2,142 research outputs found

    Trust-based security for the OLSR routing protocol

    Get PDF
    International audienceThe trust is always present implicitly in the protocols based on cooperation, in particular, between the entities involved in routing operations in Ad hoc networks. Indeed, as the wireless range of such nodes is limited, the nodes mutually cooperate with their neighbors in order to extend the remote nodes and the entire network. In our work, we are interested by trust as security solution for OLSR protocol. This approach fits particularly with characteristics of ad hoc networks. Moreover, the explicit trust management allows entities to reason with and about trust, and to take decisions regarding other entities. In this paper, we detail the techniques and the contributions in trust-based security in OLSR. We present trust-based analysis of the OLSR protocol using trust specification language, and we show how trust-based reasoning can allow each node to evaluate the behavior of the other nodes. After the detection of misbehaving nodes, we propose solutions of prevention and countermeasures to resolve the situations of inconsistency, and counter the malicious nodes. We demonstrate the effectiveness of our solution taking different simulated attacks scenarios. Our approach brings few modifications and is still compatible with the bare OLSR

    PEPSI: Privacy-Enhanced Participatory Sensing Infrastructure.

    Get PDF
    Participatory Sensing combines the ubiquity of mobile phones with sensing capabilities of Wireless Sensor Networks. It targets pervasive collection of information, e.g., temperature, traffic conditions, or health-related data. As users produce measurements from their mobile devices, voluntary participation becomes essential. However, a number of privacy concerns -- due to the personal information conveyed by data reports -- hinder large-scale deployment of participatory sensing applications. Prior work on privacy protection, for participatory sensing, has often relayed on unrealistic assumptions and with no provably-secure guarantees. The goal of this project is to introduce PEPSI: a Privacy-Enhanced Participatory Sensing Infrastructure. We explore realistic architectural assumptions and a minimal set of (formal) privacy requirements, aiming at protecting privacy of both data producers and consumers. We design a solution that attains privacy guarantees with provable security at very low additional computational cost and almost no extra communication overhead

    Co-Check: Collaborative Outsourced Data Auditing in Multicloud Environment

    Get PDF
    With the increasing demand for ubiquitous connectivity, wireless technology has significantly improved our daily lives. Meanwhile, together with cloud-computing technology (e.g., cloud storage services and big data processing), new wireless networking technology becomes the foundation infrastructure of emerging communication networks. Particularly, cloud storage has been widely used in services, such as data outsourcing and resource sharing, among the heterogeneous wireless environments because of its convenience, low cost, and flexibility. However, users/clients lose the physical control of their data after outsourcing. Consequently, ensuring the integrity of the outsourced data becomes an important security requirement of cloud storage applications. In this paper, we present Co-Check, a collaborative multicloud data integrity audition scheme, which is based on BLS (Boneh-Lynn-Shacham) signature and homomorphic tags. According to the proposed scheme, clients can audit their outsourced data in a one-round challenge-response interaction with low performance overhead. Our scheme also supports dynamic data maintenance. The theoretical analysis and experiment results illustrate that our scheme is provably secure and efficient
    • …
    corecore