10,927 research outputs found

    Using handheld devices for real-time wireless teleconsultation

    Get PDF
    Recent advances in the hardware of handheld devices, opened up the way for newer applications in the healthcare sector, and more specifically, in the teleconsultation field. Out of these devices, this paper focuses on the services that personal digital assistants and smartphones can provide to improve the speed, quality and ease of delivering a medical opinion from a distance and laying the ground for an all-wireless hospital. In that manner, PDAs were used to wirelessly support the viewing of digital imaging and communication in medicine (DICOM) images and to allow for mobile videoconferencing while within the hospital. Smartphones were also used to carry still images, multiframes and live video outside the hospital. Both of these applications aimed at increasing the mobility of the consultant while improving the healthcare service

    Emergency TeleOrthoPaedics m-health system for wireless communication links

    Get PDF
    For the first time, a complete wireless and mobile emergency TeleOrthoPaedics system with field trials and expert opinion is presented. The system enables doctors in a remote area to obtain a second opinion from doctors in the hospital using secured wireless telecommunication networks. Doctors can exchange securely medical images and video as well as other important data, and thus perform remote consultations, fast and accurately using a user friendly interface, via a reliable and secure telemedicine system of low cost. The quality of the transmitted compressed (JPEG2000) images was measured using different metrics and doctors opinions. The results have shown that all metrics were within acceptable limits. The performance of the system was evaluated successfully under different wireless communication links based on real data

    Impact of Mobile and Wireless Technology on Healthcare Delivery services

    Get PDF
    Modern healthcare delivery services embrace the use of leading edge technologies and new scientific discoveries to enable better cures for diseases and better means to enable early detection of most life-threatening diseases. The healthcare industry is finding itself in a state of turbulence and flux. The major innovations lie with the use of information technologies and particularly, the adoption of mobile and wireless applications in healthcare delivery [1]. Wireless devices are becoming increasingly popular across the healthcare field, enabling caregivers to review patient records and test results, enter diagnosis information during patient visits and consult drug formularies, all without the need for a wired network connection [2]. A pioneering medical-grade, wireless infrastructure supports complete mobility throughout the full continuum of healthcare delivery. It facilitates the accurate collection and the immediate dissemination of patient information to physicians and other healthcare care professionals at the time of clinical decision-making, thereby ensuring timely, safe, and effective patient care. This paper investigates the wireless technologies that can be used for medical applications, and the effectiveness of such wireless solutions in a healthcare environment. It discusses challenges encountered; and concludes by providing recommendations on policies and standards for the use of such technologies within hospitals

    M-health review: joining up healthcare in a wireless world

    Get PDF
    In recent years, there has been a huge increase in the use of information and communication technologies (ICT) to deliver health and social care. This trend is bound to continue as providers (whether public or private) strive to deliver better care to more people under conditions of severe budgetary constraint

    Smartphone microendoscopy for high resolution fluorescence imaging

    Get PDF
    High resolution optical endoscopes are increasingly used in diagnosis of various medical conditions of internal organs, such as the gastrointestinal tracts, but they are too expensive for use in resource-poor settings. On the other hand, smartphones with high resolution cameras and Internet access have become more affordable, enabling them to diffuse into most rural areas and developing countries in the past decade. In this letter we describe a smartphone microendoscope that can take fluorescence images with a spatial resolution of 3.1 {\mu}m. Images collected from ex vivo, in vitro and in vivo samples using the device are also presented. The compact and cost-effective smartphone microendoscope may be envisaged as a powerful tool for detecting pre-cancerous lesions of internal organs in low and middle income countries.Comment: 4 pages, 4 figure
    corecore