402 research outputs found

    Mathematical Modelling of Heart Rate Changes in the Mouse

    Get PDF
    The CVS is composed of numerous interacting and dynamically regulated physiological subsystems which each generate measurable periodic components such that the CVS can itself be presented as a system of weakly coupled oscillators. The interactions between these oscillators generate a chaotic blood pressure waveform signal, where periods of apparent rhythmicity are punctuated by asynchronous behaviour. It is this variability which seems to characterise the normal state. We used a standard experimental data set for the purposes of analysis and modelling. Arterial blood pressure waveform data was collected from conscious mice instrumented with radiotelemetry devices over 2424 hours, at a 100100 Hz and 11 kHz time base. During a 2424 hour period, these mice display diurnal variation leading to changes in the cardiovascular waveform. We undertook preliminary analysis of our data using Fourier transforms and subsequently applied a series of both linear and nonlinear mathematical approaches in parallel. We provide a minimalistic linear and nonlinear coupled oscillator model and employed spectral and Hilbert analysis as well as a phase plane analysis. This provides a route to a three way synergistic investigation of the original blood pressure data by a combination of physiological experiments, data analysis viz. Fourier and Hilbert transforms and attractor reconstructions, and numerical solutions of linear and nonlinear coupled oscillator models. We believe that a minimal model of coupled oscillator models that quantitatively describes the complex physiological data could be developed via such a method. Further investigations of each of these techniques will be explored in separate publications

    Chronic iEEG recordings and interictal spike rate reveal multiscale temporal modulations in seizure states

    Full text link
    Background and Objectives: Many biological processes are modulated by rhythms on circadian and multidien timescales. In focal epilepsy, various seizure features, such as spread and duration, can change from one seizure to the next within the same patient. However, the specific timescales of this variability, as well as the specific seizure characteristics that change over time, are unclear. Methods: Here, in a cross-sectional observational study, we analysed within-patient seizure variability in 10 patients with chronic intracranial EEG recordings (185-767 days of recording time, 57-452 analysed seizures/patient). We characterised the seizure evolutions as sequences of a finite number of patient-specific functional seizure network states (SNSs). We then compared SNS occurrence and duration to (1) time since implantation and (2) patient-specific circadian and multidien cycles in interictal spike rate. Results: In most patients, the occurrence or duration of at least one SNS was associated with the time since implantation. Some patients had one or more SNSs that were associated with phases of circadian and/or multidien spike rate cycles. A given SNS's occurrence and duration were usually not associated with the same timescale. Discussion: Our results suggest that different time-varying factors modulate within-patient seizure evolutions over multiple timescales, with separate processes modulating a SNS's occurrence and duration. These findings imply that the development of time-adaptive treatments in epilepsy must account for several separate properties of epileptic seizures, and similar principles likely apply to other neurological conditions

    Flexor Dysfunction Following Unilateral Transient Ischemic Brain Injury Is Associated with Impaired Locomotor Rhythmicity

    Get PDF
    Functional motor deficits in hemiplegia after stroke are predominately associated with flexor muscle impairments in animal models of ischemic brain injury, as well as in clinical findings. Rehabilitative interventions often employ various means of retraining a maladapted central pattern generator for locomotion. Yet, holistic modeling of the central pattern generator, as well as applications of such studies, are currently scarce. Most modeling studies rely on cellular neural models of the intrinsic spinal connectivity governing ipsilateral flexor-extensor, as well as contralateral coupling inherent in the spinal cord. Models that attempt to capture the general behavior of motor neuronal populations, as well as the different modes of driving their oscillatory function in vivo is lacking in contemporary literature. This study aims at generating a holistic model of flexor and extensor function as a whole, and seeks to evaluate the parametric coupling of ipsilateral and contralateral half-center coupling through the means of generating an ordinary differential equation representative of asymmetric central pattern generator models of varying coupling architectures. The results of this study suggest that the mathematical predictions of the locomotor centers which drive the dorsiflexion phase of locomotion are correlated with the denervation-type atrophy response of hemiparetic dorsiflexor muscles, as well as their spatiotemporal activity dysfunction during in vivo locomotion on a novel precise foot placement task. Moreover, the hemiplegic solutions were found to lie in proximity to an alternative task-space solution, by which a hemiplegic strategy could be readapted in order to produce healthy output. The results revealed that there are multiple strategies of retraining hemiplegic solutions of the CPG. This solution may modify the hemiparetic locomotor pattern into a healthy output by manipulating inter-integrator couplings which are not damaged by damage to the descending drives. Ultimately, some modeling experiments will demonstrate that the increased reliance on intrinsic connectivity increases the stability of the output, rendering it resistant to perturbations originating from extrinsic inputs to the pattern generating center

    Development of a Plasmonic On-Chip System to Characterize Changes from External Perturbations in Cardiomyocytes

    Get PDF
    Today’s heart-on-a-chip devices are hoped to be the state-of-the-art cell and tissue characterizing tool, in clinically applicable regenerative medicine and cardiac tissue engineering. Due to the coupled electromechanical activity of cardiomyocytes (CM), a comprehensive heart-on-a-chip device as a cell characterizing tool must encompass the capability to quantify cellular contractility, conductivity, excitability, and rhythmicity. This dissertation focuses on developing a successful and statistically relevant surface plasmon resonance (SPR) biosensor for simultaneous recording of neonatal rat cardiomyocytes’ electrophysiological profile and mechanical motion under normal and perturbed conditions. The surface plasmon resonance technique can quantify (1) molecular binding onto a metal film, (2) bulk refractive index changes of the medium near (nm) the metal film, and (3) dielectric property changes of the metal film. We used thin gold metal films (also called chips) as our plasmonic sensor and obtained a periodic signal from spontaneously contracting CMs on the chip. Furthermore, we took advantage of a microfluidic module for controlled drug delivery to CMs on-chip, inhibiting and promoting their signaling pathways under dynamic flow. We identified that ionic channel activity of each contraction period of a live CM syncytium on a gold metal sensor would account for the non-specific ion adsorption onto the metal surface in a periodic manner. Moreover, the contraction of cardiomyocytes following their ion channel activity displaces the medium, changing its bulk refractive index near the metal surface. Hence, the real-time electromechanical activity of CMs using SPR sensors may be extracted as a time series we call the Plasmonic Cardio-Eukaryography Signal (P-CeG). The P-CeG signal render opportunities, where state-of-the-art heart-on-a-chip device complexities may subside to a simpler, faster and cheaper platform for label-free, non-invasive, and high throughput cellular characterization

    Extracting circadian clock information from a single time point assay

    Get PDF
    A working internal circadian clock allows a healthy organism to keep time in order to anticipate transitions between night and day, allowing the temporal optimisation and control of internal processes. The internal circadian clock is regulated by a set of core genes that form a tightly coupled oscillator system. These oscillators are autonomous and robust to noise, but can be slowly reset by external signals that are processed by the master clock in the brain. In this thesis we explore the robustness of a tightly coupled oscillator model of the circadian clock, and show that its deterministic and stochastic forms are both significantly robust to noise. Using a simple linear algebra approach to rhythmicity detection, we show that a small set of circadian clock genes are rhythmic and synchronised in mouse tissues, and rhythmic and synchronised in a group of human individuals. These sets of tightly regulated, robust oscillators, are genes that we use to de ne the expected behaviour of a healthy circadian clock. We use these “time fingerprints" to design a model, dubbed “Time-Teller", that can be used to tell the time from single time point samples of mouse or human transcriptome. The dysfunction of the molecular circadian clock is implicated in several major diseases and there is significant evidence that disrupted circadian rhythm is a hallmark of many cancers. Convincing results showing the dysfunction of the circadian clock in solid tumours is lacking due to the difficulties of studying circadian rhythms in tumours within living mammals. Instead of developing biological assays to study this, we take advantage of the design of Time-Teller, using its underlying features to build a metric, ϴ, that indicates dysfunction of the circadian clock. We use Time-Teller to explore the clock function of samples from existing, publicly available tumour transcriptome data. Although multiple algorithms have been published with the aims of “time-telling" using transcriptome data, none of them have been reported to be able to tell the times of single samples, or provide metrics of clock dysfunction in single samples. Time-Teller is presented in this thesis as an algorithm that both tells the time of a single time-point sample, and provides a measure of clock function for that sample. In a case study, we use the clock function metric, , as a retrospective prognostic marker for breast cancer using data from a completed clinical trial. ϴ is shown to correlate with many prognostic markers of breast cancer, and we show how could also be a predictive marker for treatment efficacy and patient survival

    Theta oscillations, timing and cholinergic modulation in the rodent hippocampal circuit

    Full text link
    The medial temporal lobe (MTL) is crucial for episodic and spatial memory, and shows rhythmicity in the local field potential and neuronal spiking. Gamma oscillations (>40Hz) are mediatepd by local circuitry and interact with slower theta oscillations (6-10 Hz). Both oscillation frequencies are modulated by cholinergic input from the medial septum. Entorhinal grid cells fire when an animal visits particular locations in the environment arranged on the corners of tightly packed, equilateral triangles. Grid cells show phase precession, in which neurons fire at progressively earlier phases relative to theta oscillation as animals move through firing fields. This work focuses on the temporal organization of spiking and network rhythms, and their modulation by septal inputs, which are thought to be involved in MTL function. First, I recorded grid cells as rats explored open spaces and examined precession, previously only characterized on linear tracks, and compared it to predictions from models. I identified precession, including in conjunctive head-direction-by-grid cells and on passes that clipped the edge of the firing field. Secondly, I studied problems of measuring single neuron theta rhythmicity and developed an improved approach. Using the novel approach, I identified diverse modulation of rat medial entorhinal neurons’ rhythmic frequencies by running speed, independent from the modulation of firing rate by speed. Under pharmacological inactivation of the septum, rhythmic tuning was disrupted while rate tuning was enhanced. The approach also showed that available data is insufficient to prove that bat grid cells are arrhythmic due to low firing rates. In the final project, I optogenetically silenced cholinergic septal cells while recording from hippocampal area CA1. I identified changes in theta rhythmic currents and in theta-gamma coupling. This silencing disrupted performance when applied during the encoding phase of a delayed match to position task. These data support hypothetical roles of these rhythms in encoding and retrieval and suggest possible mechanisms for their modulation. Together, evidence from these projects suggests a role for theta in the function of spatial and episodic memory. These oscillations have important implications for communication and computation, and they can provide a substrate for efficient brain function

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 400)

    Get PDF
    This bibliography lists 397 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during April 1995. Subject coverage includes: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance

    Effects of circadian rhythm phase alteration on physiological and psychological variables: Implications to pilot performance (including a partially annotated bibliography)

    Get PDF
    The effects of environmental synchronizers upon circadian rhythmic stability in man and the deleterious alterations in performance and which result from changes in this stability are points of interest in a review of selected literature published between 1972 and 1980. A total of 2,084 references relevant to pilot performance and circadian phase alteration are cited and arranged in the following categories: (1) human performance, with focus on the effects of sleep loss or disturbance and fatigue; (2) phase shift in which ground based light/dark alteration and transmeridian flight studies are discussed; (3) shiftwork; (4)internal desynchronization which includes the effect of evironmental factors on rhythmic stability, and of rhythm disturbances on sleep and psychopathology; (5) chronotherapy, the application of methods to ameliorate desynchronization symptomatology; and (6) biorythm theory, in which the birthdate based biorythm method for predicting aircraft accident susceptability is critically analyzed. Annotations are provided for most citations
    • …
    corecore