5,284 research outputs found

    A framework to maximise the communicative power of knowledge visualisations

    Get PDF
    Knowledge visualisation, in the field of information systems, is both a process and a product, informed by the closely aligned fields of information visualisation and knowledg management. Knowledge visualisation has untapped potential within the purview of knowledge communication. Even so, knowledge visualisations are infrequently deployed due to a lack of evidence-based guidance. To improve this situation, we carried out a systematic literature review to derive a number of “lenses” that can be used to reveal the essential perspectives to feed into the visualisation production process.We propose a conceptual framework which incorporates these lenses to guide producers of knowledge visualisations. This framework uses the different lenses to reveal critical perspectives that need to be considered during the design process. We conclude by demonstrating how this framework could be used to produce an effective knowledge visualisation

    Medical image computing and computer-aided medical interventions applied to soft tissues. Work in progress in urology

    Full text link
    Until recently, Computer-Aided Medical Interventions (CAMI) and Medical Robotics have focused on rigid and non deformable anatomical structures. Nowadays, special attention is paid to soft tissues, raising complex issues due to their mobility and deformation. Mini-invasive digestive surgery was probably one of the first fields where soft tissues were handled through the development of simulators, tracking of anatomical structures and specific assistance robots. However, other clinical domains, for instance urology, are concerned. Indeed, laparoscopic surgery, new tumour destruction techniques (e.g. HIFU, radiofrequency, or cryoablation), increasingly early detection of cancer, and use of interventional and diagnostic imaging modalities, recently opened new challenges to the urologist and scientists involved in CAMI. This resulted in the last five years in a very significant increase of research and developments of computer-aided urology systems. In this paper, we propose a description of the main problems related to computer-aided diagnostic and therapy of soft tissues and give a survey of the different types of assistance offered to the urologist: robotization, image fusion, surgical navigation. Both research projects and operational industrial systems are discussed

    Artificial Intelligence Algorithms for Eye Banking

    Get PDF
    Eye banking plays a critical role in modern medicine by providing cornea tissues for transplantation to restore vision for millions of people worldwide. The evaluation of corneal endothelium is done by measuring the corneal endothelial cell density (ECD). Unfortunately, the current system to measure ECD is manual, time-consuming, and error prone. Furthermore, the impact of social behaviors and biological conditions on corneal endothelium and corneal transplant success is largely unexplored. To overcome these challenges, this dissertation aims to develop tools for corneal endothelial image and data analysis that enhance the efficiency and quality of the cornea transplants. In the first study, an image processing algorithm is developed to analyze corneal endothelial images captured by a Konan CellChek specular microscope. The algorithm successfully identifies the region of interest, filters the image, and employs stochastic watershed segmentation to determine cell boundaries and evaluate endothelial cell density (ECD). The proposed algorithm achieves a high correlation with manual counts (R2 = 0.98) and has an average analysis time of 2.5 seconds. In the second study, a deep learning-based cell segmentation algorithm called Mobile-CellNet is proposed to estimate ECD. This technique addresses the limitations of classical algorithms and creates a more robust and highly efficient algorithm. The approach achieves a mean absolute error of 4.06% for ECD on the test set, similar to U-Net but with significantly fewer floating-point operations and parameters. The third study explores the correlation between alcohol abuse and corneal endothelial morphology in a donor pool of 5,624 individuals. Multivariable regression analysis shows that alcohol abuse is associated with a reduction in endothelial cell density, an increase in the coefficient of variation, and a decrease in percent hexagonality. These studies highlight the potential of big data and artificial algorithms in accurately and efficiently analyzing corneal images and donor medical data to improve the efficiency of eye banking and patient outcomes. By automating the analysis of corneal images and exploring the impact of social behaviors and biological conditions on corneal endothelial morphology, we can enhance the quality and availability of cornea transplants and ultimately improve the lives of millions of people worldwide
    • …
    corecore