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Abstract

A working internal circadian clock allows a healthy organism to keep time in order to

anticipate transitions between night and day, allowing the temporal optimisation and

control of internal processes. The internal circadian clock is regulated by a set of core

genes that form a tightly coupled oscillator system. These oscillators are autonomous

and robust to noise, but can be slowly reset by external signals that are processed by the

master clock in the brain.

In this thesis we explore the robustness of a tightly coupled oscillator model of the

circadian clock, and show that its deterministic and stochastic forms are both significantly

robust to noise. Using a simple linear algebra approach to rhythmicity detection, we show

that a small set of circadian clock genes are rhythmic and synchronised in mouse tissues,

and rhythmic and synchronised in a group of human individuals. These sets of tightly

regulated, robust oscillators, are genes that we use to define the expected behaviour of

a healthy circadian clock. We use these “time fingerprints” to design a model, dubbed

“Time-Teller”, that can be used to tell the time from single time point samples of mouse

or human transcriptome.

The dysfunction of the molecular circadian clock is implicated in several major dis-

eases and there is significant evidence that disrupted circadian rhythm is a hallmark of

many cancers. Convincing results showing the dysfunction of the circadian clock in solid

tumours is lacking due to the difficulties of studying circadian rhythms in tumours within

living mammals. Instead of developing biological assays to study this, we take advantage

of the design of Time-Teller, using its underlying features to build a metric, Θ, that indi-

cates dysfunction of the circadian clock. We use Time-Teller to explore the clock function

of samples from existing, publicly available tumour transcriptome data.

Although multiple algorithms have been published with the aims of “time-telling”

using transcriptome data, none of them have been reported to be able to tell the times

of single samples, or provide metrics of clock dysfunction in single samples. Time-Teller

is presented in this thesis as an algorithm that both tells the time of a single time-point

sample, and provides a measure of clock function for that sample.

In a case study, we use the clock function metric, Θ, as a retrospective prognostic

marker for breast cancer using data from a completed clinical trial. Θ is shown to correlate

with many prognostic markers of breast cancer, and we show how Θ could also be a

predictive marker for treatment efficacy and patient survival.
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Motivation

The methods in this PhD project were developed towards the aim of a single task.

The task was to determine whether the circadian clock gene expression was different

to “healthy” circadian gene expression in a single transcriptome from a tumour biopsy.

This thesis contains the work done to establish what “normal” circadian clock gene ex-

pression is, why and how we expect a determined behaviour for different individuals and

tissues, and how we can measure if a single biopsy sample has a “healthy” clock.

Notes to reader

This thesis will present novel models and methods of data analysis. All data used in

this thesis is publicly available and is cited using the original studies and GEO accession

numbers. The only exception to this is the Bjarnason human timecourse data which was

shared under an MTA agreement with Dr Georg Bjarnason, of Sunnybrook Research In-

stitute, Toronto, Canada. This data is unpublished at the time of writing of this thesis.

This thesis is an interdisciplinary study using mathematics and statistics to under-

stand complex biological and clinical data. It is assumed that the reader has a good

grounding in mathematics, statistics, and basic genetics.

These works are organised so that each chapter builds on the results and conclusions

of each previous chapter. We begin with an introduction to circadian rhythms, and

each subsequent chapter will contain its own introduction, and relevant literature will be

reviewed in the appropriate chapters.



Chapter 1

Introduction to the Circadian Clock

Internal oscillators have been observed and hypothesised for hundreds of years. Jean-

Jacques d’Ortous de Mairan is known to be one of the first chronobiologists. In 1779, he

noticed that mimosa plants would move their leaves in a 24 hour rhythm, in synchrony

with the light. He then observed that the plant continued this behaviour even in constant

darkness, indicating some sort of internal timing mechanism that was not driven by a

reaction to light [25].

The term “circadian” is derived from the Greek “circa” (approximately) and “dian”

(day), and has been used in scientific literature for the study of daily rhythms since its

coining in the 1950s [26]. The “circadian clock” is now used as a collective term to describe

the mechanisms that have evolved so that an organism can anticipate and synchronise to,

the light-dark cycles that result from the 24-hour rotation of the Earth [27]. The field of

circadian rhythms has now grown to the point of huge scientific and even public interest.

1.1 Popular perception of the circadian clock

The terms circadian rhythm or circadian clock are generally understood to concern the

sleep-wake cycle and routine of an individual as these physiological and behavioural events

can be observationally tracked. People often label themselves as “night owls” or “larks”

depending on their body’s natural preference for times of sleep and optimal performance.

People are likely to understand their body’s natural rhythms and plan their daily activities

to get the most out of their day. The harnessing of one’s natural circadian rhythms in

order to improve one’s health and quality of life is becoming increasingly popular. For

example, many studies reported in the media concern the association between timings

of food intake and weight gain or diabetes1. An internet search on the effects of meal

timings will bring up countless articles claiming, for example, that eating in the evenings

is detrimental to weight loss [28, 29, 30].

1A good example can be found at http://www.bbc.co.uk/news/health-27161671

24
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Another popular way that people attempt to take control of their internal circadian

rhythm, is to limit exposure to light in the evenings. In a healthy individual, melatonin

secretion occurs late in the evening to induce sleep [31]. Blue light is known to suppress

melatonin [32] and LEDs used in some light bulbs, TVs, computers, smart phones, and

tablets, have peak emission in the blue light range. This has led to studies assessing what

our modern lifestyles are doing to melatonin rhythms [32]. As a result of these studies,

modern phones and computer screens are capable of going into “night mode”, where they

effectively filter out blue light in the evening hours.

Chronic disruption of normal rhythms of melatonin are attributed to psychiatric dis-

eases such as sleep disorders or depression [33, 34, 35]. Melatonin supplements and day-

time blue light therapies are possible treatments for these disorders, which attempt to

reinstate the proper rhythms of melatonin. Furthermore, the use of melatonin tablets by

the general public as sleeping tablets has become fashionable and its use is increasing [36].

The circadian clock has a role in nearly all major aspects of physiology, including sleep,

metabolism, hormone secretions, body temperature, blood pressure, excretions, immune

function, healing, and more [37, 38]. A representation of the organisation of some of

the physiological and behavioural circadian rhythms are summarised by figure 1.1. This

figure shows that there are times throughout the day where certain physiological factors

are at their highest and lowest, where possible timings for highs and lows are shown for

body temperature, blood pressure, alertness, sleep, melatonin, etc. Note that the timings

on this figure are an example of a hypothetical daily rhythm, and not a strict population

representation.

Figure 1.1: Sketch representing possible timings for the biological circadian
clock. From [1].
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A lesser known aspect of the circadian clock is an underlying genetic component, and

it is considerably more difficult to observe and understand it. This thesis will concern

the genetic component of the circadian clock, which is known as the “molecular circadian

clock”.

1.2 The molecular circadian clock

Internal molecular oscillators were first observed in Drosophila in the 70s, and were shown

to be a certain group of genes that are periodically expressed over 24 hours [39]. In 2017,

the Nobel prize in Physiology or Medicine was awarded to Jeffrey C. Hall, Michael Rosbash

and Michael W.Young for their discoveries of the molecular mechanisms controlling the

circadian clock in Drosophila [40].

There exists a molecular circadian clock of 24-hour periodically oscillating genes and

proteins inside (almost) every cell of our bodies, and inside the cells of most living organ-

isms on the earth [41]. The study of molecular rhythms is an increasingly popular and

promising field of research. This is because these 24-hour rhythmic genes and proteins

have been shown to regulate many biological processes such as the cell cycle, metabolism,

apoptosis, immune function, and wound healing [37, 38]. As a result, the dysfunction of

the molecular circadian clock is associated with many diseases, just as the dysfunction of

sleep and hormone patterns are.

The study of the connection between the circadian clock and other cellular processes

promises to answer questions on diseases and open up new opportunities for treatments.

As mentioned above, a sleep disorder can be treated with melatonin supplements and blue

light to artificially re-instate the hormone rhythms and hopefully reinstate the “normal”

physiological rhythms [42]. Using this same concept, we can try to treat disease by

re-instating molecular rhythms, or taking advantage of them in some way to optimise

treatments. The practise of dosing drugs based on time of day is termed Chronotherapy,

and has been practised by Professor Francis Lévi and his teams for the past 20 years,

to use optimum time of day to dose chemotherapy to cancer patients [43]. This will be

further discussed in Chapter 6.

In order to exploit molecular circadian rhythms so that we can develop new treat-

ments for diseases, we first must understand how the functioning circadian clock works.

However, the molecular circadian clock is highly complex, so requires novel and multiplex

experimental and analytical approaches to decode its dynamics. Mathematical modelling

has been a very useful tool to explore the database of knowledge that biological experi-

ments has built. This will be discussed in chapter 2.

When we refer to the molecular circadian clock, we refer to a collection of mRNA

transcripts that oscillate in abundance over 24 hours. The molecular circadian clock
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is a complex gene network of multiple feedback loops involving transcription processes,

post-translational modifications of proteins, protein-protein interactions, chromatin mod-

ification, and more [44]. Most of the core network of cycling genes are translated into tran-

scription factors that regulate and control the transcription of many output genes. While

a majority of molecular circadian research has focused on transcriptional mechanisms,

translational and post translational mechanisms also have significant roles in circadian

regulation. For example, there is evidence that there are some constitutively expressed

genes that have cycling proteins [45]. Due to the lack of existing datasets and generally

less understanding of circadian proteins this thesis focuses only on mRNA rhythms. It

is possible that similar methods will be applicable to datasets containing information on

timecourses of protein abundances, when future technologies are better able to quantify

proteins.

1.3 The role of the circadian clock

Molecular circadian clocks are a feature of the internal workings of all kingdoms of life

[9]. The molecular components of the circadian clock between different kingdoms are not

conserved, suggesting that the clocks must have evolved independently [27]. A summary

of some of the most studied circadian clocks and their evolutionary relationships is shown

in figure 1.2. Human and murine clocks are the most studied mammalian clocks and

have very similar components. Drosophila and zebrafish share more than 70-75% of their

genes with humans and have clocks that have some similar components to the mammalian

clock, such as Pers and Crys. Arabidopsis thaliana is a plant that has been extensively

studied so its well documented genome makes it a very good model organism in which

to study circadian clocks. Although the plant clock genes are completely different to the

mammalian clock genes, the architecture is very similar. Consistent architectural fea-

tures of each kingdom’s molecular circadian clock are complex auto-regulatory networks,

multiple feedback loops, and genetic redundancies [46]. The fact that independent clocks

have evolved with similar architectures across kingdoms suggests that a robust and func-

tional internal circadian rhythm is a non-optional requirement of successfully surviving

on the Earth (this will be further discussed in chapter 2). It follows that a dysfunctional

circadian clock has been associated with many pathologies such as cardiovascular and

inflammatory diseases, depression, and cancer. Circadian rhythm disruption in cancer,

and more specifically breast cancer, will be the focus of chapter 6.

Definition of a circadian rhythm

Circadian rhythms have an approximately 24 hour period, are endogenous, self-sustained

and persisting in the absence of any environmental cues (such as the light/dark cycle), and
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Figure 1.2: Model organisms most commonly used in the study of circadian
clocks. From [2], figure shows different sets of clock genes across kingdoms.

are entrainable to periodic forcing such as forcing from light, temperature [47]. Zeitgeber

time (ZT) describes the number of hours after lights have come on (for example the

number of hours since sunrise). Circadian time (CT) describes the number of hours of

free-running time where no forcing is present (for example the number of hours since the

last time conditions changed).

1.4 The mammalian molecular circadian clock

Many review articles have been published with the aim of summarising current knowledge

of the mammalian molecular circadian clock [48, 49, 50, 6, 41, 51, 4]. The genes that

make up the core mechanism of the mammalian circadian clock are not easy to define.

The subset of circadian genes that are core to the autonomous circadian oscillator changes

depending on the criteria used to define what “core” is. Consequently, every study reports

a slightly different set of core clock genes. However, through years of study and collation,

around 20 genes have been repeatedly observed to be circadian in mammals [52]. Studies

in bioinformatics that utilise data mining techniques have attempted to collate this vast

array of information in order to determine what the true core clock genes are [53, 3]. An

example of this is shown in figure 1.3, where Lehmann et al. [3] studied an extensive

collection of databases and literature. Using these results, they found 14 genes that they

call the core clock network (CCN) and 28 genes that they call the extended core clock

network (ECCN). The red boxed genes in figure 1.3 are those that (we find) the literature

more frequently reports as those closely associated with the circadian clock [4].
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Figure 1.3: The human core clock network (CCN) and the extended core clock
network (ECCN). Edited from [3]. The CCN (orange) contains the core-clock elements.
Genes in red boxes are those that are often associated with the circadian clock.

There is a huge amount of biological complexity in circadian networks. The molecular

machinery that underlies the circadian clock consists of multiple transcriptional/transla-

tional feedback loops that are coordinated by specific sequences of rhythmic binding [6].

The evolution of the circadian clock has resulted in many redundancies, so the loss of

function of a single clock gene generally does not result in arrhythmic phenotype.

The circadian clock is regulated by at least three clock-controlled DNA elements in

the promoter site of the genes, known as the morning-time (E-box (canonical and non-

canonical)), day-time (D-box), and night-time (Rev-Erb/ROR binding element or RRE)
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elements [54]. The phase of circadian gene expression is generally correlated with the

presence of these motifs in the gene promoter site. The translated proteins in turn bind

to these specific promoter elements to activate or inhibit expression in a very specific way,

which results in a 24 hour loop. The number of promoter sites changes for each clock gene,

and most clock genes have a combination of motifs. Currently, there is no comprehensive

study investigating these motifs in all clock genes. Table 1.1 indicates the presence of a

motif for which evidence exists [20, 55], and figure 1.5 shows a schematic representation of

the core clock gene’s relationships by their promoter sites. A summary of known binding

motifs could inform a powerful mathematical model that takes into account the correct

combinations of promoters on each site. Korencic et al. [55] have published a simple

model of this type using 5 clock genes in a delay differential equation model.

A simplified summary of the core circadian clock genes is presented, however the reader

should note that the real level of biological complexity is expected to be much greater

than is summarised here.

Core clock genes

Figure 1.3 represents a good summary of the core clock genes as it reflects most of the

literature. The CCN genes in this figure, the ECCN genes in red boxes, and 2 additional

genes are presented here as the core clock genes.

There is only one known clock gene that is essential for the circadian clock to maintain

rhythm, and that is Bmal1 (Brain And Muscle ARNT-Like 1)2. There is evidence that

Bmal1 is also a translation factor, as well as a transcription factor [45], which could explain

its importance. Bmal2 is a paralog3 of Bmal1 and is often considered to be important

to the circadian clock function [3]. However, evidence is not consistent [56], and it is

clear that the role of Bmal2 is far less important than the role of Bmal1. Bmal1 is in

the family of basic-helix-loop-helix (BHLH) proteins, as are Clock (Circadian Locomotor

output cycles kaput) and Npas2 (Neuronal PAS Domain Protein 2) [57]. CLOCK4 and

NPAS2 proteins form complexes with BMAL1. Both BML:CLK and BML:NPS complexes

bind to E-box motifs to drive the expression of many other core clock genes that contain

canonical E-boxes and non canonical E-boxes. A double knock-out of both Clock and

Npas2 results in an arrhythmic phenotype [57]. The BML:CLK and BML:NPS complexes

are involved in at least 3 major feedback loops; the period and cryptochrome negative

loop, the Rev-Erb negative loop, and the Ror positive loop.

BML:CLK and BML:NPS activate the expression of the period genes Per1, Per2,

and Per3, and the cryptochrome genes Cry1 and Cry2 via their E-box elements. They

consequently form PER:CRY complexes which interact with BML:CLK and BML:NPS

2aka Arntl (Aryl Hydrocarbon Receptor Nuclear Translocator Like)
3Paralogs are genes related by duplication within a genome.
4Clock is rhythmic in mice, but not often observed to be rhythmic in humans.
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complexes, blocking their activity [7]. The degradation of PER proteins by casein kinases

CKIε and CKIδ, along with the shuttling of the proteins and complexes in and out of

the nucleus, are known to be important post translational timing mechanisms [49].

The BML:CLK and BML:NPS complexes also activate transcription of Rev-Erbα and

Rev-Erbβ. REVERBα and REVERBβ bind to RRE promoters on Bmal1, Npas2 and

Clock, inhibiting their expression [49]. Ror (Retinoic Acid-related orphan receptor) (α, β

& γ) genes are similarly activated, but ROR proteins bind to RRE elements and activate

the expression of Bmal1, Clock, and Npas1.

The gene Ciart (Circadian Associated Repressor Of Transcription, aka Chrono/Gm129)

is a relatively new addition to the set of core genes driving circadian clock dynamics. Ciart

expression is also driven by BHLH complexes and CIART blocks the activity of the BHLH

complexes. No review articles yet mention Ciart as a gene associated to the core circadian

clock, but recent studies have identified Ciart’s important role [58, 59, 21]5.

Figure 1.4 shows a simple representation of these 4 core feedback mechanisms. It is

expected that the circadian proteins will also regulate many other ‘clock controlled genes’.

Reverb REVERB

Bmal1

Ror

Npas2/Clock

Per

Cry

BMAL1

ROR

CRY
PER

Ciart CIART

NPAS2/
CLOCK

Figure 1.4: Simple schematic showing the basic feedback loops that are likely
to be the central time keeping mechanisms of the circadian clock. Transcription
of Pers, Crys, Rors, Rev-Erbs and Ciart are all activated by BML complexes via their
Ebox promoter regions. PER:CRY complexes and CIART interfere with BML complex
activity, resulting in negative feedback loops. REVERB binds to RRE sites and inhibits
Bmal1, Npas2 and Clock transcription, and ROR binds to RRE sites and activates them.

Dec1 and Dec2 are also genes in the BHLH family [60] and are reported to be associated

with the finer tunings and robustness of the circadian clock via interactions with E-boxes

[61]. Among other BML:CLK and BML:NPS regulated transcripts are 4 PAR-bZIP genes,

Dbp, Tef, Hlf, and Nfil3 that bind to D-box motifs in the regulatory sequences of other

5This thesis will also present significant evidence for Ciart’s role as a core clock gene in both mouse
and human data.
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clock controlled genes [62, 63]. These genes are thought to be important for downstream

regulation of other genes. They may have some involvement in the central oscillation

mechanism, for example DBP has been observed to activate Period genes [62] but their

involvement in the core time keeping mechanism is not widely reported.

Wee1 is a gene encoding a kinase that is responsible for regulating the CYCLIN

B1/CDC2 complex and subsequent entry into mitosis [64]. The Wee1 promoter contains

E-box motifs and so its expression is driven by the BHLH complexes. Wee1 is important

when studying the link between the circadian clock and the cell cycle mechanism [65, 66].

Timeless is a very important circadian gene in Drosophila, and although exists in

mammals, its role in the mammalian clock is still debated [67]. TIMELESS has been

shown to regulate replication termination and cell cycle progression, and to have some

significant post-translational interaction with PER-CRY complexes. Although Timeless

is reported as a core clock gene in many studies, its mRNA does not show significant

mammalian rhythms so will not be discussed in this thesis.

The core clock genes that have been discussed here are summarised in table 1.1, and

partially in figure 1.5. Neither Ciart or Wee1 were identified by the review by Lehmann

et al. [3] or Ukai et al. [4], but are included in table 1.1 due to recent evidence of their

importance [58, 21, 59, 68, 65]. Bmal2 is included in this table but is italicised to highlight

that there is limited evidence to suggest that it has an important role as a circadian clock

gene6. The reader should note the alternative names for the genes; annotation sets often

use these interchangeably and so it has been necessary to use all names in the writing of

this thesis.

1.5 The master clock

The suprachiasmatic nucleus (SCN) is a region in the hypothalamus and is known as

the master clock. The SCN coordinates all peripheral oscillators so that a synchronised

rhythm is maintained at the organism level [69]. The SCN processes signals from light

and other circadian inputs and directs the secretion of glucocorticoid hormones such as

melatonin and cortisol [70]. The underlying neural and humoral mechanisms for the

synchronisation of peripheral circadian clocks are still to be elucidated [44]. The SCN

is the pacemaker of the circadian clock and its received inputs can set the phase of all

peripheral clocks in the body (after sufficient time). For example, when humans cross time

zones, the sudden shift to a new LD system results in the individual experiencing jet lag.

The body eventually re-entrains to the new cycles of inputs [71]. Although input signals

can reset the circadian clock, they are not necessary for driving the rhythms. Studies

6Bmal2’s presence in this set may be a consequence of the text mining methods used.
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Figure 1.5: Schematic a representation of the transcriptional network of the
mammalian circadian clock. Edited from [4]. E/E’-boxes are located on the noncoding
regions of Per1, Per2, Cry1, Dbp, Rorγ, Rev-Erbα, Rev-Erbβ, Dec1, and Dec2. D-boxes
are located on Per1, Per2, Per3, Rev-Erbα, Rev-Erbβ, Rorα, and Rorβ. RREs are located
on those of six genes Bmal1, Clock, Npas2, Cry1, E4bp4, and Rorγ .

have shown that mice in constant light or dark conditions (and with no social cues) will

continue to exhibit circadian behaviour [72].

1.5.1 Summary

As represented in figure 1.6, the circadian clock is made up of three major components:

• inputs that convey time information from the environment to the internal clock via

the SCN,

• outputs that mediate clock-controlled behaviours and physiological processes,

• and a core clockwork capable of autonomous oscillation, which is present in periph-

eral oscillators in all cells of the organism. The core clock genes are synchronised in

peripheral organs but subsets of clock controlled genes are tissue dependent [73].
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Family Name Gene Name Alternatives Receptors Regulates
Basic Bmal1 Arntl RRE E
Helix-Loop-Helix Clock RRE E

Npas2 RRE E
Bmal2 Arntl2
Dec1 Bhlhe40 E E, D
Dec2 Bhlhe41 E E, D

Rev-Erbs Rev-Erbα Nr1d1 E, D, RRE RRE
Rev-Erbβ Nr1d2 E, D RRE

Period Per1 E, D
Per2 E ,D
Per3 D

Cryptochrome Cry1 E, RRE
Cry2

Orphan Nuclear Rorα Rora D RRE
hormone receptor Rorβ Rorb D RRE

Rorγ Rorc E, RRE RRE
PAR leucine zipper Dbp E, RRE D

Tef E D
Hfl E D
Nfil3 E4bp4 RRE D

Casein Kinases CK1δ Csnk1d
CK1ε Csnk1e
*Ciart Chrono, Gm129 E

Tyrosine kinase *Wee1 E

Table 1.1: Table showing the established central clock genes, their alternative
names, promoter motifs, and promoter motifs to which they have been found
to bind. This information is likely to not be complete or exhaustive. *These genes were
not reported to be part of the circadian clock genes in Lehmann et al. (figure 1.3), but
recent evidence has led to their addition to this set. Motifs in bold are those that are
not included in figure 1.5, but have been reported in other literature [20, 21, 22, 23, 24].
Motifs in italics are those reported in Ukai et al [4], but these promoter sites are not
commonly reported in other literature. Green motifs indicate activation and red motifs
indicate repression.
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SCN
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Routine
Temperature

8am 8pm

Melatonin

Cortisol

Activity/sleep

Body Temp
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inputs

Circadian Gene Expression in organs

Figure 1.6: Sketch that summarises the three major components of circadian
clocks. Circadian inputs entrain the clock via the SCN. Circadian body markers are
physiological markers that can be tracked through activity/sleep and body temperature,
and melatonin and cortisol levels in the blood [5]. There are many genes that show
circadian behaviour in tissues. Some genes have organ specific circadian behaviour[6].
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1.5.2 Use of mouse transcriptome to inform human disease

This thesis has required the use of timecourse transcriptome data, i.e. data from samples

taken at fixed intervals over a time period of a day or two. Human tissue timecourse

samples are rare due to the ethical and practical difficulties in biopsying a piece of human

tissue every 1-4 hours over a full day. There does exist full genome timecourse human

data from blood samples [14], but as will be discussed in chapter 4, it uses a custom

microarray making it incompatible for comparison to other independent datasets. This

work will present rare timecourse data from live human oral mucosa (from a standard

human microarray GeneChip) which is currently unpublished and was shared with us

for the purposes of this thesis. However, the availability of time-labelled human tissue

transcriptome data is still comparatively limited to that of mouse data. In fact, except

for the human timecourse data that we acquired through collaboration, we could not

find any healthy human transcriptome data that was labelled with the time of day of

tissue sampling. The use of time labelled mouse transcriptome data to validate our

algorithm design was essential. Large sets of high resolution data are available from

mouse experiments, with data from multiple organs and from genetically identical mice

in different environments.

Mouse models are often used as model organisms to study human biology due to

the genetic similarities. However, the networks linking genes to regulatory processes and

disease are likely to differ between the two species [74]. Consequently, although both

mouse and human data are used in this work, mouse and human datasets will at no point

be directly compared; the mouse data is used only to validate any assumptions that we

will make with the human model.

Furthermore, all (real) data used in this work originates from living tissue. Although

in vitro models are useful for many purposes, circadian rhythms can be manipulated and

influenced massively by artificial culture methods. It is likely that signals from the SCN

and humoral signalling across the whole body is very important for the proper functioning

of the mammalian circadian clock. As we aim to develop an algorithm to be potentially

useful in the clinic, we will only use data that originated from live tissue samples.

1.6 Computational challenges

Modern high throughput technologies in areas such as genomics, transcriptomics, pro-

teomics and metabolomics are generating huge amounts of data, and providing greater

scope for our study and understanding of the circadian clock. The complexity and size

of these circadian datasets pose a computational challenge. The standard data analysis

techniques for differential gene expression, which are primarily based on comparisons of

gene expression correlations (e.g. gene set enrichment analysis) can rarely be used to
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generate useful metrics in circadian data. If one imagines attempting to measure the

correlation of a cosine wave with a sine wave, standard correlation analyses will provide

metrics indicating no relationship between the variables.

Computational methods in rhythmicity detection of timecourse data have been central

to circadian data analysis. The phase of a 24 hour periodic measurement (the highest

peak of a sine-like wave) is a vital metric, where the absolute value of the gene expressions

are often less meaningful. Multiple methods of rhythmicity analysis have been developed

for this purpose and will be discussed in chapter 3.

Timecourse data is essential for the generation of useful circadian metrics using rhyth-

micity analysis. This requires long, expensive and complex experiments where identical

protocols are carried out every 1-6 hours, across at least a full 24 hour period, needing

consistency in carefully controlled environments. Over the past few years, it has been

a scientific and mathematical challenge to find time fingerprints in transcription so that

algorithms can be developed that can tell the time from less time points, and even single

transcriptomes. A literature review of the studies that have attempted to do this will be

presented in chapter 4.

This thesis uses innovative and novel methods to demonstrate that the robust and

predictable nature of the core circadian clock facilitates deduction of a time signature

from just a single sample. Time-Teller will be introduced as an algorithm that can tell,

from one single sample, if the circadian clock is functional, and if it is, at what time the

sample was taken.

Time-Teller is a data and mathematics driven algorithm, and although biological con-

text allows us to understand results and derive comparisons with expected biology, the

algorithmic design is completely unbiased by the information thus far presented. The

reader will observe agreement between the set of training genes used to train Time-Teller,

and the genes presented above as the core clock genes (table 1.1). This is a result of the

reproducibility of circadian gene expression, which is a consequence of the robustness of

circadian clock. This will be discussed in the following chapter.
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1.7 Structure

This thesis is organised so that each chapter builds on the results and conclusions of each

previous chapter. Each chapter contains its own introduction, literature review (where

relevant), and conclusion section. The chapters are organised as follows:

2. The Robustness of the Circadian Clock. Circadian clock robustness will be

explored using open-source tools and a mathematical model of the circadian clock.

An equivalent stochastic model is developed and a similar analysis is performed.

3. Timecourse Transcriptome Analysis. - This chapter will introduce the mouse,

human, and in silico timecourse datasets used to train Time-Teller. A novel method

in circadian gene identification is presented.

4. Time-Teller - This chapter will review existing time-telling methods and present

the novel Time-Teller algorithm. Time-Teller is validated in a “leave-one out” sense

with the human, mouse and in silico training data.

5. A Metric of Clock Dysfunction - This chapter will present a novel metric, Θ,

that represents circadian clock function. This is tested via in silico knock-downs,

and independent mouse and human data sets.

6. Circadian Clock Dysfunction in Human Cancer - This chapter will review

evidence for clock dysfunction in cancer. Θ is measured for cancer data sets and we

explore how Θ might be used as a novel prognostic tool in breast cancer, in order

to inform personalised treatment strategies.

7. Discussion - This chapter will briefly summarise findings and discuss suggestions

and opportunities for further work.



Chapter 2

The Robustness of the Circadian

Clock

Various models of differential equations have been published that attempt to describe the

underlying dynamics of the molecular circadian clock [44]. Although all of the detailed

mechanisms that govern gene expression are not fully understood, mathematical models

incorporating some experimental findings are of great help when trying to understand

complex systems like the circadian clock. Models can help us to discover new charac-

teristics of complex systems, and to test any hypotheses that cannot easily be tested

experimentally. This chapter will focus on the analysis of the dynamics of one particular

mammalian circadian clock model, referred to in this thesis as the Relogio model [7].

Circadian clocks have complex structures with multiple interconnected feedback loops;

the models that describe them have a high level of complexity. Investigating changes in

parameters of these models needs a much more robust method than a trial-and-error

approach. Based on theory presented in three publications by Rand et al. [75, 76, 77],

and using a consequent Matlab GUI called PeTTsy [78], a formal analysis of parameter

sensitivity of the Relogio model is presented in this chapter. This allows insights into

robustness and flexibility of the model under parameter perturbations. Following this,

the deterministic Relogio model is adapted to a stochastic model, and a parallel analysis

is performed using methods in Minas et al. [8].

2.1 Models of gene expression

Mathematical models of temporal gene expression are designed based on reaction schemes

derived from experimental evidence. Often there is a large amount of published literature

on the reaction scheme of interest, the experimental designs and results are complex, and

sometimes the literature can even report contradictory outcomes. When modelling gene

expression, transcriptome data is informative to show how gene expression changes over

39
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time, under different conditions, or when the genes themselves are edited. Experimental

results inform us as to which transcription factors bind to which promoter sites, via (for

example) ChIP-seq or surface plasmon resonance [79]. The stability of proteins and mRNA

can be estimated using labelled genes and proteins and measuring florescence, for instance.

Protein abundance is much harder to measure, but can be measured using techniques such

as fluorescence imaging, or mass spectrometry. Data from mutant experiments such as

that from a gene knock-down or over-expression, or RNAi experiments, provide additional

insights into dynamics.

Data mining of the vast array of publications on circadian clock genes, cycling proteins,

environmental effects, the effects of gene editing, etc, is the first step in circadian clock

model design. Data exists for multiple organisms, multiple strains of organism, in vitro or

in vivo, in different environmental conditions, and other factors in experimental design.

When designing a reaction scheme for a model, the designer needs to choose a subset of

this evidence, and be able to make informed decisions when some evidence contradicts

other evidence. Due to such a huge level of complexity and ambiguity, no mathematical

model can be a perfect representation of reality, and no circadian clock model can reflect

every bit of evidence the scientific community has collected. Even so, we will show here

how mathematical models are powerful tools to help us make sense of such vast complexity.

2.1.1 Evolutionary design of circadian clocks

Molecular circadian clocks are a feature of the internal workings of all kingdoms of life

[9]. Consistent architectural features of each kingdom’s circadian clock are complex auto-

regulatory networks, multiple feedback loops, and genetic redundancies [46]. Light is the

main input to the circadian clock, but the molecular circadian clock does not need driv-

ing forces to maintain oscillation. Mice have been shown to continue to exhibit circadian

activity patterns even in constant darkness [72], with period shortening (in constant dark-

ness) or period lengthening (in constant light).

When experiments are carried out on mice, genetically identical, matched gender and

age strains are used to minimise experimental variation. We expect that the genes and

biology of these “identical” mice have a certain level of synchronisation, as experiments are

designed to minimise variation. Humans do not exist in a perfectly routine environment

of light dark cycles, temperature cycles, or exact meal times, and humans are certainly

not genetically identical to one another. Despite this, the next chapter will show that

due to the robustness of the mammalian circadian clock, circadian gene expression is

remarkably synchronised amongst human individuals too. In this chapter, we aim to

present a mathematical argument for why this occurs.

We do not argue that the circadian clock is completely inflexible, however. Jet Lag is
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a physical representation of the body’s adaptation to a very large shift of the circadian

clock. It may take a few days to phase shift the body a few hours forwards or backwards,

but eventually our bodies adapt to new time-zones. We argue that the circadian clock

has a balance of robustness and flexibility, in order to maintain robust rhythms whilst

adapting to new environments.

Clock design

In theory, a simple unforced oscillator can exist that is made up of only two genes in a

negative feedback loop. A stable limit cycle could exist with a 24 hour period, and these

two genes could be the time keeper of an entire organism. It would be a crucial job for

these two genes; whilst regulating each other, to also regulate all other time-related genes

and processes, all in a cycle of 24 hours. It is clear that circadian clocks have evolved to

have the complexity to have a contingency plan when things inevitably go wrong.

The number of genes that make up the core of the molecular circadian clock changes

across kingdoms, and due to the complex regulatory relationships between genes, it is

difficult to even define which genes are the “core” clock genes. The following section out-

lines (mathematically) why this complexity results in circadian clocks being robust and

inflexible. Robust and inflexible refer to the difficulty in changing the behaviour of the

circadian clock. Physically this is relating to the body’s slow adaptation to an environ-

mental change, molecularly this relates to the consistent gene expression patterns upon

stochastic fluctuations, and mathematically this relates to how parameter perturbations

in the model do not drastically change the behaviour of the model. A periodic solution can

be described (mostly) by its phase, period, and amplitude, but in this section behaviour

is only referring to period and phase.

2.1.2 Design principles underlying circadian clocks

It has been famously reported that John von Neumann said

With four parameters I can fit an elephant, and with five I can make him

wiggle his trunk [80].

This was meant as an analogy for the dangers of over-fitting a model to data: that even if

an initial model set-up is not ideal, by adding just a few more variables and parameters,

the model can eventually be fit to any data or show any desired behaviour. This could

be true in some simple scenarios: a well constructed four parameter model could be

powerful, with perturbations of each parameter having significant effects on the overall

behaviour of the model. Here, it is argued that tightly coupled feedback models such as

the oscillators considered here, do not have this property. Evidence is discussed for the

inflexible character of circadian systems, where the parameters affect the model solution
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in a highly correlated way so that the change in the solution has a much lower dimension

than the parameters.

2.2 Circadian clock models

There are multiple publications involving the modelling of the mammalian circadian clock;

these are summarised in table 2.1. Each model is slightly different, as each model designer

has chosen slightly different subsets of the available information. They are all however,

primarily based on data from the mouse SCN. The Relogio model will be the only model

discussed in this thesis, but a similar analysis could be done for any of the other models1.

A very good literature review of all models can be found in the recent review article in

BMC systems biology by Podkolodnaya et al. [44].

Forcing

Forcing represents some external input to the system (e.g. light) and can be built into

a model via a periodic term (e.g. via a step function or sine wave) that increases the

production rate of a variable quantity with a 24 hour period. Most of models in table 2.1

are unforced; the parameters are fit so the dynamics show desirable behaviours, and the

solutions are stable limit cycles with an approximate 24-hour period. These models are

free-running, and represent autonomous biological oscillators.

Only Leloup & Goldbeter have attempted to use forcing in the models, as very little

is known about how external signals are communicated to our genes; the process of light

entering the retina, the signals being processed by the brain, and then being communicated

from there to the rest of the body in a way that can control single cell gene expression,

is not yet understood. Some studies have attempted to evaluate a molecular change in

mammalian clocks when light signals are disturbed [87, 88, 89, 90] but there are mixed

conclusions. There is a small amount of evidence that the Per2 gene is involved in light

signal processing, and this is how Leloup & Goldbeter incorporate a forcing term into

their models. A similar robustness analysis of Leloup & Goldbeter’s models is published in

[75, 76, 77], with significant conclusions of circadian clock model robustness to parameter

perturbation.

2.3 The Relogio Model

Relogio et al. [7] designed a set of 19 ordinary differential equations (ODEs) that describe

the central mechanism of the molecular circadian clock using two feedback loops. One

loop describes the Per/Cry(PC) terms, and the other describes the Rev-Erb/Ror(RBR)

1The Korencic delay differential model would have to be linearised first.
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Model
First
Author(s)

Ref # Vars # Pars Description

Relogio [7] 19 71(76) ODEs describing dynamics of 3 loops:
Per&Cry, Rev-Erb and Ror loops, including
terms for mRNA, proteins, and post transla-
tional modifications. Free Running.

Korencic [22] 6 46 Set of delay differential equations, with dy-
namics based on promoter site interactions.
For 6 mRNA only; Bmal1, Per2, Rev-Erbα,
Cry1, Dbp, & Rorγ. Free running.

Leloup &
Goldbeter

[81][82] 16/19 55/70 ODE describing dynamics of 2 loops:
Per&Cry and Rev-Erb loops, including terms
for mRNA, proteins, and post translational
modifications. Forcing through periodic ac-
tivation of Per.

Forger &
Peskin

[83] 74 36 ODE describing dynamics of 2 loops:
Per&Cry and Rev-Erb loops, including terms
for mRNA, proteins, and post translational
modifications. More terms as paralogs are
modelled separately. Free running.

Kim [84] 74 36 Stochastic version of the Forger & Peskin
model

Mirsky [85] 21 132 ODE describing dynamics of 3 loops:
Per&Cry, Rev-Erb and Ror loops, including
terms for mRNA and proteins. Paralogs are
modelled separately. Free running.

Woller [86] 16 96 ODEs modelling the circadian clock interac-
tion with metabolic entities. Free running.

Table 2.1: Summary of mammalian circadian clock models. Each model has a
different design, and set of variables and parameters.

terms. There are 5 mRNA terms for genes Bmal, Cry, Per, Ror and Rev-Erb. Other terms

describe protein translation, movement in and out of the nucleus, protein complexing, and

phosphorylation. The reaction scheme is shown in figure 2.1. The set of 19 ODEs with

their fitted parameter values, are in appendix B.

2.3.1 Relogio et al. summary of study

The model design was initiated by a literature search on the behaviour and features of

the molecular circadian clock in the mouse SCN. They focused on three main levels of

regulation:

• Protein-DNA interactions, where some proteins are transcription factors activat-

ing or inhibiting transcription of a gene. For example, presence of REV-ERB in
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Figure 2.1: The Relogio model reaction scheme. Scheme from [7], representing the
dynamics of the set of ODEs.

the nucleus inhibits the transcription of Bmal, and the presence of ROR activates

it. The mRNA transcription terms were fit using 14 datasets consisting of mostly

biochemical data from the mouse SCN with some including mutant phenotypes.

• PER/CRY complex blocking CLOCK/BMAL mediated transcription, which conse-

quently stops/slows transcription of all genes other than Bmal itself.

• Stability of the RNA and proteins (represented by the degradation rates). Phos-

phorylation of PER is included as it “contributes to the delay which is necessary to

generate a circa 24 hour period.” mRNA and protein half-life data was accumulated

and reported from 7 studies that used mouse fibroblasts and stem cells. There is

limited insight into degradation kinetics, so all degradation is applied using linear

terms.
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The design of the system of equations was based on the law of mass action. The

transcription terms are described by Hill functions that were derived using using Michelis-

Menten kinetics. Parameters were either fixed at experimentally determined values or fit

using LTI (linear-time-invariant) systems theory. Details of this and the fitting process

are in the supplementary information of the published study [7].

The authors report that in silico knock outs result in similar phenotypes to the exper-

imental data they based their model on. There is some study into the effects of changing

parameter values to the phases and period of the model. One of the main results in the

study is that changing the Per degradation rate can change the period of the system

in a non-monotonic way. They state that the model has enough complexity to be able

to offer a reason for unexplained experimental observations. For example, experiments

have shown period shortening for both over-expression [91] and under-expression [92] of

Per, which does not seem possible at first sight. However, the model also has this be-

haviour when increasing or decreasing the Per degradation parameter from its fitted value.

There is a vast amount of detail and information in this model. The authors do

not claim that it is a precise quantitative model of the circadian clock, but its dynamics

capture some of the major feedback loop dynamics in a concise way. Without any editing,

and keeping this model exactly as it is published in the supplementay information of [7],

we will carry out a formal parameter sensitivity analysis for this model using PeTTsy.

First, we discuss the theory underlying PeTTsy.

2.4 Sensitivity Analysis Using PeTTsy

This section is a summary of works in Design principles underlying circadian

clocks, by Rand et al. [75, 76, 77], whose content has been designed as the MATLAB

GUI, PeTTsy [78].

We are considering models of the form:

ẋ =
dx

dt
= f(t, x, k) (2.1)

where x are the n state variables and k is a vector of the s parameters of the model

(ki ≥ 0 ∀i). The solution of interest is denoted as

x = g(t, k) (2.2)

and for all situations in this thesis will represent an attracting stable limit cycle with period

T . As the parameters will have different orders of magnitude, it does not make sense to

use absolute changes in parameters in the analyses. Relative changes to parameters can
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be assessed using ηj = logkj. This means that for small changes δki to the parameters,

in practise we use δηj = δkj/kj

2.4.1 Decomposing the system

The variation of the solution δg produced by parameter perturbation δη can be described

(up to second order terms) as;

δg(t) =
∑
j

∂g

∂ηj
(t)δηj +O(||δη||2) (2.3)

Let M be the linear transformation matrix that maps δη →
∑

j
∂g
∂ηj
δηj. Time is re-

stricted to a discrete set of values t1, ..., tN so that we only study the vector (δg(t1), ..., δg(tN)),

and so M has N rows. M has s columns, one for each parameter in the model defined in

equation (2.1). We define the discretised derivative matrix M to be

M =


∂g
∂η1

(t1) ... ∂g
∂ηs

(t1)

. .
∂g
∂η1

(tN) ... ∂g
∂ηs

(tN)

 (2.4)

so that

δg =
∑
j

M · ej · δηj +O(||δη||2) (2.5)

(2.6)

Let the singular value decomposition2 of M be M = WDU where D is a diagonal

matrix with entries σ1 ≥ σ2 · · · ≥ σs. Substituting the SVD of M for M in (2.5) gives

δg(t) =
∑
j

(∑
i

WijσiUi

)
δηj +O(||δη||2) (2.7)

where the Ui are the columns of U .

Letting Sij = Wijσi

δg(t) =
∑
i,j

SijUiδηj +O(||δη||2) (2.8)

The column vectors Ui = (Ui,1, ..., Ui,n)T are known as the sensitivity principal

components, because U is an orthogonal matrix and so the Ui are unit vectors orthogonal

to each other. The sensitivity singular values σ1 ≥ ... ≥ σs, represent the dominance

2The SVD is discussed in detail in the next chapter and in further detail in appendix A.
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of each principal component in the decomposition.

From equation 2.8, and knowing that the Ui are orthogonal directions, we can see

that Sij completely determines the size of the effect of small changes δηj. The matrix

Sij = σiWij characterises the sensitivity of the system with respect to each parameter,

and is known as the parameter sensitivity spectrum.

2.4.2 PeTTsy analysis of the Relogio model

Figure 2.2: Simulation showing the Relogio model limit cycle solution. The
solution is shown as a timecourse over 52 hours for all 19 variables, and was generated
using the ode45 differential equation solver in MATLAB.

The stable limit cycle of the set of ODEs designed by Relogio et al. [7] is shown as

a 52 hour timecourse in figure 2.2. It should be noted here that the precise amplitude is

meaningless and so is expressed in arbitrary units (AU)3. The important characteristics of

the solution are shape, period, and phase. The model was analysed with PeTTsy, which

calculated the period of the oscillations to be 25.2 hours.

Parameter sensitivity

The sensitivity singular values are plotted in figure 2.3 and show an exponentially decreas-

ing behaviour. This shows that there is a very constrained behaviour to the dynamics

of this model as the parameters are changed. The first four principal components of the

Relogio ODEs account for ∼ 96% of the variation in the model, the first accounting for

3By making appropriate changes in the parameters, we can usually quite easily scale any solution gi(t)
to a desired amplitude.
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∼ 66 %. This shows the low dimension of possible solutions the system can have after

parameter perturbation. This means that the order of phases does not change in response

to small changes, and when the order of phases does change, there are only 2 or 3 likely

combinations.

Figure 2.3: Plot showing the exponentially decreasing Sensitivity Singular Val-
ues for the Relogio Model. Plot is shown in log scale, with smaller plot in linear scale
to show that only 4 singular values have significant value.

Additionally, we use the parameter sensitivity spectrum to show that just a small

subset of the 76 parameters can push the model into these directions. The parameter

sensitivity spectrum is shown for the 20 most sensitive parameters, for the first four

principal components in figure 2.4.

This evidence shows that the behaviour of this solution to the Relogio model is very

much determined by the model structure, and this cannot be changed by small perturba-

tion to the parameter values.

ODE model analysis summary

This analysis has shown that the influential directions in the parameter space of the

Relogio model are much less than its total dimension. It is only practically possible to

move the solutions in relatively few directions using the parameters.

This section provided evidence for the hypothesis presented in [75], that circadian

clocks are ultimately robust and inflexible to small changes. The following section will

question whether this holds for the Relogio model’s dynamics when they are modelled

stochastically.
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Figure 2.4: Bar plot showing the absolute parameter sensitivity spectrum. The
y-axis represents corresponding values of entries in Sij, representing the contribution each
parameter j has to principal component i (see (2.8)).
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2.5 Stochastic Modelling

Deterministic models do not incorporate random noise and internal fluctuations present

in nature; deterministic models are an ideal, expected behaviour when a system is very

large. However, individual cells have a discrete number of molecules and proteins, and

internal fluctuations in the human body are very much a reality. Stochastic models allow

the incorporation of noise and randomness to a model. In the deterministic approach

taken in the previous sections, both time and variables (a measure of concentration) were

positive continuous numbers. In the stochastic models, time is still continuous, but the

variables are discrete integers, and represent number of molecules as opposed to concen-

tration.

2.5.1 Introduction to stochastic models

Stochastic models of molecular dynamics are usually described in terms of reactions.

The amounts of the molecular components are described by a state vector, Y (t) =

(Y1(t), ..., Yn(t))T where Yi(t) i = 1, ..., n denotes the number of molecules of each species

at time t. These molecules undergo a number of possible reactions (e.g. transcription,

translation, degradation) where the reaction of index j changes Y (t) to Y (t)+νj, νj ∈ Rn.

The vectors νj are called stoichiometric vectors. Each reaction occurs randomly at a rate

wj(Y (t)) (often called the propensity functions), which is a function of Y (t).

It is common in studying stochastic systems to introduce a system size Ω. This param-

eter occurs in the intensities of the reactions wj(Y (t)) and controls molecular numbers.

For cellular systems a natural choice is to use molar concentrations and therefore regard

Ω as Avogadro’s number in the appropriate molar units (e.g. nM−1) multiplied by the

volume of the reacting solution in appropriate units (e.g. in litres (L)). The use of the

system size Ω is also important because it allows the vector of concentrations Y (t)/Ω to

be defined for the stochastic system. It is the dynamical system in terms of these concen-

trations that have a well-defined deterministic limit as Ω tends to infinity given by the

differential equations studied in the sections above.

In a stochastic model, there are no longer exact solutions to the model, as with a

deterministic model, but there are individual trajectories that are Markov in nature (i.e.

memoryless, and the current state is all the future state depends on, and not any past

state). Exact trajectories can be simulated using the Gillespie algorithm [93] (also known

as the stochastic simulation algorithm). Distributions of the solutions can then be approx-

imated from simulated data to summarise the model. Generating enough trajectories to

accurately predict these probability distributions is however, an extremely computation-

ally expensive task, so is not ideal for calculating multiple trajectories for large systems.
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2.5.2 Stochastic circadian models

There have been few studies that have attempted to look at stochastic models of circadian

dynamics, and the majority concern plant [94], drosophila [95], or other non-mammalian

rhythms. Gonze et al. [96] modelled a simple oscillator (based on the Drosophila cir-

cadian clock) to assess the robustness of circadian oscillations with respect to molecular

noise. They found that robust circadian oscillations can occur with a limited number

of mRNA and protein molecules. A stochastic mammalian model of circadian rhythms

was published by Forger et al. [83], where they adapted their previous 74 equation ODE

model to a stochastic model. They report interesting results such as observing that some

variables in the stochastic model can oscillate even when they do not in the ODE model,

and that events happening on the promoter (proteins binding to the promoter site of clock

genes) must happen very quickly for 24 hour rhythms to be possible. They attempt some

robustness analysis on this model, and state that the robustness of the circadian clock

appears to increase as more molecules are present, or more frequent promoter interac-

tions occur. They show that gene duplication (e.g. redundancy between Per1 and Per2)

increases the robustness by providing more promoters with the transcription factors can

interact with.

Instead of attempting to replicate this existing stochastic model of mammalian circadian

rhythms, we have created a stochastic version of the Relogio model [7], which is based

on the deterministic Relogio model and incorporates a system size parameter, Ω. This

adaptation was done based on methods in [96]. We consider it has units L/nM and a

value in the range 100-1000 in accords with typical cell size estimates [8].

The individual trajectories were calculated in MATLAB, using an implementation of the

Gillespie algorithm, shown below.

Gillespie Algorithm

For a stochastic model with

n variables in state vector Y(t) = (Y1(t), ..., Yn(t)),

P parameters that are scaled by Ω if they have units of concentration,

M reaction rates in vector w(t) = (w1(Y(t)), ..., wM(Y(t))),

a stoichiometry matrix, S(n×M) made up of M vectors νj ∈ Rn (the stoichiometric vectors)

the algorithm to simulate one trajectory is;
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set running time Tfinal ;

set system size Ω;

set initial conditions Y0 (must be whole numbers) ;

set time t = 0 ;

while t < Tfinal do

generate 2 random numbers 0 ≤ r1, r2 ≤ 1;

calculate reaction rates w based on current Y state;

calculate wsum =
∑M

i=1 wi;

finding the index j of the first reaction that satisfies r1 <
∑j

i=1( wi

wsum
);

update the state vector to reflect the jth reaction happening: Y = Y + νj ;

update time t = t+ log(1/r2)
wsum

.

end

Algorithm 1: The Gillespie algorithm, adapted from [97].

2.5.3 The stochastic Relogio model

The stochastic Relogio model has 44 reactions using 19 variables and 72 parameters, where

parameters with units of concentration are scaled with system size parameter accordingly.

As Ω → ∞, the stochastic solution converges to the ODE solutions. The 44 reaction

rates for the stochastic Relogio model are shown in appendix B. Using Ω = 500, and

the same initial condition on the limit cycle for all simulations, 5 trajectories of the

BMAL1/CLOCK complex variable were simulated and are shown in red in figure 2.5.

The scaled ODE trajectory is shown in black for comparison. It is apparent that the

stochastic model loses synchrony from the ODE model over time. Without any forcing

in the model, the period is variable about the ODE period of 25.2 hours, and there is an

increasing loss of synchrony amongst independent simulations. It is important to recognise

here that, although the variable phases of ODE and stochastic models do not match, the

relationships between variables stay the same. Figure 2.6 shows the same simulations as

in figure 2.5 but for 10 periods. CLOCK/BMAL1 is plotted against another variable,

PER*N/CRYN, again with the deterministic limit cycle in black. The trajectories all

follow the elliptic shape of the limit cycle, and appear to be normally distributed about

the deterministic mean, which is an important observation for the following section.

The first difficulty in evaluating these distributions around the deterministic mean is to

simulate enough trajectories in order to generate a distribution. This could be solved by

an algorithm called the linear noise approximation (LNA), however the second difficulty

is that the times that each trajectory passes a transversal plane to the deterministic

mean drifts due to the stochastic nature of the simulation (i.e. periodic stochastic models

lose synchronicity of trajectories over time). The pc-LNA is an algorithm that aims to

overcome these problems.
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Figure 2.5: Plot showing timecourse limit cycle solution and stochastic tra-
jectories of the Relogio model. Plots shown are for the variable representing the
BMAL/CLOCK complex. The limit cycle solution is shown in black, and 5 stochastic
simulations in red, for Ω = 500. The ODE model solution was scaled for comparison.

Figure 2.6: Plot showing 2D limit cycle solution and stochastic trajectories of
the Relogio model. Plots shown are for the variable representing the BMAL/CLOCK
and PERN/CRYN complexes. The limit cycle solution is shown in black, and 5 stochastic
simulations in red, for Ω = 500. The ODE model solution was scaled for comparison.
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2.5.4 Linear noise approximation

The LNA allows approximation to analytical solutions of desired terms, unlike the Gille-

spie algorithm. It is commonly used as an alternative algorithm to calculate trajectories

for stochastic systems, allowing further analysis to be done [8]. The linear noise approxi-

mation (LNA) expresses the stochastic solution Y (t) in terms of a stochastic variable ξ(t)

using the following Ansatz;

X(t) =
Y (t)

Ω
= x(t) +

ξ(t)√
Ω

(2.9)

where x(t) is the deterministic solution (which has units of concentration).

We are interested in the periodic solutions of ẋ = F (x), so that x(t) = g(t) for

0 ≤ t ≤ τ , and x(t) is a stable limit cycle of period τ .

Let J(x) be the n× n Jacobian of F (x) (i.e (J(x))ij is ∂Fi/∂xj evaluated at x).

Let C(s, t) be the family of n× n fundamental matrices which are the solutions of :

d

dt
C(s, t) = J(g(t))C(s, t) (2.10)

with the properties

• C(s, s) = I

• C(t1, t)C(t0, t1) = C(t0, t) for all t0 ≤ t1 ≤ t

• C(0, t)C(0, s)−1 = C(s, t)

The evolution of the stochastic variable ξ(t) is given by:

ξ(t) = C(t0, t)ξ(t0) + η(t0, t), t > t0 (2.11)

where η(t0, t) ≈ MVN(0, V (t0, t)) and MVN(µ,Σ) represents the multivariate normal

with mean µ and covariance matrix Σ. Here, the covariance matrix is

V (t0, t) =

∫ T

t0

C(s, t)E(s)E(s)TC(s, t)Tds (2.12)

and E(s) =
√
SW (x(s)) is the matrix product of the stoichiometry matrix and the diag-

onal matrix of reaction rates uj(x(s)).

The key result about the LNA is that if we fix t > t0, then as Ω → ∞ the true

distribution of ξ converges to the distribution given by the LNA [98].
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2.5.5 Transversal distributions

For each point x on the limit cycle γ we define our transversal to be an (n−1) dimensional

hyperplane Sx normal to γ at x ∈ γ. We use the sketch in figure 2.7 to explain the

transversal distributions. X(t) is a stochastic trajectory of the oscillatory system, with

initial condition X(0) at time t0, and is represented by the blue and red trajectories.

GN(X(t)) represents a point on the limit cycle γ, which is shown as the black curve in

figure 2.7. The segment connecting X(t) to GN(X(t)) is orthogonal to the tangent to γ

at GN(X(t)), i.e. X(t) lies in the hyperplane orthogonal to this tangent.

Q
(r)
x is the rth intersection of a trajectory to a given transversal section Sx to the limit

cycle, shown as the “target” in the sketch. Each intersection Q
(r)
x , is shown as the black

crosses on the transversal plane, for each period of the red trajectory.

2.5.6 pcLNA

The Gillespie algorithm produces exact trajectories of the stochastic system but the com-

puting power and time needed is immense for the size of the systems we want to study.

In order to do further analysis, it is necessary to use a more approximate approach. As

shown above, the LNA [99] is fast and analytically tractable, but Minas et al. have

shown that for free running oscillators, when the LNA is used, the variance of ξ(t) grows

without bound as t increases. Minas and Rand [8] have developed the phase-corrected

LNA (pcLNA), which overcomes this limitation. Using this analytically tractable pcLNA,

we are able to calculate and analyse the probability distributions of phase states at the

transversals. As the transversal distributions are MVN, we are then able to compute a

stochastic sensitivity analysis of the system, using Fisher information.

2.5.7 pcLNA implementation

We discuss the pcLNA briefly here, but the full explanation can be found in [8]. The

approach is to amend the LNA ansatz in (2.9) so that we can correct time;

X(t) = g(s) +
κ(t)√

Ω
(2.13)

where g(si) = GN(X(t)) is used to reset time from t to s and GN(X(t)) represents a point

on the limit cycle γ.

Now, in the LNA, for free running oscillators, while the variance of ξ(t) grows without

bound as t increases, the variance of κ(t) is uniformly bounded. The pcLNA algorithm

iteratively uses the LNA in steps of ∆t to move from state X(si−1) to the new state

X(si−1 + ∆t) = Xi. After each step, the phase of the system is corrected such that
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Figure 2.7: Sketch showing 1000 Gillespie simulations for 2 variables and 8
periods of the stochastic Relogio model. Trajectories X(t) in blue, are normally
distributed about the limit cycle, g(t), in black. One trajectory of 8 periods is highlighted
in red. Sxi is the transversal to the limit cycle where the red trajectory intersects at
black crosses, Qr

xi
. The distribution of Q on S is a multivariate Gaussian distribution of

dimesion n− 1. We are interested in how this changes as parameters change.

g(si) = GN(Xi) so that

ξ(si−1 + ∆t) =Ω1/2(Xi − g(si−1 + ∆t)) (2.14)

is replaced by κ(si) =Ω1/2(Xi − g(si))) (2.15)

where the κ(si) are MVN distributed.

In summary, the steps of the algorithm are;

1. Choose a time-step size δτ > 0

2. Set initial condition κ(s0) and X0 = g(s0) + Ω−1/2κ(s0)
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3. For iteration i = 1, 2, ...

(a) sample ξ(si−1 + δτ) from MVN(Ciκ(si−1), Vi),(b) Compute Xi = g(si−1 + δτ) +

Ω−1/2ξ(si−1 + δτ)

(c) set si to be such that GN(Xi) = g(si) and κ(ti) = Ω1/2(Xi − g(si))

This is summarised in the sketch in figure 2.8.

Figure 2.8: Sketch showing the main step in the pcLNA algorithm. From [8],
The solid horizontal bars below the horizontal axis are all of length ∆τ , the basic time
step of the algorithm. The black arrows show ξ̂ and the grey arrows κ̂.

2.5.8 Fisher information matrix

The Fisher Information is a measure of the amount of information that a variable X

contains about a parameter θ. If ` = logP (X, θ), where P is the probability distribution,

the Fisher Information Matrix (FIM) I = Iij is a square matrix, where i and j are the

ith and jth entry of parameter vector θ;

Iij = E

(
∂`

δθi

∂`

δθj

)
(2.16)

Now consider q phase states of the limit cycle xi = g(ti), i = 1, ...q on γ where 0 ≤
t1 < t2 < ... < tq < τ . If X(t) is a stochastic trajectory we consider how it meets the

transversal sections at the xi as t increases.

LetQ
(r)
xi be the rth intersection of the transversal to xi, so that multiple transversals are

possible for multiple periods of each trajectory. If we let Q = Q
(1)
x1 , ..., Q

(1)
xq , Q

(m)
x1 , ..., Q

(m)
xq ,

then we are interested in the MVN distributions at these transversals;

P (Q|X(t)) = P (Q(1)
x1
, ..., Q(m)

xw |X(t)) (2.17)

These distributions allow us to anaytically compute the Fisher Information matrix in

order to perform parameter sensitivity analysis on the stochastic Relogio model.
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As P in the above scenario is an MVN with mean µ = µ(θ) and covariance Σ = Σ(θ)

then

Iij =
∂µT

∂θi
Σ−1∂µ

T

∂θj
+

1

2
tr

(
Σ−1∂ΣT

∂θi
Σ−1∂ΣT

∂θj

)
(2.18)

As µ and Σ are calculable, so is the Fisher information matrix. The FIM measures the

sensitivity of P to a change in parameters, where the eigenvalues of the FIM are a measure

of this sensitivity, and the eigenvectors characterize the parameters that contribute to this

sensitivity (see [8]).

2.5.9 Sensitivity analysis on the stochastic Relogio model

The pcLNA algorithm was used to generate enough trajectories so that we could calculate

the Fisher Information Matrix for the stochastic Relogio model, using Ω = 1000. Figure

2.9 shows that the eigenvalues of the FIM decay exponentially, with the first eigenvalue

being significantly higher than the others. This means that the influential directions in

the parameter space of the system are much less than its total dimension. This suggests

that this stochastic circadian model is very robust to parameter perturbations.

Additionally, figure 2.10 shows that the subset of the parameters that can push the

model into these directions. ki2, ki1, and ki4 are the Cry, Per, and Ror inhibition rates,

respectively. These are the parameters that can push the system into the direction of the

first principal component. This is in agreement with the findings of Forger et al [100],

when they observe that the speed that a transcription factor can bind to a promoter site

has significant effects on the model’s dynamics.

Both the ODE model and stochastic model show very few possible behaviours that the

models can present upon parameter perturbation. Seven of the top nine most sensitive

parameters were in agreement in both the stochastic and ODE model analyses. These

are dx1, dx2, dx6, kiz7, kex2, ki1, and ki4. This suggests that circadian gene expression has

the same characteristics of robustness even when noise and stochasticity are taken into

account.

The parameters ki4, dx6, and kiz7 determine the Ror inhibition, RORN degradation,

and RORC translation rates. This is in agreement with conclusions in Relogio et al. [7]

where their results suggested an important role of the RBR loop on the clock system.

dy4 is very sensitive in the ODE model, but not in the stochastic model. Conversely

ki2 is very sensitive in the stochastic model, but not as much in the ODE model. As

the Relogio model was not designed to model the effects of stochastic noise, we do not

dwell too much on the literal representation of these parameters, but acknowledge that

the difference in the analyses may show additional insights to these models that we would

not otherwise have known.
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Figure 2.9: Plot of the eigenvalues of the FIM for the stochastic Relogio model.
Eigenvalues rapidly decrease, indicating few directions that the model solution can be
pushed in.

Figure 2.10: Plot of the eigenvectors of the FIM for the stochastic Relogio
model. These are the weights for sensitivity of the parameter for the stochastic Relogio
model.
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2.6 Summary of chapter

This chapter has explored the robustness of the circadian clock using an ODE model and

an equivalent stochastic model. The necessity and probable evolutionary design for this

robustness was discussed before in silico evidence was provided.

The phase sensitivity to parameter perturbation was measured for both the determin-

istic and stochastic Relogio model. The results show that both the ODE and stochastic

Relogio model are very robust to parameter perturbation, and only a small subset of

parameter changes would have significant effects on the behaviour of the model. The

sensitive parameters were mostly in agreement suggesting that circadian gene expression

has the same characteristics of robustness even when noise and stochasticity is taken into

account.

In tightly coupled circadian oscillators, phase orderings are relatively unchanged by

small perturbations to the system. This in silico evidence now allows us to approach real

circadian data, with reason for expectation of a certain level of robust and synchronised

behaviour amongst independent samples. This will be now explored in the next chapter.



Chapter 3

Timecourse Transcriptome Analysis

This chapter describes and analyses what will make up the training data for Time-Teller

models that will be introduced in the next chapter. The mathematical analyses of the

previous chapter provides reason to believe that we will see a certain level of robustness

amongst real circadian timecourse data, so that such models would be possible to train.

Current methods in circadian data analysis are almost all about fitting ∼24 hour rhythmic

curves to the data in order to measure oscillation robustness. A novel mathematical

approach is taken in this chapter to analyse synchronicity, and used in combination with

standard approaches. The purpose of this synchronicity analysis is to choose a set of

reliable training genes for the Time-Teller model.

The online availability of published time-course transcriptome data from GEO and the

circadian rhythms labs has made this project possible. One extremely valuable unpub-

lished human dataset was acquired through an MTA agreement with Dr Georg Bjarnason

of Sunnybrook Research Institute, Canada.

Altogether 15 unique and independent datasets have been used in this thesis, and this

chapter summarises them, where emphasis is given to the main timecourse datasets. Only

mouse and human datasets are used in this thesis. Equivalent studies and data exist for

circadian genes in organisms such as drosophila or zebra fish, on which a similar analysis

could be done, if there were reason to do so.

3.1 Timecourse transcriptome data collection

RNA-seq and microarrays are the main technologies used to quantify whole genome ex-

pression. RNA-seq provides single base pair resolution data. The raw data consists of

millions of sequences of “ACGT”s with read quality metrics that need alignment to a ref-

erence genome, QC, and normalisation, before any quantification can be done. RNA-seq

experiments need input parameters such as depth of sequencing prior to the experiment,

complicating the design [101]. The single base pair resolution provides gene quantifica-

tion whilst providing additional information that allows, for example, measurement of

61



62 CHAPTER 3. TIMECOURSE TRANSCRIPTOME ANALYSIS

alternate spliceforms.

RNA-seq data is huge, complex and has historically been far more expensive than

microarray analysis. For studies that require multiple samples, RNA-seq has not yet

been a major contender, and there is a lack of timecourse RNA-seq data available. It

is anticipated in the next few years, larger scale RNA-seq experiments will be realistic.

The methods in this thesis will be readily adaptable to timecourse RNA-seq data. To

show this, a short subsection in this chapter provides an analysis of the existing RNA-seq

timecourse mouse data, and shows the comparability of microarray and RNA-seq data.

The majority of available timecourse transcriptome data exists from microarrays, as

in the past they have been easier and cheaper for probing the transcriptomes of multiple

samples. Probes have been designed that allow unambiguous identification of genes, where

a single numerical signal from a probe represents that gene’s expression. The probes have

a high level of specificity, so different probes can even identify different spliceforms of

the genes. Various GeneChips are ready-made for humans and mice, available to buy

from various companies. New GeneChips are made and sold as knowledge and technology

develops.

The data produced from a microarray is semi-quantitative, and does not measure gene

expression in an absolute manner. Microarrays can provide information into changes in

gene expression in a controlled environment, when samples are compared to each other.

To clarify; a microarray cannot absolutely tell if there are more transcripts of gene X

than of gene Y in a single assay, but can tell us if there are more or less of X in assay

1 compared to assay 2. The numbers that a microarray produces are functions of both

transcript number and of binding affinity of a transcript to a probe, amongst other factors

[102]. As different GeneChips use slightly different designs, effectively weighting these

contributing factors differently, direct comparisons between different GeneChips are not

viable. Mappings between GeneChips are available and possible, but would add more

variation and complexity to an analysis.

3.1.1 Microarrays

A number of commercial technology platforms offer microarray technologies, the biggest

four including Affymetrix, Illumina, Agilent and Nimblegen. The Affymetrix gene chip

system is the original (and most widely used) system, and is used exclusively in this

thesis. Affymetrix gene chip technology is not discussed here, but a good explanation can

be found in [102].

The largest set of mouse timecourse data available uses GeneChip Affymetrix Mo-

Gene 1.0 ST. The human timecourse data from the MTA was quantified with GeneChip

Affymetrix HG U133 2.0. These GeneChip labels are only relevant to thesis when we try

to compare datasets, as different GeneChips are not easily compared. In this thesis, only
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microarray data of these GeneChips will be used. An example will be shown in this section

to explain the difficulties of comparing different GeneChips and different technologies.

Microarray normalisation algorithms

The result of a microarray is essentially an image of spots of different intensities. The

goal of microarray processing procedures is to get a single value of expression for each

probe from these intensities. The most popular algorithms to do this are all built into

the Bioconductor package in R. Raw microarray data is in the .CEL file format, which is

handled by the affy package as an AffyBatch object. The gene-level intensities stored in

both the resulting ExpressionSet object can produce probe level gene intensities.

The most popular microarray normalisation algorithm is robust multiarray averaging

(RMA) which performs background correction, normalization, and summarization in a

modular way [103]. The summarization step fits a parametric model that accounts for

probe effects, assumed to be fixed across arrays, and improves outlier detection. Residuals,

obtained from the fitted model, permit the creation of useful quality metrics.

GeneChip RMA (gcRMA) is an extension of the RMA that is able to use the sequence-

specific probe affinities of the GeneChip probes to attain more accurate gene expression

values. gcRMA also takes into account MM (mismatch) data, which means it also takes

into account non-specific binding. gcRMA results in a percentage of the data being

omitted, if it does not meet a set quality standard. This does not suit this project, as it

would result in different sized data sets or a gene of interest being omitted.

Many other normalisation techniques exist but will not be mentioned here as the RMA

is sufficient. However, a problem with the RMA, when handling multiple datasets, is that

normalization and summarization require all arrays to be analyzed simultaneously in order

not to introduce a batch bias. This study uses dozens of datasets, and it is not viable to

run the algorithm on so much data at once, and when working incrementally with new

batches of arrays.

fRMA

McCall et al. [104] developed the frozen robust multi-array analysis (fRMA) algorithm,

which allows individual and independent analysis of microarrays while retaining the ad-

vantages of multi-array preprocessing methods such as the RMA. fRMA is aligned to

the aims of this PhD project as it allows independent and reproducible normalisation of

samples, whether they are independent single samples or part of a batch of samples.

The fRMA package is compatible with all of the affy package commands in bioconduc-

tor. The goal of fRMA is to obtain reliable gene-level intensities from the raw microarray

data, just as the RMA, but in addition to the raw data, the fRMA algorithm requires a

number of frozen parameter vectors. Among these are the reference distribution to which
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the data are normalized and the probe-effect estimates. McCall et al. have computed

these frozen parameters for many popular Affymetrix platforms. The data for each of

these platforms is stored in an R package called frmavecs which is built into bioconduc-

tor. By default, the frma function attempts to load the appropriate data package for the

input data object.

Frozen parameters have already been calculated (by the authors of fRMA) for all

GeneChips used in this thesis. All data used in this study was downloaded as raw .CEL

files and processed with the fRMA algorithm, unless stated otherwise. An example R-

script for the normalisation process is shown in appendix C.

3.2 Summary of datasets

The data used in this thesis is summarised in table 3.1 for mice, and table 3.2 for humans.

All mice are C57BL/6 strain, and all human datasets use the Affymetrix Human chips

U133 2.0 Plus.
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3.3 Mouse Timecourse

The dataset that inspired the design of Time-Teller was published in November 2014 by

John Hoganesch’s group in Philadelphia, USA [9]. It is a large-scale, high time resolution,

mouse time-course transcriptome dataset, and is referred to in this thesis as the Zhang

data. This section starts with a literature review of that study1, and then novel analysis

of the data is presented. The focus will be on the microarray data, with a short section to

discuss the RNA-seq data. Additionally, a preceding dataset to the Zhang data, published

by Hughes et al. [10] is discussed in this section. This timecourse data of mouse liver uses

a different GeneChip (Affymetrix MoGene 430 2.0), is compared to the liver timecourse

in the Zhang dataset. This is to both show how comparable independent data sets can

be, whilst also highlighting the issues faced when comparing datasets.

3.3.1 A circadian gene expression atlas in mammals

Zhang et al. [73] quantified the transcriptomes of 12 mouse tissues every 2 hours over

48 hours with microarrays, and every 6 hours using RNA-seq. The tissues sampled were

from the adrenal gland, aorta, brainstem, brown fat, cerebellum, heart, hypothalamus,

kidney, liver, lung, skeletal tissue, and white fat of the mice.

Experimental setup

6 wk-old male C57/BL6 mice were entrained to a 12h:12h LD schedule for 1 week, and

then released into constant darkness (CT0). The mice were provided food and water ad

libitum. From CT18 post-release, 3 mice were killed every 2 h, for 48 hours (until CT64),

and specimens from 12 organs were snap frozen in liquid nitrogen. This is shown in the

sketch in figure 3.1.

Microarray methods

RNA was extracted and pooled for 3 mice for each tissue and time point. RNA abundances

were quantified using Affymetrix MoGene 1.0 ST arrays using the standard manufacturer’s

protocol. The results of this form the .CEL files that are used in this thesis, which are

accessible via GEO accession number GSE54652.

In their analysis, Zhang et al. used the RMA algorithm to normalise the data using the

Affymetrix Expression Console Software. As standard, GeneChips were matched to genes

and filtered for protein coding status, resulting in 19,788 genes forming the background

set. They performed oscillation detection using the R package JTK CYCLE to fit time

series data and detect oscillations on transcripts, using a cutoff significance of q<0.05 (5%

FDR).

1The non-coding RNA sections of the study are omitted from this review.
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Using the mathematical concept of matrix decomposition,  a common shape in 
the expression data across the organs can be found, as can the extent to which 
this common shape explains the data. The method is called Single Value 
Decompostion which is closely related to Principal Component Analysis.

The SVD alorithm decomposes a matrix, A, into a weighted, ordered sum of 
separable matrices; the first term of the decomposition explaining the data the 

most.  
       U  coefficient vectors 
       Σ  diagonal matrix of singular values  
       V  principal components. 

Using this decomposition, the synchony of the gene expression across organs 
can be measured by the ratio, 

This approach was taken with the data attained from the experiment outlined 
above. Using the expression data for genes that present robust oscillations, 
and genes that are associated with the circadian clock [4] (or both), the syn-

chrony can be calculated and compared, as shown in figure 4.

Circadian

Cry1

Coq10b
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A recent study [3] used RNA-seq arrays to quantify the tran-
scriptomes of 12 mouse organs every 2 hours over 2 days. 
This atlas of circadian gene expression indicates that of the 
~20,000 known mouse protein coding genes,  ~50% present 
cyclic rhythms in at least one organ and the majority of  

rhythmic expression is organ specific. 

The exception to this observation is a set of ~20 
genes, which oscillate in phase across most of the studied 
organs. These genes make up what are known as the Core 
Circadian Clock Genes, which make up a complex 

network of genetic feedback loops that allow them to keep 
time and control the expression of output 
genes that regulate a variety of normal cell functions.

The mammalian circadian clock is a complex molec-
ular oscillator that allows a healthy organism to keep time in 
order to anticipate transitions between night and day.  The clock  

drives oscillations in a diverse range of biological processes; links to  
sleep, body temperature, and hormone production are well establised 
and evidence for new links such as those to the cell cycle [1] are now 

emerging.  Desynchrony of this rhythmicity been implicated in several 
major diseases and there’s significant evidence that disrupted cir-

cadian rhythm is a hallmark of many cancers [2]. 

Figure 1.  Organ Synchrony.  External signals are processed and passed to the Su-
praciasmatic nucleus in the brain, which acts as a master regulator for the whole 

body. 3 parts of the brain and 9 major organs are involved in this study. 
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Figure 3. Plots showing normalised gene expression (first 2 rows) of 3 oscillatory clock genes (first 
row) and 3 oscillatory non clock associated genes. Synchrony is apparent in the first row, and vari-
able in the second row. The final row shows  the expression of 3 non oscillatory clock genes. 
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6 wk-old male mice were 
entrained to a 12h:12h LD 
schedule for 1 week, with 
food and water ad libitum. 

After 18hrs in DD, 3 
mice were killed every 
2 hours, for 48 hours.

Specimens from 12 
organs were snap frozen 
in liquid nitrogen.

RNA extracted and 
pooled for 3 mice for 
each organ and time 
point.

RNA abundances quanti-
fied using Affymetrix 
MoGene 1.0 ST arrays 
and normalized using 
Affymetrix Expression 
Console Software (RMA).

Probesets matched to 
genes and filtered for 
protein coding status, 
resulting in 19,788 
genes forming the back-
ground set.

 Oscillation detection using R package JTK_CYCLE 
to fit time series data and detect oscillations on 
transcripts with significance p<0.05 

CT0 CT18 CT64

 Clock Associated Oscillatory non clock associated genes

Organ Synchrony of genes by clock association 

Figure 4. Graph showing the dominance of the shape of the 1st Principal component for all 12 organs. Higher % indicates higher syncho-
ny. The expression of some core clock genes is highly synchronised, and the expression of clock associated genes is high relative to the 
other genes that present robust oscillations. With the exceptions of Rorb, Alas1, Egfr, and Nampt, non oscillatory clock gene expression is 
not synchonised across organs. These results provide strong evidence of clock synchony across the body.

Data not normalised before analysis as 
non oscillatory

Quantifying Synchrony by Matrix Decomposition 

(%) Synchrony  =

Figure 3.1: Sketch of the experimental work-flow that produced the Zhang data.

RNA-seq methods

RNA samples from CT22 - CT64, every 6 hours were pooled. These were converted into

Illumina sequencing libraries using Illumina TruSeq Stranded mRNA HT sample Prep

kit, and the manufacturer’s protocol was used. Libraries were pooled into groups of 6 and

sequenced in one Illumina HiSeq 2000 lane by using the 100bp paired end chemistry (16

lanes total). Fastq files containing raw RNA-seq reads were aligned to the mouse genome

(mm9/NCBI37) using STAR (default parameters). RNA quantification was performed

with HTSeq, in Stranded Mode (default parameters). Protein coding genes quantified us-

ing ENSEMBL annotation. Quantification values were normalised using DESeq2. These

final values are what is used in this thesis.



3.3. MOUSE TIMECOURSE 69

Zhang rhythmicity analysis results

Zhang et al. [73] define a circadian gene to be one that has a significant ∼24 hour period.

They detected rhythms, and assigned phases to each rhythmic gene using JTK CYCLE, a

non-parametric algorithm published by Hughes et al. [114] as an efficient way of detecting

rhythmic components in genome-scale datasets. JTK CYCLE will be discussed further in

section 3.3.2, but for now can be understood to be an algorithm that gives a confidence

measure that a timecourse is periodic, and provides estimations of the period and phase

of transcripts that have a false discovery rate (FDR) q < 0.05.

Zhang et al. report that the liver has the most circadian genes with 3,186. The three

brain regions had the fewest circadian genes, with the hypothalmus having the least with

642. They hypothesise some reasons for this; the sampling of specific brain regions is

difficult, the brain has a heterogeneous mixture of cell types expressing different sets of

genes, or the different cell types could be out of phase with each other.

A major finding of this study is that 43% of protein coding genes were detected to have

a circadian rhythm in at least one of the 12 sampled organs. They also conclude that most

circadian expression is organ-specific. By extrapolating the number of circadian genes

across organs, they estimate that around 55% of all protein coding genes are circadian in

at least one organ in the whole mouse.

They found that 1400 genes were phase-shifted with respect to themselves by at least

6 hours between 2 organs, with 131 genes completely anti-phased. Due to this they draw

the conclusion that these are “clock controlled genes” with organ specific phases.

Their analysis found 10 genes that oscillated (q< 0.05) in all 12 tissues: Bmal1

(Arntl), Dbp, Rev-Erbα (Nr1d1), Rev-Erbβ (Nr1d2), Per1, Per2, Per3, Usp2, Tsc22d3,

and Tspan4. Most of these genes are well known to be part of the central oscillator system.

Zhang et al. found that the core clock genes oscillated with the peak phases of a

given gene falling within 3h of each other across all organs. Figure 3.2 illustrates the

synchronised expression profiles of some of the core clock genes across all tissues. They

also included Cry1 and Cry2 in their “core clock gene” set. This appears to be due to

the expectation that these genes are part of the core clock, and not because of the results

of their data analysis. Figure 3.2 also shows some possible interactions amongst these

genes.

Comments are not made on the expression synchrony of the genes that are found to

oscillate in all organs, but are not thought to be part of the core clock setup, these being

Usp2, Tsc22d3, and Tspan4. USP2 plays a significant role in modulating proinflamma-

tory cytokine induction, and has been reported to be required for TNFα induced NF-κB

signalling [115]. As Usp2 mRNA presents highly circadian and synchronised circadian

rhythms, it could be an interesting candidate to study for the interaction between the cir-
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cadian regulation of inflammatory pathways. TSC22D3 is also involved in the regulation

of inflammatory pathways.

TSPAN4 is a cell surface protein that regulates cell motility [14]. Although it has often

been observed to have circadian behaviour, there is a lack of literature on the circadian

expression of Tspan4.

The heatmap in figure 3.2 shows that Arntl and Clock are approximately anti-phased

to the other genes. Zhang et al. reported that the expression of oscillating genes peaks

during transcriptional “rush hours” before dawn and dusk.

Zhang et al. report that the majority of best-selling drugs directly target the products

of rhythmic genes, that these drugs have short half lives, and most relevantly to this

thesis, that they may benefit from timed dosage.
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Figure 3.2: Expression of core circadian oscillator genes across organs. From
[9], the figure emphasises the synchronised expression of this set of circadian genes. (A)
Expression of each gene in all organs normalised and superimposed. Arrows indicate likely
gene interactions. (B) Heatmap representation of normalised expression from A.
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3.3.2 Novel rhythmicity and synchronicity analysis of zhang data

Data preparation

In order to carry out a new analysis, the raw data was downloaded from NCBI GEO

in the form of 288 .CEL files. The bioconductor package in R was used to perform

fRMA normalisation of protein coding genes, and annotate them with gene names. After

fRMA processing, the gene expression values are expressed in log2, and values are in the

range 2-14. Figure 3.3 shows the distribution of gene expression values for all 288 sets,

summarising 35,556 probes (includes all probes, not just those for protein coding genes).

The similar distribution amongst samples indicates that the fRMA normalisation was

successful.

Figure 3.3: Histogram showing the distribution of gene expression values after
fRMA analysis of the Zhang data. The agreement in expression shows that the
fRMA properly normalised the samples.

The resulting data is imported from R into MATLAB and reorganised as 3 dimensional

structure of 35,556 probes, 12 organs, and 24 time points.

Existing rhythmicity detection algorithms

Rhythmicity detection is an important data analysis method for circadian data, in order

to identify cycling transcripts. Here we discuss the most popular methods of circadian

rhythm detection in transcriptome data. A good review is written is by Wu eta al [116].

Note that all rhythmicity detection methods (except for JTK CYCLE) are applied to
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normalised data.

The most conceptually basic method of rhythmicity detection is COSINOR analysis.

COSINOR regression is simply a least squares regression for fitting a fixed phase length

sine wave to sparse data points from a fixed (short) time interval. The algorithm provides

a measure of confidence of the fit, but prior information is needed - usually that we expect

a 24hr rhythm [117].

COSOPT is a similar method to COSINOR, except that instead of an iterative regres-

sion fit, COSOPT measures the goodness-of-fit between experimental data and a series

of cosine curves of varying phases and period lengths [118]. p-values (known as pMMC-

β values) are calculated by scrambling the experimental data and re-fitting it to cosine

curves in order to determine the probability that the observed data matches a cosine curve

by chance alone [119].

JTK CYCLE is a non-parametric test procedure that was designed specifically to

detect cycling transcripts [114]. In addition to providing optimal phase, amplitude, and

period estimates for each transcript, JTK also outputs permutation-based p-values and

Benjamini-Hochberg q-values. The authors claim that compared to other cycling tests,

JTK has advantages in the statistical power of its p-value assignments, improved resis-

tance to outliers, as well as relative computational efficiency. JTK CYCLE is publicly

available to download as an R package2. All reported JTK values in this thesis have been

produced using this package.

A good review of other rhythmicity detection algorithms for genome data is found in

Wu et al [116]. JTK CYCLE and cosine fitting algorithms work well to detect rhythmicity

in sufficiently large transcriptome timecourse datasets. However, JTK CYCLE needs a

sufficient number of data points in an array (multiple points per time for low resolution

datasets, or sufficiently high resolution within one period). The choice of rhythmicity

detection method should, and usually are, based on the specific goal and experimental

design. Each method has different strengths, speeds, and conditions on the data to ensure

adequate performance.

Zhang’s rhythmicity detection

In their study, Zhang et al [9] define a circadian gene to be any gene that achieves a JTK

false discovery rate less than 0.05 (q < 0.05) in at least one organ. They calculate that

the liver has 3,186 genes that satisfy this threshold, which means that they label 16% of

2https://github.com/mfcovington/jtk-cycle

https://github.com/mfcovington/jtk-cycle
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all liver genes as circadian. We suggest that this binary way of classifying “circadian”

q < 0.05, and “not circadian” q > 0.05 results in some lost information. For example,

676 of these liver genes satisfy the criteria that q < 0.0005, so there is probably a lot of

important information in the very small FDR values that is not being used. The very

small FDR values are calculated for data that look almost like perfect sine waves (see

figure 3.2), and we suggest that this should be recognised as far more significant than the

genes which might show some noisy periodic behaviour.

Zhang et al. attempt to answer the following questions using their data:

• How many genes oscillate with 24 hour rhythms for each organ? This is answered

in their study using numbers of genes that satisfy the FDR threshold q < 0.05.

• What genes oscillate with 24 hour rhythm in all organs? This answered in their

study using the FDR threshold, and combining “hits”.

• What genes oscillate with 24 hour rhythm in all organs with similar phase? This

answered in their study using JTK cut-off values, combining “hits” and comparing

variation of calculated phases.

This final question could be answered in a much more robust way, if a different type

of analysis were used. Here we present a novel analysis that allows the answering of the

questions:

• What genes have synchronised expression across organs?

• What genes have the most synchronised behaviour across organs, with a 24 hour

period?

To explain the motivation for this type of analysis, we look at the phases calculated by

Zhang et al. with JTK CYCLE. 13 of the core clock genes are represented on the circular

clock sketch in figure 3.4. The number around the outside represents the CT time, the

mean phase of each clock gene across the 12 organs is shown with a bold coloured line,

and each gene is represented by a different colour. The agreement of these phases are

obvious from the figure, and this is an extremely significant result. We suggest that the

synchronisation of the circadian rhythms across organs should be the hypothesis to be

tested in the analysis, and not just an interesting coincidental result.
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Figure 3.4: Circular plot showing mean phase of 13 core clock genes. The data
used was for the 12 organs in the Zhang dataset. The clusters of transcriptional activity,
and the synchronised phases of the genes across organs, are apparent. The phases of
Bmal1, Clock, and Npas2 occur around ZT23-24 (equivalent to 11pm-midnight). These
are genes with RRE motifs in their promoter regions. The phases of both Rorγ and Cry1
are later than the transcriptional rush hour that contains the other circadian genes.
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Synchronicity analysis using linear algebra

The singular value decomposition (SVD) is a matrix decomposition technique, which is

a precursor step to the well known principle component analysis (PCA). It allows the

identification of the axes of maximum variance (the eigenvectors or principal component

axes), and the calculation of how much of the variation in the data can be explained by

each principal component (by the singular values).

Here we give a brief explanation of SVD, but a more detailed summary is given in

appendix A, where SVD’s association to PCA is also explained.

The single value decomposition of the m× n matrix A, for m observations and and n

features, and rank r, is defined as:

A = UΣV T = u1σ1v1
T + ...+ urσrvr

T (3.1)

where

• ui are the columns of U (m×m) and are the orthonormal eigenvectors of the covariance

matrix AAT and the left singular vectors of A

• vi are the columns of V (n×n) and are the orthonormal eigenvectors of the covariance

matrix ATA and the right singular vectors of A

• σi =
√
λi = ‖Avi‖ are the lengths of the vectors Avi

• Σ(m×n) is made up of a diagonal matrix of σi’s (where σ1 > σ2 > ... > σr > 0) in its

upper left position, with 0’s everywhere else.

vi are known as the principal components and σi are known as the singular values.

Normalisation

A crucial step to prepare the data for SVD is to normalise A so that each observation has

equal weighting in the finding of the principal components. In the circadian data, this

ensures that the different amplitudes of oscillation for different organs do not introduce

a bias to the results. To normalise, each of the 35,556 probes is organised into a matrix,

A, of S rows (#organs), and T columns (#timepoints). Each row is then normalised so

it has a mean of 0 and a standard deviation of 1.
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SVD of Zhang data

After fRMA processing, the resulting 35,556 probe values for eight3 organs at 24 time-

points were saved in a .txt file in R and imported into MATLAB. The data was then

structured into 35,556 matrices of size 24 (time) by 8 (organ), one for each probe, and

normalised as above. SVD was performed on each matrix using MATLAB’s inbuilt SVD

algorithm. In this case, the principal components correspond to time-series with the first

PC providing the dominant temporal shape found across the various organs and the other

principal components describing how this is modified across organs in a graded way. It

is important to note that SVD is computationally inexpensive and this SVD takes less

than 4 seconds to complete for all data4. Each matrix (representing each probe), is then

represented by singular values and principal components. The measure for how much the

first principal component vi represents all of the data is calculated with

% =
σ2

1∑r
i=1 σ

2
i

× 100 (3.2)

The genes with the top 20 largest % variance explained by the first PC are shown in

(non-normalised) timecourse expression in figure 3.5. The reader should remember when

looking at the timecourses in this figure, that these results have been generated by nothing

but simple linear algebra, and no cycling detection algorithms have been used. Despite

this, 14 of the 20 top synchronised probes are known to be related to the circadian clock.

Amongst these genes are Bmal1, Npas2, Per1, Per2, Per3, Rev-Erbα, Rev-Erbβ, Dbp,

Ciart, Wee1, Tef, and Nfil3.

Probe 10556487 is highly circadian, but is unlabelled. This appears to be a unique

protein coding gene, which can be labelled with BC150970, A630005I04Rik or RIKEN

cDNA A630005I04 gene, but does not have functional annotations. This gene contains

4 canonical E-box regions “CAGCTG”, which may explain its tight circadian control.

Further investigation into this gene may provide more insight into the mouse circadian

core clock mechanism.

The robustness of rhythms detected in this study results from the combination of

robustness of the clock and also from the experimental and sampling protocol, which is

optimised to reveal circadian rhythms, so is unlikely to reveal harmonic rhythms. Four

of the synchronised probes do not have 24-hour periods, and one might speculate that

these are identified 8 hour harmonics, but it could also be the result of something like

fluctuating conditions in the lab during the experiment (although this is just speculation).

Three of these (10584580, 1058457 and 10584576) are probes for the Hspa8 gene. Hspa8 is

a gene for a heat shock protein, and here it shows very pronounced synchronised rhythms.

3Brain and Whitefat data are excluded as the noise to amplitude ratios are higher. Exclusion of this
data is ok as it was pre-nomalised by fRMA so does not affect the batch statistics.

44 seconds on a laptop with 16GB RAM and 2.5 GHz Intel Core processor.



78 CHAPTER 3. TIMECOURSE TRANSCRIPTOME ANALYSIS

Similarly, Erdr1 10608711 is a protein associated with stress.

Nonetheless, it is very interesting to see such obvious synchronicity in the expression

of genes across multiple organs in mice over time, circadian or otherwise.

Combination analysis

Each rhythmicity detection algorithm provides a slightly different set of “rhythmic” probes

because they use different techniques. If we want to really understand the data, using

a few methods in combination can only reinforce our conclusions and learnings from the

data. There is no reason to choose just one, and justify the choice, as many studies do.

We re-analysed the data with JTK CYCLE. Zhang et al. used JTK CYCLE on linear

values, whereas this reanalysis uses log2 values. Such transformations are often useful in

statistical data analysis. The difference in using log2 data is that higher expressed clock

genes need to have high amplitude rhythm to be significant, but lower expressed genes

with a rhythm need less amplitude to be significant. This decision was made as only

phase and period, and not amplitude, are the characteristics we are interested in. An

example for why this decision was made, is shown in figure 3.6. The Gm129 (also known

as Chrono or Ciart) gene has two probes that show obvious circadian behaviour, but due

to low expression values, the JTK FDR value is not significant5.

To run the JTK algorithm, the parameters were set at 10-14 for estimated period

(as data is 2 hour resolution), and time step was set to 2 (hours). Other than this, all

parameters are kept as the default values, as suggested in the user manual published with

the JTK CYCLE algorithm. Figure 3.7 shows the (geometric mean) JTK FDR plotted

against the % variance explained by the first principal component, for each probe. An

arbitrary cut off of the top 50 genes for each metric has been used for labelling purposes,

and the “NA” or duplicate gene names are omitted in the top-right and bottom left

quadrants. 26 of the top 50 genes are common amongst these two metrics. The bottom

left quadrant represents genes that are 24 hour rhythmic, but not in synchrony across

organs. The top right quadrant are the genes that are synchronised in expression, but

not in a 24 hour rhythmic pattern.

Minor harmonics are not detected by JTK CYCLE and are treated as noise. Due

to this, Per1 (with a small second harmonic) is not reported by JTK to be significantly

rhythmic, but it is still quite obviously circadian (figure 3.5 shows this). Per1 is reported

as “oscillating in all organs” in the study, but reanalysis (and also their own published

values on the circa website) shows FDR rates >0.05 in multiple organs.

5This information can be found on the web database http://circadb.hogeneschlab.org/.

http://circadb.hogeneschlab.org/.
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Figure 3.5: Timecourse expression of the probes in the Zhang data with the top
20 highest % variance explained by the 1st PC. 16 of the 20 probes are obviously
circadian.
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Figure 3.6: Screenshot of a circadb query of gm129 in the lung, for the Zhang
data. The q-values are insignificant even though the 24 hour rhythm is quite clear.
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Figure 3.7: Scatter plot of singular values vs geometric mean JTK values for
the Zhang data. The top 50 probes for each metric are presented, where 26 of the 50
are shared.
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A COSINOR analysis was carried out using the MATLAB function cosinor6 for each

normalised organ timecourse (and the geometric mean across organs found). MATLAB’s

cosinor function returns a false positive metric in terms of p-value.

The geometric mean of these COSINOR false positive p values is plotted against the

first singular value in figure 3.8. The first 50 for each metric are labelled, where “NA” or

duplicate gene names are omitted in the top-right and bottom left quadrants. 30 of the

top probes are shared.

Figure 3.8: Scatter plot of singular values vs geometric mean cosinor p-values
for the Zhang data. The top 50 probes for each metric are presented, where 30 of the
50 are shared.

The conclusion of these analyses is that no one method is best for the data analysis. If

multiple methods, with different strengths are at hand, then performing all methods will

ultimately provide most insight into the data. Probes that are ranked highly with some

methods and lower with others are often interesting outliers, and not just to be ignored.

JTK CYCLE can better determine oscillations that are not perfect sine curves than

COSINOR can. Using SVD to detect synchronised rhythms could provide false positives

as it can highly rank non-circadian synchronised genes. Hence using JTK CYCLE or

COSINOR in parellel helps to identify these false positives, and also provide information

on rhythmic, but unsynchronised probes. Hlf, Leo, Dapk1, Por and Tmem57 appear in

6Details of cosinor can be found in appendix C.
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Genename Probe % Var GeoMean Cosinor Geomean JTK q vals Sing rank Cosinor rank JTK Rank Overall rank
Arntl 10556463 0.95 1.90E-13 4.65E-07 49 50 50 149
Npas2 10345675 0.93 8.67E-13 6.77E-06 47 49 45 141
Per3 10518781 0.93 1.25E-12 5.77E-06 46 48 47 141
Dbp 10553092 0.95 1.95E-12 8.48E-06 50 47 43 140
Per2 10356601 0.93 2.12E-11 6.83E-06 48 46 44 138
Nr1d1 10390691 0.92 1.18E-10 4.07E-06 45 44 49 138
Nr1d2 10417734 0.91 1.18E-09 5.15E-06 42 41 48 131
NA 10556487 0.92 4.16E-11 3.10E-05 44 45 41 130
Tef 10425601 0.86 2.72E-10 6.34E-06 34 42 46 122
Wee1 10556266 0.88 1.47E-09 1.13E-04 38 39 37 114
Ciart 10373452 0.90 2.59E-10 1.32E-03 39 43 29 111
Clock 10530733 0.82 3.37E-09 3.79E-05 28 37 40 105
Usp2 10584634 0.84 1.05E-08 3.22E-04 33 35 33 101
Tspan4 10558961 0.80 2.51E-09 1.50E-04 24 38 36 98
Ciart 10500272 0.87 1.39E-09 2.66E-03 37 40 20 97
Fmo2 10359582 0.79 1.44E-08 2.85E-05 21 33 42 96
Dtx4 10466304 0.78 6.36E-09 1.11E-04 20 36 38 94
Cry1 10371400 0.83 2.46E-08 5.00E-04 30 32 32 94
Lonrf3 10599192 0.81 1.79E-07 2.76E-04 26 28 34 88
Nfil3 10409278 0.84 4.90E-08 2.16E-03 32 31 23 86
Rorc 10494023 0.74 1.09E-08 8.48E-05 10 34 39 83
Tns2 10427095 0.83 1.66E-07 2.58E-03 31 29 21 81
Ypel2 10389581 0.82 1.95E-07 1.59E-03 27 27 27 81
Hlf 10389786 0.72 3.17E-07 2.42E-04 3 25 35 63
Leo1 10587211 0.71 1.38E-07 7.07E-04 30 31 61
Fbn1 10487040 0.74 1.42E-06 1.54E-03 13 19 28 60
Per1 10377439 0.91 3.00E-06 1.97E-02 43 15 58
Dapk1 10405693 0.71 2.82E-07 1.01E-03 26 30 56
Bhlhe41 10549276 0.75 4.60E-07 4.22E-03 14 24 11 49
Por 10526363 0.71 5.67E-07 1.67E-03 22 26 48

Table 3.3: Table of ranked circadian genes, combined results of data analysis
methods for circadian behaviour.

both COSINOR and JTK, but not in singular value ranking. This implies that these

genes have different phases in different organs, so are likely to be clock controlled genes

that have slightly different activation mechanisms in each organ.

These three metrics allow us to confidently choose a set of probes to make up the

training set for the time-telling model. A ranking is done for each method, assigning

1-50 for each probe, and then simply summing these rankings to combine results. This is

shown in table 3.3.

Seventeen of these probes match with the genes shown in table 1.1, which was written

from a literature search. Genes in this table which do not appear to be highly rhythmic

and synchronised in the Zhang data are Rorα, Rorβ, Arntl2, and the Casein kinases, all

with insignificant results in all metrics. Cry2 has an overall rank of 34, and is found to

be significantly circadian in all metrics, but just falls off the end of table 1.1.

The results of this section suggests that the core elements of circadian clock are very

much synchronised across different organs in laboratory mice. This provides further evi-

dence for how robust the behaviour of the core machinery of the circadian clock is, and

also that the core genes of the circadian clock are synchronised across tissues.

The top 11 rhythmic and synchronised genes are selected for the training set of

the mouse Time-Teller: Arntl (10556463), Npas2 (10345675), Clock (10530733), Nr1d1

(10390691), Nr1d2 (10417734), Per2 (10356601), Per3 (10518781), Ciart (10373452), Dbp

(10553092), Tef (10425601), and Wee1 (10556266).
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3.3.3 RNA-seq timecourse

The purpose of this section is to show how the RNA-seq data (that will inevitably become

the main transcriptome technology in the future) will be able to make up a training set

in the same way as the microarray data.

The Zhang [73] RNA-seq data has a 6 hour resolution over 24 hours, for all organs

sampled for microarray. Due to the low resolution of this data, it would not be an effective

training set for a Time-Teller model. As we have both the RNA-seq and microarray

analysis of exactly the same biological samples, we can attempt to compare them. This

was not done in Zhang et al.’s study. It is an interesting question in itself to compare

such data. This data is likely to be very unique in that it consists of 12 organ timecourses

where there is both microarray and RNA-seq data from the same samples. There are

studies that try to compare microarray and RNA-seq technologies [120], but circadian

timecourse data allows a unique type of analysis in that the normalisation of the data can

lead to an almost exact match of expression profile.

The RNA-seq data was already processed by Zhang et al. [9], and was downloaded

from GEO in this post-processed format. The RNA-seq protocol and processing proce-

dure were outlined in the previous section. Ensembl (Biomart) provides a database for

comparison of RNA-seq to microarray data. Parameters chosen were Ensembl Genes 89,

Mouse genes (GRCm38p5), External Attribute AFFY MoGene 1 0 st v1 probe, where gene

name is also provided. The resulting data file consists of 170,993 rows (92871 unique).

Multiple Affymetrix probes can be mapped to the same Ensemble ID, and multiple En-

semble IDs can be mapped to the same Affymetrix probe. All rhythmic genes used here

are a one-to-one mapping. In the Affy MoGene 1.0 ST GeneChip, Ciart has 2 probes

that are both highly rhythmic. Only 10500272 is used here, mapped to Ensembl EN-

SMUSG00000038550. The matched RNA-seq and microarray annotations for 10 clock

genes are shown in table 3.4.

ENSEMBL ID Affy ID Genename
ENSMUSG00000059824 10553092 Dbp
ENSMUSG00000055116 10556463 Arntl
ENSMUSG00000020889 10390691 Nr1d1
ENSMUSG00000021775 10417734 Nr1d2
ENSMUSG00000028957 10518781 Per3
ENSMUSG00000055866 10356601 Per2
ENSMUSG00000020893 10377439 Per1
ENSMUSG00000038550 10500272 Ciart
ENSMUSG00000029238 10530733 Clock
ENSMUSG00000026077 10345675 Npas2

Table 3.4: Table showing corresponding ENSEMBLE ids for Affymetrix AFFY
MoGene 1.0 probes. 10 circadian genes are shown for example.



3.3. MOUSE TIMECOURSE 85

The RNA-seq data was transformed to log (base 2), in order to compare with the

microarray data. The microarry and RNA-seq data for the 10 genes in table 3.4 are shown

in figure 3.9, where each organ is coloured differently. It is clear that the expression using

the RNA-seq technology for Nr1d2, Per1, Per2, and Per3 is higher than for the microarray,

but the agreement is generally good. The dynamic range of microarrays may be limited

compared to RNA-seq, resulting in compression of amplitudes.

Each timecourse was normalised to have a mean of 0 and standard deviation of 1, and

this is shown in figure 3.10 where the normalised microarray data are shown with blue

lines and normalised RNA-seq data are shown with red stars.

The RNA-seq data appears to have an almost identical profile to the microarray data.

Both shapes of data, and the changes in variance over time, appear to match very well.

This suggests that when high resolution timecourse RNA-seq data sets are available in

the future, Time-Teller can be used in the same way as microarray data.
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Figure 3.9: Plots showing microarray and RNA-seq data superimposed. The line
plots show timecourse microarray, and stars stars show timecourse RNA-seq data. Data
shown in for the top 10 circadian genes. Data for 8 organs are is shown here (no brain or
white fat data).
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Figure 3.10: Plots showing normalised microarry and RNA-seq data superim-
posed. The blue lines show normalised timecourse microarray, and red stars show nor-
malised timecourse RNA-seq data. Data shown is for the top 10 synchronised circadian
genes. Data for 8 organs is shown here (no brain or white fat data).
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3.3.4 Comparison of different Affymetrix GeneChips

The purpose of this section is two-fold: the first is to show the reader the difficulties

in comparing different GeneChips, and the second is to show how the robustness of the

circadian clocks allows the comparison of independent datasets.

Hughes and Hoganesch [10] published a dataset of mouse liver timecourse at 1 hour

resolution over 48 hours, in a study preceding the Zhang data by 5 years. The Affymetrix

Mouse Genome 430 2.0 GeneChip was used, which is different to the GeneChip of the

Zhang data.

Method

The experimental setup of Hughes et al.’s study was very similar to that of the Zhang

study, except for a 1 hour sampling of only the liver. Mice were entrained to a 12 hour LD

environment before being released to constant darkness. Starting 18 hours after the first

subjective day (CT18), liver samples from 3-5 mice per time point were collected every

hour for 48 hours.

Comparing Hughes and Zhang data

The Affymetrix website (Thermofisher website after 2017) provides plentiful information

and data on which probes from each GeneChip best match probes from other GeneChips.

The best matches for Affymetrix Mogene 1.0 ST and Affymetrix 420 2.0 are listed in table

3.5 for 12 clock genes.

Genename Mogene 1.0 ST Affy 430 2.0
Arntl 10556463 1425099 a at
Npas2 10345675 1421036 at
Dbp 10553092 1418174 at
Per3 10518781 1460662 at
Nr1d1 10390691 1426464 at
Per2 10356601 1417602 at
Nr1d2 10417734 1416958 at
Tef 10425601 1450184 s at
Ciart 10373452 1435188 at
Wee1 10556266 1416773 at
Clock 10530733 1418659 at
Usp2 10584634 1417168 a at

Table 3.5: Table showing the best matched probes for two different Affymetrix
mouse GeneChips for 12 clock genes.

After fRMA normalisation, the Hughes liver data was plotted on top of the Zhang

liver data. The differences in mean intensity and amplitude in most probes is apparent in

figure 3.11. Even though the probes are measuring the expression of the same gene, there
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will be some differences in signal strength, affinity, etc. It is important to notice that the

difference also changes for each probe. The problem that this poses for Time-Teller will

become apparent in the next chapter.

It is, however, clear that the shapes of the expression profiles are very similar. This is

remarkably clear in the normalised data in figure 3.11. Not only are the phases aligned,

but the shapes of expression are almost perfectly matched. It must be emphasised here

that these data sets were created around 5 years apart. The same LD schedule was used,

and same strain of mouse, but there was a slight difference in feeding amongst many other

minor differences in experiment work flow. This similarity in waveform across heteroge-

neous datasets has been noticed before in plant clock data sets [121]. The reproducibility

of circadian expression profiles provides even more evidence towards the robustness of

the circadian clock, and that there is a robust and reproducible time fingerprint in the

transcriptome.
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Figure 3.11: Plot showing circadian timecourse data from two independent
datasets. Comparison of raw expression in the liver of mice [10], from two different
experiments performed over two days, using two different affymetrix GeneChips.

Figure 3.12: Plot showing normalised circadian timecourse data from two inde-
pendent datasets. The overlays show an almost identical shape of the timecourses.
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3.4 Human Timecourse Data

At the time of writing this thesis, very limited human tissue timecourse transcriptome

data existed. Various studies have been published on the rhythms of human primary cells

or stem cells [122, 6], and human blood timecourse was published in 2017 [14]. The in

vitro data is not sufficient to compare with human in vivo circadian rhythms, as the cells

are synthetically synchronised. The blood timecourse (which will be discussed further in

chapter 4) uses custom microarrays, and cannot be compared to other datasets.

Suitable human timecourse was available, but is currently unpublished (as of April

2018). The human timecourse data used in this thesis was shared with us through a

collaboration and MTA with Professor Georg Bjarnason of Sunnybrook Research Institute,

Canada. This data set uses human tissue in the form of punch biopsies of ten individual’s

oral mucosa over 24 hours. There are 5 females and 5 males in the study, and the team

in Sunnybrook Research Institute are investigating the differences in male and female

circadian clocks7.

The human Time-Teller model that will be presented in this thesis would not have

been possible without this collaboration. The human timecourse oral mucosa data will

be referred to in this thesis as the Bjarnason data.

3.4.1 Experimental design

Ten healthy human volunteers; five female subjects (# 05, 06, 13, 14, 18) and five male

subjects (# 08, 09, 11, 12, 15), were recruited for the study. Mucosa tissue was col-

lected at six timepoints 8 am, 12 noon, 4 pm, 8 pm, 12 midnight, and 4 am. Subjects

were selected after screening by clinical history, physical examination, routine blood work

(complete blood count, electrolytes, creatinine) and actigraphy to confirm regular sleep-

wake patterns. Mucosa samples were collected by a dental surgeon, using a tissue punch

biopsy. Subjects went to sleep in a dark room at their normal bedtime and were awoken

for the midnight sample, and the 4 am sample8.

After tissue mucosa samples were collected, they were immediately frozen in liquid

nitrogen and stored at −80◦C until use. Total RNA was prepared by Trizol Reagent (In-

vitrogen) in accordance with manufacturer’s specifications. RNA samples were quantified

by optical density measurements at A260nm and A280nm. All samples were determined

to be of high quality with A260:A280 ratios > 1.9. Total RNA (5µg) of each sample

was used for microarray analysis on Affymetrix HG U133 Plus2 chips. Cumulatively this

chip represents 54,679 gene transcripts for analysis. Biotinylated cRNA were prepared

according to the standard Affymetrix protocol (Expression Analysis Technical Manual,

7There is some evidence to suggest that there is a difference in male and female circadian clocks [123],
but we will not discuss this in this thesis.

8The Research Ethics Board at Sunnybrook Health Science Centre approved the clinical protocol for
this study.
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2004, Affymetrix). Following fragmentation, 15 µg of cRNA were hybridized for 16 hrs

at 45◦C on GeneChip Human Genome U133 Plus 2.0 Array. GeneChips were washed

and stained in the Affymetrix Fluidics Station 450. GeneChips were scanned using the

Affymetrix GeneChip Scanner 3000.

Bjarnason et al. chose to use gcRMA normalisation of the microarray data, resulting

in some low expression genes being excluded from the dataset. They also discarded any

probes that were flagged as marginal at any time point for any individual. They used

COSOPT analysis for rhythmicity detection. The result was 949 rhythmic transcripts

for males, and 885 for females. All COSOPT results used in the following sections are a

result of this analysis.

3.4.2 Analysis of raw human timecourse

The raw human data was shared in the form of 60 .CEL files, consisting of 10 individuals

for 6 timepoints: 8 am, midday, 4 pm, 8 pm, midnight, and 4 am. The raw data was

processed with the fRMA algorithm described at the beginning of this chapter. No filtering

or quality control was performed. As we are only looking for highly significantly rhythmic

and cross-observation-synchronised transcripts, the probability that any single bad reads

will affect the results of these analyses, is extremely low. Also, we would not want to

exclude a probe because its signal is low at the trough of expression, as the peak amplitude

may be significant. Probes were annotated using probe information files from Affymetrix

documentation. After fRMA processing, all expression values are in log2 format.

3.4.3 Synchronicity and rhythmicity detection of the Bjarnason

data

A similar approach is taken in this section to the mouse analysis in the previous section.

The differences here are that there are 10 individuals (not 8 organs), 6 timepoints over 1

day (not 24 over 2 days), and the Affymetrix HG U133 Plus2 chips have 54,675 probes.

JTK CYCLE is not an appropriate algorithm to use for a single timeseries of 6 datapoints

as any deviation from a monotonic behaviour between peak and trough in a 6 point

timecourse results in a FDR value of 1. JTK CYCLE can be used to look at the combined

timecourse, but the results are not shown here. COSINOR is appropriate for rhythmicity

analysis of sparse individual timecourses.

COSOPT analysis was carried out by Georg Bjarnason’s group with specialist software,

and so these values will also be used in this combined analysis. As gcRMA was used to

normalise the raw data, QC cut-offs result in missing values for some probes. Also, only

the top 1000 rhythmic genes were reported, so there are some missing values.
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COSINOR regression

COSINOR was implemented in MATLAB for each individual and each probe over 6 time

points. The algorithm was set to look for a period of 6, with a 95% confidence interval.

SVD analysis

SVD is performed after each timecourse was normalised to have 0 mean and standard

deviation of 1, as described in detail in the previous section. The top 16 probes with the

highest % variance explained by the first PC, are shown in timecourse expression in figure

3.13.

There are 10 genes represented by 16 probes in figure 3.13. All 10 of these genes

are unquestionably core circadian clock genes, and the expression profiles are clearly

synchronised in both shape and amplitude. Per3, Nr1d2, Arntl, Nr1d1, Per1 and Npas2

are represented by two different probes in this set. These duplicate probes have very

similar timecourse profiles, but can have different expressions levels. This is especially

noticeable for the Nr1d1 probes.

This finding, that human individuals have synchronised circadian clocks to such an ex-

tent, has always been expected. However, such evidence as this has never been published.

This obvious and clean synchronicity in both phase and amplitude as seen in figure 3.13 is

a significant and novel result. This was made possible due to the calibre of the Bjarnason

data in conjunction with the SVD method of synchronised rhythmicity detection.
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Figure 3.13: Timecourse plot of the top 16 ranked “synchronised” genes for all
10 individuals. All probes clearly have robust 24 hour, synchronised rhythms. Male
(blue) and female (pink) lines do not show any differences.

3.5 Comparisons of rhythmicity detection methods

20 of the top 30 synchronised probes from SVD analysis are in the top 30 of the most

rhythmic probes from the COSINOR analysis. These values summarised in table 3.6. Of

the top 16 of these probes, 14 are present as rhythmic in Bjarnason et al.’s COSOPT

analysis for both female and males, as shown in table 3.7. The exclusion of 202861 at

(PER1) and 213462 at (NPAS2) in the COSOPT results is likely due to expression cut

offs as a result of the gcRMA algorithm and filtering used prior to the COSOPT analysis,
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Gene and ProbeID % Explained COSINOR
geomean

Rank
(SVD)

Rank
(COSI-
NOR)

Sum Rank

PER3 221045 s at 0.87 8.00E-12 50 48 98
PER3 1569701 at 0.85 2.66E-13 46 50 96
TEF 225840 at 0.87 4.97E-11 49 47 96
NR1D2 225768 at 0.86 4.97E-11 48 46 94
PER2 205251 at 0.84 2.66E-13 44 49 93
CIART 227285 at 0.85 1.72E-10 45 45 90
PER1 202861 at 0.84 6.10E-10 43 43 86
DBP 209782 s at 0.86 1.03E-08 47 39 86
NR1D2 209750 at 0.83 2.01E-10 41 44 85
ARNTL 210971 s at 0.82 6.10E-10 39 42 81
ARNTL 209824 s at 0.83 3.74E-09 40 40 80
NPAS2 213462 at 0.83 2.65E-07 42 36 78
NR1D1 204760 s at 0.80 3.11E-09 36 41 77
NR1D1 31637 s at 0.82 1.86E-08 38 38 76
PER1 244677 at 0.81 6.36E-08 37 37 74
NPAS2 39549 at 0.77 1.46E-06 35 33 68
NPAS2 1557689 at 0.73 1.10E-06 32 34 66
HLF 204753 s at 0.70 6.49E-07 27 35 62
NPAS2 1557690 x at 0.72 2.74E-06 30 32 62
GAREM1 219377 at 0.73 1.39E-04 33 24 57
LGALSL 226188 at 0.69 1.08E-05 24 31 55
HLF 204755 x at 0.71 7.54E-05 28 26 54
SH3TC1 219256 s at 0.74 1.83E-03 34 20 54
PER2 208518 s at 0.70 2.37E-04 26 23 49
TMEM80 65630 at 0.69 1.31E-04 22 25 47
HLF 204754 at 0.67 1.75E-05 16 30 46
TSC22D3 208763 s at 0.67 1.86E-05 15 29 44
MTERF2 225346 at 0.69 2.51E-03 23 18 41
BHLHE41 221530 s at 0.66 3.66E-05 12 28 40
TPPP3 218876 at 0.70 7.08E-03 25 10 35

Table 3.6: Summary of results of SVD and COSINOR analysis on the Bjarnason
data. Both the SVD and COSINOR are equally weighted in a ranking to find the most
rhythmic and synchronised probes.

Probe Genename Male pMMC-β Female pMMC-β
221045 s at PER3 0.00E+00 0.00E+00
1569701 at PER3 0.00E+00 0.00E+00
225840 at TEF 0.00E+00 3.58E-06
225768 at NR1D2 0.00E+00 0.00E+00
205251 at PER2 0.00E+00 0.00E+00
227285 at CIART 0.00E+00 0.00E+00
202861 at PER1 - -
209782 s at DBP 1.68E-04 6.78E-03
209750 at NR1D2 0.00E+00 0.00E+00
210971 s at ARNTL 3.58E-06 3.58E-06
209824 s at ARNTL 1.79E-05 3.58E-06
213462 at NPAS2 - -
204760 s at NR1D1 3.58E-06 0.00E+00
31637 s at NR1D1 0.00E+00 0.00E+00
244677 at PER1 1.79E-05 1.43E-05
39549 at NPAS2 5.01E-05 2.86E-05

Table 3.7: Results of the COSOPT analysis performed by Georg Bjarnason et
al. pMMC-β values are measures of false discovery rates.
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and not due to the rhythmicity detection.

Figure 3.14: Scatter plot showing % variation explained by 1st PC plotted
against the geometric mean of COSINOR p-value for the Bjarnason data. The
top 30 genes for each metric are labelled, and 25 of these are shared, indicating in the
human data that synchronised genes are rhythmic genes.

Figure 3.14 shows the results of the SVD analysis plotted against the geometric mean

of COSINOR regression for each individual. The majority of the labelled top 30 genes for

each metric are known core clock genes. 25 of the top 30 genes for each metric are shared,

suggesting that for individual data, the majority of the synchronised genes are rhythmic

genes. The mouse data showed many more genes in the top right quadrant of these plots,

which suggested that there were genes whose expression was synchronised across organs,
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but not 24 hour periodic. There are very few probes in this top right quadrant of figure

3.14, and those that are, are borderline.

No Clock, Wee1, or Ror transcripts were found to be rhythmic or synchronised in the

human data, with a % variation explained metric <0.4 and with COSINOR p-values of

1. This suggests that these genes are mouse specific circadian clock genes. This could be

valuable information to the circadian scientific community who often assume the circadian

roles of Clock, Wee1 and Ror in human circadian studies.

Cry1 and Nfil3 are also significantly rhythmic and synchronised in this human data,

but fall off the end of table 3.6.

The final 10 genes from 16 probes to be used in the human Time-Teller model are

ARNTL (209824 s at,210971 s at), NPAS2 (213462 at,39549 at), PER1 (202861 at, 244677 at),

PER2 (205251 at), PER3 (1569701 at,221045 s at), NR1D1 (31637 s at,204760 s at), NR1D2

(209750 at, 225768 at), CIART (227285 at), TEF (225840 at), and DBP (209782 s at).
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3.6 Simulated Timecourse Data

The stochastic Relogio model shown in chapter 2 will be the source of the “dummy” in

silico data that will be used in this thesis. Some hypotheses to test with the Time-Teller

model require specific sets of test data that are extremely difficult to find or non-existent

in the published online libraries. The stochastic Relogio model allows control over the

noise in the generated timecourses, and as will be shown in chapter 5, it also allows “in

silico knock-downs”.

The noise from microarray data is a sum of biological stochasticity and error in ex-

perimental set up and measurement. It would be a huge study in itself to understand the

noise of every contributing factor to this. We can however, crudely estimate it using the

systemsize parameter, Ω, in the stochastic model, and the noise we see in the data we

already have.

Some analysis of the stochastic model was performed in the previous chapter, but here

we do more of a direct comparison of the stochastic model with the mouse timecourse

data (the same could be done for the human Bjarnason data but is not shown here).

The Relogio ODE model was not designed with noise and stochastic variation in mind

[7]. The building of a stochastic model to match the variance seen in real data would be

an extremely interesting mathematical challenge, but is far out of scope for a side story to

this thesis. Instead of changing what already exists, we compare the stochastic model with

the real data in order to choose the most appropriate approximation for the system-size Ω.

3.6.1 Generation of in silico timecourse data

We used the stochastic Relogio model to simulate timecourses that could be compared

with the Zhang mouse organ timecourses. In the previous chapter, it was shown that

stochastic simulations lose synchronicity over time. It has been observed in multiple

studies [125, 126] that this would also happen eventually to organisms living in an unforced

environment. The mice in the Zhang study were synchronised with LD cycles for a week

before being released into constant darkness, so there can be some form of alignment in

the initial conditions of the data. The initial conditions for the stochastic Relogio model

are chosen using a point on the limit cycle of the ODE Relogio model, γ0 with added

scaled Gaussian noise. This is in the form of:

Y0 = γ0Ω(1 +N(0, 1)/
√

Ω) = γ0Ω + γ0N(0, 1)
√

Ω (3.3)

so that Y0 represents the gene expression at ZT0. To reflect the real data, samples are

“taken” every 2 hours, by sampling 24 equally spaced values across 2 periods (approxi-
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mately 52 hours).

The nature of the way time is sampled in the Gillespie algorithm means that there will

not be 24 exactly equally spaced timepoints, but the closest rounded times. This does

result in each output variable having a slightly different time to its label, but this noise

is very small and just adds more realistic noise to the model, so is of little consequence.

The RNA terms for Arntl, Per, Cry, Rev-Erb, and Ror in the 19 variable Relogio

model were saved as 8 (organ) by 24 (timepoint) matrices. The same matrices for Per3,

Cry1 and Rev-Erbα, and Rorc in the Zhang data were used in parallel. Real and in silico

timings were aligned visually in order to produce the normalised figure 3.15, where the

coloured timecourse is real data (coloured by organ type), plotted with 20 trajectories of

scaled simulated data (black), with initial estimate for Ω of 100.

Figure 3.15: Plot showing normalised Zhang and simulated timecourse data.
Zhang data is coloured, and plotted with 20 normalised simulations in black (with Ω =
100. The pink timecourse represents the low amplitude brain data.

There is generally good agreement amongst phasing, with perhaps a slightly too early

phase for Nr1d1. The Relogio model was designed before the Zhang data was available.

This correlation is a very positive result for both the viability of the Relogio model and

the hypothesis of this thesis that the circadian clock is well-behaved and robust across

independent datasets.

Variation and stochasticity exist in the Zhang data, and varies by gene (as was mea-

sured in section 3.3.2), by organ, and probably also by time. SVD was used to measure

the variance of each gene of the real data, and the same thing can be done here for the

in silico data.
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Estimating Ω: method 1

Figure 3.16 shows the results of the same SVD analysis as was done in section 3.3.2, but

the %variance explained is now plotted (in black) for all 9 principal components9. The

same analysis was performed for 9 sets of dummy in silco data with Ω = 100 in blue, and

Ω = 1000 plotted in red.

Figure 3.16: Plot showing the cumulative % variance explained by singular
values, for five genes, for real and simulated data. Testing 10 sets of 9 simulations
of the Relogio model simulation with Ω = 100 (blue) and Ω = 1000 (red) compared to
the same analysis on real mouse data (black).

Cry and Ror have similar variance to a model with Ω = 100. However, neither Cry1

nor Rorc are chosen as training genes for the mouse model. The real Rev-Erb data

appears to have similar variance to a model with Ω = 1000. Both Arntl (Bmal1) and Per

are somewhere in between.

It is interesting to notice that the variance for the 5 simulated genes is extremely

similar, but the real data shows significant differences. This shows that the stochasticity

for each gene is different in reality, and this is not something that the Relogio model has

accounted for. It would be interesting if a stochastic model were designed to be able to

replicate this type of differing variance behaviours.

Estimating Ω: method 2

Another way to estimate Ω is to again perform SVD, but on matrices for each organ,

where each matrix is 5 genes by 24 time points. The SVD is not measuring synchronicity

9In this analysis White Fat was also included.
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here, but how many dimensions the elliptic orbit of the 5 clock genes are occupying.

Figure 3.17 shows a plot of each set of decreasing singular values. The plots are coloured

according to organ type, and simulations of two different Ω system sizes have been plotted

in black (1000) and yellow (100). The reproducibility of the simulations for Ω = 1000 is

apparent, as is the variation of the Ω = 100 simulations.

Figure 3.17: Plot showing the cumulative % variance explained by singular
values, for each organ, for real and simulated data. The coloured plots are for the
real data and coloured by organ type. The 10 black lines represent the singular values of
simulated data for Ω = 1000, and 10 yellow lines represent the same for Ω = 100.

The three brain regions (in pink) show much higher noise than the other organs, as

expected. Figure 3.17 suggest that the noise in the brain data would be represented by a

stochastic system with a system size less than 100. The 5 gene dimensions are represented

by the first two PCs by more than 90% for all other organs.

For Ω = 1000 simulations, the first PC under represents the data in comparison to

the real data but the second PC over represents it. Additionally, half of the Ω = 100

simulations have more noise than the real data.

Although this is a rough analysis, we can conclude that an appropriate range for Ω is

approximately between 100-1000.

Using more variables

The analysis above shows that the 5 mRNA terms in the Relogio simulate the real data

well, in terms of phase and noise (when correct Ω is used). Five terms however, are not
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adequate for a training set for a timetelling model, so it would be useful to be able to use

more than 5 of the variables. As each variable trajectory is a periodic timecourse, it is

reasonable to include a subset of the 19 variables in this type of dummy data analysis.

When all 19 variables are included (with Ω = 100) the first 5 PCs explain about 99%

of the variance in the data. The first and second principal components of the 5 and 19

variable systems are almost identical, as shown in figure 3.18. This is a consequence of

the robustness of the model dynamics, and indicates that the non-mRNA terms can be

used to generate data for a dummy data set.

Figure 3.18: Plot showing the first and second PCs of the dummy data for 5
mRNA terms only, and for the full 19 terms. The PCs are very similar in profile
as the 5 mRNA terms are enough to derive all the dynamics in the data.

Although this shows a high level of redundancy in the extra terms of the model, it

also shows that the extra terms can be used without the risk that the “non gene” terms

of the model show different behaviour to the “gene” terms. Non gene variables will be

used in the dummy data Time-Teller.

This analysis can conclude that a system size in the range Ω ∈ [100, 1000] can be rea-

sonably used to simulate data comparable to experimental data. Although more thorough

and accurate methods could be used to find an optimum Ω, nothing would be gained from

this for this thesis, and the validated range will be adequate.
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3.7 Summary of Chapter

This chapter has presented three sets of timecourse data: mouse, human and in silico.

The identified rhythmic and synchronised genes of the mouse and human data will be

used as training genes for the mouse and human Time-Teller algorithms. The stochastic

Relogio model will be used to generate dummy data of appropriate Ω, as both the training

and test data for the in silico Time-Teller.

The use of the SVD was presented as a simple and computationally efficient way of

finding rhythms by exploring synchronicity10. The use of multiple rhythmicity algorithms

in parallel with the SVD allows interesting outliers to be identified, and allows higher

confidence in the results.

Using SVD, COSINOR, and JTK CYCLE, 11 mouse probes were chosen to use in the

mouse Time-Teller. Using SVD and COSINOR, 16 probes (representing 10 genes) were

chosen to use in the human Time-Teller.

In silico time courses were generated and the Ω range of 100-1000 was validated for

use for dummy data in which to train and validate the in silico Time-Teller.

The correlation in the rhythmic and synchronised measures in the Bjarnason data

suggests that no genes but the circadian clock genes are synchronised in expression pattern

for human individuals. It also suggest that the more 24 hour rhythmic a gene is, the

more synchronised that gene is to the general population. Tightly coupled autonomous

oscillators were shown to be robust in chapter 2, and this result complements this. A

tightly coupled oscillator system results in robust and rhythmic gene expression which is

relatively unchanged in response to external noise, and hence results in synchronised gene

expression profiles across the population.

This means that these sets of tightly regulated, robust oscillators, are genes that can

be used to define the expected behaviour of a healthy circadian clock.

10As far as we know, no such analysis has been published like this before, and the basic approach may
be a useful functional genomics tool to assess synchronised rhythmic gene expression for different tissues
and observations.



Chapter 4

Time-Teller

The previous chapters have provided evidence for the robustness of the circadian clock.

The main results have been that:

• both a deterministic and stochastic autonomous circadian oscillator show very ro-

bust dynamics.

• a set of mouse circadian clock genes have synchronised rhythmic expression across

tissues and organs.

• a set of human circadian clock genes have synchronised rhythmic expression for 10

individuals

• the GeneChip or technology used shows the same behaviours for individual genes in

timecourse, but actual expression levels differ slightly by GeneChip or technology.

Evidence so far now leads to the idea of an expected behaviour of the clock: that the

transcriptome has an embedded time signature. In this chapter, by finding a transcrip-

tomic signature related to time of day we develop a model for telling time from just one

sample.

The timecourse data (Zhang mouse data and Bjarnason human data) will be used as

the healthy standard to make predictions for other samples; i.e. these data sets are the

model training sets. Making predictions of the unknown based on a labelled training set

is a classic problem in machine learning.

4.0.1 Introduction to machine learning

Machine Learning is a broad term, referring to algorithms that are able to learn from

data, without being explicitly programmed [127]. We give a short introduction to machine

learning here, but a more in detailed introduction can be found in [128].

The two main types of machine learning are

104
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• Supervised - A set of known inputs and matched outputs are presented so that a

rule for a mapping can be learned.

• Unsupervised - Only inputs are provided and the machine tries to sort them so that

some structure can be elucidated.

Supervised machine learning methods need labelled training data, and usually involve

some sort of regression and/or classification. Support vector machines (SVM), k-nearest

neighbours (k-NN), and linear discriminant analysis (LDA), all try to discretely classify

data to known discrete labels. Regression algorithms, such as least squares, smoothing

splines, partial least squares regression (PLSR) or gaussian process regression are su-

pervised machine learning algorithms that try to find continuous relationships between

inputs and outputs. Some deep learning methods such as convolutional neural networks

are supervised methods, as the machine learns underlying patterns to the data starting

with inputs and ending up at the known output.

Unsupervised machine learning methods are used to draw inferences from unlabelled

data. It also includes many clustering methods such as k-means and Gaussian mixture

models. Dimensionality reduction algorithms are technically unsupervised algorithms,

but can also be used when the data labels are known (semi-supervised). Algorithms such

as PCA or tSNE (t-Distributed Stochastic Neighbour Embedding) [129] are dimension-

ality reduction techniques where the data is (usually) reduced to 2 or 3 dimensions, and

then the user can assess whether the known “classes” are distinct within the unsupervised

decomposition. This can be done simply by looking at the data in different colours, or by

using further clustering analyses for classification (in PCA only). Deep learning methods

such as those that use autoencoders in neural networks can infer patterns from unlabelled

data.

Machine learning and circadian rhythms

In this thesis, circadian transcriptome data is the input to all models, where each gene

expression timecourse can be represented by a continuous, 24-hour periodic curve. Time

is used as a continuous one dimensional output. Although we could treat time as discrete

(all of the training data is in 2 or 4 hour intervals) this would hugely limit the model’s

accuracy and scope. For this reason, discrete classifier methods are not appropriate for

time-telling models. This discounts use of k-nearest neighbours methods and stochastic

methods such as tSNE in time telling models.

PCA, PLSR, Gaussian process regression, and neural networks are all potentially

useful in the “one time-point timetelling” question. However, standard approaches need
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to be tailored to be used with a periodic input. The next section explores these methods,

and those that have been used in existing literature to answer the timetelling question.

The standard setup for all algorithms is to start with a matrix of training data X ∈
Rn×p where n is the number of observations (e.g. organ, individual), and p is the number

of features (i.e. genes). Each row of X is associated with entry n of output vector T ∈ Rn

(e.g. circadian time or body time) 1.

An important step in many machine learning algorithms is the normalisation of the

data. If any batch methods are used to normalise the training data, then the model will

not work for single test samples - unless the same normalisation was used for every test

sample.

4.1 Literature Review of Time Telling Models

At the start of this PhD project there was only one published study with the explicit

aim of estimating the time from the transcriptome. However, since then, at least five

studies have been published that present methods that are directly relevant to this aim

of this PhD project. Some methods have similarities to the novel model presented in this

chapter, and some take different approaches, but they all involve some form of machine

learning.

A comprehensive literature review of the main“single time point time-telling” studies

is given now at the start of this chapter, and a summary is given in table 4.1. Associated

papers with the main publications, either pre- or post- publication, are shown in non-bold

font.

4.1.1 Molecular timetabling method (MTTM)

The aim of the study in Ueda et al. [11] was to detect individual body time (BT) via a

single-time-point assay so that BT information could be exploited to optimise medication

strategies. This is still very much the aim of every study presented in this chapter.

Although this study uses BT and not clock time in their estimation, the results in the

study show that in controlled mouse experiments, they are equivalent.

Experimental methods

Ueda et al. created a set of microarray expression profiles from pooled livers of four male

mice every 4 hours over 2 days under 12 hr light/12 hr dark (LD, ZT) or 12 hr dark/12

hr dark (DD, CT) conditions. Profiles were also made from independently sampled livers

from 8 individual male mice at ZT12 (n = 4), ZT6 (n = 1), ZT18 (n = 1), CT6 (n = 1),

and CT18 (n = 1), where n represents the number of mice sampled. Additionally, they

1except for the PLSR model estimating melatonin, not time, where the output is also periodic
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Method Name First Author Citation Journal & Year Description

Molecular
Timetabling

Ueda [11] PNAS 2004 Best cosine fits

Zeitzeiger Hughey [12] Nucl. Acids Res. 2016 Trained SPC model
with MLEs

Supervised PCs Bair [130] 2006 Prediction by supervised
PCs

Hughey [131] Gen. Med.2017 Application to human
blood dataset

BIO CLOCK Agostinelli [132] Bioinformatics 2016 Deep Neural Networks
CYCLOPS Anafi [13] 2017 PeerJ Deep Neural Network

model
SVD for genome
data

Alter [133] 2000 Defines an Eigengene

PLSR Laing [14] ELife 2017 PLSR model with
Melatonin output

Partial least
squares

Boulesteix [134] 2006 PLS algorithm

∆CDD Shilts [15] 2018 PeerJ Metric for clock dys-
function using correla-
tions

Table 4.1: Table listing published Literature on Time-telling models. Bold entries
show the publication of the main algorithm, italised entries show follow up publications
using the algorithms, and other entries show publications of methods underlying the
algorithms.

sampled livers from 7 individual Clock/Clock homozygous mutant mice at ZT12 (n = 4)

and ZT8 (n = 3) and 3 individual male mice at ZT8 (n = 3) to verify the feasibilty

of expression-based diagnosis of circadian rhythm disorders. All mice were synchronised

under LD conditions for 2 weeks from 5 weeks postpartum and then sampled.

Molecular time table method

To detect time-indicating genes, i.e. genes whose expression exhibits circadian rhythmicity

with high amplitude, the expression profile of each gene was analysed for rhythmicity and

amplitude. Methods similar to COSOPT analysis were used to determine rhythmic genes.

The top N rhythmic genes were then chosen for use in the timetabling method.

They normalised the expression profile Xi of each gene i ∈ [1, ..., N ] using its mean µi

and standard deviation σi in the molecular timetable. The normalised profile is described

by Yi.

To estimate the BT of each expression profile, they fit a cosine curve to each normalised

profile:

Yi =
√

2cos(2π(t− bi)/24) (4.1)

where each bi denotes the phase of each gene. Cosine fits are restricted to have a resolution

of 10 min intervals, hence there were 144 possible cosines each timecourse could be fit to.
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The bi phases represent the fixed timetable of phases for each gene.

To make the estimation for the time of a single sample, a single set of N gene ex-

pressions, of unknown time, is normalised with the same µi and σi as the training set

(i represents each gene). The “best” BT estimate is defined by the bi that gives best

correlation value of these normalised values to each set of 144 cosines.

To evaluate the statistical significance of BT estimation, the authors generated a

random expression profile Yr following the same distribution of the normalised data, Yi.

They calculated the best correlation value cr and the phase brc. This was done 10,000 times

to create a distribution of cr values and phases brc. The probability (Pr) that a random

expression profile has a best fitted cosine curve giving correlations equal or greater than

those of the real expression profile was determined by the correlation value cr from 10,000

expression profiles.

Results of MTTM

Using 168 time-indicating genes, the paper reports errors (difference of estimation and

real time) of under 2 hours when testing 4 samples from an independent data set of mouse

liver transcriptome. The method also attempts to diagnose circadian rhythm disorders.

Using mutant Clock KO mice, and WT mice, they were able to detect significant rhythms

in WT mice, but not in KO mice. These results are shown in figure 4.1, where the top

row with fitted cosines represents WT data, and the bottom row with no significant fit

found is showing the KO data.
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Figure 4.1: Example plot for results of MTTM. From [11]. At ZT8, figure shows
significant rhythms in WT mice (top plots), and insignificant rhythms in KO mice (bottom
plots). The x-axis represents each gene’s calculated phase, where each dot is a gene.

Although this method has generally reported good results, its lack of power is clear.
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The method needs fixed normalisation, expression shapes must be cosine, and every gene

is treated as independent from others. Additionally, 168 genes is a much larger number of

genes than any of the other models in this section will use, and it appears that computing

time would be huge for this method. It was a very good initial algorithm for time-telling,

but the method had much room for refining.

4.1.2 Zeitzeiger

Hughey et al. [12] published Zeitzeiger: a supervised learning method for high dimensional

data from an oscillatory system. Zeitzeiger, meaning “Time-revealer” is presented as

a method to predict a periodic variable (e.g. time of day) from a high dimensional

observation. It is claimed that Zeitzeiger is faster and more accurate than the molecular

timetable method.

Method

The Zeitzeiger method “learns” to use a particular set of genes to predict time (these

may or may not be core clock genes). It uses training observations to learn a sparse

representation of the variation associated with a periodic variable, then makes a prediction

based on maximum likelihoods. Zeitzeiger is conceptually similar to supervised principal

components (SPC) [130], as the genes used in the principal component analysis are chosen

so that they show maximum variation over time. The full method is summarised into steps

for clarity.

Step 1: Estimate the time dependent density of each feature j.

• Estimate the time-dependent mean, fj(t), by fitting a periodic smoothing spline to

the behaviour of each feature j (gene) as a function of time.

• Estimate the variance of each feature as the sum of squared residuals from the spline

fit s2
j .

There is a homeoscedasticity assumption used here: that the variance of each feature

(gene) about the mean is constant for all time. They claim that this is simpler and more

robust than trying to estimate a time-dependent variance 2.

Step 2: Identify the major patterns that describe how features change over

time. Construct a matrix Z ∈ Rm×p in which the spline discretised into a number of

time-points and scaled by that feature’s standard deviation about the mean curve.

2The novel model in this thesis does not have to make this assumption.
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If τi is the corresponding time-point for the ith row in Z, then

zij =
fj(τi)− f̄j

sj
(4.2)

where f̄j =
1

m

m∑
i=1

fi(τi) (4.3)

where

f̄j is the mean of feature j over all timepoints.

i indexes time, where j indexes gene.

τ represents time scaled between 0-1

m is the number of timepoints (where m is also the maximum number of SPCs that can

be used for prediction).

Step 3: Subject Z to a penalized matrix decomposition. PMD is performed on

Z. PMD is similar to SVD except that it is adapted to be more suited to sparse datasets.

Sparse data sets are large, noisy data sets with low rank [135]. This is suitable when all

genes are being used, and not just a cherry picked subset. As a result, matrix V ∈ Rp×m

is generated, which is a matrix of m PCs, each of length p.

Step 4: Project the training data from high-dimensional feature-space to low-

dimensional PC-space. Produce a new matrix X̃ ∈ Rn×m calculated as X̃ = XV .

Step 5: Estimate the time-dependent density of each SPC. Denote the time-

dependent mean of the kth SPC as fk(t) and the variance as s̃2
k.

Step 6: Project the test observation from feature-space to SPC-space. A test

observation w ∈ Rp is projected from feature space to SPC-space w̃ = wV .

Step 7: Use maximum likelihood estimate to predict the time of the test

observation. Assuming that each PC is Gaussian at any given time, the likelihood of

time t given w̃k is,

Lk(t|w̃k) =
1

s̃k
√

2π
e

−(w̃k−f̃k(t))2

2s̃2
k (4.4)

Where nSPC ≤ m is the number of SPCs, the universal likelihood is calculated by
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the sum of each PC’s log-likelihood.

L(t|w̃) =
nSPC∑
k=1

logLk(t|w̃k) (4.5)

They make the comment in the study that this is not a mathematically valid thing to

do, but that it works well empirically. It could be argued that each of these combined

single Gaussian likelihoods should at least be weighted by the singular value associated

with each SPC.

The predicted time t̂ for test observation w is t̂ = arg maxt∈[0,1)L(t|w̃), i.e the value of

t for which the likelihood function attains its maximum value.

Zeitzeiger applied to Zhang data

Using the Zhang mouse organ data [9], Zeitzeiger was applied in a leave-one-organ-out

methodical approach to estimate the time of single samples. Figure 4.2 shows the shapes of

the first 2 PCs, and the 14 genes that contribute to them. These training genes include 10

of the 12 genes found in the previous chapter to be rhythmic and synchronised (excluding

the genes Ciart or Clock). The data was first adjusted for organ specific differences, by

the batch processing program ComBat [136]. This appears to be a redundant step, as all

the data is just normalised in timecourse anyway.

Zeitzeiger versus MTTM

The authors state that Zeitzeiger is on average 1.2 hrs more accurate than the molecular

timetable method, even when using 13 genes where the MTTM uses 110. Decreasing the

number of genes used in the MTTM decreases accuracy. The authors state that Zeitzeiger

is more than twice as fast at the MTTM. To run leave-one-out cross validation Zeitzeiger

took around half of the CPU time than the MTTM did.

Zeitzeiger using independent samples

Multiple mouse datasets from WT mice were tested using the Zhang data as the models

training data (details can be found in the paper). All datasets are normalised as time-

courses so comparing samples from different technologies is not an issue with this method.

It does mean, however, that Zeitzeiger can only be used to predict the time of samples

that exit in timecourse.

The prediction results of Zeitzeiger are very accurate (< 1.5 hrs absolute mean error

for most datasets). The Hughes liver timecourse data [10] is used as a validation dataset
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Figure 4.2: Figure showing Zeitzeiger SPCs for Zhang data.From [12]. (A) Trajec-
tory of the two SPCs as a function of circadian time. (B) Gene expression of the samples
in SPC-space. Each point is a sample, with colour indicating the (true) circadian time.
(C) The loadings for each SPC. (D) Normalised expression versus time for the selected
genes. Time is shown as the full 48 h of the experiment.

for this, and absolute prediction error is reported to be very low at < 0.5 hours. As was

shown in the previous section in figure 3.11 the probe values do not align for these training

and test datasets. Zeitzeiger’s need for batch normalisation of timecourses is its biggest

weakness, as it is unlikely that it will be useful to be able to predict the time of samples

that already exist as a timecourse.

The study does mention a potential use of Zeitzeiger is to investigate if samples that

exist as a timecourse have a dysfunctional circadian clock, stating “We hypothesised that a

dysfunctional clock might cause not only aberrant timing, but also poorer fit of the observed
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gene expression to what would be expected at a particular time.” They observed that the

log-likelihoods of their MLE predictions were significantly lower in mutant samples than

in WT. They also noticed that the location of wild-type samples projections were in a

similar space to that of the training samples, but the mutant samples were deviated away

from this WT periodic trajectory. Zeitzeiger simply made these observations, but Time-

Teller, the novel method presented in this thesis will use these observations to create a

metric of clock dysfunction.

Zeitzeiger could be extended to use the methods developed for Time-Teller to measure

the dysfunction of the circadian clock, but Zeitzeiger cannot help to achieve the aims of

this thesis. This is because Zeitzeiger requires that samples be acquired throughout the

24 hour cycle, in order to make predictions. Hence Zeitzeiger is not applicable to testing

single samples of unknown time.

Applications to human blood dataset

In a following study, Hughey applied Zeitzeiger to three publicly available datasets of

human blood timecourse transcriptome [131]. Each dataset had a different experimental

design; each consisting of data from individuals from control conditions, and conditions

in which sleep and LD cycles were perturbed. Only 2 of the 15 genes used for training

are known core circadian clock genes (Per1 and Nr1d2), the others having no previous

connection to the circadian clock. This appears to be a feature of the data, and not

the algorithm. Good results were reported despite this with median absolute error being

< 2hrs. Errors for estimating time were generally higher for individuals with perturbed

clocks.

In the section “processing gene expression data”, Hughey states that the microarray

datasets were processed using MetaPredict, which performs both intra-study and cross-

study normalisation, so is not relevant for single time point estimation.

4.1.3 BIO CLOCK

Agnostinelli et al. published a study called “What time is it? Deep learning approaches

for Circadian Rhythms” [132]. The paper has two themes; one of period detection and

the other of estimating time from single samples. Despite the name of this paper, there is

little focus on the methods for time-telling. The methods for BIO CLOCK are simply de-

scribed as “a supervised deep learning algorithm using neural networks”, with few method

specifics discussed. In one example, they state that they train BIO CLOCK using mouse

data from Zhang et al. [73], and the genes Arntl, Per1, Per2, Per3, Cry1, Cry2, Nr1d1,

Nr1d2, Bhlhe40, Bhlhe41, Dbp, Npas2, Tef, Fmo2, Lonrf3 and Tsc22d3. The reasoning

behind this choice is not given, but it appears to be a mixture of a literature search and a

rhythmicity analysis. They state that “training and test samples are normalized to have
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mean of 0 and standard deviation of 1. They do not clarify if this is for each single sample

or for each timecourse.

Different microarray datasets and RNA-seq data are used in this study, with good

results reported. There is no mention of how datasets have been normalised in order to

be able to compare microarrays and RNA-seq, or comparisons between different probes

and annotations.

Due to the lack of information given in this paper towards the methods, it is difficult

to review.

4.1.4 CYCLOPS

Anafi et al. published CYCLOPS [13]: a neural network that finds circadian patterns in

datasets. This study does not present an algorithm that can (yet) tell the time of single

samples (and does not claim to be able to), but it has clear value in this field.

The study uses a (quasi) unsupervised machine learning algorithm (a neural network)

to construct a cyclic periodic timecourse, using unordered large datasets of expression

measurements according to the clock genes, by mapping them to ellipses. These known

rhythmic genes are given as prior information, hence this review’s “quasi”-unsupervised

renaming of the approach.

Methods

CYCLOPS builds on the ideas from a previous algorithm pulished by Leng et al., called

Oscope, which was designed to investigate the cell-cycle in single cell RNA-seq data [137].

Leng et al. saw that when they plotted pairs of genes against each other some gene

expression pairs formed ellipses. The resulting algorithm to explore this is extremely

computationally expensive and is not an ideal way to identify rhythmicity. Anafi et al.

build on this idea of fitting data to ellipses, but by fitting “eigengenes” to ellipses, not

pairs of gene expressions. Eigengenes is a term coined by Alter, Brown and Botstein

in 2000 [133], when they looked at the cell cycle in yeast. An eigengene is defined as a

characteristic expression pattern after SVD on a matrix of N genes and M (disordered

time) samples. When plotted in expression space, the ordered eigengenes v1 and v2 were

observed to be almost π/2 shifted, resulting in an elliptical shape when plotted together.

The M time samples can be in any order in eigengene analysis, and would achieve iden-

tical results as all that matters is the comparative relationship between features (genes).

The number of eigengenes retained was set so that > 85% of variance was captured.

CYCLOPS optimally weights and combines the eigengenes, in order to create the closest

thing to an ellipse. These points are subsequently ordered along that ellipse using a

neural network. We do not discuss neural networks here, but full details can be found
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in the supplementary information in [13]. To briefly summarise, optimal weighting and

combination was performed through use of a circular node autoencoder. Autoencoders

are feedforward neural networks trained so that the output can reproduce the input. The

outputs of the two coupled circular bottleneck nodes represent a single angular phase.

The output with the minimum sum of least squares is chosen. A representation of this is

shown in figure 4.3.

Figure 4.3: A representation of the neural network used in CYCLOPS. From
[13].

Application to data

The RMA normalisation algorithm (discussed in section 3.1.1) was used on all raw data

tested with CYCLOPS. Then they used the top 10,000 highest expressed probes, as sorted

by the mean expression for all time samples. The expression Xi,j of each probe i, sample

j, and total samples N was scaled as;

Si,j =
Xi,j −Mi

Mi

(4.6)

where Mi =
1

N

∑
j

Xi,j (4.7)

Note that these definitions are different to those reported in [13], but the published def-

initions do not appear to be correct and the above definitions are likely to be what the

authors meant to define. The Si,j data were expressed in eigengene coordinates Ei,j using

the methods in [133] - which is essentially just a singular value decomposition of every

timecourse geneset. The number of “eigengenes” was chosen so that least 85% of variance

in the data is represented.
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Results

CYCLOPS is validated using mouse timecourse data (the Zhang data [9]) and human

brain data [138]. They randomized the ordering of the Zhang data by time (each organ

data separately), and tried to reorder it again with CYCLOPS. It worked well for high

amplitude mouse tissues like the liver, kidney, and adrenal. It failed with lower amplitude

tissues such as the white fat and brain regions. When allowing each organ timecourse

reconstruction to use prior knowledge of what transcripts cycled in that tissue or in at

least 75% of the other tissues, accuracy increased. The results for some of the mouse

estimations are shown in figure 4.4A.

Anafi et al. used human cortex data that was taken at autopsies, and attempted to

order these samples according to time of death [138]. As no appropriate human timecourse

data was available to them, in order to choose the genes to use, they conducted research

into evolutionary conservation and chose human homologs of the circadian mouse genes

in the Zhang study for the set of genes to use. The results are shown in figure 4.4.

Despite the fact that this is transcriptome of tissue that may have been dead for a few

hours before being sampled, and the genes that are being used are informed from mouse

data (e.g. the Clock gene is known not to be highly rhythmic in humans) the results are

relatively impressive. There is good correlation of the real vs estimated scatter plot in

figure 4.4B, and there is some obvious periodicity in the Chrono, Nr1d1 and Per3 probes

in 4.4C.

When applying the methods to data from both healthy and cancerous tissue, they

found that the method did not work for the cancerous tissue, hypothesising this is due to

weak clock function in the tumours. The data they used is from samples of hepatocellular

carcinoma (HCC), that also has matched control samples of healthy liver. The results are

shown in figure 4.5, where the black data is from the “healthy” liver and the red data from

the HCC samples. This method has no prior information, and only tries to fit ellipses in

the data, but ellipses could not be found in the tumour data as they could in the healthy

data.

Summary of CYCLOPS

The study highlights the advantages of this approach as;

• CYCLOPS does not need prior training (like Zeitzeiger). Supervised training ap-

proaches require a training library of samples with known circadian time - and the

only human datasets available to them were the blood datasets [14] and the autopsy

cortex data [138].

• It does not matter what organ, organism, or technology the data originates from.
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Figure 4.4: Plots of some results from the validation of CYCLOPS.From [13]. (A)
shows the eigengenes in an elliptic shape in 2 dimensions, and the results for CYCLOPS
phase and sample collection time, for Zhang data. (B) shows the results for the human
dataset validation, where there is positive correlation for Hour of death vs estimated phase
of sample.

The study does not highlight the disadvantages of CYCLOPS. They could be identified

as;

• The technique requires large datasets and cannot handle single or small datasets in

any way. It could be possible to combine comparable datasets from the beginning,

but there is nothing reported on this.

• If an actual time marker does not exist, time cannot be estimated. Only the phase

of each sample relative to each other sample is calculated.

• The concept of evolutionary conservation, applied by matching mouse-human or-

thologs, might not be appropriate. For example, Clock is rhythmic in mouse data

(Zhang et al.), but its human ortholog has not been reported or identified as rhyth-

mic in humans.

• Eigengenes are not always ellipsoidal, even though the dimensions are chosen to



118 CHAPTER 4. TIME-TELLER

Figure 4.5: Plots shown the results of CYCLOPS applied to human liver sam-
ples. From [13]. Healthy human liver samples are plotted in black and HCC (cancer)
samples are plotted in red. Cosines were fit to all 9 genes in the healthy data, but only 6
in the tumour data, suggesting stronger circadian rhythms in the healthy data.

maximise variation. Perfect symmetry is not expected nor observed in periodic

gene expression.

• The accuracy and viabilty of the human data set used to validate the model is

questionable. The data is from autopsies where time-of-death is taken as the true

time for the model, but in reality the samples could have been taken hours after

death. The dynamics of gene expression after death are not well understood, but

this is not mentioned in the paper.

CYCLOPS is probably not a method that can be used in the one time point time

telling manner that we show in this thesis. CYCLOPS, however, may be a powerful as

tool when producing evidence for the dysfunction of the circadian clock in human cancers.
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4.1.5 PLSR

Laing et al. [14] published a study that uses a large, novel human transcriptome dataset,

which focuses on melatonin and gene expression in sleep deprived states. The study is not

strictly speaking presenting a “timetelling” model. The authors instead attempt to predict

melatonin phase from the transcriptome of blood samples from human volunteers. There

is no new method developed in this study, instead a new application of an existing method,

Partial Least Squares Regression [134]. This is a thorough study, where the authors also

compared their method with MTTM and Zeitzeiger, but only a short overview will be

given here.

Summary of partial least squares regression [134]

PLSR has similarities to principal component analysis, except that as well as decomposing

the input matrix X, an output matrix Y is also decomposed, and a linear mapping

between the 2 spaces is found. In this problem the dimensionality of the predictor set

(transcriptome profile X) is reduced by projecting both the predictor set and the response

variable (melatonin phase Y) into orthogonal latent spaces, called latent factors. These

latent factors are relevant for predicting the response variable, without directly prioritising

any underlying time dependency within the dataset. Factor loadings, the correlation

between each feature and each factor, can then be used to select features to produce the

circadian phase prediction method.

Note: PLSR works here as melatonin is also a periodic output. It would not be

straightforward to adapt a PLSR model to predict time, which is linear.

Methods

mRNA abundance and melatonin data from 53 participants were collected in four sleep

conditions

(i) Sleep in phase with melatonin,

(ii) Sleep out of phase with melatonin,

(iii) Total sleep deprivation, no prior sleep debt, and

(iv) Total sleep deprivation, with prior sleep debt.

This was partitioned into two groups: a training set of 329 mRNA samples from 26

participants and and a validation set of 349 mRNA samples from 27 participants. This

data was collected from the following studies:

• GSE82113 - A total of 49 samples comprising 10 human subjects, for which 1/2/3

samples across multiple time-points/sleep conditions were collected.

• GSE82114 - A total of 23 samples comprising 4 human subjects, for which 2/3

samples across multiple time-points/sleep condition were collected.
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• GSE39445 - A total of 438 samples comprising 26 human subjects, for which 20

samples across multiple time-points/sleep condition were collected.

• GSE48113 - A total of 287 samples comprising 22 human subjects, for which 14

samples across multiple time-points/sleep condition were collected.

For each participant in each condition, hourly melatonin samples and transcriptome sam-

ples every 3 or 4 hours were taken. This is summarised in figure 4.6.

Figure 4.6: Model design for predicting melatonin phase from transcriptome.
Three methods used were MTTM, Zeitzeiger and PLSR. Closed circles in plots represent
the average melatonin profile of participants in a given experimental condition. Coloured
triangles represent transcriptome sampling.

They state that they used the MTTM and Zeitzeiger, both of which performed poorly.

This is not surprising as both methods were designed to tell time, and not melatonin phase.

It is not explicitly stated how these methods were adapted to estimate melatonin phase,

but it is likely that the time was estimated and the corresponding mean melatonin level

was taken as the output. This could explain the extra error accumulation. The results

are summarised in figure 4.7.
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Figure 4.7: Plots summarising the results of MTTM, Zeitzeiger, and PLSR
for estimating melatonin phase. From [14]. (a,d,g) show observed phase vs predicted
phase of melatonin. (b,c,e,f,h,i) show error measurements, where the grey peak represents
average melatonin phase, and 30◦ represents a 2 hr error.

4.1.6 ∆CCD

Shilts et al. [15] developed the ∆CCD clock coefficient of dysfunction. It is written by

the same group as Zeitzeiger, but the ∆CCD methods are independent to Zeitzeiger.

Acknowledging that Zeitzeiger cannot predict time of samples with unknown time, they

develop a metric for clock dysfunction that does not rely on prior information, calling this
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∆CCD.

Using 12 clock genes (again from the Zhang data), they examine the (spearman)

correlations between these genes and use these correlations as the “healthy” standard.

Spearman’s rank is used as a measure of correlation of two genes, denoted by the measure

rho. Two in phase genes would have a correlation of 1. Two completely out phase genes

would have a correlation of -1. As Spearman’s test measures for monotonicity 2 genes

that are π/2 shifted would have a correlation of 0, as their relationship would be circular.

The Zhang data provides a 12 by 12 table of rho coefficients which are taken as the

healthy standard, as shown in figure 4.8. This agrees with all previous analyses; that

Arntl, Npas2 and Clock have a similar phase, and that the phase of most of the other

clock genes is 12 hours later.

Figure 4.8: Heatmap of reference Spearman’s rank correlations for the ∆CCD
metric. The correlation for each pair of genes was calculated based on 8 mouse datasets.
From [15].

These rho coefficient tables are produced for independent data sets. The ∆CCD metric

is a simple euclidean distance metric that is a measure of distance between the 12 × 12

standard table, and the 12× 12 test table.

Their results are generally that “healthy” data looks more like the standard, so has a

higher ∆CCD. Data from tumours generally had a lower ∆CCD. They used the mouse

standards from the Zhang data, as the healthy standard to compare to human data sets.

The results for 4 cancer datasets that contain healthy controls are shown in figure 4.9.

The correlations are far weaker in these healthy human datasets. One obvious reason for

this is that these are human studies so all the samples will probably have been biopsied

from patients in a short time frame, so not the whole timespace is being analysed here.

The paper admits that its methods are designed for simplicity, and that the correlation

fitting does ignore a lot of the interesting behaviour of the clock components. The ∆CCD

metric does however, provides an interesting insight into using a reference state and

showing that there is something different with the tumour samples, and proves to be
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Figure 4.9: Heatmaps of Spearman correlation between clock genes for non-
tumour and tumour samples. Two sets of data from the cancer genome atlas and two
sets of data from NCBI GEO are used. From [15].

another tool that can help to provide evidence for the dysfunction of the circadian clock

in cancer.

∆CCD requires substantially sized datasets to form these correlations, and cannot test

single samples - this is a limitation that we seek to overcome.

Other notable publications

Minami et al. used MTTM to the time using metabolites in mouse plasma dubbing this

the “metabolite-timetable-method”.

Kerwin et al. [139] expanded on the MTTM to study natural variation in the plant cir-

cadian clock using existing single time point microarray experiments from a recombinant

inbred line population.

Matsuzaki et al. [140] built a statistical model of individual gene expression in rice

integrating the effects of multiple environmental factors. Using Bayesian methods they

estimated internal time based on the relationship between physical time of day and ex-

pression of multiple genes, claiming 22 minute accuracy.

4.1.7 Summary of existing methods

Although the methods presented above have value when producing evidence for the dys-

function of the circadian clock in cancer, none of the methods presented in this section are

truly able to tell the time, or test the dysfunction, of a single sample. The next chapter

presents a novel method that can do this.
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The eigengene set-up (use of SVD) in CYCLOPS is used very similarly in the novel

Time-Teller model in this thesis. Where in CYCLOPS the disordered data is projected to

a an apparent ellipsoidal shape in PC space which is then used to train a neural network,

Time-Teller uses a different approach. This approach also then has some similarities

to Zeitzeiger, in the sense that we use Gaussian approximations, splines, and maximum

likelihoods to make an estimate for time.
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4.2 Time-Teller: a novel time-telling algorithm

The aim of the algorithm presented in this section is to be able to tell the time of a single

sample by a subset of its trancriptome, without any prior knowledge or dependence on

the sample existing as part of a larger set of data. In this chapter, different versions of

Time-Teller are shown for synthetic data, mouse data, and human data.

A typical dataset that can be used to train Time-Teller would consist of multiple

observations of timecourse transcriptome. The training data consists of G features (gene

expression values), for N observations (simulation, organ, or individual), for T time points

over a total length of time p (which is also the period or multiple of the period of the

system).

In this approach we apply SVD to reduce the dimension of the data. This will define

a projection of each normalised G-dimensional data vector into a smaller number d of

dimensions (d will be 3 in our case). These 3 dimensions are equivalent to eigengenes

[133]. For each of the observed times tj we fit a d-dimensional multivariate Gaussian

distribution φtj to the set of vectors given by projecting the vectors Xtj ,n from time tj into

d dimensions. We need to reduce the dimension in order to ensure that there are enough

data points to enable a good fit for φtj . As we only have data for discrete time points,

splines are used to extend the φtj to all times t to get distributions φt. Then given a new

data vector Z we can project it into the d dimensions to study the probability p(Zt) that Z

is of time t using φt. We can then estimate the time of Z by maximising the probabilities

p(Zt) with respect to t. The method will be initially outlined in mathematical notation,

with some sketches for aid of explanation. The method is further explained to the reader

via examples using simulated data, before validation using real data is presented.

4.2.1 Model outline

Choice of training genes

The G genes are identified by the methods in chapter 3, where the most rhythmic and syn-

chronised genes were ranked, and the top G genes chosen to be training genes. Choosing

the training genes in this way provides very similar results to using methods in supervised

principal components, or sparse principal components to identify the training genes [12].

The idea behind all three methods is that the genes used should show a large signal to

noise ratio, and have a similar profile in all timecourses.

Normalisation

For each observation n = 1, ..., N and each time time ti where i = 1, ..., T , the data

for each set of G expression levels is stored in vectors Xti,n ∈ RG. Each Xti,n is then

normalised to have a mean of 0 and standard deviation of 1, resulting in the vector X̄ti,n.
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As each sample is treated individually under both vector normalisation and the initial

fRMA normalisation, there is no time-course batch bias in the Time-Teller method. This

is not the case in many of the time-telling methods discussed in section 4.1. This means

that every vector X̄ti,n is independent, and the only information in the vectors X̄ti,n is

the relative ordering of expression of each gene in each sample. This is what allows Time-

Teller to do real single time-point time-telling, and why the use of the same transcriptome

quantification technology for the training and test samples is vital.

Principal component projections

The decomposition of the data into principal component space (forming the eigengenes

[133]) makes up the initial steps of Time-Teller. Global PCA will refer to the standard

PCA (see appendix A). Later in this section, the local PCA will be introduced and used

in Time-Teller. However, we first start with the explanation of the method using global

PCA, as the applications are almost identical, and easily adapted to local PCA.

The G× (TN) master matrix Y has as its columns all the column vectors Xti,n. This

is decomposed into principal components using SVD:

Y = UDVT (4.8)

where a set of G orthogonal principal components U1, ..., UG form the columns of U
and corresponding singular values σ1 ≥, ...,≥ σG > 0 forming the diagonal entries of a

diagonal matrix D.

Now if Ud is the matrix consisting of the first d columns of U then;

Qti,n = UTd X̄ti,n (4.9)

is the projection of X̄ti,n onto the first d principal components.

Fitting a Gaussian distribution to each set of time projections

Let each set of time labelled projections be denoted by Qti , i.e. Qti = {Qti,n}n=1,..,N .

We assume that Qti are normally distributed and fit a multivariate Gaussian distribution

Φti to the vectors in Qti . This is calculated by estimating the component mean µti , and

covariance matrix Σtiusing an iterative expectation-maximization algorithm. We use the

MATLAB function fitgmdist to do this (see Appendix C).

In this thesis, we take the number of dimensions, d, to be 3, hence each Φti is a 3D

Gaussian capturing the first 3 PCs, µti ∈ R3, and Σti is a 3×3 symmetric matrix. Using

three dimensions captures as much variance as possible, whilst also allowing a statistically

significant Gaussian fit with limited data (there are only 8 - 10 data points per Gaussian
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in the training data for this thesis).

Each set of projected points Qti belonging to a specific time ti are now represented by

a Gaussian distribution Φti .

Fitting a spline to Gaussian centroids

The result of this projection of periodic data, will result in the T Gaussians Φti being dis-

tributed along a periodic curve in space. This curve can be found using a cubic smoothing

periodic spline through the means of each Gaussian. We make the assumption that the

spline approximates the mean of the state of the system at the times in between the ti.

A cubic smoothing spline fits a cubic polynomial to data, where each interval (between

data points) is described by a cubic polynomial with local coefficients, where smoothness

at each change of coefficients is ensured. Coefficients are determined by a maximisation

of smoothness [141]. As we have so few time points, to fit the periodic spline to in 3D

space, we fix that the spline will exactly pass through the mean of each Gaussian. The

function csape (cubic spline interpolation with end conditions) in MATLAB, fits a spline

allowing specification that data is periodic and that it passes through all data points3.

The resulting function µ(t) where t ∈ [0, p) is continuous and periodic and passes through

all data points, i.e. µ(t)=µ(ti). Details of csape are given in appendix C.

Figure 4.10 shows a representation of the system in this form. The black spline is µ(t)

and each ellipsoid is a 90% boundary of each Φti (where here T = 6 and p = 24).

Estimating intermediate covariance

Figure 4.10 shows that there are areas along the spline where the covariance of the data at

that time is not known. The covariance changes significantly over time (the distribution

is heteroscedastic), so estimating these intermediate regions is necessary instead of using

a constant covariance (homoscadastic) approach that was used in Zeitzeiger [12]. TThe

method adopted for this was to fit splines through each individual entry in the covariance

matrices for a smooth transition. A shape preserving smoothing cubic periodic spline is

separately fit thought each of the nine entries (six unique) in Σti for all i to result in the

continuous function Σ(t) defining the covariance for all times. A piecewise cubic hermite

interpolating polynomial spline is used in this case. This type of spline is shape preserving,

i.e. the second derivative continuity does not need to be a feature. This is suitable as,

for example, if two co-variance matrix entries were identical for two consecutive time

Gaussians, the hermite spline allows the value of the joining spline to stay the same in

the space between, however a standard spline would enforce some change. This is also an

interpolating spline so the spline passes through all points. This was done in MATLAB

3Csape is equivalent to using a standard periodic cubic spline fit with interpolation parameter at its
maximum value (e.g.p = 1). The number of the knots is specified by the number of time points of the
data, T , and the position is fixed at each µti .
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Figure 4.10: A representation of 6 estimated ellipsoids along a spline that rep-
resents mean movement through time. Each Gaussian is set to a 90% boundary.
This plot has used real data (Bjarnason data), where the differences in covariance for each
time is clear.

using the pchip function. See appendix C for details, and also for details of how positive

definiteness was ensured for all Σ(t).

Each time t ∈ [0, p) is now represented by a 3D Gaussian:

Φt = N (µt,Σt) (4.10)

Now, the probability density function (PDF) of each 3D Gaussian allows the calcula-

tion of the probability that any sample x is of time t. For a fixed t = τ , the PDF of Φτ

for any vector x with projection Qx is:

f(x; τ) =
1

(2π)3/2|Σ(τ)|1/2
exp

(
−1

2
(Qx − µ(τ))TΣ(τ)−1(Qx − µ(τ))

)
(4.11)

Maximum likelihoods

For a given data set and probability model, a maximum likelihood estimate, or MLE, is

the set of a model’s parameters that give the highest probability for the observed data

[142]. We calculate the MLE for the single parameter in our model, time t, for any sample

Z using the following steps.

A single sample Z of length G and unknown time, is normalised to have mean 0

and standard deviation 1 and projected into latent variable space with the principal
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components defined by the training data;

QZ̄ = UTd Z̄ (4.12)

The likelihood function L is defined by each f in (4.11) for all times t. The likelihood

that a fixed sample Z is of time t is the function:

L(Z|t) =
1

(2π)3/2|Σ(t)|1/2
exp

(
−1

2
(QZ̄ − µ(t))TΣ(t)−1(QZ̄ − µ(t))

)
(4.13)

The maximum likelihood time estimation tpred is then simply the maximum of the

likelihood L(Z|t);

tpred = arg maxτ∈[0,p)(L(Z|τ)) (4.14)

Note that in practice, t cannot be treated as continuous, and has to be discretised in

order to generate all of the above quantities. The intervals that t is sampled in are chosen

so there is a Gaussian distribution every 5-10 minutes. In Time-Teller this is a parameter

that can be changed for the desired resolution, but there is little value added with making

this interval smaller.

Figure 4.11 is a sketch showing what the likelihoods represent. This figure explains the

likelihoods without the spline connected spaces, but the same explanations would hold

for smooth likelihood curves. A projection outside the 2D doughnut distribution space

which is a significant distance away from all distributions, would represent a weak clock.

This likelihood curve has a peak, but with low height. A projection into the middle of the

doughnut distribution shows no clock, as all times are equally likely, with a flat likelihood

curve. A projection near to the centre of a single time Gaussian shows a high likelihood,

with a single high peak. A more detailed analysis of this is discussed in the next chapter.

4.2.2 Local principal components

Projections using global SVD used a single projection to represent it in 3 dimensions. We

could instead treat the data corresponding to each ti separately using only the data for

each ti to determine the projection and thus finding different projections for each i. The

potential advantage of this is that these local data sets are more likely to admit a good

3-dimensional linear representation than the global one since they are more localised and

because the local representation might twist in the full space.

This local approach to SVD analysis of data has been proposed before (e.g. in [143]),

but is an unorthodox approach. As far as we know, the local PCA approach has not been

used to explore circadian data before. We will see that a local approach is an improve-
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Figure 4.11: A sketch likelihood shapes in a discrete projection space.

ment to the global approach, as it helps to overcome problems that the symmetric elliptic

distributions create.

Let Xtj be the matrix whose columns are the N normalised vectors X̄j,n for j = 1, ..., T .

Each Xtj matrix has dimensions G×N , where there are T different Xtj . The SVD of each

of these matrices provides the set of local principle components Uj.

Projections

Every normalised vector X̄ti,n is projected using the matrix Uj,d consisting of the first d

columns of Uj. This results in T ×T sets of projections, Qi,j for j = 1, ...T and i = 1, ..., T

that are produced using each set of time principle components with

Qi,j = UTj,dX̄ti,n (4.15)

where j represents the time of the local projection vector and i represents the known

time of the sample being projected.

Gaussian distribution fitting

As in the global case, but now for each i separately, we fit a multivariate Gaussian

distribution Φi,j to the vectors Qi,j for j = 1, ..., N . We again use the MATLAB function
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fitgmdist to do this. The mean and covariance matrix of Φi,j are denoted by µi,j and Σi,j

respectively.

Fitting a spline to Gaussian centroids

Smoothing splines for the means and covariance matrices are found in the same way as

for global PCA. Let the periodic smoothing cubic spline through µi,j for all values of i

be represented by µj(t). Let the shape preserving smoothing cubic spline through each

entry of Σi,j for all values of i be represented by Σj(t).

Projections of test samples

A single sample Z̄ of length G and unknown time, which has been normalised to have

mean 0 and standard deviation 1, is projected into latent variable space with each set of

local principal components;

Qj,Z̄ = UTj,dZ̄ (4.16)

Now, the PDF of each 3D Gaussian allows us to generate the likelihood from the jth

local PC using each time distribution Qj,Z̄ , that sample Z is of time t;

Lj(Z; t) =
1

(2π)3/2|Σj(t)|1/2
exp

(
−1

2
(Qj,Z̄ − µj(t)))TΣj(t)

−1(Qj,Z̄ − µj(t)))
)

(4.17)

As we have T likelihoods, we are able to combine them to find the overall likelihood.

To do this, we simply take their geometric mean over time;

L(Z|t) =

(
T∏
j=1

Lj(Z; t)

) 1
T

(4.18)

so that the maximum likelihood estimate tpred for sample Z using local PCs is

tpred = arg maxt∈[0,p)L(Z|t) (4.19)

4.3 in silico Time-Teller

The Relogio ODE model was transformed into a stochastic model, and trajectories sim-

ulated using the Gillespie algorithm in chapter 3. A parameter representing system size

(Ω) was incorporated by scaling parameters with units of concentration. We will use this

model to create some dummy data, and use this data to show how the local approach

is superior to the global approach. To generate some in silico dummy data to test the
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model, we generated 90 trajectories of the stochastic Relogio model for both Ω = 1000

and Ω = 100. 5 sets of 9 simulations were generated for the training data, and 5 sets of

9 simulations were generated for test data, and the resulting data was saved in matrices

of 12 variables by 12 time-points (representing 2 hour samples over 24 hours).

Time estimations for Ω = 1000

The stochastic data for Ω = 1000 was used to make a training model for both the global

PCA and local PCA methods outlined above. Figure 4.12 shows the training data pro-

jected into the first 3 global PCs, coloured by time. The ellipsoidal distribution of the

data is obvious. As there is low noise in this data, the 12 2-hour separated time points

cluster closely with little overlap.

Figure 4.12: Global PCA plot with each data point coloured by time, of simu-
lated data. Variance is very low in this low noise (Ω = 1000) data. Colour represents
time.

Figure 4.13 shows the training data projected into the first 3 PCs of every local time

PC space, coloured by time. Each of the 12 local time principal component spaces show

similarly ellipsoidal and time clustered data.
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Figure 4.13: Projections using local PCs from first 12 time points, using sim-
ulated data. Each colour represents a time, and the points with additional black dots
represent the time data for which the local PCs were calculated. Axis are manually turned
to show the third dimension where the “hole” is not apparent in 2D.

The projection space using the one universal set of PCs appears to be less noisy and

have more distance between opposite times, as we would expect: the projections are closer

to the perfect ellipse of the underlying limit cycle. Although one might think that this is

desirable, in this situation symmetry can be an adversary.

Take the following example using the dummy data. One simulated transcriptome of

unknown time is projected into the test space of both the global PCs and the local PCs,

and the PDF value is used to try to calculate the maximum likelihood time of that sample.

The resulting likelihoods are shown in figure 4.14. The “real time” of the sample is CT4,

the MLE of the local PC method is around CT5 and the MLE of the global PC method

is either CT5 or CT17.

This particular data point will have been projected fairly centrally to the ellipsoid in

figure 4.12, so that there is large and equal distance to CT5 and CT17 side of the elliptic

distribution. The local PCs can overcome the issue of symmetry, as each of the time PCs
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Figure 4.14: Example likelihood curves for the same data point for global and local PCA.
Global PC likelihood is shown with the dashed line and local PC likelihood is shown in
bold, for the same training and test data. Black line shows the true time of the sample.

generate a different likelihood, which can be (geometrically) averaged to find the overall

likelihood, as shown in figure 4.15.

A simple way of measuring accuracy of an estimation is to use the least squares measure

of a fit to x = y, where all of the data is transformed to have a maximum distance of 12

hours from the x = y line for the R squared calculation. This is plotted in figure 4.16.

The R-squares for the global and local PC methods are summarised for 5 independent

sets of training and testing data, in table 4.2. There is low noise in this data so the

estimations are generally very accurate. Although in 3 sets of data the results are identical,

estimations using global PCs are less accurate for dataset 1 and 4 (run 1 is what is shown

in the figure 4.16.)
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Figure 4.15: Plot showing how individual local PC likelihoods are averaged to
find the combined likelihood.The likelihood curves for the local PCs are (geomet-
rically) averaged, to get the overall likelihood. This helps to overcome problems with
symmetry.

Time estimations for Ω = 100

The advantage of using local PCs and not global PCs is even more apparent when using

a noisy data set. The exact same analysis was performed as above, except for with 90

simulations of the Relogio model using Ω = 100. The accuracy of the calculations fell,

as expected, as shown in table 4.3, but the local PC results are significantly better than

the global PC method. The estimated versus real time plot for run 3 are shown in figure

4.17.

Final comments on method development

It is clear that in a low noise system, one PC is the easier option. However, multiple

projections allow for the combination of likelihood curves, minimising the risk of false

estimations that arise from symmetrical distributions. The rest of this thesis will use the

local PC method.
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Figure 4.16: Scatter plot showing estimated versus real time for low noise sim-
ulations, using local and global PCA. Correlation is generally very high, with some
obvious symmetry issues with the global PC estimations. The red point at ()8, 13) is the
estimate resulting from the dotted likelihood in figure 4.14.

Figure 4.17: Scatter plot showing estimated versus real time for high noise
simulations. The training and test data is identical. The method for multiple simulations
is more accurate than the method using only one.
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Run Local PCs & Global PCs
1 0.99 0.81
2 0.99 0.99
3 0.98 0.98
4 0.99 0.81
5 0.99 0.99

Table 4.2: Table showing R-square values for linear fit to x = y of estimated
versus real time, for Ω = 1000 simulated data. Values are generally accurate due
to low noise. R-Squares are similar except for runs 1 and 4 , where accuracy of local PC
method is higher than for global PC method.

Run Local PCs Global PCs
1 0.69 0.45
2 0.74 0.62
3 0.80 0.60
4 0.92 0.64
5 0.79 0.43

Table 4.3: Table showing R-square values for linear fit to x = y of estimated
versus real time, for Ω = 100 simulated data. R-square values for linear fit to
x = y of estimated versus real time. Values vary due to high noise in the simulated data.
R-squares for local PCs are significantly higher than for global PC.
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4.4 Mouse Time-Teller

The training data for the mouse Time-Teller is the Zhang data from the 8 tissues and 11

probes determined in chapter 3. A leave-one-organ-out approach is taken here to validate

the model. As the mouse data spans over 48 hours, the decision can be made to pool data

so that all data is between 0-24 hours, or there can be duplicate times from two periods.

Here, the latter is chosen, so that there are 24 local principal components from 24 times

between 0-48 hours.

The results of a leave-one-organ-out approach are shown in the correlation plot in figure

4.18. The real time is plotted along the x-axis, where Time-Teller’s estimate is plotted

along the y-axis. The black lines represent a perfect estimation, where the estimation can

be ±24 hours. The accuracy of the estimations is apparent, and no phase shift was found

for any of the tissues. The use of the full 48 hour space allows us to observe, for example,

that the transcriptomic time signature at CT18 can be estimated to be at CT32. This

means that there is no significant change to the circadian clock genes after the mice have

been in the dark for an extra 24 hours.

All of the likelihood curves that gave the MLEs are shown in figure 4.19. The shape

of each likelihood is irregular due it being the combination of 24 likelihoods from each

local PC. The red lines represent the real times of the samples, and it is apparent that

the likelihood curves are indicating a time estimation around this real time.
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Figure 4.18: Correlation plot for actual versus predicted time, for the results
of the Time-Telling model on the Zhang data using 11 probes and 8 organs.
This is the result of a leave-one-organ-out approach.
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Figure 4.19: Plot showing the results of all leave-out-organ-out, time estimation
using the Zhang data. The red markers represent the real time.
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4.5 Human Time-Teller

So far in this thesis, Time-Teller has been shown to be able to tell times for in silico

and mouse datasets. However, the data that make up these models has a high level of

control and standardisation, with mice being kept in labs and being almost genetically

identical. The generation of a human time-telling model is reliant on the finding in the

previous chapter that the there is a set of circadian clock genes that were synchronised in

expression profile and amplitude across individuals.

4.5.1 Training set and validation

The human data is at a 4 hour resolution over 24 hours, so only has 6 local principal

component spaces. This human model uses 16 probes as the model features. The local

PC spaces with fit splines are shown in figure 4.20.

Figure 4.20: All 6 local PC spaces for human data. Data is projected into spaces,
and coloured by time. Splines through the means of each set of 10 time data points show
clear (distorted) elliptical shapes.

Despite the level of stochasticity expected when using transcriptomes of humans, the

time organisation in local time principal component space is apparent. The differently
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twisted shapes of these ellipses allows the local PC method to avoid some problems with

symmetry.

Figure 4.21: Correlation plot for Time-Tellers predicted time versus actual time,
for 10 human individuals, using a leave-out-out method. One male has a circle
marker to show that that individual is consistently phase shifted forwards 1-5 hours.

Figure 4.21 shows the results of a leave-one-individual-out approach to estimation.

The method is very accurate, except for one male individual, whose time-estimations are

consistently phase forwarded by 1-5 hours. Otherwise, the estimations are distributed

about the real time. Table 4.4 shows this data and the distance from real time. The

mean absolute error of estimation is about 1hr 20 minutes.

This mean absolute “error” is not true error as it includes the error introduced by

the obvious natural phase shifts in Male15 and Female18. This “error” is due to both

measurement error and natural inner body clock variation amongst individuals. This

model says that when compared to the other 9 individuals, Male15 is more than 3 hours

phase advanced. Similarly, Female18 is phase delayed by over 2 hours. We make the

assumption in this thesis that a healthy population’s body time is normally distributed

about the population average, with small variance, and hence we estimate body time as

real clock time.

We include Male15 and Female18 in the training data for the Human Time-Teller for
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Individual 8am Midday 4pm 8pm Midnight 4am Mean Mean abs
M15 5.84 4.70 2.82 2.30 1.78 1.76 3.20 3.20
M12 -0.37 1.10 1.45 0.81 -0.83 -0.48 0.28 0.84
M11 1.12 1.35 0.70 -0.81 0.54 1.64 0.76 1.03
M8 -1.74 0.73 -1.78 0.06 -0.21 0.27 -0.45 0.80
M9 0.37 -2.01 -1.16 -1.55 -1.70 -0.48 -1.09 1.21
F18 -1.24 -1.02 -1.53 -3.42 -0.83 -1.84 -1.65 1.65
F13 0.00 -2.01 1.45 -1.43 0.91 -0.97 -0.34 1.13
F14 -0.62 19.88 1.33 -0.19 0.79 2.01 3.87 1.51
F5 2.24 1.10 -1.91 -1.31 0.41 0.52 0.18 1.25
F6 0.12 0.60 -1.04 -0.56 -0.83 0.15 -0.26 0.55

Mean 0.57 2.44 0.03 -0.61 0.00 0.26 0.45
Mean abs 1.37 1.87 1.52 1.24 0.88 1.01 1.32

Table 4.4: Table showing variation of Time-Teller’s time estimates and real
time. All units are in hours. Male #15 (in green) is phase shifted forwards by around 3
hours, and female #18 (in red) is phase shifted backwards by 1-2 hours

future use, even though their body time is not the same as clock time. These phase shifts

will be treated as a natural variation in body clock, and they help to define the shape of

the Gaussian ellipsoids.

It is possible to adapt Time-Teller to estimate BT, and not clock time. BT could be

determined by the expected phase of Bmal1, for example. Additionally, the 16 probes

that have been used to create this model were chosen on the assumption that the most

synchronised probes would inform the model the most. This is not necessarily true, and

it could be possible to optimise this set to reduce the noise. This was explored within the

Bjarnason data, and found to not add any value to the method. Too much optimisation

within the training data resulted in over-fitting of the model, and resulted in worse results

when applied to independent datasets.

4.5.2 Body time versus clock time

As internal body time is naturally variable about some population average, it would be

clinically useful to be able to estimate the phase of a gene such as Bmal1 or Rev-Erbα

(i.e. body time), instead of calculating the real clock time. It would be necessary in this

case, to know the real time that a sample was taken, and use Time-Teller’s output to

calculate the shift from a defined population expectation as the input to a chronotherapy

treatment regime.

COSINOR analysis provided estimates of the phases of each of the 16 probes, from

the analysis in the previous chapter. Figure 4.22 shows the mean absolute “errors” in

table 4.4 plotted against the estimated phase of each gene. There is a significant positive

linear correlation for all probes, showing that Time-Teller is using the group average to
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make predictions for clock time, which can be adjusted to the body time using the real

time that the same was taken.

Figure 4.22: Plot showing each clock genes phase plotted against the mean
estimation “errors”. There is a strong positive correlation between estimated time
difference from real clock time in all 16 probes. and Bmal1 and Rev-Erbαare highlighted
in red and show the highest correlations. This shows that Time-Teller can predict the
phase of Bmal1 or Rev-Erbα with good accuracy if the real clock time of the sample is
known.

This suggests Time-Teller can predict the phase of Bmal1 or Rev-Erbα with good

accuracy and would be of use to the design chronopharmalogical optimisation therapies

for drug administration.
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4.6 Summary of chapter

This chapter summarised the main time telling algorithms that exist, and highlighted

that none of them can truly tell the time from one single independent sample of unknown

time. The Time-Teller algorithm was presented as a method that can predict the time

of one independent transcriptome. All stages of data processing are free from batch

biases, including the use of the fRMA preprocessing and only normalising with single

sample mean and standard deviation (not timecourse mean and standard deviation as in

Zeitzeiger). The advantage of using a local PC approach was shown using in silico data

with low and high noise, showing that the local approach was always superior. A leave-

one-organ-out approach to estimating the time of the Zhang data showed that Time-Teller

is very accurate. It also showed that data samples between CT18-CT40 and CT42-CT64

are directly comparable.

Time-Teller can accurately calculate the time of human samples using a leave-one-

individual-out approach. It was shown how the error in estimation of clock time is actually

a good measurement for internal body time of individuals. This showed that Time-

Teller can accurately calculate body time, if the real time that the sample was taken is

known. We will discuss in the next chapter how we can measure if these individuals are

simply phased forward or phase delayed, or if there is something else resulting in the

measurements not showing the times we would expect.

The following chapter uses the full timecourse transcriptome datasets for training sets,

and estimates the times of samples from independent studies. In order to do this, first we

must be discussed how to measure the confidence of each time estimation.



Chapter 5

A Metric for Clock Dysfunction

This chapter concerns measuring confidence in the maximum likelihood estimations from

the Time-Teller model. The assumption is made that if a sample’s time cannot be esti-

mated with a particular confidence threshold, then the circadian clock is dysfunctional in

that sample. This assumption is reasonable due to the evidence that has been provided in

this thesis for the robustness of the circadian clock, and for the consequential expectation

of a specific behaviour. This assumption is only made when there is realistic expectation

for an independent dataset to be comparable to the training data that determines this

“specific behaviour” of the clock.

In the machine learning sense, we assume that if a test sample does not look signif-

icantly like the training set data, then something is wrong with that test sample, i.e.

we assume that the training data represents the only “functioning clock” criterion, and

anything that does not look like the training data we say has a “dysfunctional clock”.

Here we present a metric Θ that gives a value for the functioning of the circadian clock

(which is equivalent to a confidence estimate in the MLE), where the threshold for which

Θ that represents a functioning clock is provided by the training data.

The first section of this chapter will present the mathematical definition of the clock

dysfunction metric, Θ. The in silico data is then used as an explicative example and as

method validation. Independent datasets to the training timecourse mouse and human

transcriptome are then tested with the Time-Teller model.

The metric Θ can be measured for just one independent sample, where the time that

the sample was taken is unknown. This is not reported to be possible by any of the studies

described in the previous chapter.

146



5.1. A METRIC FOR CONFIDENCE IN THE MLE 147

5.1 A metric for confidence in the MLE

The previous chapter showed that Time-Teller works well for predicting time of day from

a sample in a leave-one-out sense. However, if Time-Teller’s only output were the MLE,

then an estimate will be made for any data, no matter how incomparable it is to the

training data. Time-Teller is powerful as it can calculate the time of independent sam-

ples, and provide a measure of confidence for how good that estimate is.

The estimate for the time of a sample is given by the maximum point of the likelihood

curve. When reporting a MLE, the shape of the likelihood curve is rarely used. We will

now present a novel way of using the shape of the MLE to calculate the confidence of the

estimate.

5.1.1 Shapes of likelihoods

The likelihood curves produced by Time-Teller are generated by probability densities of

Gaussians that are distributed in a periodic shape in 3D space. These periodic 3D distri-

butions were described as “distorted doughnuts” in previous chapters. Results that give

easily interpretable likelihoods, as is sketched for the 2D case in figure 5.1, would arise

from these ideal regular-shaped doughnut distributions. We will use this ideal scenario to

begin to build our metric of clock dysfunction, and add levels of complexity as we progress.

Figure 5.1: Figure explaining likelihood shapes. Sketches show likelihood shapes
where a test projection is far from the training data space, in the middle of the training
data space, and on the training space torus.
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Figure 5.1 shows three scenarios that would lead to a MLE of the time represented

in blue, from a 2D elliptical distribution. The left most sketch of figure 5.1 shows a test

projection that is far away from the training data space, but the MLE is at the time that

it is closest to, and all likelihood values are very small. Similarly, the middle sketch shows

the projection could be near to the middle of the elliptical distribution, but slightly closer

to the blue time Gaussian, and all likelihoods have similar magnitude. The right sketch

shows that a MLE for a strong clock would have a high likelihood value, and other times

would have a lower relative value.

Notice here that the value of the likelihood at the MLE would be a sufficient metric

to measure the clock function in this case. However, as will be shown later in this section,

the likelihoods we are actually working with are not as simple as this example, and the

height of the likelihood is not a sufficient metric to represent the functioning of a working

clock. Hence we continue with a different method.

Minimum threshold

To start building the clock function metric, first we recognise that the MLE in the first

sketch, although being the maximum point of a single, clear, peak, should not be recog-

nised as having a “good” clock because the maximum likelihood observed is low. If we

set a minimum value for the likelihoods, mt, then we can discount the false MLE that the

first scenario would result in. This value is represented by the dashed line in the sketches.

We set all values of any likelihood that are smaller than this threshold, to this threshold,

i.e. any time at which test sample Z has likelihood L(Z|t) < mt, we fix the likelihood to

the threshold for all the times at which this is true L(Z|t) = mt. The likelihood curve in

the sketch on the left of figure 5.1, for which all values are less than this threshold, would

now sit on the dashed line representingmt, and the other two likelihoods would not change.

Now, we need a way to distinguish between the second and third scenarios. To do

this, we use likelihood ratios to construct a metric. Likelihood ratios are generally used

in hypothesis testing using the Neyman Pearson lemma.

Neyman-Pearson lemma

Suppose we have a probability model with PDF f(x; θ) and we wish to test H0 : θ = θ0

versus H1 : θ = θ1. If L(θ, x) is the likelihood function then the best test of size α has a

critical region of the form

Λ(x) =
L(x|θ1)

L(x|θ0)
≥ A (5.1)
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for some non-negative constant A, where α is the probability of a false positive.

Use of likelihood ratios to define Θ̄

As Time-Teller is predicting the most likely time tpred, one can view this as testing the

hypothesis that the true time is t 6= T i.e. by testing

Htpred : The true time of the sample is tpred

Ht : The true time of the sample is t

According to the Neyman Pearson lemma, the best way to do this is by considering the

likelihood ratio

Λ(x, t) =
L(Z|t)
L(Z|tpred)

(5.2)

Let Θ̄ be the proportion of times t such that

Λ(x, t) ≥ η (5.3)

so that Θ̄ represents the proportion of the time space t for which Λ(t, x) is greater

than threshold η. The Λ likelihood ratio curves are shown in the sketch in figure 5.2

for the same likelihoods as in figure 5.1. A test projection to far outside of the elliptical

space would result in Θ̄ ≈ 1, a projection near to the centre of the torus, would result in

Θ̄ ≈ 0.5 (in that magnitude), and a projection in which we are highly confident in, would

result in a small Θ̄ ≈ 0.05.

Periodically penalised ratio threshold

Now, the final likelihoods used in the Time-Teller model are from 3D distributions. It is

possible that the distributions along the spline in each time PC space are slightly folded

(see figure 4.20) and could result in likelihood curves with double peaks. Additionally, as

we are using local principal components and combining likelihoods, it is possible that the

final likelihood has multiple peaks.

The Θ̄ metric described does not deal adequately with multiple peaks. If the likelihood

had two peaks with another high peak roughly 12 hours away from the MLE, we would

want the Θ̄ metric to penalise this, but if the two peaks are close then we would not

want this because that is compatible with good clock function. As it stands, Θ̄ would

not distinguish between these two cases. Some examples of likelihoods and how we would

want them to be classified are shown in figure 4.20. To summarise our desires for the Θ̄

metric:

• a single, narrow, high, peak would result in a high confidence estimate;
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Figure 5.2: Figure explaining likelihood ratio shapes, and the Θ̄ metric.Sketches
show likelihood ratio shapes where a test projection is far from the training data space,
in the middle of the training data space, and on the training space torus.

• a wide peak would result in a comparatively lower confidence estimate;

• a high second peak near to the MLE would result in good confidence in the MLE;

• a low second peak around 12 hours would result in good confidence in the MLE;

• a high second peak around 12 hours would result in low confidence in the MLE; and

• a uniform likelihood function, or one with low peak(s), would provide a low confi-

dence estimate.

To do this we implement a penalised likelihood ratio, where we use a cosine function

to scale the impact that a secondary (or more) peak will have on the final metric based

on distance to the MLE.

Let

C(t|T, ε) = 1 + ε+ cos

(
t− T

24
2π

)
(5.4)

be a simple cosine curve transformed so that ε ≤ C ≤ 2 + ε, where C(T |T, ε) = ε and

C(T +12|T, ε)) = 2+ε. We define ε > 0 so that C > 0. The larger ε is, the less anti-phase

peaks impact the final confidence metric.

We use this cosine transformation to scale the threshold η in (5.3) so that the final

clock function metric Θ is defined by the proportion of time t which satisfies:
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Figure 5.3: Sketch showing some possible likelihood shapes, and how they
should be classified.

Λ(x, t) =
L(Z|t)
L(Z|tpred))

≥ ηC(t|T, ε) (5.5)

This results in a changing threshold for the likelihood ratio Λ, where, for example, the

MLE must be (2 + ε)/ε times higher than a second peak 12 hours away, in order so that

the other peak is not taken into account in the dysfunction metric.

A sketch of this is shown in figure 5.4. The left panel show single peak in a likelihood

curve would not be affected by the penalised cut-off. The middle peak shows how if there

is a secondary peak near to the MLE peak, then Θ will not be penalised. The right panel

shows how if there is a secondary peak far from the MLE, then it will penalise Θ.

Choosing parameters

In order to generate Θ metrics using Time-Teller, the values of ε and η must first be

appropriately chosen. First, η and ε must have some constraints so that we can ensure

Θ(x) > 0 ∀ x (if Θ were allowed to be 0, then we risk losing all information in the
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Single Peak Double Peak, similar heights, close Double Peak, di�erent heights, far

Θ=0.05 Θ=0.1

L

Time
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Figure 5.4: Figure explaining the use of the penalised Θ.Sketch of likelihoods (top),
and equivalent likelihood ratios, Λ (bottom). Left panel shows how a single peak will not
be affected by the changing threshold. Middle panel shows how a secondary peak, near
to the MLE of comparable height, will not penalise Θ. Right panel shows how a small
peak anti phase to the MLE will penalise Θ.

likelihood) hence the first condition is that

0 < Λ(x, t) ≤ Λ(x, T ) = 1 ∀ x (5.6)

From (5.5), it is clear to ensure the positivity of Θ we must enforce that

ηC(t|T, ε) < 1 (5.7)

As max(C) = 2 + ε, and min(C) = ε

0 < ηε < η(2 + ε) < 1 (5.8)

and the final constraints on ε and η are

0 < η < 1/(2 + ε) < 0.5 (5.9)

ηε defines the minimum value of the threshold for which the likelihood ratio Λ can be

intersected, and η(2 + ε) defines the maximum. We set ε = 0.4 and η = 0.35, which sets

the maximum threshold (at the MLE) to η(2 + ε) = 0.84, and the minimum threshold

(anti-phase to the MLE) to ηε = 0.14. This means that if there is a peak in the likelihood
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exactly anti-phase to the MLE that is more than 14% of the maximum, then it penalises Θ.

ε, η, and the minimum threshold mt are hyperparameters of the Time-Teller model.

ε = 0.4, η = 0.35, and mt = 0.0067 are used in this thesis, but future users may want

to change the parameters. Any parameters that satisfy the conditions in (5.9) will (in

theory) provide a valid result, and an example of this is shown in the next section. As

ε→∞ the method is the same as a non penalised approach (so same as Θ̄), and as ε→ 0

any anti-phase secondary peak above mt will penalise Θ. An example of this is shown in

the next section.

mt is a measure of the signal-to-noise threshold. It means that the value of the

likelihood curve at at the MLE must be must be far greater than this limit for it to

be significant, i.e. L(Z|tpred) >> mt. mt = e−5 was chosen somewhat manually, by

observation of the log-likelihood curves. Optimisation of this parameter could be possible

using the distances of the opposite sides of the “doughnut” distributions, but for now this

remains fixed.

5.1.2 Exploring clock function using simulated data

As with the previous chapter, we use the stochastic Relogio model to generate dummy

data to use for method validation and explanation. The strength of using data from

this model is that we can create data with a “dysfunctional clock” by doing an in silico

knock-down.

Bmal1 is widely reported to be crucial for the proper functioning of the circadian clock

[144]. To knock down Bmal1 in the Relogio model, Vmax5, the rate of Bmal1 transcription,

is set to 10% of its original value (see appendix B). A trajectory of the knock-down (KD)

over 2 periods is shown in figure 5.5, and is clearly disrupted when compared to the nicely

rhythmic wild-type (WT) trajectories. These simulations have a system size Ω = 500,

used as a middle-ground noise level. The first few hours appear comparable between WT

and KD. 10 equally spaced samples from the KD data set were saved (as vectors of 12

“gene expression” values), and the Time-Teller model was used to estimate the time of

the samples as outlined in the previous chapter. The WT data was used as a training set

in the same way as has been used previously.

Examples of projections into local principal component spaces are shown in figure

5.6. Where the training data forms the familiar elliptical space, the WT test data (black

line) occupies a similar space, and the KD data (dashed line) is a distance away from the

training data. As the KD simulation starts with the same initial conditions to the WT

data, the trajectory starts off in the WT space.

The likelihoods resulting from these projections are shown in figure 5.7. The WT
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Figure 5.5: Plots of WT and KD stochastic Relogio models. For Ω = 500 the
trajectories of a simulation over 2 periods of the stochastic Relogio model with Vmax5 = 1
for WT(left), and Vmax5 = 0.1 for in silico KO (right). The colours on the plot represent
the 19 variables of the Relogio model, and the amplitudes are arbitrary.

(black) data shows good shape likelihoods over the whole 2 days of data, and the KD

(red) data shows a good likelihood for the first test time-point as expected, but there is

no visible peak thereafter.
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Figure 5.6: Examples of 4 local principal component spaces, with KD projec-
tions existing outside of the doughnut distribution representing WT data. The
coloured training data shows the usual elliptical distribution shapes. Some WT test data
is projected into the space, these points are shown joined by a solid, black line. The KD
data (joined points with a black, dashed line) is a distance away from the training data
in PC space.
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Figure 5.7: Plot showing likelihoods for one timecourse of WT data and one of
KD data. The WT (black) data shows good shape likelihoods over the whole 2 days of
timecourse, and the KD (red) data shows a good likelihood for the first test time-point
as expected. There are no other peaks for the KD data as they are so flat, they are not
visible in the figure. The black asterisks shows the MLE for each WT likelihood, and red
circles show MLEs for the KO likelihoods.
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5.1.3 Measuring Θ

Using the simulated data from the stochastic Relogio model, we attempt to show how

Θ increases as the magnitude of the knock-down increases. Again using Ω = 500 for 10

training simulations over 52 hours, we test how Θ changes as the magnitude of the level

of knock out Vmax5 is decreased from the WT value of 1 to the KD value of 0.1, in steps of

0.1. Each simulation ran for 52 hours, where 10 equally spaced time-points were extracted

as the test sets.

The first time-point of each test set is the same point from the limit cycle (with added

noise) so are expected to have good Θ values even for the KD data1. The 10 data point

timecourse of the Bmal1 variable as the Vmax5 parameter is shown in figure 5.8, where the

change in circadian behaviour is clear. Time-Teller attempted to tell the time of each of

the 10 data points for each trajectory. The Θ values for each of the 10 data-points of 10

different KD intensities are summarised in the box plots in figure 5.9.

Figure 5.10 shows example likelihoods for WT, and 3 levels of in silico knock-downs.

The WT shows a single high peak in the likelihood. Vmax5 = 0.6 shows a clear peak,

but with very small height compared to the 0.0066 threshold, and Vmax5 = 0.4 shows 2

peaks that are even smaller compared to the baseline. Vmax5 = 0.3 shows no likelihood

above the baseline. Figure 5.11 show the equivalent figures for the likelihood ratios in

red, with the cosine thresholds overlaid. Values for Θ are shown on the figure, where the

WT likelihood is 0.025, and Vmax5 = 0.6, 0.4, 0.3 are Θ = 0.182, 0.727, 1 respectively.

1As two periods are being used in the training data, the likelihood curves for each period are now
averaged (geometric mean)
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Figure 5.8: Plot showing the change in trajectory of the Bmal variable of one
simulation each of the Relogio model as the intensity of knock-down is in-
creased. Vmax5 decreases from 1 (black) to 0.1 (lightest grey), where rhythms are lost.

Figure 5.9: Box plots showing the change in dysfunction measure Θ as Vmax5 is
decreased by 0.1 from 1 to 0.1. Vmax5 clearly has a large effect on the dynamics of the
system as it falls below 0.7. Outliers in red around Θ = 0.05 are due to each simulation
starting with the same initial conditions, and acts as an in silico control.
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Figure 5.10: Plots showing the likelihoods for 4 magnitudes of knock-down in
the stochastic Relogio simulations.

Figure 5.11: Plots showing the likelihood ratios for 4 magnitudes of knock-down
in the stochastic Relogio simulations. Values of Θ are shown, which represent the
proportion of time that the likelihood ratio is above the cosine (in black).
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Notes on the values of η and ε

The box plots in figure 5.9 showed that as Vmax5 falls below 0.7, the functioning of the

clock is severely affected. There is an (almost) monotonic relationship between Θ and the

change in the Vmax5 parameter. This plot was generated with parameter values ε = 0.4,

η = 0.35, and mt = 0.0067. To show the effects of changing ε and η, 6 different parameters

(still satisfying conditions (5.9)) were used to generate equivalent figures. These box plots

are shown in figure 5.12, and all figures show that the Θ metric indicates a functioning

clock for Vmax5 until it reaches 60-70% of its original value.

All boxplots show similar behaviour, where the intensity of the KD is correlated with

Θ. However, there are some differences. Setting η = ε = 0.01, the method is very sensitive.

When η = 0.2 and ε = 0.1 the results show a more “all or nothing” result. η = 0.33, ε = 0.9

and η = 0.49, ε = 0.01 show many Θ values that are not 1 for the extreme knock downs,

so are not sensitive enough. η = 0.05, ε = 10 represents a parameter set with weak anti-

phase peak penalising, but will penalise heavily for wide peaks. η = 0.3, ε = 0.2 shows

results comparable to 5.9, as the parameters are of similar ranges. This shows that the

method is not reliant on the specific choices of η and ε.

This in silico analysis should provide an intuitive explanation as to what the clock

dysfunction metric Θ represents. These parameter choices for η and ε produce appropriate

results for the purposes of this thesis. It should be noted that we do not treat Θ with the

normal 0.05 significance cut-offs that one might be inclined to do. Θ is a metric, and not

a test statistic. “Functional clock” or “dysfunctioning clock” ranges for Θ are defined by

each training set. This is due to different levels of expected variation. Θ will be referred

to as the clock function/dysfunction metric.
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Figure 5.12: Examples of Θ distributions for different levels of knock downs, for
different ε and η parameter sets.
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5.2 Mouse Time-Teller applied to independent datasets

In this section, Time-Teller is applied to independent mouse data sets. All data sets

were found by a literature search, for data labelled with time, using the same male

mouse C57BL/6, and with microarrays performed using the Affymetrix MoGene 1.0 ST

GeneChip.

5.2.1 Distribution of Θ for Zhang timecourse data

To investigate the Θ clock function metric for the training data, we do not use a leave-

one-out approach. The test samples are contained in the training set, as to make it

possible to compare to other data sets. This is a control and validation step, and does

not impair the power of the test. The 10 genes Arntl, Npas2, Dbp, Per3, Nr1d1, Per2,

Nr1d2, Tef, Ciart, Wee1, and Clock (with Ciart having 2 probes) are used. The range of

Θ values resulting from applying the Time-Teller model to the training samples are shown

in the histogram in figure 5.13. This range helps us to define what Θ values represent a

functioning circadian clock. It is quite clear here that majority of the data has Θ < 0.1,

but there is a tail on the distribution until Θ < 0.2. We use this distribution to simply

define that mouse samples with Θ < 0.2 have functioning clocks, and we are confident in

these sample’s estimates.

Figure 5.13: Histogram showing the distribution of Θ values for the Zhang data.
For all 182 samples of the Zhang data, the distribution of Θ values has a median around
0.05, with a tail to around 0.2.
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5.2.2 LeMartletot data: simple timecourse

The simple timecourse dataset created by LeMartelot et al. [107] is an ideal dataset

to test the power of the mouse Time-Teller on an independent dataset. It is made up

of microarrays of pooled RNA extracted from the whole liver of 5 mice. Samples were

collected at times ZT2, ZT6, ZT10, ZT14, ZT18, ZT22, ZT2(+24), after the mice had

been entrained to LD cycles for 2 weeks.

Although there are only 7 data points in this dataset, it provides crucial validation

for the Time-Teller model. Time-Teller’s predicted results for the LeMartelot timecourse

are summarised in figure 5.14, showing Time-Teller’s predictions versus the real times of

the samples. The mean absolute error for time estimation is less than one hour. The Θ

values range between 0.02-0.11 with one Θ = 0.17, so all values fall within the “functional

clock” criteria (Θ < 0.2) defined in the previous section. The data for each time point

was treated independently, and any of these estimations could be made in one analysis

with completely reproducible results. These clearly accurate estimations, with Θ values

that indicate a functioning clock, show that the Time-Teller model works with no need

for data manipulation or batch bias. It is also notable to recognise that the results appear

distributed around the x = y expected result line, indicating no overall phase shift bias.

Figure 5.14: Scatter Plot showing the real time versus estimated time for the
LeMartelot liver timecourse data. The estimations are highly accurate.
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5.2.3 Fang data: WT and Rev-Erbα KO

A dataset comparable to the in silico WT versus KO data from the previous section was

published by Fang et al. [105]. This dataset allows the validation of Time-Teller by testing

its estimations on samples where we can assume that there is no functioning clock, versus

samples from the same experiment where we do expect a functioning clock.

In Fang et al.’s [105] experiment, 5 Wild Type and 5 Rev-Erbα KO mice were entrained

to LD cycles and euthanised at ZT10, where liver samples were taken. As the training

data is labelled between CT18 and C64, this corresponds to CT34 in the Time-Teller

model. The publication reports that the knock-out was successful.

The time of these single samples was estimated using the Time-Teller model. The

likelihoods are plotted in figure 5.15. The WT (blue) likelihoods are wide and irregu-

larly shaped, but produce relatively accurate estimations of ZT 36.6, 36.8, 35.7, 33.0,

and 36.4, with corresponding Θs between 0.03-0.13. There is a mean absolute error of

around 2 hours for time estimations of the WT data. This estimation error, but good Θ

values, could be explained by discrepancy arising from the use of mice in constant dark-

ness to train Time-Teller to estimate the time of mice that have been in regular LD cycles.

Time-Teller reports that the Rev-Erbα KO mice have no functioning clock, and reports

with extreme significance the difference between Θ values between the WT and KO groups

(p = 0). The KO (red) likelihoods are almost entirely flat in figure 5.15. The KO data

produces Θ values between 0.75 and 1 so time estimations are not accurate, and indicating

that there is no functioning clock. The box plots in figure 5.16 show the difference in Θ

values for the WT and KO data.

Time-Teller accurately and confidently predicted the time of the WT samples and gave

low confidence metrics for the KO data, indicating that there is no measurable clock.
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Figure 5.15: Plot showing likelihoods for the Time of samples of the Fang data.
Blue curves represent WT samples with clear peaks around CT30-38, and the negligible
amplitude curves in red for the KO data.

Figure 5.16: Box plot of Θ values for WT and KO data. There is a very significant
difference between the groups - Wilcoxon’s logrank test p = 0.
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5.2.4 Barclay data: WT vs time-stressed

It is important to ask the question of whether a clock is dysfunctional or just perturbed

from regular conditions, and to understand how Time-Teller model deals with this. Bar-

clay et al. [106] published a dataset that uses all WT mice, but half of the mice were

sleep deprived when they would usually be sleeping.

All mice were synchronised to LD cycles and given food ad libitum. The group of

stressed mice were kept awake during the first 6 hours of light (ZT 0-6) on days 1 through

5 and days 8 through 12 using a gentle handling approach designed to minimize stress

effects and intervention by the experimenter. At all other times mice were left undisturbed,

and the other group of mice were left completely undisturbed. Liver and adipose samples

were taken from 3 mice in each of the 2 conditions at ZT1, ZT7, ZT13, and ZT19.

Time-Teller very accurately estimated the time of the normal condition liver samples,

shown as the blue circles on the left plot in figure 5.17 and shown to have a median Θ

value around 0.06 in figure 5.18. There is also a high level of estimation accuracy within

the normal sleep schedule group for the adipose data, with the exception of an ∼7 hour

error for some final data points for the adipose tissue. The Θ values for these white fat

CT19 data points are all <0.05 and all 3 replicates have the same result. The accuracy

of the rest of the time estimations for the normal schedule data might well lead one to

question the data rather than Time-Teller results.

For the time stressed group, some samples are inaccurately predicted, as shown on the

right plot in figure 5.17. The Θ values for the time stressed group are generally higher, as

shown in the boxplot in figure 5.18. As sleep stressed clocks are not technically classed as

dysfunctional [145], we would not expect the Θ values to be close to 1, as with KO data.

There is however, a notable difference of Θ values for the normal and sleep deprivation

groups, which is significant in the liver data (p = 0.02) and less significant in the adipose

date (p = 0.1).

This suggests that sleep stress actually changes circadian gene expression to a profile

different than any gene expression profiles that occur in normal sleep-wake conditions.

This provides evidence that a chronic change to the sleep-wake schedule results in abnor-

mal circadian gene expression patterns, and not just a change in body time.
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Figure 5.17: Scatter plots showing real times vs estimations for the Barclay
data. Normal sleep schedule mice data points are shown on the left, and have less
variance than the sleep deprived mice estimations in red.

Figure 5.18: Boxplots showing distributions of Θ metrics for normal and
stressed, Liver and White adipose tissue samples. The samples from mice in
normal conditions have lower Θ metrics than their stressed counterparts.
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5.3 Human Time-Teller applied to independent datasets

Working with human data raises many more issues. The training set is now much smaller,

we are not working with genetically identical humans, and no data set exists with healthy

human samples with annotated times the samples were taken, that also use the U133

2.0 GeneChip (that we know of). All of the data used in this thesis originated from live

tissues, and not in vitro samples, due to the expectation that this would represent the

true circadian clock due to the complex input signals from the rest of the body.

In order to attempt to keep the variance low, we start off the human validation of

Time-Teller with datasets originating from oral mucosa, like the training data. We make

the realistic assumption that all (live) tissue samples will be taken between 9am-5pm2, as

with most of the human data, the real timings of the samples are unknown. Correspon-

dence with some of the authors of the studies presented below confirmed that this is an

appropriate assumption.

Distribution of Θ for Bjarnason human data

Although there were 16 probes identified in chapter 3 as rhythmic and synchronised, and

these 16 probes were used in the leave-one-out validation in chapter 4, we only use 15

probes going forward. The reason is that the Per1 probe 244677 at was found to have

significant signal issues in many of the independent datasets, i.e. the signals values were

very low. As there is another Per1 probe in this dataset, we can conclude that this is a

probe issue, and not an issue with the Per1 gene expression.

Time-Teller was used to find the Θ values for the training data, using the full 10

individuals as the training data. This defines the Θ distribution for healthy functioning

clocks and is shown in figure 5.19. For most human samples in the training set of the

Human Time-Teller, Θ < 0.09, with maximum values at Θ = 0.155. These provide an

approximate threshold for a “functioning clock” range when applying the human Time-

Teller to independent datasets.

Figure 5.20 shows how (when using a leave-one-individual-out) approach as in the

previous chapter, the Θ values for each individual are comparable. Male15 and female18,

who are phase delayed and phase advanced, have normal Θ values for these time estima-

tions, indicating that they have functioning internal clocks even though their body times

are different to average.

29am-5pm is the likely time interval that hospitals would work in.
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Figure 5.19: The distribution of Θ values for the human training set. This uses
10 genes (15 probes). The majority of the samples have Θ < 0.09, but the maximum
value is Θ = 0.155. All 10 individuals were used in the training set to get these values.
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Figure 5.20: The distribution of Θ values for the human training set, by indi-
vidual. This uses 10 genes (15 probes). A leave-one-individual-out approach was used
to get these figures.
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5.3.1 UK-Sri Lankan healthy data

Saeed et al. [108] conducted a study comparing UK and Sri Lankan oral squamous

cell carcinomas. The control data for this study includes 5 healthy control oral mucosa

samples from the UK and 3 healthy control samples from individuals in Sri Lanka. The

study states that the samples were handled using identical protocols for tissue collection

and processing3. All individuals were healthy, with low risk factors for cancers of the

mouth, but there is no other information given on the individuals or their lifestyles.

Time-Teller was used to estimate the time these samples were taken. The likelihood curves

are shown in figure 5.21, where the red curves represent the UK samples. The likelihoods

for the Sri Lankan samples are plotted in black and have far lower amplitudes.

Figure 5.21: Likelihoods for the time of sampling of the UK(red) and Sri Lankan
(black) oral mucosa samples.

The Θ values for the 5 UK samples are 0.05, 0.19 , 0.09, 0.08, and 0.07, with MLEs of

9:07am, 10:22am, 10:52, 11:15am, 10:00am. These appear to be realistic values reflecting

our expectations. The Θ values for the 3 Sri Lankan samples are 0.66, 0.55, and 0.69 (with

MLEs all around 2am), indicating that there is something wrong with these estimates.

The reasons behind this can only be speculated upon. It could simply be that something

went wrong during the sample handling in the many stages of the experiment from sample

taking to loading to plate. Or, there could be a much more complex reason for this: the

training data originated half a world away from Sri Lanka, in Canada, and very little

is known about the circadian clock behaviour differences for people living in different

3Unfortunately, a different (custom) microarray was used to assess the tumour samples, which excluded
the majority of the clock genes.
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lifestyles, climates, cultures, or latitudes. In the future, if this kind of Time-Teller model

would be used clinically, such differences (if in fact there are any) would have to be better

understood.

5.3.2 Smoker and non smoker oral mucosa data

Oral mucosa transcriptome data was published by Boyle et al. [109] as part of a study on

the effects of smoking on the oral mucosal transcriptome.

40 current smokers and 40 age and gender matched never smokers underwent buccal

biopsies. Eligible subjects were healthy volunteers (except for the effects of smoking in

the smoker cohort). One sample was excluded from the study based on a quality measure

leaving 79 for analysis. Time-Teller’s MLEs are summarised in the histograms in figure

5.22. Most of the estimated times are in the morning, between 6am-1pm, which are earlier

than expected, but mostly realistic estimates. 15 of the estimates are in the very early

morning, between 1am and 5am and are less realistic, but could reflect natural variations

in body time, or the individuals could have been shift workers. All the estimations between

1am-4am have Θ > 0.14

Figure 5.22: Histogram summarising the MLEs for time of 40 non-smoker sam-
ples, and 39 smoker samples.

The boxplot in figure 5.23 shows that the majority of the 79 non-smoker and smoker

samples have Θ < 0.155, which are in the “functioning clock” range. The median Θ for

non-smoker samples is smaller than the median Θ for the smoker samples, but with an

insignificant Wilcoxon test statistic of p = 0.083. This might suggest that the smoker

group has more inter-subject variability for the functioning of the circadian clock.
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Figure 5.23: Boxplot showing distribution of Θ values for the non-smoker and
smoker samples. Smokers generally have higher Θ values, but with an insignificant test
statistic p = 0.084.

5.3.3 Autopsy data

The vast majority, if not all, live human tissue samples are taken in the daytime due

to practical reasons. This makes it difficult to test the human Time-Teller model for

estimating samples that were taken at night.

One very interesting dataset exists that can help with this validation step, but it does

not come without some issues. The data published by Roth et al. [110] originates from

autopsy samples of multiple organs of 10 individuals. The samples were taken up to 8.5

hours after death, so we do not expect that this data will perfectly show transcriptome

fingerprints of well functioning clocks. We know very little about post mortem gene ex-

pression; it is unlikely that gene expression “freezes” at the moment of death, but it is

also unlikely that gene expression continues as normal. These issues are likely to decrease

the viability that Time-Teller can estimate the time of these samples (whether this is time

sample was taken, or time-of-death, it is not defined here). Neither the time of death nor

time sample was taken is published with this data. There is no reason to assume that all

of the deaths occurred at the same time of day, or that they all died in the daytime.

The dataset is complex and is made up of 353 samples, but only the 184 non-brain

samples will be used in this analysis. Datasets for individuals 1-4 also contain oral mucosa

and head, neck and mouth samples, which are highlighted in this analysis. Time-Teller’s

MLEs for the 184 non-brain samples are shown in figure 5.24, where the maximum likeli-

hood is shown on the y-axis, and the individual indicated on the x-axis. The variance of
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estimations for each individual is high. Different organs probably have different mecha-

nisms in place for gene expression and degradation after death, which probably accounts

for some of the intra-individual variance seen in figure 5.24. The oral data is highlighted

with black markers, and shows an “average” time estimate of all the organs in individuals

1-4, with less variance. From these results, we could hypothesise that individuals 1 and

2 died at similar times, and individuals 3 and 4 died at similar times, around 12 hours

apart from each other.

This analysis has shown that Time-Teller can make estimations across the full 24

hours, without day-time bias.

Figure 5.24: Time-Teller results on autopsy data for 10 individuals across differ-
ent organs. Extra markers for Head/neck/throat samples for individuals 1-4 are marked
as pharynx (plus), oral mucosa (cross), salivary gland (circle), tongue (square). The size
of these black markers is scaled by 1/Θ. There is a lot of variation amongst individuals,
but this is expected due to the low confidence in the data. This data shows that the
Time-Teller can estimate times for samples during the night, and there is no obvious bias
for day-time estimations.
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5.4 Summary of Chapter

This chapter has presented the metric Θ as a measure of clock dysfunction, which is

calculated using the likelihood functions produced by Time-Teller. Θ is calculated using

a penalised likelihood ratio threshold.

The in silico Time-Teller was used to show how Θ is correlated with the level of an in

silico KO, and how Θ is not sensitive to a change of the hyperparameters η and ε.

The mouse Time-Teller was able to accurately calculate the timings of the samples

in the LeMartletot dataset, with “functional clock” Θ values. Time-Teller was able to

detect KO samples with dysfunctional clocks, calculating Θ ≈ 1 for samples from full KO

samples, and Θ < 0.155 for WT samples. Sleep deprived mice were shown to have less

functional clocks than their normal sleep schedule counterparts.

The human Time-Teller was able to provide realistic estimations with “functional

clock” Θ values for 3 independent datasets. Problems were found with 3 samples from Sri

Lankan individuals, but the lack of information about the individuals in the original study

meant we can only speculate as to why this is. Data from autopsy samples were used to

validate that Time-Teller could estimate that samples were taken during the night, with

good confidence (i.e. low Θ values).

Time-Teller is an algorithm that provides an MLE for the time that a single sample

was taken, along with a metric Θ which provides a measure of how functional the circadian

clock is (and is a type of confidence measure for the MLE). The threshold for where Θ

defines a “functional clock” is defined by the data set used to train Time-Teller.

Time-Teller could be used to tell if an individual’s body time is in sync with clock time,

i.e. if they are phase forward, or delayed with respect to some population average. This

could be used in the clinic to inform on optimum timings for personalised chronotherapy

regimes.

However, the clinical use of Time-Teller is not just in its ability to tell the time of a

sample; it is in its ability to quantify the molecular circadian clock dysfunction from a

single transcriptome sample. The next chapter explores how Time-Teller could provide

insights into the circadian clock dysfunction in human cancers.



Chapter 6

Circadian Clock Dysfunction in

Human Cancer

In 2007, the International Agency for Research on Cancer declared shift work that in-

volved circadian disruption to be a “probable” carcinogen (group 2A), but noted that

human evidence was limited [146]. However, the evidence to support circadian disruption

as a carcinogen is growing, and is being researched from multiple, interrelated perspec-

tive. There are epidemiological studies that have tried to determine if shift workers have

a higher incidence of cancer through statistic analyses of the gathered human metadata

[147, 146, 148, 149]. Some studies use mice in jet-lagged conditions, with predispositions

to cancer, to measure cancer incidence and growth in comparison to normal sleep schedule

mice [16]. Other studies attempt to determine the mechanisms that drive the carcino-

genic results of circadian disruption, but these are far more complex as the physiological,

endocrine, and molecular rhythms must be tracked and related to tumourigenesis [17]. In

parallel with this, a growing body of evidence supports the potential tumour suppressor

role of the molecular circadian clock [150]. This research is being conducted on the regu-

lating role of the molecular circadian clock for process involved in cancer. So far, we have

evidence to support that:

• circadian rhythms are coupled to the cell cycle [66, 64] (dysfunctional cell cycle

gating is a hallmark of cancer [151]),

• host genetic and functional circadian disruption promotes tumourigenesis [18, 150],

• and circadian rhythms are often disrupted in cancer [15].

Understanding of the role of the physiological inputs to the circadian clock, and the

function of the molecular circadian clock in relation to cancer, could lead us to crucial

information that allows the design of novel treatments. We already have evidence that

optimal timings of administration of chemotherapy can increase efficacy and reduce toxity

of cancer treatments; this is known as chronotherapy [152, 43, 153]. More information

176
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could help in the design of chronotherapy strategies or the design of “clock resetting”

treatments, in order to treat cancer.

Physiological circadian disruption promotes tumourigenesis

Here we discuss three categories of evidence that circadian disruption has an impact on

both tumour risk and/or progression.

Evidence for shift work as a human carcinogen

There is a significantly higher prevalence of breast cancer in industrialized nations com-

pared with developing countries [19]. This suggests that environmental aspects of modern

society may play an important role in breast cancer risk [154]. A reason for this could be

the western lifestyle resulting in disruptions of the internal body clock.

Multiple studies have been published that report an increased risk of cancer for nurses

that work night shifts [147, 146, 148]. These are large scale, epidemiological studies using

large complex datasets of human metadata, in some cases with inconclusive results due

to the nature of the data [149]. For example, it is difficult to define what a night shift

is, and different studies define night shift work as different things. Also, a lot of the data

is a result of surveys filled out by women asked to think back about their schedules over

their life times, which may not always be accurate.

Evidence for increased tumourigenesis in jet-lagged mice

There are various studies that investigate cancer prone mice which are kept under varying

LD conditions. An example of this is the study published by Van Dycke et al. [16] where

one group of cancer risk mice (with a p53 Li Fraumeni mutation) were kept in normal LD

cycles, and another group were kept in alternating length LD cycles. Every week, mice

were sacrificed, weighed, and tumours measured. The circadian disturbed mice gained

more (relative) weight and developed tumours more quickly than those in a normal LD

cycle. This is summarised in figure 6.1, where (A) shows that sleep disturbed mice

gained more weight relative to food intake than normal LD scheduled mice. (B) shows a

higher number of tumour baring mice in the disturbed scheduled mice with a Kolmogoroff

Smirnoff Test statistic of p=0.0127 (a test for difference in distributions).

Papagiannakopoulos et al. [18] showed that both physiological and genetic circadian

rhythm disruption accelerates lung tumourigenesis in mice. They genetically engineered

mice so that lung tumours could be induced via p53 and K-ras pathways. After inducing

these tumours to the genetically engineered mice, they kept one group of mice in normal

LD conditions and one group in jet-lag conditions. They showed both a significant increase

in tumour growth in the jet-lag group, and significantly reduced survival.
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Figure 6.1: Plots showing differences in weight gain and tumour numbers for
normal and jet-lagged mice. From [16]. (A) shows the relative body weight gain
(normalised by food intake) and (B) The percentage of mice with tumours in normal
LD cycles (n = 20; closed circles) or chronic jet-lagged conditions (n = 21; open circles).
Black colour indicates mammary gland tumour, whereas red colour indicates other tumour
types.

Evidence for decreased proliferation in synchronised cancer cell lines

Kiessling et al. [17] attempted to address whether enhancing circadian rhythmicity in

tumour cells affects cell cycle progression and reduces proliferation. They used various

cells lines and induced circadian synchronization with dexamethasone shock. Their main

result is shown in figure 6.2, where the solid black line shows data representing the vol-

ume of the cells over a week that had been synchronised to a circadian rhythm. Both

unsynchronised cells and Bmal1 KO cells (even with synchronisation) show much more

growth. This result shows that proper expression Bmal1 has an inhibitory effect, when

cells are shocked with dexamethasone, on tumour growth.
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Figure 6.2: Knock-down of Bmal1 prevents the inhibitory effect of dexametha-
sone on tumour growth. From [17]. Cells with Bmal1 that are given a DEX shock
have significantly lower relative tumour volume to cells with silenced Bmal1, or cells with
Bmal1 that have not been synchronised with dexamethasone.

6.0.1 Genetic circadian disruption promotes tumourigenesis

Where physiological circadian clock disruption is studied with mice genetically engineered

to have a high risk of cancer in changing LD schedules, genetic disruption is studied using

mice with additional mutations in specific circadian clock genes (in normal LD conditions).

Papagiannakopoulos et al. [18] genetically engineered mice so that lung tumours could

be induced via p53 and K-ras pathways and also engineered mice with a mutant Per2 or

Bmal1 allele. After inducing tumourigenesis in the lungs, they found that mice whose

circadian clock had been suppressed, had both more tumours, and lower survival. This is

shown in figure 6.3 where (J) shows that the cancer prone mice developed more tumours

with Per2 or Bmal1 knock-downs, and (K) shows significantly better survival in the mice

with functional circadian clocks.

6.0.2 Mechanisms driving circadian disruption to promote tu-

mourigenesis

The mechanisms by which circadian disruption acts as a carcinogen are not something

that will be comprehensively addressed in this thesis, as this would require an expert

understanding of molecular biology. However, as this is a very important area of research

that is directly relevant the aims of this thesis, we present an overview of some of the key

results in this research area. There is evidence that the mechanisms by which circadian

disruption promotes tumourigenesis are consequences of:

• reduced production of melatonin or vitamin D [155],

• sleep deprivation resulting in the suppression of the immune system, metabolic

changes favouring obesity, and the generation of pro-inflammatory cytokines [156],
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Figure 6.3: Genetic disruption of circadian rhythms accelerates lung tumouri-
genesis From [18]. (J) Number of Surface tumours in KrasLA2/+ WT (+/+) animals
(n = 12), systemic loss of Per2 (Per2m/m) (n = 6), and Bmal1 loss (Bmal1-/-) (n = 8)
are shown. (K) Kaplan-Meier survival analysis for KrasLA2/+ animals with WT (+/+)
(n = 50), Per2m/m (n = 31), and Bmal1−/− (n = 7).

• increased telomere shortening [157],

• and a predisposition to a natural variation of the circadian pathway [150].

Some of the mechanisms that have been proposed by Blakeman et al. [19] to link

breast cancer and the dysfunction of the circadian clock are summarised in figure 6.4.

They suggest that potential ways in which circadian disruption can drive breast cancer are

through genetic defects, ageing, or shift work. A dysfunctional clock can directly disrupt

the gating of the cell cycle and reduce apoptosis, and these effects can also be brought

on indirectly through altered metabolism, in response to a broken circadian clock. They

can also lead to elevated EMT (epithelialmesenchymal transition), driving the formation

of lethal metastases. They also suggest that arrhythmic production of melatonin tips the

balance towards tumourigenesis [19].

6.0.3 The circadian clock is coupled to the cell cycle

Cancer is a heterogeneous collection of diseases, but it is generally defined by the six

hallmarks of cancer [151], the first being sustained and ungated proliferation resulting

from the dysregulation of the signalling to the cell cycle. Due to this, the connection

between the cell cycle and cancer is a widely studied field in oncology and molecular

biology.

The circadian clock and cell cycle are two very different and very complex biological

oscillators. This complexity and elaborate design probably arises from the criticality

for proper control and timings, and the need for tight controls and backup mechanisms.

Although the mechanisms of how the circadian clock and cell cycle communicate with each
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reduces breast cancer risk, with lower levels of CLOCK
in healthy controls. SNPs in Clock directly alter the
expression of genes linked to cell cycle progression, such
as CCL5. Similarly, Npas2 polymorphisms are associated
with increased breast cancer risk. The Ala394Thr SNP
alters the NPAS2 protein structure, which interferes with
NPAS2/BMAL1 heterodimerization. Women with this
SNP are at significantly higher risk of developing the
disease ([55], Table 1).

Link to oestrogen receptor
Per gene expression correlates with other genes impli-
cated in breast cancer, for example that encoding the
oestrogen receptor (ER). Oestrogen receptor interacts
with PER2 and BMAL1 and is integral to the formation

of mammary acini, which are the core cellular structures
within normal breast [56]. Mammary epithelial cells are
highly polarized, and proteins are differentially expressed
across the cells [57]. The polarity of the cells and acinar
stability are vital for directional milk secretion into
alveolar lumens [29]. However, knocking down PER2,
BMAL1, or ER prevents acinar formation, perhaps via a
feedback loop between oestrogen and the clock [56].
PER1 also influences ER transcriptional regulation, while

PER2 interacts with ER to suppress oestrogen-mediated
transcription of ER target genes [58]. Because Per is also
induced by oestrogen, there is a feedback loop coupling
the circadian clock and the oestrogen pathway. Absent ER
expression is associated with an aggressive tumour pheno-
type, and dysregulation of ER-transcriptional activity can

a

b

Fig. 2 Circadian disruption can drive breast cancer. a Intrinsic factors such as genetic defects or ageing, and extrinsic factors such as irregular shift
work, can severely disrupt the body’s internal timing system. b In turn these factors, either singularly or collectively, link a faulty circadian clock to
an increased risk of breast cancer. A faulty clock can directly disrupt the gating of the cell cycle and reduce apoptosis, These effects can also be
brought on indirectly through altered metabolism in response to a broken circadian clock. They can also lead to elevated EMT, driving the
formation of lethal metastases. A further mechanism that can link to breast cancer is arrhythmic production of melatonin, tipping the balance towards
tumorigenesis. EMT epithelial–mesenchymal transition

Blakeman et al. Breast Cancer Research  (2016) 18:89 Page 5 of 9

Figure 6.4: Possible circadian disruption pathways to breast cancer. From [19].

other are not yet fully understood, it is clear that they do. Indeed, Wee1 is a well-known

circadian clock gene in mice (see figure 3.7). WEE1 kinase is responsible for a cell’s entry

into mitosis, by regulating the CYCLIN B1/CDC2 (cell division control protein 2 also

known as cyclin-dependent kinase 1, CDK1) complex [68].
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The circadian clock has been shown to control multiple aspects of the cell cycle,

conferring gating mechanisms at key checkpoints of the cell cycle to ensure fidelity in

DNA replication and cell division.

There is some evidence that the oncogene MYC interacts with core circadian clock

genes [158]. The circadian control of many oncogenes and tumour suppressor genes are

being investigated for other mechanisms that might link circadian disruption and cancer

[159]. There is increasing amounts of evidence that the circadian clock and the cell-

cycle are coupled oscillators [66, 64], which generally indicates that the coupling is bi-

directional. Mathematical models have been developed in order to explore the dynamics

of these coupled oscillators [66, 37, 160].

6.0.4 Chronotherapy

Research into the association between circadian clock dysfunction and cancer promises

to be a successful area of research for new treatments and targeted therapies. The dose

for conventional chemotherapies is usually found by dose increments until specific toxic-

ities present [5]. Chronotherapy is the practise of administering treatments according to

biological rhythms, in order to improve the efficacy and tolerability of treatment [152].

Circadian changes in tolerability are expected due to cells being more susceptible to dam-

age at certain phases of the cell cycle, and hence more tolerable at others. Cancer cells are

not expected to be maximally tolerant at the same time as healthy cells, as the circadian

clock is likely to be dysfunctional in cancer. Hence it is possible to find the optimum time

of day where healthy cells are shielded and cancer cells are maximally targeted.

Chronopharmacokinetics

Chronopharmakokinetics is the field of study of the response to rhythmic exposure to a

drug and its metabolites (chrono PK), and the rhythmic organization of the drug targets

(chrono PD) via mathematical modelling [37]. If patient-specific parameters could be

identified, this systems approach could enable optimised and personalised chronothera-

putic drug regimes [37].

Evidence in mice

Li et al. [152] showed that optimal chemotherapy timing could be predicted by clock gene

expression timecourse patterns. They found that the high amplitude mRNAs Rev-Erbα

and Bmal1 clock markers were both critical determinants for optimal timing of tolerability.
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Evidence in humans

Giacchetti et al. [161] report results from human clinical trials of chronotherapy on pa-

tients with metastatic colorectal cancer. Three international phase III clinical trials were

conducted, where both chronotherapy and conventional chemotherapy were administered

using oxaliplatin, 5-fluorouracil, or leucovorin. After 9 years the status of 345 females

and 497 males was recorded. They reported that males who had been treated with a

chronotheraphy regime had a significantly improved tumour response rate, progression-

free survival, and overall survival as compared to conventional chemotherapy treatment

regime. They report an opposite effect for females, suggesting that sex-dependent toxici-

ties could be possible.

Tumours with dysfunctional clocks are more responsive to chemotherapy

One of the hallmarks of cancer is sustained, proliferative signalling [151]. Most chemother-

apies target these dividing cells when they are at a vulnerable stage of the cell cycle.

Tumours with disrupted circadian clocks can respond better to chemotherapy because

the cell cycle is less regulated. These tumours have more cells in the cell cycle because the

clock disruption alleviates an inhibitory control on cell cycling. If more cells proliferate,

more cells are in a susceptible state to chemotherapy, and response to chemotherapy is

better. However, these tumours are also more aggressive, as we will show in the next

section.

Lee & Sancar [162] published a study with the finding that circadian clock disruption

improved the efficacy of chemotherapy. They saw that cells with p53 mutations were more

sensitive to chemotherapy when Cry1 and Cry2 were also mutated.

Chronotherapy and Time-Teller

It would be very useful for studies in chronotherapy to be able to know ahead of treatment

plans, if a tumour has a functional circadian clock. That way, treatment regimes could

be tailored to the tumour. It is not viable to take timecourses of tumours. One time

point sample is all that is likely to be available for use in these estimations. This is where

Time-Teller provides a solution to better inform cancer therapeutics in the clinic, and not

just in general research.

6.0.5 The circadian clock is dysfunctional in cancer

This chapter will now discuss current evidence whilst providing new evidence that the

circadian clock is dysfunctional in many cancers.

The proposed mechanisms behind the association between the circadian clock and

cancer genetics are not discussed in detail here, but a good review is given in [163].
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This review also provides a summary of major findings in some tumour transcriptome

studies, of whether any clock gene expression were significantly increased or decreased

in tumours. Although most studies report a downregulation or decrease in expression

levels, some report the opposite finding. This supports an assumption of this thesis:

that dysregulation of rhythm does not necessarily mean that expression is decreased, and

therefore a different metric is needed.

The circadian clock being dysfunctional in cancer is often assumed as this assump-

tion is precursor to the fact that genetic circadian disruption promotes tumourigenesis

(the genetic circadian disruption must first exist before it can drive tumourigenesis). The

vast majority of the evidence for genetic circadian disruption promoting tumourigenesis

involves a genetically engineered mouse whose circadian clock has been purposely dis-

rupted.

Limited evidence has been produced to show that circadian rhythms are disrupted

in a living tissue environment. There is evidence of faulty rhythms in the tumours of

genetically engineered mice [164, 165], in cell lines [166], and in human cultured primary

cells, that rhythms are weaker in cells with a diseased phenotype [167]. However, there

is a lack of in vivo longitudinal time series data on molecular clock genes or proteins in

solid tumours. There is a huge difficulty in acquiring this data, so sound evidence of

the dysfunction of the circadian clock in cancer has not yet been generated by biological

studies.

In fact, most of the evidence that exists towards showing that the circadian rhythms

in cancer are faulty is contained in the mathematical studies discussed in chapter 4.

CYCLOPS [13] and Zeitzeiger [12] both report a “different to normal” behaviour of their

model’s outputs when their algorithms are applied to cancer data. Shilts et al.’s ∆CCD

study [15], Evidence for widespread dysregulation of circadian clock progression in human

cancer (discussed in chapter 4) contains some of the most convincing evidence towards

this hypothesis. Time-Teller can further substantiate this.

6.1 Time-Teller on human cancer datasets

Time-Teller provides a way to robustly estimate the circadian clock disruption in single

samples which could help to design tailored therapies, and also provides evidence in

support of the hypothesis that circadian clock is dysfunctional in many cancers. We

begin using a data set of transcriptomes of oral cancers with some healthy controls.

6.1.1 Feng data: healthy and OSCC

Feng et al. [168] conducted comparative analysis of healthy oral mucosa transcriptome and

oral squamous cell carcinoma (OSCC) transcriptome. The dataset contains 229 samples
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in total, 167 of OSCCs, 45 of normal oral mucosa, and 17 samples are of dysplasic oral

mucosa tissue. Dysplasic tissue is abnormal tissue that could signify early signs of cancer.

Time-Teller was applied to this data. The resulting MLEs are plotted against the

Θ values in figure 6.5. The black pluses show normal samples with realistic estimated

timings (9am-3pm), and the blue circles show a similar result. The red crosses represent

the cancer data and show some unrealistic estimations during the night, but all with very

high Θ values.

Figure 6.5: The Maximum likelihood estimates plotted against Θ values for each
prediction from Time-Teller for the Feng dataset. The estimates are generally
between 9 am and 6 pm, where the majority of the estimates outside of this time range
are for cancer samples (red crosses).

The boxplots summarising the Θ distributions for the different groups are shown in fig-

ure 6.6. Where the normal and dysplasic samples are combined, the Wilcoxon Rank Sum

test significance value is p = 0.0003. This represents the probabilty that the distribution

of Θ for the cancer samples has a higher median than the normal and dysplasic samples.

The majority of the normal and dysplasic samples have Θ < 0.1, indicating a healthy

clock. More than half of the cancer samples have Θ > 0.1, indicating a larger variation of

Θ values for cancer samples. This provides significant evidence for the disruption of the

circadian clock in these OSCCs, compared with healthy samples.



186 CHAPTER 6. CIRCADIAN CLOCK DYSFUNCTION IN HUMAN CANCER

Figure 6.6: The distribution of Θ metrics calculated by Time-Teller for the
Feng data, by group. Between the cancer group (n = 167) and normal/dysplasia
group n = 62, the difference in median value is highly significant with p = 0.00003)
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6.2 Breast cancer and circadian rhythms

The link between breast cancer and circadian clock dysfunction has been the central

concept of many studies, review articles [19, 152], and has received much popular media

attention. We focus on the literature reporting clock dysfunction links to breast cancer,

and the results of Time-Teller applied to breast cancer data, for the rest of this chapter.

6.2.1 Summary of breast cancer prognostic markers

Breast cancer is a biologically heterogeneous disease, and the use of biomarkers ensures

breast cancer patients receive optimal treatment. A very good summary of these prog-

nostic markers is given by Taneja et al. [169], but we provide a simple overview here.

About 80% of all breast cancers are estrogen receptor positive (ER+), and 65% are

progesterone receptor positive (PR+). The cancers grow in response to these hormones.

Additionally, around 20% of breast cancers have a high number of HER2 (human epider-

mal growth factor) protein receptors, which stimulate the cells to divide and grow. These

positive receptor cancers can be treated by targeted therapies to block the receptors and

hence the signals that stimulate them to grow.

A tumour which is ER-, PR-, and HER2- is called triple negative breast cancer (TN),

and accounts for around 15% of all breast cancers. Conventional chemotherapy would be

used to treat these tumours. The histologic grade of a tumour, usually given a number

1-4, is assigned to tumours as a measure of cell abnormality, and how fast the tumour is

likely to grow (4 being the most abnormal and aggressive). Tumour staging according to

size are given the labels T2 for tumours greater than 2cm and less than 5cm in diameter,

T3 for tumours larger than 5cm, and T4 for a tumour of any size that has spread beyond

the tumour boundary into the chest wall or to the skin. Nodal status refers to a grading

as to how many axillary lymph nodes the cancer has spread to; N0 being 0, N1 being

1-3, N2 being 4-9, and N3 being 10 or more. Nodal status and size of a tumour are often

correlated [170]. Large tumours with a large number of axillary lymph nodes will often

result in the worst outcomes.

The measurement of response to treatments involve tumour shrinkage, including com-

plete disappearance of all clinically or radiologically detectable tumour deposits. Patho-

logical complete response (pCR) is said to be achieved if there is an absence of infiltrating

tumour in breast and lymph nodes after treatment [171].

Other endpoints are measured by survival outcomes. Disease free survival (DFS) is

defined as the time from surgery to death, or cancer recurrence. Event free survival

(EFS) is defined as the time from surgery to death, recurrence, or a complication from

the treatment (e.g. pain). Overall survival (OS) is defined as the time from surgery to

death [171].
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Loss of circadian clock gene expression is associated with tumour progression

in breast cancer

Cadenas et al. [172] examined the expression of 17 canonical clock genes in a collection

of 766 breast cancer patients who were node-negative at the time of diagnosis and did

not receive any chemotherapy. Clinical pathology factors such as MFS (metastasis free

survival), grade, etc., were available. The microarray GeneChip used was HG-U133A, and

unfortunately is not compatible with the training set used to train the human Time-Teller

model presented in this thesis.

Cadenas et al. did not examine the clock function, but rather the transcriptional

activity of each individual clock gene, and its relation with patient survival simple. They

did simple comparative and correlation analysis of the dataset, and reported the main

finding to be that “high expression of several clock genes (Clock, Per1, Per2, Per3, Cry2,

Npas2, Rorc) was found to be associated with longer MFS”. Other findings were reported

associating higher levels of Per2, Cry2, and Per3 to lower grades of tumour, and ER-

tumours. They claim that these results suggest a loss of expression of core clock genes,

mainly those involved in Ebox regulation are associated with a worse prognosis in breast

cancer.

In samples with functioning clocks, Npas2 should be maximally expressed 12 hours

apart from Per1, Per2, Per3 and Cry2, with Rorc somewhere in between (see figure 3.4).

In a microarray, amplitudes of circadian oscillation can span between 24 and 212 (arbitrary

expression units) so actual level of expression hugely depends on the time of the day. The

circadian nature of these genes is not addressed in this study: the analysis was conducted

as would any other gene expression analysis. There is no evidence in this study that

the patients with more aggressive tumours were not taken at a different time of the day:

which would invalidate all of the results presented.

The molecular circadian clock is such a complex network of oscillators, it is unlikely

that clock dysfunction can be studied with such simplistic methods. This is a role that

Time-Teller can fill.

Richardson data: different types of breast tissue

Richardson et al. [112] published a study looking at the gene expression signatures of

different classes of breast tumours, with some healthy tissue as a control. The study

was not looking at circadian rhythms and is a complex genomics study that will not be

discussed here. The data however, is perfectly suited to be used by Time-Teller. 42 tissue

samples of 3 different breast tumour types, and 7 normal tissues were processed using

microarrays (Affymetrix HG U133 2.0, so is compatible with Time-Teller).

The tumour types were Basal-Like Carcinoma (BLC), BRCA1-, and non-BLC. BLCs
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are aggressive, high grade, triple negative tumours, and BRCA1- tumours have a similar

phenotype [112]. Without going into detail, we can assume that the non-BLC tumours

refer to tumours which are ER+, most of which are PR+, and some also HER2+ [112].

Time-Teller estimated the MLE and the clock dysfunction metric Θ for each sample.

The results are shown in the scatter plot in figure 6.7, showing that the 7 healthy samples

were taken between 11 am and 5 pm, which is reasonable. The Θ values for the grouped

tumours and the healthy samples are summarised in figure 6.8.

Figure 6.7: A plot of estimated time vs Θ for the Richardson data. All healthy
data is estimated to have been taken between 11am and 5pm. The cancer data is scattered
across all times.

Both figures show that the tumours are more likely to have a dysfunctional clock than

the healthy samples. However, there are only 7 healthy samples, whose median Θ is 0.155,

which is the upper limit of what the Bjarnason data suggests we should label a working

clock. There is no mention in the paper of how the healthy breast tissue was attained,

but it is likely that this tissue is from the resection boundary of tumours. Tissue from

tumour micro-environment being labelled as healthy might explain why the Θ values for

the normal samples are not as low as we would expect. Additionally, this may be because

we are comparing oral mucosa to breast tissue. We showed in chapter 3 that the core clock

genes of mice are synchronised across organs, and we use this to back up the assumption

that we can compare oral muscosa and breast tissue.

Despite the limitations of the data, there is a significant difference in Θ distribution

between groups, suggesting that the tumours are more likely to have dysfunctional clocks.
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Figure 6.8: The distribution of Θ values calculated by Time-Teller for the
Richardson data. The normal samples have a significantly lower median than the
cancer samples, with Wilcoxon test statistic p = 0.035.
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6.3 Circadian clock dysfunction as a novel prognostic

factor

In this section, circadian clock dysfunction is incorporated into a study on cancer charac-

teristics, using Θ. The data we will use as a case study is that of the REMAGUS clinical

trial.

REMAGUS clinical trial

The REMAGUS multicenter randomised phase II clinical trial was carried out between

2004-2007, aiming to assess the response of primary breast cancer to different protocols

of neoadjuvant chemotherapy, according to tumour hormonal receptor status and HER2

expression. Survival data was gathered up to 10 years after the completion of the study.

Giacchetti et al. [171], Cremoux et al. [113], Valet et al. [173] and Pierga et al. [174]

report the outcomes and clinical results of the trial. None of these results in these studies

are specifically circadian clock related.

Briefly, excluding specific drug protocol results, the major findings reported from

published works are:

• A set of 31 genes differentiate pCR or no pCR samples. Many of these were associ-

ated with estrogen receptor related genes.

• Negative hormonal receptor status and limited tumour size predicted for pCR,

• Triple negative breast cancers experience the highest pCR rate of 30%

6.3.1 Distribution of Θ for REMAGUS data

The transcriptome of 226 patients of the REMAGUS trial were analysed using Affymetrix

U133 2.0 Arrays and is available on GEO under accession number GSE26639. Prognostic

and survival data up to 10 years after the trial ended is available from the supplementary

information of [171].

Time-Teller calculated time of samples and the Θ clock function metric for all 226

tumour transcriptome samples. The distribution of Θ values for the REMAGUS data are

shown in the histogram in figure 6.9, with the corresponding Bjarnason data Θ values

overlaid. The maximum Θ for the Bjarnason data is 0.155, but the majority of the data

has Θ < 0.1. Around half of the REMAGUS data has Θ values in the same range as the

Bjarnason data.
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Figure 6.9: Histogram showing the distribution of Θ values for oral mucosa and
breast cancer samples. The Θ distribution of the 60 healthy oral mucosa samples from
the Bjarnason data is in blue, and the 226 REMAGUS tumour samples distributions are
shown in orange. Histograms are overlaid, not stacked.

Estimated time vs real time

The times that the tumours were biopsied are available for 108 of the samples. All of

the tumour biopsies were performed between 8:45 and 17:45. As we are now using cancer

data, we do not expect that we can accurately predict the timings of all of these samples.

The real versus estimated times from Time-Teller are plotted in figure 6.10 and the data

points are coloured by Θ value. There is a clear cluster around midday on both axes

where most of the estimates lie. Time estimates for samples with a functioning clock

have a mean error of < 3 hours, but there is no correlation in this 9 hour time frame.

All estimates outside of this “daytime cluster” have Θ ≥ 0.1, indicating the clock time

was not estimated accurately because the circadian clock is dysfunctional in those tumour

samples.

The absolute error of estimation versus the Θ values for the 108 breast cancer samples

is plotted in figure 6.11. There is no correlation between estimation error and Θ. A

correlation is not expected because, as Θ grows larger, the estimation for the time begins

to be meaningless. The mean absolute error for time estimations for data with Θ < 0.1

is 2hrs 45 mins. The mean absolute error for time estimations for data with Θ > 0.1 is



6.3. CIRCADIAN CLOCKDYSFUNCTION AS A NOVEL PROGNOSTIC FACTOR193

3hrs 45 mins. Samples with an error < 3.5 (n=70) hours have a median Θ of 0.117, and

samples with an error > 3.5(n=38) hours have a median Θ of 0.145. Error estimations

> 7 (n=12) hours have a median Θ of 0.249. Hence, even though there is no simple

correlation, there is still some significance to be found. All samples with > 7 hours error

have Θ > 0.14 and none of the estimates that have greater than 7 hours error have Θ

values that would cause us to accept the estimation.
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Figure 6.10: Scatter plot showing the real vs estimated times for 108 breast
cancer samples. The markers are coloured by Θ, where Θ < 0.1 is blue and Θ ≥ 0.1 is
in red. There is no correlation in estimations over the 9 hour time frame or any group,
but the mean times of estimations are very similar, around 1pm. All samples with > 7
hours error have Θ ≥ 0.1

Figure 6.11: Scatter plot showing the absolute error of estimation versus the Θ
values for 108 breast cancer samples. All samples with > 7 hours error have Θ ≥ 0.1
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6.3.2 Clock function relation to prognostic markers

Θ values representing clock function were calculated for all 226 patient tumour transcrip-

tome samples. Figure 6.12 shows the differences in distribution of Θ values for some of

the prognostic factors for breast cancer. The Wilcoxon Rank sum test was used to cal-

culate statistical significance in medians. In cases with more than 2 factors, factors were

grouped.

Estrogen and progesterone positive tumours show a significantly lower Θ median value

than ER- and PR- tumours (p=0.006 and p=0.007 respectively). HER2 positive tumours

show an almost significantly higher median (p=0.063). The most significant difference

is shown by Triple negative tumours, where the median value for the 52 triple negative

tumours is around ∼ 0.2, and the median for 171 non-triple negative tumours is ∼ 0.1,

and the significance is p = 0.0005.

The grade of the tumours also shows an increasing Θ as grade increases. The signifi-

cance for a higher Θ median for grade 3 tumours, than combined grade 1&2 tumours, is

p=0.014.

The majority of tumours had nodal status 0 or 1, where no difference between Θ

medians was found. The 14 samples with nodal status 2 or 3 have significantly higher Θ

values than the 200 samples with 0 or 1 nodal status, with significance p=0.040.

Tumour size does not show an increasing trend in Θ values as tumour size increases.

However, as stated above, a tumour size of 4 does not measure actual size of tumour as a

tumour size of 2 or 3 does, so this is not a discouraging result. A tumour size of 3 has a

higher Θ median than a tumour size of 2. When 3 & 4 are grouped, the significance for

difference in means is p=0.014.

pCR

Pathological complete response (pCR) is determined after treatment. In this case, after

8 courses of neoadjuvant chemotherapy, all the patients underwent breast surgery. pCR

was defined as absence of residual invasive cancer cells in the breast and axillary lymph

nodes (grade 1 and 2 of Chevallier’s classification). The boxplots for pCR are boxed in

figure 6.12 as these measurements are not determined at the same time as the others

in the figure. Pathological Complete Response occurs if there is no sign of cancer after

treatment. In the REMAGUS dataset, only 35 patients achieve pCR.

The Θ values for the pCR set have a statistically significant higher median than the

non pCR set. At first thought this result may appear to contradict the highly significant

result shown above that, in general, more aggressive tumours have more dysfunctional

clocks. Intuitively, it may seem like less aggressive tumours (so tumours with better

functioning clocks) are more likely to achieve pCR. However, as was discussed in section

6.0.4 we do have evidence to expect that tumours with dysfunctional circadian clocks will
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respond better to chemotherapy. If it truly is the case that tumours with dysfunctional

clocks are more susceptible to chemotherapy, as this evidence indicates, then the use of

the circadian clock dysfunction metric Θ for chronotherapy strategies is a very promising

path to follow.

Of the 35 patients that achieved pCR, 17 of these had TN tumours. It was reported

in Giacchetti et al. [171] that tumours are more likely to achieve pCR if they are TN.

We have shown that samples with a dysfunctional circadian clock are more likely to be

TN, and more likely to achieve pCR. We hypothesise that tumours that were TN, and

achieved pCR had the most dysfunctional clocks as they responded best to treatment.

This analysis is shown in figure 6.13, and does show that the median Θ for the group

with pCR and TN tumours is highest. However, the group sizes are very small and the

Wilcoxon rank sum test does not report significance between the pCR, TN group and the

pCR, not TN group (p = 0.26).
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Figure 6.12: Boxplots showing distributions of Θ values for Estrogen recep-
tors, Progesterone receptors, HER2 receptors, Triple Negative status, Grade,
Nodal Status, Tumour size, and pCR.
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Figure 6.13: Boxplots showing distributions of Θ values for tumours that did
and did not achieve pCR after treatment sorted by tumours that were and
were not triple negative at diagnosis. Patients with the highest Θ values were those
with TN tumours that achieved pCR, although numbers in the groups are too small to
generate significant evidence.
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6.3.3 Clock function relation to survival

Survival data is available for 224 patients for 10 years after the clinical trial. 3 types of

survival are provided with this data; overall survival, disease free survival, and event free

survival. Disease free survival reports whether the cancer returned, and the date this was

reported. Event free survival can relate to the return of the disease, or any complications

that occurred relating to the cancer, for example pain. Here we look at survival differences

in relation to clock dysfunction. The relationship between decreased clock function and

increased tumour aggression, as well as the relationship between decreased clock function

and increased pCR were shown above. It should be noted here that the clock dysfunction

was measured before treatment, and different treatment courses were given in this clinical

trial, where outcomes were measured after treatment.

Overall survival

We set a Θ cut-off to be the maximum Θ measured for the healthy data Θ = 0.155, as was

shown in figure 6.9. A Kaplan-Meier survival analysis is plotted in figure 6.14 for overall

survival separating the population with Θ ≤ 0.155 and Θ > 0.155, which separates the

224 patients into groups of 128 and 96 respectively. The significance value for this analysis

is tested with a logrank test in MATLAB (see appendix C), and provides a significance

value of p = 0.026.

There is a clear separation according to measure of clock function, where the analysis

suggests that 82% of patients with ”good functioning” clocks survive for 10 years or more,

whereas only 61% of patients with a ”bad functioning” clock survive past 10 years.

This result is comparable to the logrank test results reported in Giacchetti et al. [171]

for significant increases in disease free survival for PR+ status (p = 0.02) and HER+

(p = 0.03) (as clock function and receptor status are correlated)

If the “dysfunctional clock” data is split into 2 groups, we observe interesting and

complex behaviour. Figure 6.15 shows samples with Θ > 0.3 in green, having better

overall survival than samples with 0.155 < Θ < 0.3. Excluding the “very bad” clocks

from the analyses increases the significance for differences in survival between the good

and bad clock. This might provide further evidence that tumours with dysfunctional

clocks respond better to chemotherapy.

Disease and event free survival

Complex results were found for the link between clock function and disease free survival or

event free survival. The Kaplan-Meier plots are shown in figures 6.16 -6.19. No significant

results were found, but again, the group of 31 individuals with the worst clocks (Θ > 0.3)

showed increased DFS and EFS until the end of the 10 year trial window, even more so

than the groups with good clocks.
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Figure 6.14: Kaplan-Meier survival plot showing differences in survival for pa-
tients with “good clocks” an “bad clocks”. The log rank test produces a significance
measure of p = 0.026, where samples are separated by Θ ≤ 0.155 (good clock, blue), and
Θ > 0.155 (bad clock, red).

Figure 6.15: Kaplan-Meier survival plot showing differences in survival for pa-
tients with “good clocks”, “bad clocks” and “very bad” clocks. The log rank test
produces a significance measure of p = 0.018, where samples are separated by Θ ≤ 0.155
(good clock, blue), and 0.3 > Θ > 0.155 (bad clock, red). Green dashed line shows that
“very bad” clocks have increased survival until 7-8 years after treatment.
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Figure 6.16: Kaplan-Meier survival plot showing differences in dfs for patients
with “good clocks” and “bad clocks”. The log rank test produces a significance
measure of p = 0.984, where samples are separated by Θ ≤ 0.155 (good clock, blue), and
Θ > 0.155 (bad clock, red).

Figure 6.17: Kaplan-Meier survival plot showing differences in dfs for patients
with “good clocks”, “bad clocks” and “very bad” clocks. The log rank test
produces a significance measure of p = 0.591, where samples are separated by Θ > 0.155
(bad clock, red), and 0.3 > Θ (very bad clock, green). Blue line shows that “good” clocks
have average survival.
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Figure 6.18: Kaplan-Meier survival plot showing differences in efs for patients
with “good clocks” and “bad clocks”. The log rank test produces a significance
measure of p = 0.636, where samples are separated by Θ ≤ 0.155 (good clock, blue), and
Θ > 0.155 (bad clock, red).

Figure 6.19: Kaplan-Meier survival plot showing differences in EFS for patients
with “good clocks”, “bad clocks” and “very bad” clocks. The log rank test
produces a significance measure of p = 0.315, where samples are separated by Θ > 0.155
(bad clock, red), and 0.3 > Θ (very bad clock, green). Blue line shows that “good” clocks
have average survival.
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6.3.4 Summary of section

This analysis has showed how the metric for clock dysfunction Θ could be used as a

novel prognostic factor. Further work could include a more in depth multivariate clinical

statistical analysis, as was done in the REMAGUS follow up paper [171], but including

Θ as another factor.

Some evidence in this section suggested that treatments are more effective for clock

dysfunctional tumours, as pCR was more likely to occur in patients with clock dysfunc-

tional tumours, and disease and event free survival appeared to be better until the end

of the 10 year window. It could be that the results that we are seeing are a combination

of clock dysfunction correlating with more aggressive tumours and worse outcomes, with

the effect of chemotherapy working better for tumours with dysfunctional clocks.

This proves very difficult to explore in a robust manner, with only 35 patients achieving

pCR, and only 31 individuals in this increased short term survival group. Many factors

in this type of analysis are highly correlated, so robust statistical multivariate analysis,

and the use of more data sets is necessary.

6.4 Comparison of all human data

We have shown so far that the distribution of the Θ metric shows significant differences

when individual datasets are compared with the healthy oral mucosa samples from the

Bjarnason data, or by groupings within each data set.

We now combine all non-cancer data sets: all smoker/non smoker data (n=79), normal

and dysplasic samples from the Feng data (n=62), normal samples from the Richardson

(n=7), and the UK samples from UK/Sri Lankan oral mucosa data (n=5).

We combine all the cancer datasets: all REMAGUS data (n=226), all the Richardson

cancer data (n=55), and the Feng cancer data (n=62).

15 probes were used to train Time-Teller, and it was used to find the Θ metrics for the

non-cancer and cancer datasets above, treating every sample as independent. The results

of this are shown in the cumulative distribution plot in figure 6.20, where the significance

for the difference in distribution is found by the two-sample Kolmogorov-Smirnoff test

to be very significant. For these datasets, the Θ metric is significantly higher in cancer

datasets, providing evidence that the level of circadian clock dysfunction in cancer is

significantly higher than in non-cancer data.

When this plot is separated into the individual datasets, where the Θ distribution of

the Bjarnason training data plotted too, the shift to higher Θ values is clear in the cancer

datasets. Here, the small healthy datasets (Richardon breast healthy, Feng healthy &

dysplasic, and UK oral mucosa data) are pooled to an “other healthy” data set.

The REMAGUS data Θ distribution is similar to that of the Θ distribution of the
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Figure 6.20: Cumulative plot of Θ values for all cancer and non-cancer samples.
The two-sample Kolmogorov-Smirnov test for different distributions is very significant.

Figure 6.21: Cumulative plot of Θ values for multiple human data sets. The
black plot shows the Θ distribution of the training set.
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combined healthy data from the Feng dataset and Richardson breast tissue data set, and

the UK samples from SriUK data.

Figure 6.22: Cumulative plot of Θ values for multiple human data sets, with
the REMAGUS data separated by TN status. The TN data shows a shift to the
“dysfunctional clock” cancer region of the cumulative plot and the non TN data shifts to
the “functioning clock” region with the healthy data.

Although there is a clear pattern in these plots that cancer data generally has higher

Θ values, the divide is not a clear one. The REMAGUS data Θ distribution is very close

to that of some of the pooled non-cancer data. This could be due to problems with the

healthy data, or it could be due to many of the tumours in the REMAGUS data having

functional clocks. For example, if the REMAGUS data were split into TN and non-TN

samples, figure 6.22 shows that the TN data is clearly within the “cancer” region of the

cumulative plot.

Many factors will be adding variation to this data; genetic differences, environmental

differences, but there is still an obvious separation between cancer and non cancer data.
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6.5 Summary of chapter

This chapter has presented an overview for some of the evidence towards circadian clock

dysfunction in cancer. We discussed evidence that circadian clock dysfunction promotes

tumourigenesis, and also that many tumours have dysfunctional clocks. We used 2

datasets that contained both cancer and healthy data, to show that clock function is

significantly worse in cancer samples than in normal samples. The REMAGUS dataset

was used to correlate clock function with cancer prognostic markers. There was significant

evidence that clock function is generally worse for more aggressive tumours. There was

also significant evidence that chances of achieving pCR are higher for tumours with more

dysfunctional circadian clocks. This agrees with the evidence previously discussed, that

chemotherapy is more effective when the circadian clock is dysfunctional.

We have presented how incorporating “clock function” as a new prognostic factor in

tumour classification may help to provide new insights into the best courses of treatments.



Chapter 7

Discussion

7.1 Summary of thesis

The methods in this PhD project were developed towards the aim of developing a method

to determine whether the circadian clock gene expression was different to “normal” circa-

dian gene expression, in a single transcriptome from a tumour biopsy. Each chapter built

up to this aim.

Through mathematical models, chapter 2 explored the robustness of the circadian

clock in order to validate an assumption used in the Time-Teller model, that we can ex-

pect robust and reproducible rhythms in a healthy population. Using the Relogio ODE

model and an equivalent stochastic model, the phase sensitivity to parameter perturba-

tion was measured for both the deterministic and stochastic Relogio model. The results

showed that both models are very robust to parameter perturbation, and only a small

subset of parameter changes would have significant effects on the behaviour of the model.

We provided evidence that stochastic circadian gene expression has the same characteris-

tics of robustness as the deterministic characteristics that have been previously reported

[75, 76, 77]. This in silico evidence allowed us to understand the reasoning behind an

assumption that we use in the Time-Teller model; that there is a robust and synchronised

behaviour of circadian clocks amongst independent samples or individuals.

In chapter 3, we explored this in real data. The use of the SVD was presented as a

simple and computationally efficient way of finding rhythms by exploring synchronicity.

The use of multiple rhythmicity algorithms in parallel with the SVD allowed interesting

outliers to be identified, and allowed higher confidence in the final set of rhythmic and

synchronised genes. We verified that the core clock genes in mice were very synchronised

in expression profile for different tissues, and that the core clock genes in humans were

synchronised across 10 individuals. It was shown that for human individuals, the only

207
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genes that have synchronised timecourse expression are the circadian clock genes, and this

was mostly true for mouse tissues. The identified rhythmic and synchronised genes of the

mouse and human data were used as training genes for the mouse and human Time-Teller

algorithms. These genes were used to define the expected behaviour of a healthy circadian

clock in each Time-Teller model in chapter 4.

Chapter 4 presented the currently published time-telling algorithms, and highlighted

that none of them can truly tell the time from one single independent sample of unknown

time. The Time-Teller algorithm was presented as a method that can predict the time

of one independent transcriptome, and the advantages of using a local PC approach were

shown. Time-Teller was validated for in silico data with different levels of noise, and was

shown to be very accurate when using a leave-one-organ-out approach for mouse data,

and a leave-one-individual-out approach for the human data. Although we have shown

that the circadian clock time (body time) is generally synchronised to time-of-day, the

natural variation in body time was also shown. For example, Male15 was consistently

phase delayed and female18 was consistently phase advanced, in comparison to the other

individuals.

Chapter 5 presented the metric Θ as a measure of clock dysfunction, which was calcu-

lated using the likelihood functions produced by Time-Teller. The threshold for where Θ

defines a “functional clock” was defined by each data set used to train Time-Teller. The

in silico Time-Teller was used to show how Θ is correlated with the level of an in silico

KO, and how Θ is not sensitive to a change of the hyperparameters η and ε.

The mouse Time-Teller was able to accurately calculate the timings of the samples in

the Martletot dataset, with “functional clock” Θ values. Time-Teller was able to detect

KO samples with dysfunction clocks, calculating Θ ≈ 1 for samples from full KO samples,

and Θ < 0.155 for WT samples. Sleep deprived mice were shown to have less functional

clocks than their normal sleep schedule counterparts.

The human Time-Teller was able to provide realistic estimations with “functional

clock” Θ values for 3 independent datasets. Problems were found with 3 samples from Sri

Lankan individuals, but the lack of information about the individuals in the original study

meant we can only speculate as to why this is. Data from autopsy samples were used to

validate that Time-Teller could estimate that samples were taken during the night, with

good confidence (i.e. low Θ values).

Chapter 6 presented an overview for some of the evidence towards circadian clock dys-

function in cancer. We discussed evidence that circadian clock dysfunction promotes tu-

mourigenesis, and also that many tumours have dysfunctional clocks. We used 2 datasets

that contained both cancer and healthy data, to show that clock function is significantly
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worse in cancer samples than in normal samples. The REMAGUS dataset was used to

correlate clock function with cancer prognostic markers. There was significant evidence

that clock function is generally worse for more aggressive tumours. Interestingly, there

was also significant evidence that chances of achieving pCR are higher for tumours with

more dysfunctional circadian clocks. This agrees with the evidence previously discussed,

that chemotherapy is more effective when the circadian clock is dysfunctional.

Survival analysis found that patients with tumours with more functional clocks had an

82% chance of living to 10 years, but patients with less functional clocks had a 61% chance

of living to 10 years. It was also found that the tumours with the worst clocks do not

have the worst survival. This suggested that there was a lot of complexity underlying the

data: that bad clock function is related to more aggressive tumours and hence related to

more deaths, but also that clock function is related to better chances of effective treatment.

7.2 Discussion of Time-Teller

7.2.1 Clinical uses and advantages

Time-Teller would be clinically useful as it is able to estimate the phase of a gene such as

Bmal1 or Rev-Erbα (i.e. body time), from one transcriptome sample (if real clock time

is known). This could be used in the clinic to inform on optimal timings for personalised

chronotherapy regimes.

Time-Teller can also inform clinical strategies as to if a tumour has a functioning

circadian clock from just one sample. This could be used in parallel to the standard

cancer prognostic markers, in order to decide on optimum treatment regimes.

Time-Teller can also provide evidence that the circadian clock is dysfunctional in

tumours, and add to the evidence that CYCLOPS [13] and ∆CCD [15] have begun to

produce. Time-Teller can produce this evidence for individual samples, and small data

sets (if a training set is available), where CYCLOPS and ∆CCD need substantially sized

datasets to produce results.

7.2.2 Limitations

Time-Teller is dependent on the use of data from the same technology and GeneChips for

the training and test sets. Time-Teller measures the transcriptome’s time fingerprint by

the comparative ordering of each gene expression value, so is very sensitive to absolute

levels of expression. Microarrays use probes whose expression values are a function of

transcript number, transcript binding affinity and other things, where different designs of

probes can change these weightings. Using the same GeneChip and technology removes
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some of the dangers of this sensitivity, but one must be mindful of other sources of ex-

perimental and biological variation when comparing independent datasets.

There was some evidence in this thesis that there are differences in circadian tran-

scriptome for individuals in Sri Lanka, to those in Canada, but no obvious differences to

individuals in the UK or US. Although these were only 3 samples, and they could have

been compromised in some way, it may be true that there are differences in the circadian

transcriptome for humans that live in different longitudes. There has not been any study

(that we know of) into this, but as there is such a significant difference in length of day-

time light, temperature, and perhaps even working cultures, it might be possible that the

circadian transcriptome is different somehow for humans at different longitudes. If this

were true, a comparable training set for Time-Teller would have to be used in order to

produce proper results from some data sets.

Time-Teller cannot measure if a circadian clock period is changed, and assumes that

all clocks have a 24 hour period. If a sample had a functioning clock, but with a non-24

hour period, Time-Teller would produce Θ metrics that indicate the functioning of the

clock, but the time estimation would not be accurate.

We showed in chapter 3 that the core clock genes of mice are synchronised across

organs, and we use this to back up the assumption that we can compare human oral

mucosa and human breast tissue and expect them to have the same set of core clock

genes. We chose genes for the training set of the human Time-Teller that are synchronised

amongst 10 individual’s oral mucosa, but it is possible that these genes are not organ wide

synchronised.

The Bjarnason data arose from healthy human subjects that had been tracked so that

the lab knew they had a good circadian rhythm. All of the independent human data has

no such information on the individuals the samples are from. Additionally, the Zhang

mouse dataset originated from a study designed to synchronise the mice. It could still be

possible that chronodysruption effects tissues differently, so that a comparison between

synchronised healthy human oral mucosa is not as easily comparable to other tissues.

7.2.3 Future work

More data

There are many other data sets that could have been used to test the power of Time-Teller.

Focussing only on human data, there are thousands of data sets posted to GEO that have

been generated with the Affymetrix HG U133 2.0 arrays 1. One must read studies and

1https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL571
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identify data that is appropriate, for example identifying studies whose samples were

taken from live tissue and frozen. The most robust datasets for validation are those that

contain cancer data with corresponding healthy controls. Other ideal datasets would be

those that are similar to the REMAGUS data, where cancer prognostic markers could be

correlated with Θ.

Loadings of local PCs

As Time-Teller uses a combined local PC method, assessing the loadings of the princi-

ple components is not straight forward. Further work to be done to really understand

Time-Teller, and the underlying dynamics of the data, would be to somehow analyse the

changing weightings of the local PCs over time.

Possible Bias for particular times when the clock is dysfunctional

Figures 6.10 and 6.7 suggest that when the clock is dysfunctional, there is a bias to

the MLE, suggesting a slight bias in the model that probably arises from the different

covariances used at different times. This is unlikely to affect the results, as we do not

care what the MLEs are when Θ is large. However, it would be be interesting to design

a way to test this is a real bias, and what effect it does have.

RNA-seq data

RNA-seq more accurately measures transcript numbers, so may be a better technology

to use for future models. However, there may still be some incompatibilities between

different technologies. Time-Teller can be used for RNA-seq data with exactly the same

methods as presented in this thesis for microarray data.

If and when multiple observations of timecourse RNA-seq data are available, Time-

Teller will be able to be re-trained and used to assess clock time and function from single

time point assays of RNA-seq data. There could be some issues to resolve concerning

compatible RNA-seq experiments with slightly different designs (e.g. read depth), but

this should generally be straight forward.

It it possible now to design a mouse RNA-seq Time-Teller using only the 6 hour

resolution data in the Zhang data set [73]. This would result in a 4 knot periodic spline

in 3D space when creating the distribution space when building Time-Teller, and it is

possible that this could accurately represent the intermediate times. It would also be

reasonable to use the microarray data to make estimates for the RNA-seq intermediate

time data points.
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Possible formalisation to Gaussian process regression

Time-Teller has similarities in its structure to some methods in Gaussian process regres-

sion. Homoscedastic Gaussian process regression with a specially designed periodic kernel

could potentially summarise this Time-Teller model, but the practical aspects of this were

not achieved for this thesis.

Optimising the microarray probes used in the training sets

The probes chosen for the training set were those that were most rhythmic and synchro-

nised amongst observations. Attempts were made initially to optimise the probes chosen

to be part of Time-Teller, by minimising the error of the real versus estimated time. How-

ever, this resulted in an over-fitting of the model to the training data, and the optimised

set of probes for the training data were not necessarily the optimum set when comparing

to independent datasets.

It was found when comparing the human Time-Teller to independent data sets, that

one of the Per1 probes had much weaker signal for the independent data sets, and so

was not used. Cross experiment comparisons will always have some issues, but it may be

possible to understand more about the microarray probes themselves, in order to find the

optimum, most robust training set.

7.3 Novel findings

Ciart

There was already some evidence that Ciart (or Chrono/Gm129) has an important role

in the core circadian mechanism. This thesis has shown that Ciart has rhythmic and

synchronised behaviour in both mice and humans, in a way comparable to genes that are

only considered to be core circadian clock genes. The tight regulation and synchronicity

of Ciart indicates that it is a major part of the central timing mechanism. Ciart was

not identified in many past studies due to its low amplitude rhythms, where rhythmicity

analysis was performed on non-logged, non-normalised data.

Male versus female differences

Although no male/female differences were discussed in this thesis, there is an interesting

result that arose from the Θ values of the leave-one-out approach in figure 5.20. Although

there are very few data points to be able to draw a strong conclusion from, the female Θs

do appear to be higher than the male’s. The Wilcoxon test statistic for males having lower

Θs is 0.037, which is a significant difference, indicating that females do have more variable
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clocks. Further analysis of female/male differences are being investigated by Bjarnason

et al.. This indicates that Time-Teller is also useful for inter-data set exploration.

Mouse tissue synchronicity

Although it was shown in [73] that the core clock genes have similar phases across organs,

this thesis is the first time (that we know of) that this synchronicity has been quantified.

We provided quantitative evidence that a small set of genes are synchronised in expression

profile in mouse peripheral circadian clocks.

Human individual synchronicity

It has always been expected that the human transcriptome is synchronised to time-of-day.

However, we showed here the first quantitative transcriptomic evidence that a small set of

genes are synchronised in expression profile in different human individual circadian clocks.

Figure 3.13 showed that this synchronicity is extremely robust.

7.4 Future work in circadian rhythms

• The connection between the dysregulation of the cell cycle and the cir-

cadian clock. This may be enlightened through the use of single cell RNA-seq

technologies.

• Direct comparison of mouse and human core circadian mechanisms. Com-

parisons of the behaviour of the human and mouse data have not been attempted

this thesis, but would be a very interesting area to pursue.

• Novel mathematical models of circadian clock expression. Korencic et al.

designed a delay differential equation model of 6 genes using promoter site interac-

tions. Expanding this type of model may be very informative.

• Raising awareness of circadian variation in biological experiments. If

biopsies were labelled with time of day in the meta-data of a clinical trial, we would

be able to use so much more data in this thesis. Recording the time of biopsy, and

some general lifestyle characteristics of individuals would not be difficult for studies

to do, and this would hugely increase the scope of Time-Teller.

7.5 Final comments

The methods in this PhD project were developed towards the aims of developing a method

to determine whether the circadian clock gene expression was different to “normal” cir-

cadian gene expression, in a single transcriptome from a tumour biopsy. The algorithm
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Time-Teller was designed and validated in this thesis. Time-Teller can be used to generate

the metric of clock dysfunction Θ from a single time point assay.
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Appendix A

SVD and PCA

A.1 Singular Value Decomposition (SVD)

This section has been written with guidance from [175].

The SVD decomposes a matrix into a weighted, ordered sum of separable matrices

that describe the major axes of variation. The weightings are given by the singular val-

ues, σi, and are ordered by size, resulting in the first term of the decomposition explaining

the matrix the most.

Eigenvalue problem

For an n× n square matrix B, with n linearly independent eigenvectors xi for i = 1, ..., n

and n eigenvalues λi, the eigenvalue problem says the following is true;

Bxi = Λxi (A.1)

Eigenvalue problem:smymmetric matrices

If B is an n×n symmetric matrix, then its eigenvectors are all orthogonal so that for i 6= j

vTi vj = 0. This means that for matrix V = v1, ..., vn, and diagonal matrix D containing

all λ2;

B = V DV T (A.2)

where V has the property that V −1 = V T
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SVD

The single value decomposition of the m × n matrix A, for m observations and and n

features, and rank r, is defined as:

A = UΣV T = u1σ1v1
T + ...+ urσrvr

T (A.3)

where

• ui are the columns of U (m×m) and are the orthonormal eigenvectors of the covariance

matrix AAT and the left singular vectors of A

• vi are the columns of V (n×n) and are the orthonormal eigenvectors of the covariance

matrix ATA and the right singular vectors of A

• σi =
√
λi = ‖Avi‖ are the lengths of the vectors Avi

• Σ(m×n) is made up of a diagonal matrix of σi’s (where σ1 > σ2 > ... > σr > 0) in its

upper left position, with 0’s everywhere else.

Proof

Let A be a mean deviated m× n matrix, with rank r.

Let V = v1, ..., vr be the eigenvectors of symmetric matrix ATA, and let σ2
1, ..., σ

2
r be

the associated eigenvalues. Then, by the eigenvalue problem it is true that

ATAvi = σ2vi (A.4)

AAT (Avi) = σ2(Avi) (A.5)

(A.6)

so that Avi are the eigenvectors of AAT .

We test the magnitude of Avi,

(Avi)
TAvi = vTi A

TAvi (A.7)

= vTi λivi (A.8)

= λi (A.9)

Let ui, ..., un be the orthogonal vectors defined by ui = Avi/σi.



218 APPENDIX A. SVD AND PCA

(Avi/σ)TAvi = uTi Avj (A.10)

= viA
TAvi/σj (A.11)

= viσ
2vj/σ (A.12)

= vTi vjσi (A.13)

Now, if i 6= j then vTi vj = 0, and if i = j, vTi vj = 1 so that

uTi Avi = σi (A.14)

Avi = σiui (A.15)

In matrix form this is

A

[
v1, ...,vr

]
=

[
u1, ...,ur

]
σ1

. . .

σr

 (A.16)

We need an additional n − r v’s and m − r u’s from the nullspace N(A) and the

left nullspace N(AT ). They can be orthonormal bases for those two nullspaces (and then

automatically orthogonal to the first r v’s and u’s). Now V and U are square.

The new Σ is m× n, where the extra rows and columns are filled with zeros.

A

[
v1, ...,vr, ...,vn

]
=

[
u1, ...,ur, ...,um

]


σ1 0
. . . :

σr ... 0

:
. . . :

0 ... 0 ... 0


(A.17)

v1, ..., vr are in the row space and u1, ..., ur are in the column space of A. The

singular values σ1, ...σr are all positive numbers.

The vi’s and ui’s go into the columns of V and U , where orthogonality gives V TV = I

and UTU = I. The σ’s go into a diagonal matrix Σ.

ui are eigenvectors of AAT and vi are eigenvectors of ATA.

V is now a square orthogonal matrix, with inverse V −1 = V T .

This is the Single Value Decomposition:

A = UΣV T = u1σ1v1
T + ...+ urσrvr

T (A.18)
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A.1.1 Principal component analysis

PCA uses the principle components (usually V but can be U depending on the orientation

of A and if it is the row space or column space we are decomposing) to project observations

into a new coordinate system.

We project an n-dimensional observation x into principle component space using V ;

y1 = xv1 = x1v1,1 + x2v1,2 + ...+ xnv1,n (A.19)

... (A.20)

yn = xvn = x1vn,1 + x2vn,2 + ...+ xnvn,n

Thus, y = y1, ..., yn is a linear combination of the original variables x1, ..., xn, using

the entries in the eigenvectors vi as weights. Usually we take the first 2 or 3 of these to

capture the most variance, whilst simplifying further analysis and visualisations. y = V x

simply defines the principal component projection into the decomposed column space.
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Relogio Model

B.1 ODE
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dCCK/BML

dt
=kfx1BMLN − kdx1CCK/BML− dx1CCK/BML

dP ∗
N/CN

dt
=kiz4P

∗
C/CC − kex2P ∗

N/CN − dx2P ∗
N/CN

dPN/CN

dt
=kiz5PC/CC − kex3PN/CN − dx3PN/CN

dBMLN

dt
=kiz8BMLc + kdx1CCK/BML− kfx1BMLN − dx7BMLN

dReverbn
dt

=kiz6RV RBc − dx5Reverbn
dRorn

dt
=kiz7RORc − dx6Rorn

dPer

dt
=V1max

 (1 + a
(

CCK/BML
kt1

)b
1 +

(
P∗

N/CN+PN/CN

ki1

)c (
CCK/BML

kt1

)b
+
(

CCK/BML
kt1

)b
− dy1Per

dCry

dt
=V2max

 1 + d
(

CCK/BML
kt2

)e
1 +

(
P∗

N/CN+PN/CN

ki2

)f (
CCK/BML

kt2

)e
+
(

CCK/BML
kt2

)e 1

1 +
(

Reverbn
ki21

)f1
− dy2Cry

dReverb

dt
=V3max

 1 + g
(

CCK/BML
kt3

)v
1 +

(
P∗

N/CN+PN/CN

ki3

)w (
CCK/BML

kt3

)v
+
(

CCK/BML
kt3

)v
− dy3Reverb

dRor

dt
=V4max

 1 + h
(

CCK/BML
kt4

)p
)

1 +
(

P∗
N/CN+PN/CN

ki4

)q (
CCK/BML

kt4

)p
+
(

CCK/BML
kt4

)p
− dy4Ror

dBmal

dt
=V5max

 1 + i
(

Rorn
kt5

)n
1 +

(
Reverbn

ki5

)m
+
(

Rorn
kt5

)n
− dy5Bmal

dCryC
dt

=kp2(Cry + y20) + kdz4P
∗
C/CC + kdz5PC/CC − kfz5CryCPerC − kfz4CryCPer∗C − dz1CryC

dPerC
dt

=kp1(Per + y10) + kdz5PC/CC + kdphz3Per
∗
C − kfz5PerCCryC − kphz2PerC − dz2PerC

dP ∗
C/CC

dt
=kfz4CryCPer

∗
C + kex2P

∗
N/CN − kiz4P ∗

C/CC − kdz4P ∗
C/CC − dz3P ∗

C/CC

dPer∗C
dt

=kphz2PerC + kdz4P
∗
C/CC − kdphz3Per∗C − kfz4Per∗CCryC − dz4Per∗C

dPC/CC

dt
=kfz5CryCPerC + kex3PN/CN − kiz5PC/CC − kdz5PC/CC − dz5PC/CC

dRV RBc

dt
=kp3(Reverb+ y30)− kiz6RV RBc − dz6RV RBc

dRORc

dt
=kp4(Ror + y40)− kiz7RORc − dz7RORc

dBMLc

dt
=kp5(Bmal + y50)− kiz8BMLc − dz8BMLc

Stochastic model. 19 state variables. 44 reactions. 72 parameters.
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a(1) = kfx1BMLN

a(2) = kdx1CCK/BML

a(3) = dx1CCK/BML

a(4) = kiz4P
∗
C/CC

a(5) = kex2P
∗
N/CN

a(6) = dx2P
∗
N/CN

a(7) = kiz5PC/CC

a(8) = kex3PN/CN

a(9) = dx3PN/CN

a(10) = kiz8BMLc

a(11) = dx7BMLN

a(12) = kiz6RV RBc

a(13) = kiz7RORc

a(15) = dx6Rorn

a(16) = V1max

 (1 + a
(
CCK/BML

kt1

)b
1 +

(
P ∗
N/CN+PN/CN

ki1

)c (
CCK/BML

kt1

)b
+
(
CCK/BML

kt1

)b


a(17) = dy1Per

a(18) = V2max

 1 + d
(
CCK/BML

kt2

)e
1 +

(
P ∗
N/CN+PN/CN

ki2

)f (
CCK/BML

kt2

)e
+
(
CCK/BML

kt2

)e 1

1 +
(
Reverbn
ki21

)f1


a(19) = dy2Cry

a(20) = V3max

 1 + g
(
CCK/BML

kt3

)v
1 +

(
P ∗
N/CN+PN/CN

ki3

)w (
CCK/BML

kt3

)v
+
(
CCK/BML

kt3

)v


a(21) = dy3Reverb

a(22) = V4max

 1 + h
(
CCK/BML

kt4

)p
)

1 +
(
P ∗
N/CN+PN/CN

ki4

)q (
CCK/BML

kt4

)p
+
(
CCK/BML

kt4

)p


a(23) = dy4Ror

a(24) = V5max

 1 + i
(
Rorn
kt5

)n
1 +

(
Reverbn
ki5

)m
+
(
Rorn
kt5

)n
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a(25) = dy5Bmal

a(26) = kp2Cry

a(27) = kdz4P
∗
C/CC

a(28) = kdz5PC/CC

a(29) = kfz5CryCPerC

a(30) = kfz4CryCPer
∗
C

a(31) = dz1CryC

a(32) = kp1Per

a(33) = kdphz3Per
∗
C

a(34) = kphz2PerC

a(35) = dz2PerC

a(36) = dz3P
∗
C/CC

a(37) = dz4Per
∗
C

a(38) = dz5PC/CC

a(39) = kp3Reverb

a(40) = dz6RV RBc

a(41) = kp4Ror

a(42) = dz7RORc

a(43) = kp5Bmal

a(44) = dz8BMLc

B.1.1 Parameters

Parameter Value Description

aa 12 Per

d 12 Cry

g 5 Rev-Erb

h 5 Ror

i 12 Bmal

b 5 Per-activation

c 7 Per-inhibition

e 6 Cry-activation rate

f 4 Cry-inhibition

f1 1 Cry-inhibition



224 APPENDIX B. RELOGIO MODEL

v 6 Rev-Erb-activation

w 2 Rev-Erb-inhibition

p 6 Ror-activation

q 3 Ror-inhibition

n 2 Bmal-activation

m 5 Bmal-inhibition

y10 0*omega Per

y20 0*omega Cry

y30 0*omega Rev-Erb

y40 0*omega Ror

y50 0*omega Bmal

dz1 0.23 CRYC

dz2 0.25 PERC

dz3 0.6 PERC*

dz4 0.2 PERC*/CRYC

dz5 0.2 PERC/CRYC

dz6 0.31 REV-ERBC

dz7 0.3 RORC

dz8 0.73 BMALC

dy1 0.3 Per

dy2 0.2 Cry

dy3 2 Rev-Erb

dy4 0.2 Ror

dy5 1.6 Bmal

dx1 0.08 CLOCK/BMAL ** -23 PD Huge Phase deriv -38 PD

dx2 0.06 PER*N/CRYN **

dx3 0.09 PERN/CRYN

dx5 0.17 REV-ERBN

dx6 0.12 RORN ** -28 PD

dx7 0.15 BMALN

kfx1 2.3 CLOCK/BMAL-complex formation [hour-1]

kdx1 0.01 CLOCK/BMAL-complex dissociation [hour-1]

kfz4 1/omega PERC*/CRYC-complex formation [(a.u.hour)-1]

kdz4 1 PERC*/CRYC-complex dissociation [hour-1]

kfz5 1/omega PERC/CRYC-complex formation [(a.u.hour)-1]

kdz54 1 PERC/CRYC-complex dissociation [hour-1]

kiz4 0.2 PERC*/CRYC

kiz5 0.1 PERC/CRYC

kiz6 0.5 REV-ERBC
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kiz7 0.1 RORC ** 12.9 PD

kiz8 0.1 BMALC ** 15.6 PD

kex2 0.02 PER*N/CRYN ** -21 PD

kex3 0.02 PERN/CRYN

kphz2 2 PERC-phosphorylation rate

kdphz3 0.05 PERC*-dephosphorylation rate

kp1 0.4 PERC

kp2 0.26 CRYC

kp3 0.37 REV-ERBC

kp4 0.76 RORC

kp5 1.21 BMALC

kt1 3*omega Per-activation rate

ki1 0.9*omega Per-inhibition rate

kt2 2.4*omega Cry-activation rate PLOSGEN PERTUR 5.3 TO SIM RAS

ki2 0.7*omega Cry-inhibition rate

ki21 5.2*omega Cry-inhibition rate

kt3 2.07*omega Rev-Erb-activation rate

ki3 3.3*omega Rev-Erb-inhibition rate

kt4 0.9*omega Ror-activation rate

ki4 0.4*omega Ror-inhibition rate **15.5 PD

kt5 8.35*omega Bmal-activation rate

ki5 1.94*omega Bmal-inhibition rate

V1max 1*omega Per

V2max 2.92*omega Cry

V3max 1.9*omega Rev-Erb

V4max 10.9*omega Ror

V5max 1*omega Bmal
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MATLAB and R functions and code

C.0.2 svd

https://uk.mathworks.com/help/matlab/ref/svd.html

C.0.3 Rhythmiciy detection

cosinor

https://uk.mathworks.com/matlabcentral/fileexchange/20329-cosinor-analysis

Cosinor analysis uses the least squares method to fit a sine wave to a time series. Inputs

to cosinor are; t - the times of the observations, y - that observations, w - defined cycle

length (here always 24), α - type I error used for confidence interval calculations. Here

set to 0.05 which corresponds with 95% confidence intervals.

JTK CYCLE

https://openwetware.org/wiki/HughesLab:JTK_Cycle

JTK CYCLE runs in R. It is a non-parametric algorithm whose purpose is to identify

rhythmic components in large, genome-scale data sets and estimate their period length,

phase, and amplitude.

C.0.4 Gaussians fitting

fitgmdist

https://uk.mathworks.com/help/stats/fitgmdist.html

The MATLAB function fitgmdist is used to fit the 3D Gaussians to each set of projections

Q. The software optimizes the Gaussian mixture model likelihood using the iterative

Expectation-Maximization (EM) algorithm. We set k = 1 for all uses in these works to

only find one Gaussian cluster.
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C.0.5 Splines

pchip

https://uk.mathworks.com/help/matlab/ref/pchip.html

Shape-Preserving Piecewise Cubic Interpolation pchip interpolates using a piecewise

cubic polynomial P (x) with these properties:

On each subinterval xk ≤ x ≤ xk+1 , the polynomial P(x) is a cubic Hermite inter-

polating polynomial for the given data points with specified derivatives (slopes) at the

interpolation points. P(x) interpolates y, that is, P (xj) = yj, and the first derivative dP
dx

is continuous. The second derivative d2P
dx2 is probably not continuous so jumps at the xj

are possible. The cubic interpolant P(x) is shape preserving. The slopes at the xj are

chosen in such a way that P (x) preserves the shape of the data and respects monotonicity.

Therefore, on intervals where the data is monotonic, so is P (x), and at points where the

data has a local extremum, so does P (x).

csape

https://uk.mathworks.com/help/curvefit/csape.html

pp = csape(x, y, conds) is the ppform of a cubic spline s with knot sequence x that

satisfies s(x(j)) = y(:, j) for all j, as well as an additional end condition at the ends

(meaning the leftmost and at the rightmost data site), namely the default condition

listed below. The data values y(:, j) may be scalars, vectors, matrices, even ND-arrays.

Data values at the same data site are averaged.

conds=periodic matches first and second derivatives at left end with those at right

end.

csape returns a parametric cubic spline curve passing through the data, by setting up

and solving a tridiagonal system. The accumulated square root of chord-length is used.

The relevant tridiagonal linear system is constructed and solved using the sparse ma-

trix capabilities of MATLAB.

Covariance matrices must have non-zero eigenvalues. It is rare that any of the matrices

will have 0 or very small eigenvalues, but as it is possible, the code generating the Σ(t)

contains an if statement checking this. If any of the eigenvalues of Σ(t) are below a given

threshold (here arbitrarily 0.0001), the diagonal matrix Iε is added to Σ(t). ε = 0.001 was

set as it consistently ensures positive definiteness, and works within the working precision

of MATLAB, whilst minimising the change to the covariance matrix itself.

https://uk.mathworks.com/help/matlab/ref/pchip.html
https://uk.mathworks.com/help/curvefit/csape.html
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C.1 Statistical tests

C.1.1 Wilcoxon Rank-sum test

ranksum

https://uk.mathworks.com/help/stats/ranksum.html

The Wilcoxon Rank-sum test, also known as the Mann -hitney U test is a non-

parametric test that is similar to a t-test, but is a test for difference in medians, not

means. Normality does not have to be assumed, as all numbers are ordered and turned

into ranks.

The Wilcoxon rank sum test statistic is

W = R1 −
n1(n1 + 1))

2
(C.1)

where R1 is the sum of the ranks in group 1, and n1 represents the number of samples in

group 1.

The null hypothesis H0 is

µW =
n1n2

2
(C.2)

σW =

√
n1n2(n1 + n2 + 1)

12
(C.3)

z =
W − µW
σW

∼ N(0, 1) (C.4)

The probability of H0 is

p =
R̄− n1+1

2

n2

(C.5)

where R̄ is the mean of the ranks in group 1. p is the probability that a random sample

from one distribution is equally likely to be larger or smaller than a random sample for

the other distribution.

C.1.2 Kolmogorov Smirnov 2 sided test

kstest2

https://uk.mathworks.com/help/stats/kstest2

The two-sample Kolmogorov-Smirnov test returns a test decision for the null hypothesis

that the data in 2 provided vectors are from the same continuous distribution.

https://uk.mathworks.com/help/stats/ranksum.html
https://uk.mathworks.com/help/stats/kstest2
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C.1.3 Kaplan-Meier survival analysis

Survival analysis is time-to-event analysis, that is, when the outcome of interest is the

time until an event occurs.

kmplot

https://uk.mathworks.com/matlabcentral/fileexchange/22293-kmplot

Survival times are data that measure follow-up time from a defined starting point to the

occurrence of a given event, for example the time from the beginning to the end of a

remission period or the time from the diagnosis of a disease to death. Standard statistical

techniques cannot usually be applied because the underlying distribution is rarely Normal

and the data are often censored. A survival time is described as censored when there is

a follow-up time but the event has not yet occurred or is not known to have occurred.

The survival function S(t) is defined as the probability of surviving at least to time t.

The graph of S(t) against t is called the survival curve. The Kaplan-Meier method can

be used to estimate this curve from the observed survival times without the assumption

of an underlying probability distribution. This function uses the vectorization technique.

logrank

https://uk.mathworks.com/matlabcentral/fileexchange/22317-logrank

The log rank test is a statistical hypothesis test comparing two survival curves. It is used

to test the null hypothesis that there is no difference between the population survival

curves (i.e. the probability of an event occurring at any time point is the same for each

population). This function uses the Kaplan-Meier procedure to estimate the survival

function.

C.2 fRMA normalisation

A generic work flow in R for a basic fRMA normalisation of mouse data is shown below;

1 source ( ‘ ‘ https : //bioconductor . org/ b i o c L i t e .R” )

2 l i b r a r y ( ‘ ‘ a f f y ” )

3 l ibrary ( ‘ ‘ frma” )

4 l i b r a r y ( ‘ ‘ mogene . 1 . 0 . s t . v1frmavecs ” )

5 setwd ( ‘ ‘ d i r e c t o r y with .CEL f i l e s and summary” )

6 summary=read csv ( ‘ ‘ summary o f f i l e s . csv ” )

7 rawData = read . c e l f i l e s ( f i l enames=summary$Filename )

8 frmadata=frma ( rawData )

9 write . exprs ( frmadata , f i l e = ‘ ‘ e s e t frma . txt ” )

https://uk.mathworks.com/matlabcentral/fileexchange/22293-kmplot
https://uk.mathworks.com/matlabcentral/fileexchange/22317-logrank
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J. M. Guinebretiére, M. Spielmann, A. Savignoni, and M. Marty, “A multicenter random-

ized phase II study of sequential epirubicin/ cyclophosphamide followed by docetaxel with

or without celecoxib or trastuzumab according to HER2 status, as primary chemother-

apy for localized invasive breast cancer patients,” Breast Cancer Research and Treatment,

vol. 122, no. 2, pp. 429–437, 2010.

[175] D. C. Lay, “Linear Algebra and its Applications,” Linear Algebra and Its Applications,

vol. 437, no. 11, pp. 2755–2772, 2012.


	DV_thesis_final_June2018.pdf
	Introduction to the Circadian Clock
	Popular perception of the circadian clock
	The molecular circadian clock
	The role of the circadian clock
	The mammalian molecular circadian clock
	The master clock
	Summary
	Use of mouse transcriptome to inform human disease

	Computational challenges
	Structure

	The Robustness of the Circadian Clock
	Models of gene expression
	Evolutionary design of circadian clocks
	Design principles underlying circadian clocks

	Circadian clock models
	The Relogio Model
	Relogio et al. summary of study

	Sensitivity Analysis Using PeTTsy
	Decomposing the system
	PeTTsy analysis of the Relogio model

	Stochastic Modelling 
	Introduction to stochastic models
	Stochastic circadian models
	The stochastic Relogio model
	Linear noise approximation
	Transversal distributions
	pcLNA
	pcLNA implementation
	Fisher information matrix
	Sensitivity analysis on the stochastic Relogio model

	Summary of chapter

	Timecourse Transcriptome Analysis
	Timecourse transcriptome data collection
	Microarrays

	Summary of datasets
	Mouse Timecourse
	A circadian gene expression atlas in mammals
	Novel rhythmicity and synchronicity analysis of zhang data
	RNA-seq timecourse
	Comparison of different Affymetrix GeneChips

	Human Timecourse Data
	Experimental design
	Analysis of raw human timecourse
	Synchronicity and rhythmicity detection of the Bjarnason data

	Comparisons of rhythmicity detection methods
	Simulated Timecourse Data
	Generation of in silico timecourse data

	Summary of Chapter

	Time-Teller
	Introduction to machine learning
	Literature Review of Time Telling Models
	Molecular timetabling method (MTTM)
	Zeitzeiger
	BIO_CLOCK 
	CYCLOPS
	PLSR
	CCD
	Summary of existing methods

	Time-Teller: a novel time-telling algorithm
	Model outline
	Local principal components

	in silico Time-Teller
	Mouse Time-Teller
	Human Time-Teller
	Training set and validation
	Body time versus clock time

	Summary of chapter

	A Metric for Clock Dysfunction
	A metric for confidence in the MLE
	Shapes of likelihoods
	Exploring clock function using simulated data
	Measuring 

	Mouse Time-Teller applied to independent datasets
	Distribution of  for Zhang timecourse data
	LeMartletot data: simple timecourse
	Fang data: WT and Rev-Erb KO
	Barclay data: WT vs time-stressed 

	Human Time-Teller applied to independent datasets
	UK-Sri Lankan healthy data
	Smoker and non smoker oral mucosa data
	Autopsy data

	Summary of Chapter

	Circadian Clock Dysfunction in Human Cancer
	Genetic circadian disruption promotes tumourigenesis
	Mechanisms driving circadian disruption to promote tumourigenesis
	The circadian clock is coupled to the cell cycle
	Chronotherapy
	The circadian clock is dysfunctional in cancer

	Time-Teller on human cancer datasets
	Feng data: healthy and OSCC 

	Breast cancer and circadian rhythms
	Summary of breast cancer prognostic markers

	Circadian clock dysfunction as a novel prognostic factor
	Distribution of  for REMAGUS data
	Clock function relation to prognostic markers
	Clock function relation to survival
	Summary of section

	Comparison of all human data
	Summary of chapter

	Discussion
	Summary of thesis
	Discussion of Time-Teller
	Clinical uses and advantages
	Limitations
	Future work

	Novel findings
	Future work in circadian rhythms
	Final comments

	Appendices
	SVD and PCA
	Singular Value Decomposition (SVD)
	Principal component analysis


	Relogio Model
	ODE
	Parameters


	MATLAB and R functions and code
	svd
	Rhythmiciy detection
	Gaussians fitting
	Splines

	Statistical tests
	Wilcoxon Rank-sum test
	Kolmogorov Smirnov 2 sided test
	Kaplan-Meier survival analysis

	fRMA normalisation



