1,572 research outputs found

    Towards running robots for discontinuous terrain

    Get PDF

    Trajectory generation for multi-contact momentum-control

    Full text link
    Simplified models of the dynamics such as the linear inverted pendulum model (LIPM) have proven to perform well for biped walking on flat ground. However, for more complex tasks the assumptions of these models can become limiting. For example, the LIPM does not allow for the control of contact forces independently, is limited to co-planar contacts and assumes that the angular momentum is zero. In this paper, we propose to use the full momentum equations of a humanoid robot in a trajectory optimization framework to plan its center of mass, linear and angular momentum trajectories. The model also allows for planning desired contact forces for each end-effector in arbitrary contact locations. We extend our previous results on LQR design for momentum control by computing the (linearized) optimal momentum feedback law in a receding horizon fashion. The resulting desired momentum and the associated feedback law are then used in a hierarchical whole body control approach. Simulation experiments show that the approach is computationally fast and is able to generate plans for locomotion on complex terrains while demonstrating good tracking performance for the full humanoid control

    Deep Kernels for Optimizing Locomotion Controllers

    Full text link
    Sample efficiency is important when optimizing parameters of locomotion controllers, since hardware experiments are time consuming and expensive. Bayesian Optimization, a sample-efficient optimization framework, has recently been widely applied to address this problem, but further improvements in sample efficiency are needed for practical applicability to real-world robots and high-dimensional controllers. To address this, prior work has proposed using domain expertise for constructing custom distance metrics for locomotion. In this work we show how to learn such a distance metric automatically. We use a neural network to learn an informed distance metric from data obtained in high-fidelity simulations. We conduct experiments on two different controllers and robot architectures. First, we demonstrate improvement in sample efficiency when optimizing a 5-dimensional controller on the ATRIAS robot hardware. We then conduct simulation experiments to optimize a 16-dimensional controller for a 7-link robot model and obtain significant improvements even when optimizing in perturbed environments. This demonstrates that our approach is able to enhance sample efficiency for two different controllers, hence is a fitting candidate for further experiments on hardware in the future.Comment: (Rika Antonova and Akshara Rai contributed equally

    Automatic Gait Pattern Selection for Legged Robots

    Get PDF
    An important issue when synthesizing legged locomotion plans is the combinatorial complexity that arises from gait pattern selection. Though it can be defined manually, the gait pattern plays an important role in the feasibility and optimality of a motion with respect to a task. Replacing human intuition with an automatic and efficient approach for gait pattern selection would allow for more autonomous robots, responsive to task and environment changes. To this end, we propose the idea of building a map from task to gait pattern selection for given environment and performance objective. Indeed, we show that for a 2D half-cheetah model and a quadruped robot, a direct mapping between a given task and an optimal gait pattern can be established. We use supervised learning to capture the structure of this map in a form of gait regions. Furthermore, we propose to construct a warm-starting trajectory for each gait region. We empirically show that these warm-starting trajectories improve the convergence speed of our trajectory optimization problem up to 60 times when compared with random initial guesses. Finally, we conduct experimental trials on the ANYmal robot to validate our method.</p

    Feedback MPC for Torque-Controlled Legged Robots

    Full text link
    The computational power of mobile robots is currently insufficient to achieve torque level whole-body Model Predictive Control (MPC) at the update rates required for complex dynamic systems such as legged robots. This problem is commonly circumvented by using a fast tracking controller to compensate for model errors between updates. In this work, we show that the feedback policy from a Differential Dynamic Programming (DDP) based MPC algorithm is a viable alternative to bridge the gap between the low MPC update rate and the actuation command rate. We propose to augment the DDP approach with a relaxed barrier function to address inequality constraints arising from the friction cone. A frequency-dependent cost function is used to reduce the sensitivity to high-frequency model errors and actuator bandwidth limits. We demonstrate that our approach can find stable locomotion policies for the torque-controlled quadruped, ANYmal, both in simulation and on hardware.Comment: Paper accepted to IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2019

    Energetics and Passive Dynamics of Quadruped Robot Planar Running Gaits

    Get PDF
    Quadruped robots find application in military for load carrying over uneven terrain, humanitarian de-mining, and search and rescue missions. The energy required for quadruped robot locomotion needs to be supplied from on-board energy source which can be either electrical batteries or fuels such as gasolene/diesel. The range and duration of missions very much depend on the amount of energy carried, which is highly limited. Hence, energy efficiency is of paramount importance in building quadruped robots. Study of energy efficiency in quadruped robots not only helps in efficient design of quadruped robots, but also helps understand the biomechanics of quadrupedal animals. This thesis focuses on the energy efficiency of planar running gaits and presents: (a) derivation of cost of transport expressions for trot and bounding gaits, (b) advantages of articulated torso over rigid torso for quadruped robot, (c) symmetry based control laws for passive dynamic bounding and design for inherent stability, and (d) effect of asymmetry in zero-energy bounding gaits

    Admissible Velocity Propagation : Beyond Quasi-Static Path Planning for High-Dimensional Robots

    Full text link
    Path-velocity decomposition is an intuitive yet powerful approach to address the complexity of kinodynamic motion planning. The difficult trajectory planning problem is solved in two separate, simpler, steps: first, find a path in the configuration space that satisfies the geometric constraints (path planning), and second, find a time-parameterization of that path satisfying the kinodynamic constraints. A fundamental requirement is that the path found in the first step should be time-parameterizable. Most existing works fulfill this requirement by enforcing quasi-static constraints in the path planning step, resulting in an important loss in completeness. We propose a method that enables path-velocity decomposition to discover truly dynamic motions, i.e. motions that are not quasi-statically executable. At the heart of the proposed method is a new algorithm -- Admissible Velocity Propagation -- which, given a path and an interval of reachable velocities at the beginning of that path, computes exactly and efficiently the interval of all the velocities the system can reach after traversing the path while respecting the system kinodynamic constraints. Combining this algorithm with usual sampling-based planners then gives rise to a family of new trajectory planners that can appropriately handle kinodynamic constraints while retaining the advantages associated with path-velocity decomposition. We demonstrate the efficiency of the proposed method on some difficult kinodynamic planning problems, where, in particular, quasi-static methods are guaranteed to fail.Comment: 43 pages, 14 figure
    corecore