3,646 research outputs found

    A conditional role-involved purpose-based access control model

    Get PDF
    This paper presents a role-involved conditional purpose-based access control (RCPBAC) model, where a purpose is defined as the intension of data accesses or usages. RCPBAC allows users using some data for certain purpose with conditions. The structure of RCPBAC model is defined and investigated. An algorithm is developed to achieve the compliance computation between access purposes (related to data access) and intended purposes (related to data objects) and is illustrated with role-based access control (RBAC) to support RCPBAC. According to this model, more information from data providers can be extracted while at the same time assuring privacy that maximizes the usability of consumers' data. It extends traditional access control models to a further coverage of privacy preserving in data mining environment as RBAC is one of the most popular approach towards access control to achieve database security and available in database management systems. The structure helps enterprises to circulate clear privacy promise, to collect and manage user preferences and consent

    BALANCING PRIVACY, PRECISION AND PERFORMANCE IN DISTRIBUTED SYSTEMS

    Get PDF
    Privacy, Precision, and Performance (3Ps) are three fundamental design objectives in distributed systems. However, these properties tend to compete with one another and are not considered absolute properties or functions. They must be defined and justified in terms of a system, its resources, stakeholder concerns, and the security threat model. To date, distributed systems research has only considered the trade-offs of balancing privacy, precision, and performance in a pairwise fashion. However, this dissertation formally explores the space of trade-offs among all 3Ps by examining three representative classes of distributed systems, namely Wireless Sensor Networks (WSNs), cloud systems, and Data Stream Management Systems (DSMSs). These representative systems support large part of the modern and mission-critical distributed systems. WSNs are real-time systems characterized by unreliable network interconnections and highly constrained computational and power resources. The dissertation proposes a privacy-preserving in-network aggregation protocol for WSNs demonstrating that the 3Ps could be navigated by adopting the appropriate algorithms and cryptographic techniques that are not prohibitively expensive. Next, the dissertation highlights the privacy and precision issues that arise in cloud databases due to the eventual consistency models of the cloud. To address these issues, consistency enforcement techniques across cloud servers are proposed and the trade-offs between 3Ps are discussed to help guide cloud database users on how to balance these properties. Lastly, the 3Ps properties are examined in DSMSs which are characterized by high volumes of unbounded input data streams and strict real-time processing constraints. Within this system, the 3Ps are balanced through a proposed simple and efficient technique that applies access control policies over shared operator networks to achieve privacy and precision without sacrificing the systems performance. Despite that in this dissertation, it was shown that, with the right set of protocols and algorithms, the desirable 3P properties can co-exist in a balanced way in well-established distributed systems, this dissertation is promoting the use of the new 3Ps-by-design concept. This concept is meant to encourage distributed systems designers to proactively consider the interplay among the 3Ps from the initial stages of the systems design lifecycle rather than identifying them as add-on properties to systems

    Towards Safer Information Sharing in the Cloud

    Get PDF
    Web interactions usually require the exchange of personal and confidential information for a variety of purposes, including enabling business transactions and the provisioning of services. A key issue affecting these interactions is the lack of trust and control on how data is going to be used and processed by the entities that receive it. In the traditional world, this problem is addressed by using contractual agreements, those are signed by the involved parties, and law enforcement. This could be done electronically as well but, in ad- dition to the trust issue, there is currently a major gap between the definition of legal contracts regulat- ing the sharing of data, and the software infrastructure required to support and enforce them. How to enable organisations to provide more automation in this pro- cess? How to ensure that legal contracts can be actually enforced by the underlying IT infrastructure? How to enable end-users to express their preferences and con- straints within these contracts? This article describes our R&D work to make progress towards addressing this gap via the usage of electronic Data Sharing Agree- ments (e-DSA). The aim is to share our vision, discuss the involved challenges and stimulate further research and development in this space. We specifically focus on a cloud scenario because it provides a rich set of?use cases involving interactions and information shar- ing among multiple stakeholders, including users and service providers.?

    Context-aware Authorization in Highly Dynamic Environments

    Get PDF
    Highly dynamic computing environments, like ubiquitous and pervasive computing environments, require frequent adaptation of applications. Context is a key to adapt suiting user needs. On the other hand, standard access control trusts users once they have authenticated, despite the fact that they may reach unauthorized contexts. We analyse how taking into account dynamic information like context in the authorization subsystem can improve security, and how this new access control applies to interaction patterns, like messaging or eventing. We experiment and validate our approach using context as an authorization factor for eventing in Web service for device (like UPnP or DPWS), in smart home security

    Let the Computer Say NO! The Neglected Potential of Policy Definition Languages for Data Sovereignty

    Get PDF
    During interaction with today’s internet services and platform ecosystems, consumer data is often harvested and shared without their consent; that is, consumers seized to be the sovereigns of their own data with the proliferation of the internet. Due to the rapid and abundant nature of interactions in today’s platform ecosystems, manual consent management is impractical. To support development of semi-automated solutions for reestablishing data sovereignty, we investigate the use of policy definition languages as machine-readable and enforceable mechanisms for fostering data sovereignty. We conducted a realist literature review of the capabilities of policy definition languages developed for pertinent application scenarios (e.g., for access control in cloud computing). We consolidate extant literature into a framework of the chances and challenges of leveraging policy definition languages as central building blocks for data sovereignty in platform ecosystems

    Building access control policy model for Privacy Preserving and Testing Policy Conflicting Problems

    Get PDF
    This paper proposes a purpose-based access control model in distributed computing environment for privacy preserving policies and mechanisms, and describes algorithms for policy conflicting problems. The mechanism enforces access policy to data containing personally identifiable information. The key component is purpose involved access control models for expressing highly complex privacy-related policies with various features. A policy refers to an access right that a subject can have on an object, based on attribute predicates, obligation actions, and system conditions. Policy conflicting problems may arise when new access policies are generated that are possible to be conflicted to existing policies. As a result of the policy conflicts, private information cannot be well protected. The structure of purpose involved access control policy is studied, and efficient conflict-checking algorithms are developed and implemented. Finally a discussion of our work in comparison with other related work such as EPAL is presented

    BlueSky: Combining Task Planning and Activity-Centric Access Control for Assistive Humanoid Robots

    Get PDF
    In the not too distant future, assistive humanoid robots will provide versatile assistance for coping with everyday life. In their interactions with humans, not only safety, but also security and privacy issues need to be considered. In this Blue Sky paper, we therefore argue that it is time to bring task planning and execution as a well-established field of robotics with access and usage control in the field of security and privacy closer together. In particular, the recently proposed activity-based view on access and usage control provides a promising approach to bridge the gap between these two perspectives. We argue that humanoid robots provide for specific challenges due to their task-universality and their use in both, private and public spaces. Furthermore, they are socially connected to various parties and require policy creation at runtime due to learning. We contribute first attempts on the architecture and enforcement layer as well as on joint modeling, and discuss challenges and a research roadmap also for the policy and objectives layer. We conclude that the underlying combination of decentralized systems\u27 and smart environments\u27 research aspects provides for a rich source of challenges that need to be addressed on the road to deployment
    corecore