase: Candidate Validation

The second phase validates the candidate equivalence synthesized in the first phase by
considering other execution scenarios. This phase aims to identify a scenario for which
the equivalence does not hold.

Similarly to the first phase, the prototype automatically generates a method_under_test
containing a single branch asserting the non equivalence between method m and the syn-
thesized candidate sequence. The prototype then automatically includes such method
in the declaration of class C. For instance, Figure 5.9 illustrates how our SBES prototype
automatically transforms class Stack for the counterexample phase.
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1 public class Stack_Stub2 extends Stack {

2
3 public void method_under_test() {

4 Stack clone = deepClone(this);

5 int expect = this.pop();

6 int actual = clone.remove(0);

7 if (distance(this,clone) > 0.0 || distance(expect,actual) > 0.0) {

8 ; // target

9 }

10 }

11
12 }

Figure 5.9. The validation stub generated for the Stack class.

Similarly to the first phase, we exploit EvoSuite to automatically generate an execu-
tion covering the target branch (line 13), hence generating a counterexample for the
equivalence. The original method pop is applied on object this, while the candidate
sequence is applied to a clone of object this. We rely on a deep clone library to create
exact copies of the current state of the object. This operation is crucial to avoid spurious
results, since not all classes may contain a sound and complete implementation of the
optional method clone().

For the Stack example, EvoSuite might produce the following method sequence in
an attempt to cover the TRUE branch of method_under_test:
1 Stack x0 = new Stack();

2 x0.push(2);

3 x0.push(1);

4 x0.method_under_test();

which indeed provides a scenario that shows that the equivalence between pop() and
remove(0) does not hold. In this scenario, the first and the last elements in the Stack
are different, and consequently the two operations have different effects on the Stack.
As described in the algorithm in Figure 5.5, the process iterates, and the synthesis of a
new candidate takes into account also the new execution scenario:
1 Stack s = new Stack();

2 s.push(2);

3 s.push(1);

4 int result=s.pop();

In the second iteration of the first phase for this example, the stub considers three
scenarios, and the size of all the arrays and the branch conditions to cover are updated
accordingly.

The new iteration of the first phase may generate the following method sequence
that covers the new target branch:
1 Stack_Stub x0 = new Stack_Stub();

2 int x1[] = x0.size();

3 int x2[] = ArrayUtils.add(x1, -1);

4 int x3[] = x0.remove(x2);
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5 x0.set_results(x3); x0.method_under_test();

thus producing the following new candidate equivalence:

stack.pop() ≡ int x0 = stack.size();
int x1 = x0-1;
result = stack.remove(x1)

In this new iteration, the search for a counterexample times out, and the synthesis
process outputs the likely-equivalent sequence. Since a method can be equivalent to a
code fragment that combines more than one method, SBES incrementally removes the
methods used in the currently synthesized sequence from the stub. At each iteration SBES
repeats the search process for each newly generated stub to obtain further equivalent
sequences, when more exist.

5.4 Experimental Validation

The evaluation of our technique aims to answer the following research questions:

Q1 recall: Can the proposed approach correctly identify equivalent method sequences?

Q2 precision: How often does the proposed approach identify non-equivalent method
sequences as equivalent?

Q3 performance: How efficiently can the proposed approach identify equivalent method
sequences and counterexamples?

Q4 role of counterexamples: How often do counterexamples correctly discard method
sequences that are not equivalent to the target one?

Research questions Q1 and Q2 deal with the effectiveness of the proposed approach
by considering its ability to retrieve known equivalences (recall) and to report them with
few false positives (precision). Q3 deals with the efficiency and the practical applicability
of the approach. Q4 validates the need for the second phase of the approach to generate
counterexamples and eliminate candidate sequences that were at first wrongly identified
as equivalent.

To answer Q1 and Q2 we resort to the standard recall and precision metrics:

Recal l = true positives
true positives+false negatives

Precision= true positives
true positives+false positives

Recall is defined as the ratio between the number of equivalent sequences correctly
synthesized with the approach (true positives) and the total number of equivalent
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sequences, which include both the ones correctly synthesized (true positives) and the
ones that the approach fails to synthesize (false negatives).

Precision is defined as the ratio between the number of equivalent sequences correctly
synthesized with the approach (true positives) and the total number of sequences
deemed as equivalent, which include both the equivalent ones (true positives) and
the non-equivalent ones erroneously identified as equivalent by the approach (false
positives).

To answer Q3, we measure performance as the time required to synthesize an
equivalent sequence and the time required to find a counterexample, since these two
measures directly influence the overall performance of our approach. We use these
two values to compute the optimal timeouts. In fact, we acknowledge a synthesized
sequence as likely-equivalent to the target method when no counterexamples are found
within a given timeout. The maximum time required to find a counterexample indicates
the optimal value for the counterexample timeout: a smaller value would lead to missing
some counterexamples, a larger value would cause time waste. Similarly, the maximum
time required to synthesize a sequence indicates the optimal synthesis timeout, that is,
the value that avoids missing sequences without wasting time.

For Q4, we measure the role of counterexamples as the number of method sequences
identified as candidates for equivalence that the counterexamples discard as false
positives. This number corresponds to the number of iterations between the second and
the first phase, since discarding a sequence results in re-executing the first phase.

5.4.1 Experimental Setup

Table 5.1 shows the case studies used in our evaluation. For each library we use (column
Case Study), the table reports all the classes we analyze (column Class) with their
number of public API methods (Class Methods), target methods for our evaluation (Target
Methods), and number of manually identified equivalences (Equivalences). Intuitively,
the number of public methods in a class defines the lower bound of the space of possible
elements that SBES has to deal with while searching for a candidate equivalence or a
counterexample.

The first target of our experiments is class Stack, taken as a representative for the
various containers available in the Java standard library.1 Class Stack is challenging
because it contains many non trivial equivalent method sequences. Our second set of
classes is taken from Google Guava, and in particular from its collection of container
classes.2 Guava is particularly difficult to analyze due to complex generic classes and
equivalence sequences that require deep method concatenations. We also considered a
set of classes from Graphstream, a library to model and analyze dynamic graphs.3

1http://docs.oracle.com/javase/7/docs/api/java/util/Stack.html
2https://github.com/google/guava
3http://graphstream-project.org/
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Case Study Class
Class

Methods
Target

Methods Equivalences

Java Stack 50 15 45

Graphstream

Path 31 2 5
Edge 36 9 20
SingleNode 72 5 12
MultiNode 76 5 12
Vector2 29 5 21
Vector3 39 6 22

Guava

ArrayListMultimap 25 15 18
ConcurrentHashMultiset 27 16 16
HashBasedTable 25 16 13
HashMultimap 24 15 13
HashMultiset 26 16 19
ImmutableListMultimap 30 11 20
ImmutableMultiset 32 8 20
LinkedHashMultimap 24 15 13
LinkedHashMultiset 26 16 19
LinkedListMultimap 24 24 17
Lists 17 8 16
Maps 32 9 12
Sets 30 10 25
TreeBasedTable 27 15 17
TreeMultimap 26 14 12
TreeMultiset 35 20 34

Total 778 266 421

Table 5.1. Case studies analyzed in our SBES experiments.

Our experiments cover 23 classes and 266 methods. In particular, we use 15 methods
of class Stack, 201 methods of 16 classes of Guava, and 32 methods belonging to 6
classes of Graphstream. Stack, Guava, and Graphstream represent different application
domains, are developed and maintained by different third party subjects, and include
all the language characteristics that we can currently handle with EvoSuite, which
constrains our prototype implementation.

We run the experiments by feeding the prototype with the class under analysis, the
target method, and an initial scenario. The target method is the method of the class under
analysis for which we would like to synthesize equivalent method sequences. The initial
scenario consists of one test case that was either extracted from the existing test suite, or
generated automatically with EvoSuite, depending on the availability of the test suites.
If the initial scenario contains concrete types for generic ones, we exploit our generics-
to-concrete transformation. We configure EvoSuite to use Memetic Algorithms with
local search operators applied every 75 generation as previously identified [MGG15].

We execute SBES with an overall budget of 20 attempts for the first phase, regardless
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of how many times the technique refines the synthesized candidates by identifying
counterexamples. We give a search budget of 180 seconds to the first phase and a search
budget of 360 seconds to the second phase.

To answer Q1 and Q2 we compare the sequences that we synthesize automatically
against the set of sequences that we previously identified with manual inspection within
the limits of the current prototype. In theory, the amount of equivalent sequences
would be infinite, since we can easily combine simple equivalent sequences to obtain
new ones. For example, method pop() is equivalent to remove(size()-1), but is also
equivalent to push() pop() remove(size()-1). In our experiments we considered only
minimal equivalences that we informally identify as those that cannot be derived by
suitably combining simpler equivalences or adding method calls with a globally null
effect, as the pair push() pop() in the previous example.

In our experiments, we synthesize equivalent method sequences for single methods
only. Synthesizing equivalent sequences for method sequences does not change the
problem, but simply increases the size of the experiment. Our automatic synthesis is
limited by EvoSuite that can deal with method calls, constructors, primitive values and
arrays, but not with all the arithmetic operators, loops and conditional statements. These
limitations are inherited from EvoSuite, and do not belong to the approach that can
synthesize equivalent sequences for general method sequences, potentially exploiting
all language constructs.

The execution environment provides a listener that logs detailed information about
the timing of the events. Each iteration consists of creating a stub, compiling and
executing it. The listener logs the compilation and execution time, recording the
execution time of both the prototype and EvoSuite. These data allowed us to compute
all the performance metrics discussed above.

5.4.2 Effectiveness (Q1, Q2)

In this section, we discuss the experimental results. We ran our prototype on 266
methods of 23 classes taken from the Stack Java class, the Google Guava library, and the
Graphstream library. We automatically synthesized 312 equivalent method sequences,
which represent more than 74% of the 421 sequences that we manually identified ahead
by inspecting the classes documentation. We considered only the minimal equivalences,
and we excluded those that could not be found due to the limitations of our prototype.

Table 5.2 presents a sample of the equivalent sequences that we synthesized auto-
matically. SBES can synthesize both simple equivalences, for example methods that
can be replaced interchangeably, and complex equivalences that include non trivial
combinations of method calls, as in the case of Collection c=new Collection(); c.add(e);
addAll(c); that is equivalent to addElement(e).

Table 5.3 summarizes the experiment results. For each of the analyzed methods, the
table shows the following information:
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Original sequence Synthesized sequence

java.util.Stack

addElement(Object e)

add(e)
push(e)
add(e,size())
Collection c=new Collection(); c.add(e); addAll(c);

clear()
removeAllElements()
setSize(0)
Collection c=new Collection(); retainAll(c);

e = pop() e=peek(); index=size()-1; removeElementAt(index);
e = set(int i, Object o) e=remove(i); insertElementAt(o,i)

org.graphstream.graph.implementations.Edge
getSourceNode() temp=getTargetNode(); getOpposite(temp)
getTargetNode() temp=getSourceNode(); getOpposite(temp)

org.graphstream.graph.implementations.SingleNode
getAttribute(String s) getAttribute(s,Object.class)

org.graphstream.ui.geom.Vector2

fill(double d)
Vector2 v=new Vector2(); v.set(d,d); copy(v);
Point2 p=new Point2(d,d); set(p.x, p.y);
scalarAdd(d)

org.graphstream.ui.geom.Vector3
copy(Vector3 v) Point3 p=new Point3(); p.move(v); set(p.x,p.y,p.z)

com.google.common.collect.ArrayListMultimap

create()
create(new LinkedListMultimap())
create(0,0)

put(Object k, Object v) putAll(k, new ImmutableSet(v, 0))

com.google.common.collect.LinkedListMultimap
removeAll(Object k) replaceValues(k, new LinkedList())
s = size() Collection c=values(); s = c.size();

Table 5.2. Sample sequences synthesized with SBES.
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Case Study Class Equiv
Synthesized

Prec Rec
TP FP

Java Stack 45 32 7 0.82 0.71

Graphstream

Path 5 5 2 0.71 1.00
Edge 20 20 1 0.95 1.00
SingleNode 12 12 0 1.00 1.00
MultiNode 12 12 0 1.00 1.00
Vector2 21 21 3 0.87 1.00
Vector3 22 22 4 0.84 1.00

Guava

ArrayListMultimap 18 12 3 0.80 0.67
ConcurrentHashMultiset 16 6 2 0.75 0.38
HashBasedTable 13 2 8 0.20 0.15
HashMultimap 13 13 1 0.92 1.00
HashMultiset 19 19 5 0.79 1.00
ImmutableListMultimap 20 2 0 1.00 0.10
ImmutableMultiset 20 3 0 1.00 0.15
LinkedHashMultimap 13 12 3 0.80 0.92
LinkedHashMultiset 19 19 6 0.76 1.00
LinkedListMultimap 17 11 0 1.00 0.65
Lists 16 15 1 0.94 0.94
Maps 12 8 0 1.00 0.67
Sets 25 21 0 1.00 0.84
TreeBasedTable 17 3 10 0.24 0.18
TreeMultimap 12 8 2 0.80 0.67
TreeMultiset 34 34 10 0.78 1.00

Total 421 312 68 0.82 0.74

Table 5.3. Q1, Q2: Effectiveness of SBES.

1. the number of minimal equivalent sequences identified with manual inspection
(column Equiv), which we use as baseline,

2. the amount of true equivalent sequences automatically synthesized (column TP),

3. the amount of candidate sequences wrongly identified as equivalent (column FP),

4. the precision (Prec) and the recall (Rec).

Table 5.3 shows that in most of the cases where a target method has multiple
equivalent sequences our approach can synthesize a substantial fraction—if not all—of
the equivalences. This is a very interesting result, since all of the practical applications
of redundancy typically benefit from a high level of redundancy [CGM+13, CGG+14,
CGPP15, CGP09]. In those case studies where SBES was not able to synthesize all the
manually identified equivalences, we identified three major issues that limit the its
effectiveness: wrong handling of return values, sub-optimal search configuration, and
failure in the generation of stubs.
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Wrong return handling We observed that sometimes the correct equivalent sequence
was indeed synthesized during the evolution of the individuals, but the objects holding
the correct results were not used as parameters of the set_results method. As a result,
the actual_result array was not set with the proper objects, and the search did not stop.

Similarly, we observed cases where the solution was actually correctly synthesized
in an individual, but some additional and further method invocations were disrupting
either the return value or the objects stored in the actual_state data structure.

These are indeed limitations of the current approach that can be overcome by
improving the evolution process to make use of any object available in the current method
sequence, instead of arbitrarily choosing one, and to better locate the method_under_test
location. For example, one can design a new local search operator that optimizes where
to place the set_results and method_under_test methods.

Sub-optimal search configuration The optimal EvoSuite configuration for our code
synthesis problem might differ from the recommended configuration for test case gener-
ation. One major issue of search-based approaches, in particular Genetic Algorithms,
is the tendency throughout the generations in producing individuals of increasing size
but without a corresponding increase of fitness function. This bloating phenomenon is
addressed by EvoSuite through the limitation on the size of an individual. When a test
case exceeds a predefined limit, it is removed from the population. Such countermeasure
has been demonstrated effective for test case generation [FA15, FA16], but limits the
effectiveness of SBES. To successfully identify some equivalent sequences, SBES requires
to concatenate a long series of methods and parameters. Unfortunately, EvoSuite often
removes the candidate with a partially correct sequence because it exceeds the prede-
fined bloat limit. As a result, EvoSuite tends to generate solutions that lack of diversity
and that contain only a partial correct solution.

This issue is particularly relevant in the cases of immutable data structures, such as
ImmutableListMultimap and ImmutableMultiset where SBES successfully synthesized
only 10% and 15% of the equivalences manually identified. In the experiments with the
two immutable classes, the majority of the equivalences require to concatenate from
3 to 12 methods. However, EvoSuite quickly reaches the bloat limit and removes the
candidate from the population.

On the one hand, it is possible to increase the bloat limit, thus potentially allowing
EvoSuite to generate the required test cases. On the other hand, however, increasing
the size of the individual directly affects the performance of the evolutionary algorithm,
potentially lowering the effectiveness of the approach even in the successful cases. One
promising solution is to allow EvoSuite to temporary exceed the bloat limit if the fitness
function of the candidate improves in the following generations. This modification can
be applied in conjunction with a minimization phase where we remove source code
lines that do not directly influence the fitness function of the individual.
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Case Study Class Equiv
Type

Erasure
Generics
Support

TP FP TP FP
Java Stack 45 22 4 32 7

Guava

ArrayListMultimap 15 7 1 13 1
ConcurrentHashMultiset 16 5 0 9 1
HashBasedTable 16 3 6 3 8
HashMultimap 15 7 0 9 2
HashMultiset 16 6 0 15 3
ImmutableListMultimap 11 1 1 2 1
ImmutableMultiset 8 3 0 1 0
LinkedHashMultimap 15 6 1 9 1
LinkedHashMultiset 16 5 1 19 2
LinkedListMultimap 15 6 2 10 1
Lists 8 18 0 17 3
Maps 9 6 0 5 0
Sets 10 12 2 15 0
TreeBasedTable 15 0 8 4 8
TreeMultimap 14 4 1 9 3
TreeMultiset 20 12 5 32 13

Total 266 123 32 204 54

Table 5.4. Contribution of the generic-to-concrete transformation on the effectiveness
of SBES.

Failure of the stub generation In HashBasedTable, TreeBasedTable, and TreeMultiset,
the counterexample phase fails to discard spurious candidate sequences due to the
inability of EvoSuite to generate a syntactically valid test case. The validation phase,
thus, fails in invalidating even the most trivial spurious candidate.

As discussed in Section 5.3.3, the validation phase creates a stub that extends
the class under analysis, as shown in Figure 5.9. The Java programming language
force every sub-class to re-declare all non-default the constructors. In HashBasedTable,
TreeBasedTable, and TreeMultiset, the constructors declarations lead to compilation
errors due to the use of non-visible inner classes.

A practical solution for this issue is to generate a stub that does not extend the
target class, but rather requires an object of the class as additional parameter of the
method_under_test. The subsequent challenge is to then guide EvoSuite to efficiently
generate and use the additional object.

As discussed in the evaluation setup, we ran SBES with both generics-to-concrete
transformation and Memetic Algorithms. It is thus interesting to evaluate if and to what
extent these enhancements contribute to increase the effectiveness of SBES.

Table 5.4 reports the comparison between SBES with and without generics-to-
concrete transformation on Java and Guava case studies, since Graphstream does not
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Class
GA MA10 MA50 MA75 MA85 MA100

TP FP TP FP TP FP TP FP TP FP TP FP
ArrayListMultimap 13 1 12 2 14 1 12 3 13 0 11 3
ConcurrentHashMultiset 9 1 7 2 5 2 6 2 7 4 4 3
HashBasedTable 3 8 4 7 3 6 2 8 5 8 6 7
HashMultimap 9 2 12 1 12 1 13 1 12 2 12 2
HashMultiset 15 3 16 7 15 4 19 5 17 4 16 5
ImmutableListMultimap 2 1 2 1 0 0 2 0 1 0 1 2
ImmutableMultiset 1 0 4 0 5 0 3 0 4 0 0 0
LinkedHashMultimap 9 1 12 1 10 1 12 3 11 2 11 2
LinkedHashMultiset 19 2 16 4 15 4 19 6 16 3 18 5
LinkedListMultimap 10 1 9 1 10 0 11 0 10 1 11 3
Lists 17 3 18 2 14 2 15 1 12 4 16 3
Maps 5 0 6 0 7 0 8 0 8 0 6 0
Sets 15 0 16 0 17 0 21 0 15 0 19 2
TreeBasedTable 4 8 1 7 4 6 3 10 9 4 4 9
TreeMultimap 9 3 7 1 11 2 8 2 7 1 9 1
TreeMultiset 32 13 26 11 28 10 34 10 28 4 30 9
Total 172 47 142 36 170 39 188 50 175 37 174 56

Table 5.5. Comparison between Genetic Algorithms (GA) and Memetic Algorithms
(MA) on the effectiveness of SBES.

use generic types. The table reports for each class the number of known equivalent
sequences (column Equiv). The effectiveness of SBES without generic type support
(columns Type Erasure) and with generic-to-concrete transformation (columns Generics
Support) is reported in terms of correct equivalences synthesized (columns TP) and false
positives (column FP). The generic-to-concrete transformation is indeed beneficial for
the synthesis phase of SBES, leading to 66% more correct equivalent sequences. An
increase in the effectiveness in the synthesis phase negatively impacts the effectiveness
of counterexample phase, which leads to an equivalent percentage of additional false
positives. Under this perspective, solving the uncovered limitations of the generation of
the validation stub become even more significant.

Table 5.5 reports the comparison between SBES configured with EvoSuite using
Genetic Algorithms (GA) and Memetic Algorithms (MA). The comparison was performed
on the Guava case study, since the Guava benchmark is composed of complex equivalent
sequences that can benefit the most from the local search operators applied by EvoSuite.
EvoSuite requires in input the frequency at which to apply the local search. Since the
frequency it is a problem-dependent variable, we performed several runs by applying
local optimization every 10, 50, 75, 85, and 100 generations. Table 5.5 shows for each
target class (column Class) the effectiveness of SBES with EvoSuite configured with GAs
(columns GA) or MAs (columns MA) with the chosen local search frequencies. As for
the previous experiments, we report the effectiveness of SBES in terms of true and false
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positives (columns TP and FP, respectively).

MAs outperform GAs in terms of true equivalences synthesized with an increment of
9%, however the effectiveness of memetic algorithms largely depends on the frequency
at which EvoSuite performs the local search. If the local search occurs too often, it steals
search budget from the global search. On the other hand, if the local search occurs
infrequently, it does not bring much benefits. With 10 generations we obtained the worst
result, since we synthesized 30 equivalences less than the run with GAs (-17%). We
obtained consistently better results for the other configurations up to the optimal rate
of once every 75 generations. After this threshold, local search seems not to be frequent
enough, since the effectiveness decreased again (-7% w.r.t. the optimal configuration).

In summary, despite the discussed limitations and issues, precision and recall are
high, almost always close to or equal to one, indicating that the proposed approach can
retrieve a large portion of the known equivalent sequences with an acceptable number of
false positives. Therefore, we can answer positively to Q1, Q2: The proposed approach
can correctly identify one and often more than one equivalent method sequences, with
recall and precision which are close or equal to one in the majority of the cases.

5.4.3 Efficiency (Q3)

Table 5.6 reports the efficiency metrics. Column Synthesis shows the time required to
synthesize an equivalent sequence, while column Validation reports the time for the
counterexample generation. In particular, column Max shows the optimal timeout that
can be set to the validation phase without altering the effectiveness of the approach,
that is the precision and recall values reported in Table 5.3. Column Synthesis report the
median of the values computed over the runs across the target methods of each class.
Under column Validation, column Median reports the median of the values computed
over the runs across the target methods of each class, while column Max reports the
worst computation time experienced in the experiments during the validation phase. The
table reports only the counterexample timeout because the synthesis timeout is always
lower than the counterexample one, and thus the counterexample timeout represents
an upper bound for the performance of the approach.

The execution time is acceptable and compatible with the typical usage scenarios
in which redundancy is needed. In fact, even when equivalent sequences are used at
runtime, for example in self-healing applications, the synthesis of equivalent sequences
can be carried out in advance, offline. Hence, we can answer positively to research
question Q3: The proposed approach requires a total execution time that is compatible
with the typical application scenarios, where redundancy can be identified offline.
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Case Study Class Synthesis
Validation

Median Max
Java Stack 13.0s 9.0s 190s

Graphstream

Path 26.0s 15.0s 60s
Edge 17.0s 6.0s 7s
Node 15.0s - -
MultiNode 20.0s - -
Vector2 13.0s 9.0s 36s
Vector3 76.5s 7.0s 29s

Guava

ArrayListMultimap 28.7s 20.5s 191s
ConcurrentHashMultiset 46.5s 16.0s 192s
HashBasedTable 26.5s 9.0s 12s
HashMultimap 28.0s 17.2s 121s
HashMultiset 31.2s 13.5s 116s
ImmutableListMultimap 24.5s 91.0s 194s
ImmutableMultiset 32.0s - -
LinkedHashMultimap 29.7s 20.7s 191s
LinkedHashMultiset 37.0s 13.5s 191s
LinkedListMultimap 27.0s 94.0s 195s
Lists 13.0s 99.0s 189s
Maps 16.0s 66.0s 89s
Sets 18.0s 15.0s 45s
TreeBasedTable 27.5s 69.2s 169s
TreeMultimap 30.0s 75.2s 104s
TreeMultiset 27.0s 31.5s 197s

Table 5.6. Q4: Efficiency of the approach

5.4.4 Counterexamples (Q4)

Table 5.7 reports the data about the effectiveness of the counterexamples: column
False Positives indicates the amount of sequences that were erroneously identified as
equivalent and were not automatically discarded with a counterexample. Column
Discarded indicates the amount of overfitted candidate solutions that are identified as
non-equivalent by a counterexample, and column Efficiency indicates the percentage
of sequences automatically discarded with counterexamples. The table indicates that
counterexamples are extremely effective in identifying and removing many method
sequences erroneously proposed as equivalent, from 89% in the worst case to 100% in
the best case.

We can thus positively answer research question Q4: Counterexamples can discard a
relevant amount of method sequences erroneously identified as equivalent to the target
one, and can thus reduce significantly the number of reported false positives.
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Case Study Class False Positives Discarded Efficiency
Java Stack 7 258 97.35%

Graphstream

Path 2 23 92.00%
Edge 1 29 96.67%
Node 0 0 -
MultiNode 0 0 -
Vector2 3 76 96.20%
Vector3 4 95 95.95%

Guava

ArrayListMultimap 3 76 96.05%
ConcurrentHashMultiset 2 244 99.18%
HashBasedTable 8 78 89.74%
HashMultimap 1 89 98.87%
HashMultiset 5 104 95.19%
ImmutableListMultimap 0 54 100.00%
ImmutableMultiset 0 0 -
LinkedHashMultimap 3 70 95.71%
LinkedHashMultiset 6 92 93.41%
LinkedListMultimap 0 105 100.00%
Lists 1 74 98.64%
Maps 0 96 100.00%
Sets 0 91 100.00%
TreeBasedTable 10 106 90.56%
TreeMultimap 2 65 96.92%
TreeMultiset 10 138 92.75%

Table 5.7. Q5: Effectiveness of counterexamples
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5.4.5 Limitations and Threats to Validity

Our SBES tool is limited primarily by technological limitation of the EvoSuite test
case generator. EvoSuite deals with method calls, constructors, primitive values and
arrays, but not with all the arithmetic operators, loops and conditional statements. Not
synthesizing loops and conditionals limits the overall effectiveness of our approach. In
fact, a substantial amount of equivalences contains loops. As a representative example,
in the Java Stack class the methods putAll(Collection) and removeAll(Collection) are
equivalent to invoking the put or remove method on each element of the collection.

A possible solution for this problem is to exploit grammar-based genetic programming
(GGP) approaches. GGPs use an input grammar to define the structure of individuals.
We could enhance EvoSuite to exploit GGPs with an input grammar that incorporates
loops and conditionals. However, GPPs pose two major challenges. First, it is not
straightforward to create a grammar for the Java programming language: Intuitively,
we would like to create a grammar that is as comprehensive as possible to maximize
the number of synthesized equivalences. On the other hand, a non-trivial and complex
grammar hampers the efficiency of the approach, since the search algorithm has to
deal with complex cases and conditions. Second, the synthesis of loop conditions is
challenging, and might lead to infinite iteration, thus impacting on the overall efficiency—
and in turn effectiveness—of the GGPs.

Another limitation of SBES stems from our implementation of the object distance.
Our object distance deems two object as equivalent if and only if their internal fields are
identical. This implementation limits the effectiveness of our technique under certain
circumstances. For example, if a class creates an internal data structure only the first
time it is accessed (lazy initialization), our implementation may deem two semantically
equivalent object as different. Our technique would thus benefit from a better object
distance based on observational equivalence, as discussed in Chapter 3 and Chapter 4.

The main challenge with observational equivalence is to balance the trade-off be-
tween completeness and efficiency. Theoretically, we need to provide and infinite
amount of infinite sequences of methods to pinpoint any observable difference. Practi-
cally, and especially within the fitness function evaluation, we must rely on an efficient
and bounded notion of observability. As a result, we need to limit the bound to increase
the efficiency—and in turn—the effectiveness of the approach. On the other hand,
we need to increase the bound to improve the precision of the approach, in terms of
amount of generated false positive. The evaluation and improved implementation of
the object distance based on observational equivalence thus need further investigation
and evaluation.

We acknowledge potential problems that might limit the validity of our experimental
results. The main threats that affect the validity of the empirical study described above is
the authors’ bias. We have manually identified the reference set of equivalent sequences
used to assess the effectiveness of the approach. Such task was carried out before
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running SBES to avoid any influence from SBES output. Moreover, we cross-checked
the equivalent sequences identified to verify that no equivalent sequence was missed
and that the identified equivalent sequences were correct.

Threats to external validity may derive from the selection of the case studies. We
have validated our approach on 23 classes and 266 methods, taken from three real-world
subjects. Different results could be obtained for different systems. We have chosen three
subjects, java.util, Graphstream, and Google Guava, that were known to contain some
degree of equivalence in their implementation. By construction, our approach will not
synthesize any result on systems that do not include any equivalence at all.

The selection of the subjects used in the experiments was driven exclusively by
prior knowledge about the presence of equivalence. Hence, we expect our approach to
behave similarly on other systems having a comparable degree and kind of equivalence.
On the other hand, specific implementation details might affect the performance of
search-based generators in finding candidate method sequences or counterexamples.
For instance, the use of generic types represented a technological obstacle that required
some tool adaptation.



Chapter 6

Conclusion

This dissertation presents the first systematic investigation of software redundancy.
Redundancy has been extensively exploited by researchers and practitioners as a key
ingredient of numerous techniques such as fault tolerance, software testing, and auto-
matic program repair. Despite its widespread use, there are no formal definitions of
the concept of software redundancy, nor approaches and tools to quantitatively and
qualitatively assess the redundancy present in software systems.

This thesis introduces a formal definition of software redundancy whereby two
code fragments are considered redundant when they provide the same functionality
through different executions. More specifically, two code fragments are redundant when
their execution produces results indistinguishable to an external observer, while the
executions differ in the set of executed instructions, in the order in which the instructions
are executed, or both in the set of instruction and their order.

On the basis of this definition of redundancy, we develop a measure of redundancy
that is both practical and significant. Our measure considers a finite set of initial states
obtained from a finite set of executions, and quantifies the degree of redundancy as a
combination of a degree of observational equivalence between computed results and
application states, and a degree of difference between execution traces. We demonstrate
the significance and therefore usefulness of this measure as an indicator of redundancy.
In particular, we show experimentally that our measure can distinguish between shallow
and deep high-level redundancy, where not only the code is different but also the
implemented algorithm differs. Moreover, we demonstrate that our measure is a good
predictor of the effectiveness of techniques that exploit redundancy.

In the thesis, we also report an approach to automatically identify redundancy in
software systems, with particular emphasis on the redudant method calls. In particular,
our approach automatically identifies method sequences whose behavior is equivalent to
a given target method. Our approach efficiently explores the solution space by restricting
the possible executions to a finite set, and then validate the candidate solutions on
additional executions. We demonstrate the effectiveness and efficiency of our approach
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on 266 target methods taken from three real-world subject systems. We show that our
technique correctly identifies a large amount of equivalences where redundancy was
known to exist, with adequate precision and performance.

Contributions

The major contributions of this thesis are a formalization and measurement of software
redundancy, and a technique to automatically identify redundancy at the method level.
This thesis provides the first formalization of what software redundancy is and how
one can measure the redundancy present in a software system. The technique to
automatically identify equivalent functionalities provides a way to investigate where a
software system is intrinsically redundant. The specific contributions of this thesis are:

• A formalization of software redundancy. We define and abstract and general
notion of redundancy at the code level. Two code fragments are redundant when
they produce observationally equivalent results, and differ in their execution.
Two code fragments are observationally equivalent when, starting from the same
initial state and with the same input, it is not possible to distinguish the two
code fragments by executing any code fragment that interacts with them. Two
executions are different when the actions on the application state are different, or
they are the same actions but in different order.

• A practical measurement method, based on our formalization, to quantify
the redundancy of differently designed code fragments. Our method com-
putes redundancy as product of a measure of the degree of equivalence of the
fragments and a measure of the degree of diversity between their execution. Our
method measures equivalence by employing a bounded notion of observability
that is implemented as approximation of the probability of identifying differences
between the two fragments. Our method measures execution differences by com-
puting a specific form of edit distance between specific projections of a finite set
of execution traces that log memory changes.

• Empirical evidence of the usefulness and significance of the measure of re-
dundancy. We present a set of experimental results that show that our measure
distinguishes code that is only minimally different, from truly redundant code, and
distinguish low-level code redundancy from high-level algorithmic redundancy.
The results also confirm that our practical measure can help predict the effective-
ness of techniques that exploit redundancy, such as the Automatic Workarounds
technique [CGM+13].

• A technique to automatically identify equivalent sequences of methods. The
technique efficiently synthesizes sequences of method invocations that are equiv-
alent to a given target method within a finite set of executions. The technique



103

exploits genetic algorithms to efficiently explore the space of possible solutions,
and employs a two-phase iterative approach to prune the solution space from
spurious results.

• Empirical evidence of the effectiveness of the technique in automatically
identifying equivalent sequences of methods. We implemented our automatic
identification technique in a prototype for Java. We evaluated the prototype on
266 target belonging to 23 classes from three real-world libraries. The experi-
ment confirm that our approach is valid, and that our technique can successfully
synthesize a large amount of equivalent method sequences with good precision
and performance.

Future Directions

The work presented in this dissertation uncovered or touched upon problems and ideas
that remain open for future research. We would like to conclude this dissertation with a
set of new challenges opened by the results presented in this dissertation: enriching the
model and measure of redundancy, improving the automatic identification of redundancy,
studying the nature of intrinsic redundancy as a phenomenon of software development
processes, and investigating new applications of intrinsic redundancy.

• Enriching the model and measure of software redundancy. The model and
corresponding measure of redundancy proposed in this dissertation are correct,
useful, and significant for the developer, but they are currently limited to single-
threaded, procedural code fragments. One way to enrich our model and measure
of redundancy is to consider multi-threaded code. To extend in this direction,
the model needs to account for a notion of execution that goes beyond one
single sequence of actions. One possibility is to require a partial order over
the events in the execution traces, for example by adapting and extending the
definitions and algorithms proposed by Terragni et al. [TCZ15]. Another potential
extension includes the evaluation of the measure of redundancy to consider entire
components or systems. To obtain a practical measure of redundancy for entire
components, we need to evaluate the overall scalability of the measurement
method. In particular, the dissimilarity metrics used in our practical method
might become too expensive to be precisely applied on large execution traces.
Moreover, a useful measure of redundancy should take into account how critical
is a sub-component while assessing the redundancy level of the overall system.

• Improving the identification of equivalences. Our automatic identification of
equivalent method sequences is effective at identifying equivalent methods or
combination of methods, but does not deal with conditionals and suffers from
spurious results.
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We can enhance our method towards the synthesis of conditionals. In fact, a
substantial amount of equivalent method sequences manually extracted from
the code documentation contains loops. To automatically synthesize loops and
branches our plan is to investigate the use of grammar-based genetic programming
approaches. The main obstacle for a profitable use of grammar-based genetic
programming is the complexity of the evolutionary computation in case of non-
trivial input grammars. We thus need to rely on incomplete grammars, which
should focus on conditional statements, rely on heuristics to decide when to use
grammar-based genetic programming, or both.

Although the evaluation results show that the counterexample phase can discard
most of the spurious results, i.e., candidate solutions that are equivalent only when
applied to the execution scenarios, the counterexample phase can be improved
to reduce the number of false positives, thus improving the precision of the
technique. A possible solution is the systematic exploration of both the original
and the candidate methods to expose any divergence in their behavior, for example
by using symbolic execution as investigated by Ramos and Engler [RE11, RE15].

Another future research direction is the extension of the technique to automatically
identify redundant method sequences by integrating our measure of redundancy.

• Characterizing intrinsic redundancy. A formal notion of redundancy and a
technique to automatically identify equivalent method sequences opens the oppor-
tunity to systematic study the pervasiveness and the nature of intrinsic redundancy
in modern software systems. In essence, we plan to characterize the intrinsic
redundancy of software systems by correlating its presence with some relevant
aspects of the software development process. We also plan to see whether different
kinds of intrinsic redundancy exist and which are their essential features. Our
ultimate goal is to comprehend intrinsic redundancy as a phenomenon, to harness
its power by design.

• Investigating new applications of intrinsic redundancy. In Chapter 2.2, we
discuss the application of intrinsic redundancy in the context of software reliability,
and in particular for the design of mechanisms for runtime failure recovery and
automated oracles, focusing on functional properties. The notion of intrinsic
software redundancy could also be extended to non-functional properties, where
it might find many new applications, for example in performance optimization
and security.

Redundant code fragments execute different sequences of actions that may lead to
notable differences in runtime behavior, and such differences can be exploited to
alleviate performance problems. The redundancy intrinsically present in software
systems offers new opportunities for automatically improving performance and
resource consumption at runtime. The key idea is to devise a “profile” of the
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redundant code that captures non-functional differences among the alternatives,
for instance in terms of timing, memory or energy consumption, or network
utilization. This “non-functional profile” can then be updated and exploited at
runtime, while efficiently monitoring the system execution, to adapt the behavior
to meet performance or resource usage requirements.

Redundant code fragments may also provide different security levels that could be
exploited to tackle security issues and overcome runtime problems. Recent work
has investigated the possibility of exploiting some form of explicit redundancy
to mitigate security issues. N-variant systems increase application security by
executing different synthesized variants of the same program in parallel [CEF+06].
Orchestra tackles security issues by creating multiple variants of the same program
based on various compiler optimizations [SJGF09]. Replicated browsers tackles
security problems by executing different browsers in parallel [XDK12]. Intrinsic
redundancy offers a promising alternative to implement new security mechanisms
by defining a security profile of redundant code fragments and by efficiently
executing the various alternatives to identify divergences in their runtime behavior.
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Appendix A

Measure of Software Redundancy:
Experiments

A.1 Redundancy Measurements

A.1.1 Identity
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Figure A.1. Measurements obtained on two identical execution traces

109



110 A.1 Redundancy Measurements

A.1.2 Refactoring

Data Projection Code Projection
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Figure A.2. Measurements after refactoring: binary and linear search
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Data Projection Code Projection
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Figure A.3. Measurements after refactoring: bubble sort and insertion sort
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Figure A.4. Measurements after refactoring: merge sort and quick sort
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A.1.3 Ground-truth Benchmark Results

Data Projection
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Figure A.5. Ground-truth binary algorithm data projections
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Figure A.6. Ground-truth binary algorithm code projections
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Figure A.7. Ground-truth linear algorithm data projections
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Figure A.8. Ground-truth linear algorithm code projections
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Figure A.9. Ground-truth linear implementation vs every binary implementation, data
projections



118 A.1 Redundancy Measurements

Code Projection

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

A
D

ic
e

M
a
n

C
o
s

D
a
m

e
ra

u
L
e
v

D
ic

e
E

u
c
lid

J
a
c
c
a
rd

J
a
ro

J
a
ro

W
L
e
v

M
C

N
e
e
d
W

O
v
lp

Q
G

ra
m

s
S

m
it
h
WS

m
it
h
W

G
o
to

h

Redundancy

B
in

a
ry

 1
B

in
a
ry

 2
B

in
a
ry

 3
B

in
a

ry
 4

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

A
D

ic
e

M
a
n

C
o
s

D
a
m

e
ra

u
L
e
v

D
ic

e
E

u
c
lid

J
a
c
c
a
rd

J
a
ro

J
a
ro

W
L
e
v

M
C

N
e
e
d
W

O
v
lp

Q
G

ra
m

s
S

m
it
h
WS

m
it
h
W

G
o
to

h

Redundancy

B
in

a
ry

 1
B

in
a
ry

 2
B

in
a
ry

 3
B

in
a

ry
 4

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

A
D

ic
e

M
a
n

C
o
s

D
a
m

e
ra

u
L
e
v

D
ic

e
E

u
c
lid

J
a
c
c
a
rd

J
a
ro

J
a
ro

W
L
e
v

M
C

N
e
e
d
W

O
v
lp

Q
G

ra
m

s
S

m
it
h
WS

m
it
h
W

G
o
to

h

Redundancy

B
in

a
ry

 1
B

in
a
ry

 2
B

in
a
ry

 3
B

in
a

ry
 4

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

A
D

ic
e

M
a
n

C
o
s

D
a
m

e
ra

u
L
e
v

D
ic

e
E

u
c
lid

J
a
c
c
a
rd

J
a
ro

J
a
ro

W
L
e
v

M
C

N
e
e
d
W

O
v
lp

Q
G

ra
m

s
S

m
it
h
WS

m
it
h
W

G
o
to

h

Redundancy

B
in

a
ry

 1
B

in
a
ry

 2
B

in
a
ry

 3
B

in
a

ry
 4

Figure A.10. Ground-truth linear implementation vs every binary implementation, code
projections
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Figure A.11. Ground-truth binary implementation vs every linear implementation, data
projections
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Figure A.12. Ground-truth binary implementation vs every linear implementation, code
projections



121 A.1 Redundancy Measurements

Data Projection

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

A
D

ic
e

M
a
n

C
o
s

D
a
m

L
e
v

D
ic

e
E

u
c
lid

J
a
c
c
a
rd

J
a
ro

J
a
ro

W
L
e
v

M
C

N
e
e
d
W

O
v
lp

Q
G

ra
m

s
S

m
it
h

W
S

m
it
h
G

Redundancy

Im
p
le

m
e
n
ta

ti
o
n
 2

Im
p
le

m
e
n
ta

ti
o
n
 3

Im
p
le

m
e
n
ta

ti
o
n
 4

Im
p
le

m
e
n
ta

ti
o
n
 5

Im
p
le

m
e
n
ta

ti
o
n

 6
Im

p
le

m
e
n

ta
ti
o
n
 7

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

A
D

ic
e

M
a
n

C
o
s

D
a
m

L
e
v

D
ic

e
E

u
c
lid

J
a
c
c
a
rd

J
a
ro

J
a
ro

W
L
e
v

M
C

N
e
e
d
W

O
v
lp

Q
G

ra
m

s
S

m
it
h

W
S

m
it
h
G

Redundancy

Im
p
le

m
e
n
ta

ti
o
n
 1

Im
p
le

m
e
n
ta

ti
o
n
 3

Im
p
le

m
e
n
ta

ti
o
n
 4

Im
p
le

m
e
n
ta

ti
o
n
 5

Im
p
le

m
e
n
ta

ti
o
n

 6
Im

p
le

m
e
n

ta
ti
o
n
 7

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

A
D

ic
e

M
a
n

C
o
s

D
a
m

L
e
v

D
ic

e
E

u
c
lid

J
a
c
c
a
rd

J
a
ro

J
a
ro

W
L
e
v

M
C

N
e
e
d
W

O
v
lp

Q
G

ra
m

s
S

m
it
h

W
S

m
it
h
G

Redundancy

Im
p
le

m
e
n
ta

ti
o
n
 1

Im
p
le

m
e
n
ta

ti
o
n
 2

Im
p
le

m
e
n
ta

ti
o
n
 4

Im
p
le

m
e
n
ta

ti
o
n
 5

Im
p
le

m
e
n
ta

ti
o
n

 6
Im

p
le

m
e
n

ta
ti
o
n
 7

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

A
D

ic
e

M
a
n

C
o
s

D
a
m

L
e
v

D
ic

e
E

u
c
lid

J
a
c
c
a
rd

J
a
ro

J
a
ro

W
L
e
v

M
C

N
e
e
d
W

O
v
lp

Q
G

ra
m

s
S

m
it
h

W
S

m
it
h
G

Redundancy

Im
p
le

m
e
n
ta

ti
o
n
 1

Im
p
le

m
e
n
ta

ti
o
n
 2

Im
p
le

m
e
n
ta

ti
o
n
 3

Im
p
le

m
e
n
ta

ti
o
n
 5

Im
p
le

m
e
n
ta

ti
o
n

 6
Im

p
le

m
e
n

ta
ti
o
n
 7

Figure A.13. Ground-truth bubble sort algorithm data projections
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Figure A.14. Ground-truth bubble sort algorithm data projections (cont.)
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Figure A.15. Ground-truth bubble sort algorithm code projections
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Figure A.16. Ground-truth bubble sort algorithm code projections (cont.)
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Figure A.17. Ground-truth insertion sort algorithm data projections
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Figure A.18. Ground-truth insertion sort algorithm code projections



127 A.1 Redundancy Measurements

Data Projection

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

A
D

ic
e

M
a
n

C
o
s

D
a
m

L
e
v

D
ic

e
E

u
c
lid

J
a
c
c
a
rd

J
a
ro

J
a
ro

W
L
e
v

M
C

N
e
e
d
W

O
v
lp

Q
G

ra
m

s
S

m
it
h

W
S

m
it
h
G

Redundancy

Im
p
le

m
e
n
ta

ti
o
n
 2

Im
p
le

m
e
n
ta

ti
o
n
 3

Im
p

le
m

e
n
ta

ti
o

n
 4

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

A
D

ic
e

M
a
n

C
o
s

D
a
m

L
e
v

D
ic

e
E

u
c
lid

J
a
c
c
a
rd

J
a
ro

J
a
ro

W
L
e
v

M
C

N
e
e
d
W

O
v
lp

Q
G

ra
m

s
S

m
it
h

W
S

m
it
h
G

Redundancy

Im
p
le

m
e
n
ta

ti
o
n
 1

Im
p
le

m
e
n
ta

ti
o
n
 3

Im
p

le
m

e
n
ta

ti
o

n
 4

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

A
D

ic
e

M
a
n

C
o
s

D
a
m

L
e
v

D
ic

e
E

u
c
lid

J
a
c
c
a
rd

J
a
ro

J
a
ro

W
L
e
v

M
C

N
e
e
d
W

O
v
lp

Q
G

ra
m

s
S

m
it
h

W
S

m
it
h
G

Redundancy

Im
p
le

m
e
n
ta

ti
o
n
 1

Im
p
le

m
e
n
ta

ti
o
n
 2

Im
p

le
m

e
n
ta

ti
o

n
 4

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

A
D

ic
e

M
a
n

C
o
s

D
a
m

L
e
v

D
ic

e
E

u
c
lid

J
a
c
c
a
rd

J
a
ro

J
a
ro

W
L
e
v

M
C

N
e
e
d
W

O
v
lp

Q
G

ra
m

s
S

m
it
h

W
S

m
it
h
G

Redundancy

Im
p
le

m
e
n
ta

ti
o
n
 1

Im
p
le

m
e
n
ta

ti
o
n
 2

Im
p

le
m

e
n
ta

ti
o

n
 3

Figure A.19. Ground-truth merge sort algorithm data projections
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Figure A.20. Ground-truth merge sort algorithm code projections
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Figure A.21. Ground-truth quick sort algorithm data projections
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Figure A.22. Ground-truth quick sort algorithm code projections
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Figure A.23. Ground-truth bubble sort implementation vs every other sorting algorithm
implementation, data projections
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Figure A.24. Ground-truth bubble sort implementation vs every other sorting algorithm
implementation, data projections (cont.)
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Figure A.25. Ground-truth bubble sort implementation vs every other sorting algorithm
implementation, code projections
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Figure A.26. Ground-truth bubble sort implementation vs every other sorting algorithm
implementation, code projections (cont.)



135 A.1 Redundancy Measurements

Data Projection

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

A
D

ic
e

M
a
n

C
o
s

D
a
m

L
e
v

D
ic

e
E

u
c
lid

J
a
c
c
a
rd

J
a
ro

J
a
ro

W
L
e
v

M
C

N
e
e
d
W

O
v
lp

Q
G

ra
m

s
S

m
it
h
W

S
m

it
h
G

Redundancy

B
u
b
b
le

 1
B

u
b
b
le

 2
B

u
b
b
le

 3
B

u
b
b
le

 4
B

u
b
b
le

 5
B

u
b
b
le

 6
B

u
b
b
le

 7
M

e
rg

e
 1

M
e
rg

e
 2

M
e
rg

e
 3

M
e
rg

e
 4

Q
u
ic

k
 1

Q
u
ic

k
 2

Q
u
ic

k
 3

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

A
D

ic
e

M
a
n

C
o
s

D
a
m

L
e
v

D
ic

e
E

u
c
lid

J
a
c
c
a
rd

J
a
ro

J
a
ro

W
L
e
v

M
C

N
e
e
d
W

O
v
lp

Q
G

ra
m

s
S

m
it
h
W

S
m

it
h
G

Redundancy

B
u
b
b
le

 1
B

u
b
b
le

 2
B

u
b
b
le

 3
B

u
b
b
le

 4
B

u
b
b
le

 5
B

u
b
b
le

 6
B

u
b
b
le

 7
M

e
rg

e
 1

M
e
rg

e
 2

M
e
rg

e
 3

M
e
rg

e
 4

Q
u
ic

k
 1

Q
u
ic

k
 2

Q
u
ic

k
 3

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

A
D

ic
e

M
a
n

C
o
s

D
a
m

L
e
v

D
ic

e
E

u
c
lid

J
a
c
c
a
rd

J
a
ro

J
a
ro

W
L
e
v

M
C

N
e
e
d
W

O
v
lp

Q
G

ra
m

s
S

m
it
h
W

S
m

it
h
G

Redundancy

B
u
b
b
le

 1
B

u
b
b
le

 2
B

u
b
b
le

 3
B

u
b
b
le

 4
B

u
b
b
le

 5
B

u
b
b
le

 6
B

u
b
b
le

 7
M

e
rg

e
 1

M
e
rg

e
 2

M
e
rg

e
 3

M
e
rg

e
 4

Q
u
ic

k
 1

Q
u
ic

k
 2

Q
u
ic

k
 3

Figure A.27. Ground-truth insertion sort implementation vs every other sorting algo-
rithm implementation, data projections
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Figure A.28. Ground-truth insertion sort implementation vs every other sorting algo-
rithm implementation, code projections
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Figure A.29. Ground-truth merge sort implementation vs every other sorting algorithm
implementation, data projections
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Figure A.30. Ground-truth merge sort implementation vs every other sorting algorithm
implementation, code projections
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Data Projection

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

A
D

ic
e

M
a
n

C
o
s

D
a
m

L
e
v

D
ic

e
E

u
c
lid

J
a
c
c
a
rd

J
a
ro

J
a
ro

W
L
e
v

M
C

N
e
e
d
W

O
v
lp

Q
G

ra
m

s
S

m
it
h
W

S
m

it
h
G

Redundancy

B
u
b
b
le

 1
B

u
b
b

le
 2

B
u
b

b
le

 3
B

u
b
b
le

 4
B

u
b

b
le

 5
B

u
b

b
le

 6
B

u
b

b
le

 7
In

s
e
rt

io
n
 1

In
s
e
rt

io
n

 2
In

s
e

rt
io

n
 3

M
e
rg

e
 1

M
e

rg
e
 2

M
e

rg
e
 3

M
e
rg

e
 4

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

A
D

ic
e

M
a
n

C
o
s

D
a
m

L
e
v

D
ic

e
E

u
c
lid

J
a
c
c
a
rd

J
a
ro

J
a
ro

W
L
e
v

M
C

N
e
e
d
W

O
v
lp

Q
G

ra
m

s
S

m
it
h
W

S
m

it
h
G

Redundancy

B
u
b
b
le

 1
B

u
b
b

le
 2

B
u
b

b
le

 3
B

u
b
b
le

 4
B

u
b

b
le

 5
B

u
b

b
le

 6
B

u
b

b
le

 7
In

s
e
rt

io
n
 1

In
s
e
rt

io
n

 2
In

s
e

rt
io

n
 3

M
e
rg

e
 1

M
e

rg
e
 2

M
e

rg
e
 3

M
e
rg

e
 4

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

A
D

ic
e

M
a
n

C
o
s

D
a
m

L
e
v

D
ic

e
E

u
c
lid

J
a
c
c
a
rd

J
a
ro

J
a
ro

W
L
e
v

M
C

N
e
e
d
W

O
v
lp

Q
G

ra
m

s
S

m
it
h
W

S
m

it
h
G

Redundancy

B
u
b
b
le

 1
B

u
b
b

le
 2

B
u
b

b
le

 3
B

u
b
b
le

 4
B

u
b

b
le

 5
B

u
b

b
le

 6
B

u
b

b
le

 7
In

s
e
rt

io
n
 1

In
s
e
rt

io
n

 2
In

s
e

rt
io

n
 3

M
e
rg

e
 1

M
e

rg
e
 2

M
e

rg
e
 3

M
e
rg

e
 4

Figure A.31. Ground-truth quick sort implementation vs every other sorting algorithm
implementation, data projections
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Figure A.32. Ground-truth quick sort implementation vs every other sorting algorithm
implementation, code projections
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A.2 Benchmark Implementations

A.2.1 Binary search

1 private int array[];

2
3 public int search(int key) {

4 return search(key, 0, array.length);

5 }

6
7 private int search(int key, int lo, int hi) {

8 if (hi <= lo) {

9 return -1;

10 }

11 int mid = lo + (hi - lo) / 2;

12 if ( array[mid] > key) {

13 return search(key, lo, mid);

14 }

15 else if (array[mid] < key) {

16 return search(key, mid + 1, hi);

17 }

18 else {

19 return mid;

20 }

21 }

Figure A.33. Implementation 1 of the binary search algorithm

1 private int array[];

2
3 public int search(int key) {

4 return search(key, 0, array.length);

5 }

6
7 private int search(int key, int lowerbound, int upperbound) {

8 int position;

9 position = (lowerbound + upperbound) / 2;

10 while ((array[position] != key) && (lowerbound <= upperbound)) {

11 if (array[position] > key) {

12 upperbound = position - 1;

13 } else {

14 lowerbound = position + 1;

15 }

16 position = (lowerbound + upperbound) / 2;

17 }

18 if (lowerbound <= upperbound) {

19 return position;

20 } else

21 return -1;

22 }

Figure A.34. Implementation 2 of the binary search algorithm



142 A.2 Benchmark Implementations

1 private int array[];

2
3 public int search(int key) {

4 return search(key, 0, array.length);

5 }

6
7 private int search(int key, int low, int high) {

8 while (high >= low) {

9 int middle = (low + high) / 2;

10 if (array[middle] == key) {

11 return middle;

12 }

13 if (array[middle] < key) {

14 low = middle + 1;

15 }

16 if (array[middle] > key) {

17 high = middle - 1;

18 }

19 }

20 return -1;

21 }

Figure A.35. Implementation 3 of the binary search algorithm

1 private int array[];

2
3 public int search(int key) {

4 return search(key, 0, array.length);

5 }

6
7 private int search(int key, int lo, int hi) {

8 int middle = (lo + hi) / 2;

9 while (lo <= hi) {

10 if (array[middle] < key)

11 lo = middle + 1;

12 else if (array[middle] == key)

13 return middle;

14 else

15 hi = middle - 1;

16
17 middle = (lo + hi) / 2;

18 }

19 return -1;

20 }

Figure A.36. Implementation 4 of the binary search algorithm
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A.2.2 Linear search

1 private int array[];

2
3 public LinearSearch(int array[]) {

4 this.array = array;

5 }

6
7 public int search(int key) {

8 for (int i = 0; i < array.length; i++) {

9 if (key == array[i]) {

10 return i;

11 }

12 }

13 return -1;

14 }

Figure A.37. Implementation 1 of the linear search algorithm

1 private int array[];

2
3 public LinearSearch2(int array[]) {

4 this.array = array;

5 }

6
7 public int search(int toSearch) {

8 int foundIndex = 0;

9 for (int i = 0; i < array.length; i++) {

10 if (array[i] == toSearch) {

11 foundIndex = i;

12 }

13 }

14 return foundIndex;

15 }

Figure A.38. Implementation 2 of the linear search algorithm
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1 private int array[];

2
3 public LinearSearch3(int array[]) {

4 this.array = array;

5 }

6
7 public int search(int key) {

8 int index = 0;

9 while(index < array.length) {

10 if(array[index] == key) {

11 return index;

12 }

13 if(array[index] < key) {

14 return -1;

15 }

16 index++;

17 }

18 return -1;

Figure A.39. Implementation 3 of the linear search algorithm

1 private int array[];

2
3 public LinearSearch2(int array[]) {

4 this.array = array;

5 }

6
7 public int search(int toSearch) {

8 int foundIndex = 0;

9 for (int i = 0; i < array.length; i++) {

10 if (array[i] == toSearch) {

11 foundIndex = i;

12 }

13 }

14 return foundIndex;

15 }

Figure A.40. Implementation 4 of the linear search algorithm
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A.2.3 Bubble Sort

1 private int array[];

2
3 public BubbleSort(int array[]) {

4 this.array = array;

5 }

6
7 public int[] sort() {

8 for (int i = 1; i < array.length; i++) {

9 for (int j = 0; j < array.length - i; j++) {

10 if (array[j] > array[j + 1]) {

11 int temp = array[j];

12 array[j] = array[j + 1];

13 array[j + 1] = temp;

14 }

15 }

16 }

17 return array;

18 }

Figure A.41. Implementation 1 of the bubble sort algorithm

1 public int array[];

2
3 public BubbleSort2(int array[]) {

4 this.array = array;

5 }

6
7 public int[] sort() {

8 for (int i = 0; i < array.length - 1; i++) {

9 for (int j = 1; j < array.length - i; j++) {

10 if (array[j - 1] > array[j]) {

11 int tmp = array[j - 1];

12 array[j - 1] = array[j];

13 array[j] = tmp;

14 }

15 }

16 }

17 return array;

18 }

Figure A.42. Implementation 2 of the bubble sort algorithm
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1 private int array[];

2
3 public BubbleSort3(int array[]) {

4 this.array = array;

5 }

6
7 public int[] sort() {

8 boolean doMore = true;

9 while (doMore) {

10 doMore = false; // assume this is last pass over array

11 for (int i = 0; i < array.length - 1; i++) {

12 if (array[i] > array[i + 1]) {

13 // exchange elements

14 int temp = array[i];

15 array[i] = array[i + 1];

16 array[i + 1] = temp;

17 doMore = true; // after an exchange, must look again

18 }

19 }

20 }

21 return array;

22 }

Figure A.43. Implementation 3 of the bubble sort algorithm

1 private int array[];

2
3 public BubbleSort4(int array[]) {

4 this.array = array;

5 }

6
7 public int[] sort() {

8 int n = array.length;

9 boolean doMore = true;

10 while (doMore) {

11 n--;

12 doMore = false; // assume this is our last pass over the array

13 for (int i = 0; i < n; i++) {

14 if (array[i] > array[i + 1]) {

15 // exchange elements

16 int temp = array[i];

17 array[i] = array[i + 1];

18 array[i + 1] = temp;

19 doMore = true; // after an exchange, must look again

20 }

21 }

22 }

23 return array;

24 }

Figure A.44. Implementation 4 of the bubble sort algorithm
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1 private int array[];

2
3 public BubbleSort5(int array[]) {

4 this.array = array;

5 }

6
7 public int[] sort() {

8 int newLowest = 0; // index of first comparison

9 int newHighest = array.length - 1; // index of last comparison

10 while (newLowest < newHighest) {

11 int highest = newHighest;

12 int lowest = newLowest;

13 newLowest = array.length; // start higher than any legal index

14 for (int i = lowest; i < highest; i++) {

15 if (array[i] > array[i + 1]) {

16 // exchange elements

17 int temp = array[i];

18 array[i] = array[i + 1];

19 array[i + 1] = temp;

20 if (i < newLowest) {

21 newLowest = i - 1;

22 if (newLowest < 0) {

23 newLowest = 0;

24 }

25 } else if (i > newHighest) {

26 newHighest = i + 1;

27 }

28 }

29 }

30 }

31 return array;

32 }

Figure A.45. Implementation 5 of the bubble sort algorithm

1 public int array[];

2
3 public BubbleSort6(int array[]) {

4 this.array = array;

5 }

6
7 public int[] sort() {

8 for (int i = array.length - 1; i >= 0; i--) {

9 for (int j = i - 1; j >= 0; j--) {

10 if (array[j] > array[i]) {

11 int tmp = array[i];

12 array[i] = array[j];

13 array[j] = tmp;

14 }

15 }

16 }

17 return array;

18 }

Figure A.46. Implementation 6 of the bubble sort algorithm
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1 private int array[];

2
3 public BubbleSort7(int array[]) {

4 this.array = array;

5 }

6
7 public int[] sort() {

8 for (int i = 0; i < array.length - 1; i++) {

9 for (int j = 1; j < array.length - i; j++) {

10 if (array[j - 1] > array[j]) {

11 int temp = array[j - 1];

12 array[j - 1] = array[j];

13 array[j] = temp;

14 }

15 }

16 }

17 return array;

18 }

Figure A.47. Implementation 7 of the bubble sort algorithm
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A.2.4 Insertion Sort

1 private int array[];

2
3 public InsertionSort(int array[]) {

4 this.array = array;

5 }

6
7 public int[] sort() {

8 for (int i = 0; i < array.length; i++) {

9 int value = array[i];

10 int j = i - 1;

11 while (j >= 0) {

12 if (array[j] <= value) {

13 break;

14 }

15 array[j + 1] = array[j];

16 j--;

17 }

18 array[j + 1] = value;

19 }

20 return array;

21 }

Figure A.48. Implementation 1 of the insertion sort algorithm

1 private int array[];

2
3 public InsertionSort2(int array[]) {

4 this.array = array;

5 }

6
7 public int[] sort() {

8 for (int i = 1; i < array.length; i++) {

9 int value = array[i];

10 int j = i;

11 while ((j > 0) && (array[j - 1] > value)) {

12 array[j] = array[j - 1];

13 j--;

14 }

15 array[j] = value;

16 }

17 return array;

18 }

Figure A.49. Implementation 2 of the insertion sort algorithm



150 A.2 Benchmark Implementations

1 public InsertionSort3(int array[]) {

2 this.array = array;

3 }

4
5 public int[] sort() {

6 for (int i = 1; i < array.length; i++) {

7 int value = array[i];

8 int j = i;

9 while ((j > 0) && (array[j - 1] > value)) {

10 array[j] = array[j - 1];

11 j--;

12 }

13 array[j] = value;

14 }

15 return array;

16 }

Figure A.50. Implementation 3 of the insertion sort algorithm
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A.2.5 Merge Sort

1 private int[] array;

2
3 public MergeSort(int[] array) {

4 this.array = array;

5 }

6
7 public int[] sort() {

8 sort(0, array.length - 1);

9 return array;

10 }

11
12 private void sort(int low, int high) {

13 if (low < high) {

14 int middle = low + (high - low) / 2;

15 sort(low, middle);

16 sort(middle + 1, high);

17 merge(low, middle, high);

18 }

19 }

20
21 private void merge(int low, int middle, int high) {

22 int[] helper = new int[array.length];

23 for (int i = low; i <= high; i++) {

24 helper[i] = array[i];

25 }

26 int i = low;

27 int j = middle + 1;

28 int k = low;

29 while (i <= middle && j <= high) {

30 if (helper[i] <= helper[j]) {

31 array[k] = helper[i];

32 i++;

33 } else {

34 array[k] = helper[j];

35 j++;

36 }

37 k++;

38 }

39 while (i <= middle) {

40 array[k] = helper[i];

41 k++;

42 i++;

43 }

44 }

Figure A.51. Implementation 1 of the merge sort algorithm
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1 private int array[];

2
3 public MergeSort2(int array[]) {

4 this.array = array;

5 }

6
7 public int[] sort() {

8 sort(0, array.length - 1);

9 return array;

10 }

11
12 private void sort(int low, int high) {

13 if (low < high) {

14 int mid = (low + high) / 2;

15 sort(low, mid);

16 sort(mid + 1, high);

17 merge(low, mid, high);

18 }

19 }

20
21 private void merge(int low, int mid, int high) {

22 int helper[] = new int[array.length];

23 int h = low, i = low, j = mid + 1, k;

24 while ((h <= mid) && (j <= high)) {

25 if (array[h] <= array[j]) {

26 helper[i] = array[h];

27 h++;

28 } else {

29 helper[i] = array[j];

30 j++;

31 }

32 i++;

33 }

34 if (h > mid) {

35 for (k = j; k <= high; k++) {

36 helper[i] = array[k];

37 i++;

38 }

39 }

40 else {

41 for (k = h; k <= mid; k++) {

42 helper[i] = array[k];

43 i++;

44 }

45 }

46 for (k = low; k <= high; k++) {

47 array[k] = helper[k];

48 }

49 }

Figure A.52. Implementation 2 of the merge sort algorithm
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1 public int array[];

2
3 public MergeSort3(int array[]) {

4 this.array = array;

5 }

6
7 public int[] sort() {

8 sort(0, array.length - 1);

9 return array;

10 }

11
12 private void sort(int low, int high) {

13 if (low < high) {

14 int mid = (low + high) / 2;

15 sort(low, mid);

16 sort(mid + 1, high);

17 merge(low, mid + 1, high);

18 }

19 }

20
21 private void merge(int low, int mid, int high) {

22 int[] helper = new int[array.length];

23 int endLeft = mid - 1;

24 int k = low;

25 int numElemen = high - low + 1;

26 while (low <= endLeft && mid <= high) {

27 if ((array[low]) < (array[mid])) {

28 helper[k++] = array[low++];

29 } else {

30 helper[k++] = array[mid++];

31 }

32 }

33 while (low <= endLeft) {

34 helper[k++] = array[low++];

35 }

36 while (mid <= high) {

37 helper[k++] = array[mid++];

38 }

39 for (int i = 0; i < numElemen; i++, high--) {

40 array[high] = helper[high];

41 }

42 }

Figure A.53. Implementation 3 of the merge sort algorithm
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1 public int[] array;

2
3 public MergeSort4(int[] array) {

4 this.array = array;

5 }

6
7 public int[] sort() {

8 sort(0, array.length - 1);

9 return array;

10 }

11
12 private void sort(int low, int high) {

13 if (low < high) {

14 int mid = (low + high) / 2;

15 sort(low, mid);

16 sort(mid + 1, high);

17 merge(low, mid, high);

18 }

19 }

20
21 private void merge(int low, int mid, int high) {

22 int[] helper = new int[array.length];

23 int i = low;

24 int j = mid + 1;

25 int k = low;

26 while (i <= mid && j <= high) {

27 if (array[i] <= array[j]) {

28 helper[k] = array[i];

29 i++;

30 } else {

31 helper[k] = array[j];

32 j++;

33 }

34 k++;

35 }

36 while (i <= mid) {

37 helper[k] = array[i];

38 i++;

39 k++;

40 }

41 while (j <= high) {

42 helper[k] = array[j];

43 j++;

44 k++;

45 }

46 for (k = low; k <= high; k++) {

47 array[k] = helper[k];

48 }

49 }

Figure A.54. Implementation 4 of the merge sort algorithm
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A.2.6 Quick Sort

1 private int array[];

2
3 public QuickSort(int array[]) {

4 this.array = array;

5 }

6
7 public int[] sort() {

8 sort(0, array.length - 1);

9 return array;

10 }

11
12 private void sort(int low, int high) {

13 if (low >= high) {

14 return;

15 }

16 int middle = low + (high - low) / 2;

17 int pivot = array[middle];

18 int i = low, j = high;

19 while (i <= j) {

20 while (array[i] < pivot) {

21 i++;

22 }

23 while (array[j] > pivot) {

24 j--;

25 }

26 if (i <= j) {

27 int temp = array[i];

28 array[i] = array[j];

29 array[j] = temp;

30 i++;

31 j--;

32 }

33 }

34 if (low < j) {

35 sort(low, j);

36 }

37 if (high > i) {

38 sort(i, high);

39 }

40 }

Figure A.55. Implementation 1 of the quick sort algorithm
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1 private int array[];

2
3 public QuickSort2(int array[]) {

4 this.array = array;

5 }

6
7 public int[] sort() {

8 sort(0, array.length - 1);

9 return array;

10 }

11
12 private void sort(int low, int high) {

13 if (high <= low || low >= high) {

14 return;

15 } else {

16 int pivot = array[low];

17 int i = low + 1;

18 int tmp;

19 for (int j = low + 1; j <= high; j++) {

20 if (pivot > array[j]) {

21 tmp = array[j];

22 array[j] = array[i];

23 array[i] = tmp;

24 i++;

25 }

26 }

27 array[low] = array[i - 1];

28 array[i - 1] = pivot;

29 sort(low, i - 2);

30 sort(i, high);

31 }

32 }

Figure A.56. Implementation 2 of the quick sort algorithm
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1 private int array[];

2
3 public QuickSort3(int array[]) {

4 this.array = array;

5 }

6
7 public int[] sort() {

8 sort(0, array.length - 1);

9 return array;

10 }

11
12 private void sort(int lowerIndex, int higherIndex) {

13 if (lowerIndex >= higherIndex) {

14 return;

15 }

16 int i = lowerIndex;

17 int j = higherIndex;

18 int pivot = array[lowerIndex + (higherIndex - lowerIndex) / 2];

19 while (i <= j) {

20 while (array[i] < pivot) {

21 i++;

22 }

23 while (array[j] > pivot) {

24 j--;

25 }

26 if (i <= j) {

27 int temp = array[i];

28 array[i] = array[j];

29 array[j] = temp;

30 i++;

31 j--;

32 }

33 }

34 if (lowerIndex < j)

35 sort(lowerIndex, j);

36 if (i < higherIndex)

37 sort(i, higherIndex);

38 }

Figure A.57. Implementation 3 of the quick sort algorithm



158 A.3 Statistical Test Results

A.3 Statistical Test Results

Algorithm Similarity Â12 p-value

Binary search

ADice 0.69 ≤ 0.001
Man 0.67 ≤ 0.001
Cos 0.69 ≤ 0.001
DamLev 0.66 ≤ 0.001
Dice 0.69 ≤ 0.001
Euclid 0.66 ≤ 0.001
Jaccard 0.69 ≤ 0.001
Jaro 0.67 ≤ 0.001
JaroW 0.67 ≤ 0.001
Lev 0.66 ≤ 0.001
MC 0.69 ≤ 0.001
NeedW 0.66 ≤ 0.001
Ovlp 0.54 ≤ 0.001
QGrams 0.67 ≤ 0.001
SmithW 0.68 ≤ 0.001
SmithG 0.67 ≤ 0.001

Linear search

ADice 0.56 ≤ 0.001
Man 0.66 ≤ 0.001
Cos 0.56 ≤ 0.001
DamLev 0.67 ≤ 0.001
Dice 0.56 ≤ 0.001
Euclid 0.68 ≤ 0.001
Jaccard 0.56 ≤ 0.001
Jaro 0.67 ≤ 0.001
JaroW 0.67 ≤ 0.001
Lev 0.67 ≤ 0.001
MC 0.65 ≤ 0.001
NeedW 0.68 ≤ 0.001
Ovlp 0.54 ≤ 0.001
QGrams 0.66 ≤ 0.001
SmithW 0.66 ≤ 0.001
SmithG 0.66 ≤ 0.001

Table A.1. Statistical tests - Search benchmark
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Algorithm Similarity Â12 p-value

Bubble sort

ADice 0.61 ≤ 0.001
Man 0.64 ≤ 0.001
Cos 0.61 ≤ 0.001
DamLev 0.65 ≤ 0.001
Dice 0.61 ≤ 0.001
Euclid 0.56 ≤ 0.001
Jaccard 0.61 ≤ 0.001
Jaro 0.63 ≤ 0.001
JaroW 0.63 ≤ 0.001
Lev 0.65 ≤ 0.001
MC 0.59 ≤ 0.001
NeedW 0.65 ≤ 0.001
Ovlp 0.51 ≤ 0.001
QGrams 0.64 ≤ 0.001
SmithW 0.66 ≤ 0.001
SmithG 0.65 ≤ 0.001

Insertion sort

ADice 0.39 ≤ 0.001
Man 0.55 ≤ 0.001
Cos 0.39 ≤ 0.001
DamLev 0.61 ≤ 0.001
Dice 0.39 ≤ 0.001
Euclid 0.53 ≤ 0.001
Jaccard 0.39 ≤ 0.001
Jaro 0.59 ≤ 0.001
JaroW 0.59 ≤ 0.001
Lev 0.61 ≤ 0.001
MC 0.47 ≤ 0.001
NeedW 0.61 ≤ 0.001
Ovlp 0.51 ≤ 0.001
QGrams 0.55 ≤ 0.001
SmithW 0.66 ≤ 0.001
SmithG 0.66 ≤ 0.001

Table A.2. Statistical tests - Sorting benchmark
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Algorithm Similarity Â12 p-value

Merge sort

ADice 0.56 ≤ 0.001
Man 0.69 ≤ 0.001
Cos 0.56 ≤ 0.001
DamLev 0.67 ≤ 0.001
Dice 0.56 ≤ 0.001
Euclid 0.70 ≤ 0.001
Jaccard 0.56 ≤ 0.001
Jaro 0.67 ≤ 0.001
JaroW 0.67 ≤ 0.001
Lev 0.67 ≤ 0.001
MC 0.50 0.440
NeedW 0.67 ≤ 0.001
Ovlp 0.51 ≤ 0.001
QGrams 0.69 ≤ 0.001
SmithW 0.66 ≤ 0.001
SmithG 0.66 ≤ 0.001

Quick sort

ADice 0.60 ≤ 0.001
Man 0.68 ≤ 0.001
Cos 0.60 ≤ 0.001
DamLev 0.65 ≤ 0.001
Dice 0.60 ≤ 0.001
Euclid 0.66 ≤ 0.001
Jaccard 0.60 ≤ 0.001
Jaro 0.66 ≤ 0.001
JaroW 0.66 ≤ 0.001
Lev 0.65 ≤ 0.001
MC 0.58 ≤ 0.001
NeedW 0.66 ≤ 0.001
Ovlp 0.51 ≤ 0.001
QGrams 0.68 ≤ 0.001
SmithW 0.64 ≤ 0.001
SmithG 0.65 ≤ 0.001

Table A.3. Statistical tests - Sorting benchmark (cont.)
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