29 research outputs found

    Energy Optimization of Unrolled Block Ciphers using Combinational Checkpointing

    Get PDF
    Energy consumption of block ciphers is critical in resource constrained devices. Unrolling has been explored in literature as a technique to increase efficiency by eliminating energy spent in loop control elements such as registers and multiplexers. However these savings are minimal and are offset by the increase in glitching power that comes with unrolling. We propose an efficient latch-based glitch filter for unrolled designs that reduces energy per encryption by an order of magnitude over a straightforward implementation, and by 28-32% over the best existing glitch filtering schemes. We explore the optimal number of glitch filters that should be used in order to minimize total energy, and provide estimates of the area cost. Partially unrolled designs also benefit from using our scheme with energies competitive to fully serialized implementations. We demonstrate our approach on the SIMON-128 and AES-256 block ciphers

    Design of Multi-Gigabit Network Interconnect Elements and Protocols for a Data Acquisition System in Radiation Environments

    Get PDF
    Modern High Energy Physics experiments (HEP) explore the fundamental nature of matter in more depth than ever before and thereby benefit greatly from the advances in the field of communication technology. The huge data volumes generated by the increasingly precise detector setups pose severe problems for the Data Acquisition Systems (DAQ), which are used to process and store this information. In addition, detector setups and their read-out electronics need to be synchronized precisely to allow a later correlation of experiment events accurately in time. Moreover, the substantial presence of charged particles from accelerator-generated beams results in strong ionizing radiation levels, which has a severe impact on the electronic systems. This thesis recommends an architecture for unified network protocol IP cores with custom developed physical interfaces for the use of reliable data acquisition systems in strong radiation environments. Special configured serial bidirectional point-to-point interconnects are proposed to realize high speed data transmission, slow control access, synchronization and global clock distribution on unified links to reduce costs and to gain compact and efficient read-out setups. Special features are the developed radiation hardened functional units against single and multiple bit upsets, and the common interface for statistical error and diagnosis information, which integrates well into the protocol capabilities and eases the error handling in large experiment setups. Many innovative designs for several custom FPGA and ASIC platforms have been implemented and are described in detail. Special focus is placed on the physical layers and network interface elements from high-speed serial LVDS interconnects up to 20 Gb/s SSTL links in state-of-the-art process technology. The developed IP cores are fully tested by an adapted verification environment for electronic design automation tools and also by live application. They are available in a global repository allowing a broad usage within further HEP experiments

    Characterization of Interconnection Delays in FPGAS Due to Single Event Upsets and Mitigation

    Get PDF
    RÉSUMÉ L’utilisation incessante de composants électroniques à géométrie toujours plus faible a engendré de nouveaux défis au fil des ans. Par exemple, des semi-conducteurs à mémoire et à microprocesseur plus avancés sont utilisés dans les systèmes avioniques qui présentent une susceptibilité importante aux phénomènes de rayonnement cosmique. L'une des principales implications des rayons cosmiques, observée principalement dans les satellites en orbite, est l'effet d'événements singuliers (SEE). Le rayonnement atmosphérique suscite plusieurs préoccupations concernant la sécurité et la fiabilité de l'équipement avionique, en particulier pour les systèmes qui impliquent des réseaux de portes programmables (FPGA). Les FPGA à base de cellules de mémoire statique (SRAM) présentent une solution attrayante pour mettre en oeuvre des systèmes complexes dans le domaine de l’avionique. Les expériences de rayonnement réalisées sur les FPGA ont dévoilé la vulnérabilité de ces dispositifs contre un type particulier de SEE, à savoir, les événements singuliers de changement d’état (SEU). Un SEU est considérée comme le changement de l'état d'un élément bistable (c'est-à-dire, un bit-flip) dû à l'effet d'un ion, d'un proton ou d’un neutron énergétique. Cet effet est non destructif et peut être corrigé en réécrivant la partie de la SRAM affectée. Les changements de délai (DC) potentiels dus aux SEU affectant la mémoire de configuration de routage ont été récemment confirmés. Un des objectifs de cette thèse consiste à caractériser plus précisément les DC dans les FPGA causés par les SEU. Les DC observés expérimentalement sont présentés et la modélisation au niveau circuit de ces DC est proposée. Les circuits impliqués dans la propagation du délai sont validés en effectuant une modélisation précise des blocs internes à l'intérieur du FPGA et en exécutant des simulations. Les résultats montrent l’origine des DC qui sont en accord avec les mesures expérimentales de délais. Les modèles proposés au niveau circuit sont, aux meilleures de notre connaissance, le premier travail qui confirme et explique les délais combinatoires dans les FPGA. La conception d'un circuit moniteur de délai pour la détection des DC a été faite dans la deuxième partie de cette thèse. Ce moniteur permet de détecter un changement de délai sur les sections critiques du circuit et de prévenir les pannes de synchronisation engendrées par les SEU sans utiliser la redondance modulaire triple (TMR).----------ABSTRACT The unrelenting demand for electronic components with ever diminishing feature size have emerged new challenges over the years. Among them, more advanced memory and microprocessor semiconductors are being used in avionic systems that exhibit a substantial susceptibility to cosmic radiation phenomena. One of the main implications of cosmic rays, which was primarily observed in orbiting satellites, is single-event effect (SEE). Atmospheric radiation causes several concerns regarding the safety and reliability of avionics equipment, particularly for systems that involve field programmable gate arrays (FPGA). SRAM-based FPGAs, as an attractive solution to implement systems in aeronautic sector, are very susceptible to SEEs in particular Single Event Upset (SEU). An SEU is considered as the change of the state of a bistable element (i.e., bit-flip) due to the effect of an energetic ion or proton. This effect is non-destructive and may be fixed by rewriting the affected part. Sensitivity evaluation of SRAM-based FPGAs to a physical impact such as potential delay changes (DC) has not been addressed thus far in the literature. DCs induced by SEU can affect the functionality of the logic circuits by disturbing the race condition on critical paths. The objective of this thesis is toward the characterization of DCs in SRAM-based FPGAs due to transient ionizing radiation. The DCs observed experimentally are presented and the circuit-level modeling of those DCs is proposed. Circuits involved in delay propagation are reverse-engineered by performing precise modeling of internal blocks inside the FPGA and executing simulations. The results show the root cause of DCs that are in good agreement with experimental delay measurements. The proposed circuit level models are, to the best of our knowledge, the first work on modeling of combinational delays in FPGAs.In addition, the design of a delay monitor circuit for DC detection is investigated in the second part of this thesis. This monitor allowed to show experimentally cumulative DCs on interconnects in FPGA. To this end, by avoiding the use of triple modular redundancy (TMR), a mitigation technique for DCs is proposed and the system downtime is minimized. A method is also proposed to decrease the clock frequency after DC detection without interrupting the process

    Soft-Error Resilience Framework For Reliable and Energy-Efficient CMOS Logic and Spintronic Memory Architectures

    Get PDF
    The revolution in chip manufacturing processes spanning five decades has proliferated high performance and energy-efficient nano-electronic devices across all aspects of daily life. In recent years, CMOS technology scaling has realized billions of transistors within large-scale VLSI chips to elevate performance. However, these advancements have also continually augmented the impact of Single-Event Transient (SET) and Single-Event Upset (SEU) occurrences which precipitate a range of Soft-Error (SE) dependability issues. Consequently, soft-error mitigation techniques have become essential to improve systems\u27 reliability. Herein, first, we proposed optimized soft-error resilience designs to improve robustness of sub-micron computing systems. The proposed approaches were developed to deliver energy-efficiency and tolerate double/multiple errors simultaneously while incurring acceptable speed performance degradation compared to the prior work. Secondly, the impact of Process Variation (PV) at the Near-Threshold Voltage (NTV) region on redundancy-based SE-mitigation approaches for High-Performance Computing (HPC) systems was investigated to highlight the approach that can realize favorable attributes, such as reduced critical datapath delay variation and low speed degradation. Finally, recently, spin-based devices have been widely used to design Non-Volatile (NV) elements such as NV latches and flip-flops, which can be leveraged in normally-off computing architectures for Internet-of-Things (IoT) and energy-harvesting-powered applications. Thus, in the last portion of this dissertation, we design and evaluate for soft-error resilience NV-latching circuits that can achieve intriguing features, such as low energy consumption, high computing performance, and superior soft errors tolerance, i.e., concurrently able to tolerate Multiple Node Upset (MNU), to potentially become a mainstream solution for the aerospace and avionic nanoelectronics. Together, these objectives cooperate to increase energy-efficiency and soft errors mitigation resiliency of larger-scale emerging NV latching circuits within iso-energy constraints. In summary, addressing these reliability concerns is paramount to successful deployment of future reliable and energy-efficient CMOS logic and spintronic memory architectures with deeply-scaled devices operating at low-voltages

    Online Timing Slack Measurement and its Application in Field-Programmable Gate Arrays

    Get PDF
    Reliability, power consumption and timing performance are key concerns for today's integrated circuits. Measurement techniques capable of quantifying the timing characteristics of a circuit, while it is operating, facilitate a range of benefits. Delay variation due to environmental and operational conditions, and degradation can be monitored by tracking changes in timing performance. Using the measurements in a closed-loop to control power supply voltage or clock frequency allows for the reduction of timing safety margins, leading to improvements in power consumption or throughput performance through the exploitation of better-than worst-case operation. This thesis describes a novel online timing slack measurement method which can directly measure the timing performance of a circuit, accurately and with minimal overhead. Enhancements allow for the improvement of absolute accuracy and resolution. A compilation flow is reported that can automatically instrument arbitrary circuits on FPGAs with the measurement circuitry. On its own this measurement method is able to track the "health" of an integrated circuit, from commissioning through its lifetime, warning of impending failure or instigating pre-emptive degradation mitigation techniques. The use of the measurement method in a closed-loop dynamic voltage and frequency scaling scheme has been demonstrated, achieving significant improvements in power consumption and throughput performance.Open Acces

    Quantifiable Assurance: From IPs to Platforms

    Get PDF
    Hardware vulnerabilities are generally considered more difficult to fix than software ones because they are persistent after fabrication. Thus, it is crucial to assess the security and fix the vulnerabilities at earlier design phases, such as Register Transfer Level (RTL) and gate level. The focus of the existing security assessment techniques is mainly twofold. First, they check the security of Intellectual Property (IP) blocks separately. Second, they aim to assess the security against individual threats considering the threats are orthogonal. We argue that IP-level security assessment is not sufficient. Eventually, the IPs are placed in a platform, such as a system-on-chip (SoC), where each IP is surrounded by other IPs connected through glue logic and shared/private buses. Hence, we must develop a methodology to assess the platform-level security by considering both the IP-level security and the impact of the additional parameters introduced during platform integration. Another important factor to consider is that the threats are not always orthogonal. Improving security against one threat may affect the security against other threats. Hence, to build a secure platform, we must first answer the following questions: What additional parameters are introduced during the platform integration? How do we define and characterize the impact of these parameters on security? How do the mitigation techniques of one threat impact others? This paper aims to answer these important questions and proposes techniques for quantifiable assurance by quantitatively estimating and measuring the security of a platform at the pre-silicon stages. We also touch upon the term security optimization and present the challenges for future research directions

    Analysis and Mitigation of Remote Side-Channel and Fault Attacks on the Electrical Level

    Get PDF
    In der fortlaufenden Miniaturisierung von integrierten Schaltungen werden physikalische Grenzen erreicht, wobei beispielsweise Einzelatomtransistoren eine mögliche untere Grenze für Strukturgrößen darstellen. Zudem ist die Herstellung der neuesten Generationen von Mikrochips heutzutage finanziell nur noch von großen, multinationalen Unternehmen zu stemmen. Aufgrund dieser Entwicklung ist Miniaturisierung nicht länger die treibende Kraft um die Leistung von elektronischen Komponenten weiter zu erhöhen. Stattdessen werden klassische Computerarchitekturen mit generischen Prozessoren weiterentwickelt zu heterogenen Systemen mit hoher Parallelität und speziellen Beschleunigern. Allerdings wird in diesen heterogenen Systemen auch der Schutz von privaten Daten gegen Angreifer zunehmend schwieriger. Neue Arten von Hardware-Komponenten, neue Arten von Anwendungen und eine allgemein erhöhte Komplexität sind einige der Faktoren, die die Sicherheit in solchen Systemen zur Herausforderung machen. Kryptografische Algorithmen sind oftmals nur unter bestimmten Annahmen über den Angreifer wirklich sicher. Es wird zum Beispiel oft angenommen, dass der Angreifer nur auf Eingaben und Ausgaben eines Moduls zugreifen kann, während interne Signale und Zwischenwerte verborgen sind. In echten Implementierungen zeigen jedoch Angriffe über Seitenkanäle und Faults die Grenzen dieses sogenannten Black-Box-Modells auf. Während bei Seitenkanalangriffen der Angreifer datenabhängige Messgrößen wie Stromverbrauch oder elektromagnetische Strahlung ausnutzt, wird bei Fault Angriffen aktiv in die Berechnungen eingegriffen, und die falschen Ausgabewerte zum Finden der geheimen Daten verwendet. Diese Art von Angriffen auf Implementierungen wurde ursprünglich nur im Kontext eines lokalen Angreifers mit Zugriff auf das Zielgerät behandelt. Jedoch haben bereits Angriffe, die auf der Messung der Zeit für bestimmte Speicherzugriffe basieren, gezeigt, dass die Bedrohung auch durch Angreifer mit Fernzugriff besteht. In dieser Arbeit wird die Bedrohung durch Seitenkanal- und Fault-Angriffe über Fernzugriff behandelt, welche eng mit der Entwicklung zu mehr heterogenen Systemen verknüpft sind. Ein Beispiel für neuartige Hardware im heterogenen Rechnen sind Field-Programmable Gate Arrays (FPGAs), mit welchen sich fast beliebige Schaltungen in programmierbarer Logik realisieren lassen. Diese Logik-Chips werden bereits jetzt als Beschleuniger sowohl in der Cloud als auch in Endgeräten eingesetzt. Allerdings wurde gezeigt, wie die Flexibilität dieser Beschleuniger zur Implementierung von Sensoren zur Abschätzung der Versorgungsspannung ausgenutzt werden kann. Zudem können durch eine spezielle Art der Aktivierung von großen Mengen an Logik Berechnungen in anderen Schaltungen für Fault Angriffe gestört werden. Diese Bedrohung wird hier beispielsweise durch die Erweiterung bestehender Angriffe weiter analysiert und es werden Strategien zur Absicherung dagegen entwickelt

    Test and Testability of Asynchronous Circuits

    Full text link
    The ever-increasing transistor shrinkage and higher clock frequencies are causing serious clock distribution, power management, and reliability issues. Asynchronous design is predicted to have a significant role in tackling these challenges because of its distributed control mechanism and on-demand, rather than continuous, switching activity. Null Convention Logic (NCL) is a robust and low-power asynchronous paradigm that introduces new challenges to test and testability algorithms because 1) the lack of deterministic timing in NCL complicates the management of test timing, 2) all NCL gates are state-holding and even simple combinational circuits show sequential behaviour, and 3) stuck-at faults on gate internal feedback (GIF) of NCL gates do not always cause an incorrect output and therefore are undetectable by automatic test pattern generation (ATPG) algorithms. Existing test methods for NCL use clocked hardware to control the timing of test. Such test hardware could introduce metastability issues into otherwise highly robust NCL devices. Also, existing test techniques for NCL handle the high-statefulness of NCL circuits by excessive incorporation of test hardware which imposes additional area, propagation delay and power consumption. This work, first, proposes a clockless self-timed ATPG that detects all faults on the gate inputs and a share of the GIF faults with no added design for test (DFT). Then, the efficacy of quiescent current (IDDQ) test for detecting GIF faults undetectable by a DFT-less ATPG is investigated. Finally, asynchronous test hardware, including test points, a scan cell, and an interleaved scan architecture, is proposed for NCL-based circuits. To the extent of our knowledge, this is the first work that develops clockless, self-timed test techniques for NCL while minimising the need for DFT, and also the first work conducted on IDDQ test of NCL. The proposed methods are applied to multiple NCL circuits with up to 2,633 NCL gates (10,000 CMOS Boolean gates), in 180 and 45 nm technologies and show average fault coverage of 88.98% for ATPG alone, 98.52% including IDDQ test, and 99.28% when incorporating test hardware. Given that this fault coverage includes detection of GIF faults, our work has 13% higher fault coverage than previous work. Also, because our proposed clockless test hardware eliminates the need for double-latching, it reduces the average area and delay overhead of previous studies by 32% and 50%, respectively
    corecore