4,518 research outputs found

    Towards Secure Collaboration in Federated Cloud Environments

    Get PDF
    Public administrations across Europe have been actively following and adopting cloud paradigms at various degrees. By establishing modern data centers and consolidating their infrastructures, many organizations already benefit from a range of cloud advantages. However, there is a growing need to further support the consolidation and sharing of resources across different public entities. The ever increasing volume of processed data and diversity of organizational interactions stress this need even further, calling for the integration on the levels of infrastructure, data and services. This is currently hindered by strict requirements in the field of data security and privacy. In this paper, we present ongoing work aimed at enabling secure private cloud federations for public administrations, performed in the scope of the SUNFISH H2020 project. We focus on architectural components and processes that establish cross-organizational enforcement of data security policies in mixed and heterogeneous environments. Our proposal introduces proactive restriction of data flows in federated environments by integrating real-time based security policy enforcement and its post-execution conformance verification. The goal of this framework is to enable secure service integration and data exchange in cross-entity contexts by inspecting data flows and assuring their conformance with security policies, both on organizational and federation level

    Secure data sharing and processing in heterogeneous clouds

    Get PDF
    The extensive cloud adoption among the European Public Sector Players empowered them to own and operate a range of cloud infrastructures. These deployments vary both in the size and capabilities, as well as in the range of employed technologies and processes. The public sector, however, lacks the necessary technology to enable effective, interoperable and secure integration of a multitude of its computing clouds and services. In this work we focus on the federation of private clouds and the approaches that enable secure data sharing and processing among the collaborating infrastructures and services of public entities. We investigate the aspects of access control, data and security policy languages, as well as cryptographic approaches that enable fine-grained security and data processing in semi-trusted environments. We identify the main challenges and frame the future work that serve as an enabler of interoperability among heterogeneous infrastructures and services. Our goal is to enable both security and legal conformance as well as to facilitate transparency, privacy and effectivity of private cloud federations for the public sector needs. © 2015 The Authors

    funcX: A Federated Function Serving Fabric for Science

    Full text link
    Exploding data volumes and velocities, new computational methods and platforms, and ubiquitous connectivity demand new approaches to computation in the sciences. These new approaches must enable computation to be mobile, so that, for example, it can occur near data, be triggered by events (e.g., arrival of new data), be offloaded to specialized accelerators, or run remotely where resources are available. They also require new design approaches in which monolithic applications can be decomposed into smaller components, that may in turn be executed separately and on the most suitable resources. To address these needs we present funcX---a distributed function as a service (FaaS) platform that enables flexible, scalable, and high performance remote function execution. funcX's endpoint software can transform existing clouds, clusters, and supercomputers into function serving systems, while funcX's cloud-hosted service provides transparent, secure, and reliable function execution across a federated ecosystem of endpoints. We motivate the need for funcX with several scientific case studies, present our prototype design and implementation, show optimizations that deliver throughput in excess of 1 million functions per second, and demonstrate, via experiments on two supercomputers, that funcX can scale to more than more than 130000 concurrent workers.Comment: Accepted to ACM Symposium on High-Performance Parallel and Distributed Computing (HPDC 2020). arXiv admin note: substantial text overlap with arXiv:1908.0490

    Using Open Stack for an Open Cloud Exchange(OCX)

    Full text link
    We are developing a new public cloud, the Massachusetts Open Cloud (MOC) based on the model of an Open Cloud eXchange (OCX). We discuss in this paper the vision of an OCX and how we intend to realize it using the OpenStack open-source cloud platform in the MOC. A limited form of an OCX can be achieved today by layering new services on top of OpenStack. We have performed an analysis of OpenStack to determine the changes needed in order to fully realize the OCX model. We describe these proposed changes, which although significant and requiring broad community involvement will provide functionality of value to both existing single-provider clouds as well as future multi-provider ones

    Library Resources: Procurement, Innovation and Exploitation in a Digital World

    Get PDF
    The possibilities of the digital future require new models for procurement, innovation and exploitation. Emma Crowley and Chris Spencer describe the skills staff need to deliver resources in hybrid and digital environments. The chapter demonstrates the innovative ways that librarians use to procure and exploit the wealth of resources available in a digital world. They also describe the technological developments that can be adopted to improve workflow processes and they highlight the challenges faced on this fascinating journey

    Towards a Federated Identity and Access Management Across Universities

    Get PDF
    Many research projects are too complex to yield the efforts of a single investigator and require a coordinated effort from interdisciplinary research teams across universities and industries. The research data, documents, experimental testbeds, high-end computing equipment, etc. is a critical component of any large-scale project and hence the cooperation and resource sharing across universities become very important for timely and budget-friendly execution of these projects. However, it is extremely challenging to frequently and effectively access data and other resources across universities without creating new identities for the users. In this thesis, we propose Federated Identity Management (FIM) approach for facilitating secure resource sharing among collaborating associates without creating new identities. We provide a comprehensive literature survey of identity and access management and discuss the privacy issues associated with identity management that can be addressed using FIM. We also provide a comprehensive overview and security features of the OAuth 2.0 framework which is an industry-standard protocol for authorization and user management used by FIM. The proposed scheme can be generalized and used by the student users to access academic libraries and recreate research results easily and securely. Keyword: federated identity management, OAuth 2.0, cloud computing, identity management, cloud identity, federated cloud identity broker, privacy, protocol
    • …
    corecore