65 research outputs found

    Towards Post-Quantum Blockchain: A Review on Blockchain Cryptography Resistant to Quantum Computing Attacks

    Get PDF
    [Abstract] Blockchain and other Distributed Ledger Technologies (DLTs) have evolved significantly in the last years and their use has been suggested for numerous applications due to their ability to provide transparency, redundancy and accountability. In the case of blockchain, such characteristics are provided through public-key cryptography and hash functions. However, the fast progress of quantum computing has opened the possibility of performing attacks based on Grover's and Shor's algorithms in the near future. Such algorithms threaten both public-key cryptography and hash functions, forcing to redesign blockchains to make use of cryptosystems that withstand quantum attacks, thus creating which are known as post-quantum, quantum-proof, quantum-safe or quantum-resistant cryptosystems. For such a purpose, this article first studies current state of the art on post-quantum cryptosystems and how they can be applied to blockchains and DLTs. Moreover, the most relevant post-quantum blockchain systems are studied, as well as their main challenges. Furthermore, extensive comparisons are provided on the characteristics and performance of the most promising post-quantum public-key encryption and digital signature schemes for blockchains. Thus, this article seeks to provide a broad view and useful guidelines on post-quantum blockchain security to future blockchain researchers and developers.10.13039/501100010801-Xunta de Galicia (Grant Number: ED431G2019/01) 10.13039/501100011033-Agencia Estatal de InvestigaciĂłn (Grant Number: TEC2016-75067-C4-1-R and RED2018-102668-T) 10.13039/501100008530-European Regional Development FundXunta de Galicia; ED431G2019/0

    Envisioning the Future of Cyber Security in Post-Quantum Era: A Survey on PQ Standardization, Applications, Challenges and Opportunities

    Full text link
    The rise of quantum computers exposes vulnerabilities in current public key cryptographic protocols, necessitating the development of secure post-quantum (PQ) schemes. Hence, we conduct a comprehensive study on various PQ approaches, covering the constructional design, structural vulnerabilities, and offer security assessments, implementation evaluations, and a particular focus on side-channel attacks. We analyze global standardization processes, evaluate their metrics in relation to real-world applications, and primarily focus on standardized PQ schemes, selected additional signature competition candidates, and PQ-secure cutting-edge schemes beyond standardization. Finally, we present visions and potential future directions for a seamless transition to the PQ era

    Cryptography and Its Applications in Information Security

    Get PDF
    Nowadays, mankind is living in a cyber world. Modern technologies involve fast communication links between potentially billions of devices through complex networks (satellite, mobile phone, Internet, Internet of Things (IoT), etc.). The main concern posed by these entangled complex networks is their protection against passive and active attacks that could compromise public security (sabotage, espionage, cyber-terrorism) and privacy. This Special Issue “Cryptography and Its Applications in Information Security” addresses the range of problems related to the security of information in networks and multimedia communications and to bring together researchers, practitioners, and industrials interested by such questions. It consists of eight peer-reviewed papers, however easily understandable, that cover a range of subjects and applications related security of information

    Cryptographic Tools for Privacy Preservation

    Get PDF
    Data permeates every aspect of our daily life and it is the backbone of our digitalized society. Smartphones, smartwatches and many more smart devices measure, collect, modify and share data in what is known as the Internet of Things.Often, these devices don’t have enough computation power/storage space thus out-sourcing some aspects of the data management to the Cloud. Outsourcing computation/storage to a third party poses natural questions regarding the security and privacy of the shared sensitive data.Intuitively, Cryptography is a toolset of primitives/protocols of which security prop- erties are formally proven while Privacy typically captures additional social/legislative requirements that relate more to the concept of “trust” between people, “how” data is used and/or “who” has access to data. This thesis separates the concepts by introducing an abstract model that classifies data leaks into different types of breaches. Each class represents a specific requirement/goal related to cryptography, e.g. confidentiality or integrity, or related to privacy, e.g. liability, sensitive data management and more.The thesis contains cryptographic tools designed to provide privacy guarantees for different application scenarios. In more details, the thesis:(a) defines new encryption schemes that provide formal privacy guarantees such as theoretical privacy definitions like Differential Privacy (DP), or concrete privacy-oriented applications covered by existing regulations such as the European General Data Protection Regulation (GDPR);(b) proposes new tools and procedures for providing verifiable computation’s guarantees in concrete scenarios for post-quantum cryptography or generalisation of signature schemes;(c) proposes a methodology for utilising Machine Learning (ML) for analysing the effective security and privacy of a crypto-tool and, dually, proposes a secure primitive that allows computing specific ML algorithm in a privacy-preserving way;(d) provides an alternative protocol for secure communication between two parties, based on the idea of communicating in a periodically timed fashion

    Advances in Information Security and Privacy

    Get PDF
    With the recent pandemic emergency, many people are spending their days in smart working and have increased their use of digital resources for both work and entertainment. The result is that the amount of digital information handled online is dramatically increased, and we can observe a significant increase in the number of attacks, breaches, and hacks. This Special Issue aims to establish the state of the art in protecting information by mitigating information risks. This objective is reached by presenting both surveys on specific topics and original approaches and solutions to specific problems. In total, 16 papers have been published in this Special Issue

    Blockchain-enabled cybersecurity provision for scalable heterogeneous network: A comprehensive survey

    Get PDF
    Blockchain-enabled cybersecurity system to ensure and strengthen decentralized digital transaction is gradually gaining popularity in the digital era for various areas like finance, transportation, healthcare, education, and supply chain management. Blockchain interactions in the heterogeneous network have fascinated more attention due to the authentication of their digital application exchanges. However, the exponential development of storage space capabilities across the blockchain-based heterogeneous network has become an important issue in preventing blockchain distribution and the extension of blockchain nodes. There is the biggest challenge of data integrity and scalability, including significant computing complexity and inapplicable latency on regional network diversity, operating system diversity, bandwidth diversity, node diversity, etc., for decision-making of data transactions across blockchain-based heterogeneous networks. Data security and privacy have also become the main concerns across the heterogeneous network to build smart IoT ecosystems. To address these issues, today’s researchers have explored the potential solutions of the capability of heterogeneous network devices to perform data transactions where the system stimulates their integration reliably and securely with blockchain. The key goal of this paper is to conduct a state-of-the-art and comprehensive survey on cybersecurity enhancement using blockchain in the heterogeneous network. This paper proposes a full-fledged taxonomy to identify the main obstacles, research gaps, future research directions, effective solutions, and most relevant blockchain-enabled cybersecurity systems. In addition, Blockchain based heterogeneous network framework with cybersecurity is proposed in this paper to meet the goal of maintaining optimal performance data transactions among organizations. Overall, this paper provides an in-depth description based on the critical analysis to overcome the existing work gaps for future research where it presents a potential cybersecurity design with key requirements of blockchain across a heterogeneous network

    DiAE: Re-rolling the DiSE

    Get PDF
    The notion of distributed authenticated encryption was formally introduced by Agrawal et al. in ACM CCS 2018. In their work, they propose the DiSE construction building upon a distributed PRF (DPRF), a commitment scheme and a PRG. We show that most of their constructions do not meet some of the claimed security guarantees. In fact, all the concrete instantiations of DiSE, as well as multiple follow-up papers (one accepted at ACM CCS 2021), fail to satisfy their strongly-secure definitions. We give simple fixes for these constructions and prove their security. We also propose a new construction DiAE using an encryptment instead of a commitment. This modification dispenses with the need to buffer the entire message throughout the encryption protocol, which in turn enables implementations with constant RAM footprint and online message encryption. This is particularly interesting for constrained IoT devices. Finally, we implement and benchmark DiAE and show that it performs similarly to the original DiSE construction
    • …
    corecore