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Abstract

Eye banking plays a critical role in modern medicine by providing cornea tissues for

transplantation to restore vision for millions of people worldwide. The evaluation of

corneal endothelium is done by measuring the corneal endothelial cell density (ECD).

Unfortunately, the current system to measure ECD is manual, time-consuming, and

error-prone. Furthermore, the impact of social behaviors and biological conditions on

corneal endothelium and corneal transplant success is largely unexplored. To over-

come these challenges, this dissertation aims to develop tools for corneal endothelial

image and data analysis that enhance the efficiency and quality of cornea transplants.

In the first study, an image processing algorithm is developed to analyze corneal en-

dothelial images captured by a Konan CellChek specular microscope. The algorithm

successfully identifies the region of interest, filters the image, and employs stochas-

tic watershed segmentation to determine cell boundaries and evaluate endothelial

cell density (ECD). The proposed algorithm achieves a high correlation with manual

counts (R2 = 0.98) and has an average analysis time of 2.5 seconds.

In the second study, a deep learning-based cell segmentation algorithm called Mobile-

CellNet is proposed to estimate ECD. This technique addresses the limitations of

classical algorithms and creates a more robust and highly efficient algorithm. The

xxix



approach achieves a mean absolute error of 4.06% for ECD on the test set, similar to

U-Net but with significantly fewer floating-point operations and parameters.

The third study explores the correlation between alcohol abuse and corneal endothelial

morphology in a donor pool of 5,624 individuals. Multivariable regression analysis

shows that alcohol abuse is associated with a reduction in endothelial cell density, an

increase in the coefficient of variation, and a decrease in percent hexagonality.

These studies highlight the potential of big data and artificial algorithms in accu-

rately and efficiently analyzing corneal images and donor medical data to improve

the efficiency of eye banking and patient outcomes. By automating the analysis of

corneal images and exploring the impact of social behaviors and biological conditions

on corneal endothelial morphology, we can enhance the quality and availability of

cornea transplants and ultimately improve the lives of millions of people worldwide.
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Chapter 1

Introduction

Artificial intelligence (AI) is being increasingly used in ophthalmology [3]. Recently

Food and Drug Administration (FDA) [4] and National Eye Institute (NEI) [5] has

also showed its interest and priority towards AI enabled devices and research. Similar

applications also applies in eye banking to improve efficiency, accuracy, and speed in

various aspects of the process [6, 7].

One way in which AI can be used in eye banking is to improve the accuracy and

efficiency of tissue processing and preservation. For example, AI-based systems can

analyze images of eye tissue to identify abnormalities or damage [8, 9, 10] that may

affect its suitability for transplantation. This can help to ensure that only high-quality

tissue is made available for transplantation, improving patient outcomes.

1



AI can also be used in research and development efforts in eye banking. For example,

AI-based systems can analyze large amounts of data to identify patterns and trends

that may help to advance our understanding of eye disease and the potential for new

treatments and therapies [11, 12, 13].

In addition, AI can be used in the identification and selection of potential donors.

Traditional methods [14] of identifying potential donors rely on manual review of

medical records and corneal health, which can be time-consuming and prone to errors.

AI-based systems can quickly and accurately analyze large amounts of data to identify

potential donors who meet the eligibility criteria for eye donation.

AI can also be used to optimize the distribution of donated eye tissue to ensure that

it reaches its destination as quickly and efficiently as possible. This includes the use

of AI-based algorithms to predict demand and optimize the allocation of tissue to

meet the needs of transplant surgeons and researchers.

Overall, the use of AI in eye banking can help to improve the efficiency, accuracy, and

speed of various aspects of the process, from donor identification and tissue processing

to distribution and research. It helps to ensure that donated eye tissue is used to its

full potential to restore sight and improve the lives of those suffering from vision loss

or blindness.

It is important to note that the use of AI in eye banking, as with any application of
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AI [15, 16, 17], should be carefully regulated and monitored to ensure that it is used

ethically and appropriately. This includes ensuring that AI systems are trained on

diverse and representative data sets and that their outputs are subject to appropriate

oversight and accountability.

In this research, we focused on analyzing a large amount of diverse data collected

at two eye banks over five years to automate accurate analysis of corneal tissues

and to identify the effects of social behaviors and medical conditions on the corneal

endothelium.

1.1 Eye Banking

Eye banking in the United States is a vital part of the healthcare system, providing

donated eye tissue for transplantation and research [14, 18]. The demand for donated

eye tissue is high [19, 20], as there are many conditions that can result in vision loss

or blindness, including glaucoma, cataracts, and age-related macular degeneration.

Eye banking plays a critical role in helping to restore sight and improve the lives of

those suffering from these conditions.

There are several organizations that operate eye banks in the United States, including
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the Eye Bank Association of America (EBAA) and the National Eye Bank Associa-

tion (NEBA). These organizations are responsible for coordinating the procurement,

processing, and distribution of donated eye tissue.

The process of eye banking begins with the identification of potential donors. This

includes individuals who have indicated their desire to donate their eyes upon their

death and those who have died unexpectedly and may be suitable for donation. Once

a potential donor has been identified, the eye bank works with the donor’s family to

obtain their consent for donation [14].

The next step in the process is the procurement of the donated eye tissue. This

involves the removal of the eye tissue from the donor’s body by trained professionals

in a sterile environment. The tissue is then transported to the eye bank, where it is

carefully processed and prepared for transplantation or research [14].

Once the eye tissue has been processed, it is made available for transplantation or

research [14]. The EBAA and NEBA maintain a registry of available eye tissue and

work with transplant surgeons and researchers to match the tissue with recipients or

research projects.

Eye banking plays a critical role in the healthcare system, helping to restore sight and

improve the lives of those suffering from vision loss or blindness. It is an important

part of the organ donation process [21], and those who wish to donate their eyes upon
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their death can do so by registering as organ donors and indicating their desire to

donate their eyes.

In addition to providing donated eye tissue for transplantation, eye banking also plays

a crucial role in advancing scientific research. Researchers use donated eye tissue to

study the effects of various diseases and conditions on the eye, as well as to develop

new treatments and therapies.

Despite the important role that eye banking plays in the healthcare system, there is

still a significant shortage of donated eye tissue [19, 20]. This is often due to a lack

of awareness about the importance of eye donation and the need for registered organ

donors.

To address this shortage, eye banks and other organizations are working to increase

awareness about the importance of eye donation and the need for registered organ

donors. This includes educational campaigns, partnerships with healthcare providers,

and efforts to increase the number of registered organ donors.

In conclusion, eye banking in the United States is a vital part of the healthcare system,

providing donated eye tissue for transplantation and research. It plays a critical role

in helping to restore sight and improve the lives of those suffering from vision loss or

blindness. While there is still a shortage of donated eye tissue, efforts are underway to

increase awareness about the importance of eye donation and the need for registered
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organ donors.

Figure 1.1: Anatomy of the human eye, position of the
cornea, and different layers of the human cornea. [source:
https://www.allaboutvision.com/resources/cornea.htm]

1.2 Corneal Endothelium

The corneal endothelium is a single layer of cells that lines the inner surface of the

cornea, the clear, outermost layer of the eye (Figure 1.1). Located at the back of

the cornea, the endothelium is responsible for maintaining the cornea’s transparency

and clarity by pumping excess fluid out of the cornea and regulating the exchange of

nutrients and waste products between the cornea and the surrounding tissues [22].
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The corneal endothelium is made up of hexagonal-shaped cells called endothelial cells,

which are connected by tight junctions and are surrounded by a basement membrane.

These cells are essential for maintaining the cornea’s transparency because they are

responsible for removing excess fluid from the cornea. They do this by actively

pumping sodium and chloride ions out of the cornea and into the surrounding tissues,

which helps to regulate the cornea’s hydration level.

The corneal endothelium is also important for regulating the exchange of nutrients

and waste products between the cornea and the surrounding tissues. It does this by

transporting small molecules such as glucose and amino acids from the surrounding

tissues into the cornea, and by transporting waste products such as lactic acid and

carbon dioxide out of the cornea.

One of the most important functions of the corneal endothelium is to maintain the

cornea’s transparency. This is because the cornea is a highly avascular tissue, meaning

it does not have its own blood supply. Instead, it relies on the diffusion of nutrients

and waste products from the surrounding tissues to maintain its health and func-

tion. If the corneal endothelium is damaged or diseased, it can result in a loss of

transparency and clarity, leading to vision problems.

There are several conditions that can affect the corneal endothelium and lead to a loss

of transparency and clarity [23, 24]. One of the most common is Fuchs’ endothelial

dystrophy [25, 26], a genetic condition that results in the gradual loss of endothelial
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cells over time. This can lead to corneal edema, or swelling, which can cause vision

problems. Other conditions that can affect the corneal endothelium include corneal

endothelial degeneration, which is often associated with aging, and corneal endothelial

trauma, which can be caused by injury or surgery [24].

In cases where the corneal endothelium is damaged or diseased, treatment may be

necessary to restore transparency and clarity to the cornea. One treatment option

is a corneal transplant [27, 28], also known as a keratoplasty, in which the damaged

cornea is replaced with a healthy donor cornea. Another option is a procedure called

Descemet’s stripping automated endothelial keratoplasty (DSAEK) [29], in which

only the damaged endothelial layer is replaced with a healthy donor endothelial layer

[30].

In conclusion, the corneal endothelium is a vital layer of cells that lines the inner

surface of the cornea and plays a crucial role in maintaining the cornea’s transparency

and clarity. It is responsible for pumping excess fluid out of the cornea and regulating

the exchange of nutrients and waste products between the cornea and the surrounding

tissues. If the corneal endothelium is damaged or diseased, it can lead to vision

problems, and treatment may be necessary to restore transparency and clarity to the

cornea.
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1.3 Literature

1.3.1 Endothelial image analysis

Counting the cell density of the corneal endothelium is an important task in oph-

thalmology for the diagnosis and monitoring of corneal diseases [31, 32]. Several

algorithms have been proposed in the literature for this purpose, each with its own

advantages and limitations.

One of the earliest algorithms proposed for cell counting was the manual counting

method, where a researcher manually counts the number of cells in a selected area

of the corneal endothelial image [33, 34]. This method is considered to be the gold

standard but is time-consuming and subject to observer variability. Three main

techniques of measuring corneal endothelial cell density are corner method, cell-center

method and flex-center method [35, 36].

Automatic cell counting algorithms have been proposed as an alternative to manual

counting. These algorithms can be divided into two main categories: classical image

processing algorithms and AI-based algorithms.

Classical image processing based algorithms can further be categorized into
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thresholding-based algorithms, morphology-based algorithms, and frequency domain-

based algorithms. In recent times we see more machine learning based algorithms

which uses feature extraction and machine learning classifier models as well as deep

learning models such as neural networks.

1.3.1.1 Classical image processing algorithms

One of the very first methods proposed for automatic analysis of the corneal endothe-

lial images was published in 1992 by Vincent et.al [37]. In this paper, the authors

have used a morphological dome extractor with watershed algorithm.

The use of morphological image processing is extremely common in corneal endothelial

image analysis. In [38], Fabijańska et.al proposed a method that uses neural network

along with morphological image processing. In [39], Selig et.al. used stochastic wa-

tershed and combined it with skeletonization. Similar use of watershed was proposed

by Char lampowicz et al. [40] and Dagher et. al. [41] as well.

In 2002, Forracchia et.al. [42] proposed a Discrete Fourier Transform (DFT) based

algorithm. Authors showed that the spatial frequency analysis using 2D DFT creates

a ring. The size of the ring changes with different images and it is directly correlated

with the cell density. Other frequency based algorithms uses DFT methods to deter-

mine the cell size and estimate the parameters for the spatial filters. In another set
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of papers [43] [44], authors have proposed statistical models using the cell shape as a

priori information.

Some other methods proposed for the analysis of the corneal endothelial images in-

clude level-set method proposed by Zhuo et.al. [45], skeletonization and watershed

based algorithm by Gavet et.al. [46], binarization and thresholding by Piorkowski

et.al. [47], and genetic algorithm by Scarapa et.al. [48].

One of the main limitations of these classical image processing based methods is the

lack of robustness. Hence, in recent times, we have seen the use of AI in corneal

endothelial image analysis.

1.3.1.2 Artifical Intelligence algorithms

In recent times, different AI-based algorithm are proposed in the literature. AI-

based algorithms include both convolution neural networks (CNN) and feature based

machine learning algorithms.

One of the very first CNN-based algorithm was proposed by Salerno et.al. in 1998

[49]. Later more sophisticated algorithms using neural network and morphology [38],

pre-trained AlexNet [50], and U-Net[51] were proposed. In [38], authors have used

U-Net to create the initial edge probability map. This map was later binarized and
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skeletonized to create a single pixel thick cell border. Kolluru et.al [51], used U-Net

and SegNet [52] both to segment the corneal endothelial images. Their comparison

over 130 images showed that U-Net performed better compared to SegNet. In another

paper, [53] authors have proposed a dense U-Net where a first network was trained

to detect the edges. Later the edge map was used to train another network to detect

the region of interest. Later, these two maps were combined and post-processed to

create the final segmentation.

While these networks produce significantly better results compared to the classical

methods, a major critique of them is that these networks were trained with a handful

of good quality images. Hence, in [54], authors have used U-Net on ’real-world’

corneal endohtelial images. In another work [55], authors have trained a U-Net with

a set of images affected by guttata. Another work in [56] used U-Net along with

watershed for the segmentation of the corneal endothelium in the patients with Fuchs

dystrophy.

Authors have also proposed machine learning algorithms that uses features extractors

along with K-means [57].
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1.3.2 Data analysis

Multiple studies have been performed on analyzing the effects of diabetes mellitus

on corneal endothelial thickness and cell density. One of the very first analysis was

performed by Schultz et.al. in 1986 [58] where authors have used 46 corneas from 25

patients with type II diabetes. After analyzing, authors have found that there was

no noticable difference in cell density, however, the coefficient of variance and hexag-

onality were significantly different. Other works [59, 60], however, have contradicted

the findings. They have concluded that the corneal endothelial cell density decreases

and corneal thickness increases for patients with diabetes mellitus.

Similar works [61, 62] were also done on tobacco usage and corneal endothelial health.

In both the studies, findings were inconclusive. In our work, we focused on alcohol

consumption with adjusting for tobacco usage and its effects on corneal endothelial

health.

1.4 Chapter outline

Chapter 2: In this chapter, we propose a classical image processing based algorithm

for corneal endothelial image analysis. We use a large dataset of 303 images pictured
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using a Konan CellCheck specular microscope at clinical settings. We use edge de-

tection and morphological image processing to first segment the cells and then count

the number of cells to determine the density. The proposed algorithm is compared

against the manual analysis and automatic analysis by AutoTracer.

Chapter 3: In this chapter, we propose an efficient deep learning-based algorithm

to analyze corneal endothelial images. We use inverse residual blocks on the U-Net

backbone to develop our network. We use two parallel networks along with some

image post-processing to determine our final segmentation.

Chapter 4: In this chapter, we evaluate the effects of alcohol consumption on the

human corneal endothelium. We evaluate 10,322 images from 5624 donors to un-

derstand the correlation between alcohol consumption and corneal endothelial cell

density. We develop a multivariate regression model and use age, sex, tobacco use,

history of cataract and diabetes mellitus along with alcohol consumption.

Final chapter: This chapter summarizes the work presented in this dissertation, ad-

dresses the limitations and discusses future scope of work.
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Chapter 2

An Automatic Approach for Cell

Detection and Segmentation of

Corneal Endothelium Using

Specular Microscope

Authors: Ranit Karmakar, Saeid Nooshabadi, Allen Eghrari 1

1Karmakar, R., Nooshabadi, S. and Eghrari, A., 2022. An automatic approach for cell detection
and segmentation of corneal endothelium in specular microscope. Graefe’s Archive for Clinical and
Experimental Ophthalmology, 260(4), pp.1215-1224.
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2.1 Abstract

2.1.1 Purpose

Specular microscopy is an indispensable tool for clinicians seeking to monitor the

corneal endothelium. Automated methods of determining endothelial cell density

(ECD) are limited in their ability to analyze images of poor quality. We describe and

assess an image processing algorithm to analyze corneal endothelial images.

2.1.2 Methods

A set of corneal endothelial images acquired with a Konan CellChek specular micro-

scope was analyzed using three methods: flex-center, Konan Auto Tracer, and the

proposed method. In this technique, the algorithm determines the region of inter-

est, filters the image to differentiate cell boundaries from their interiors, and utilizes

stochastic watershed segmentation to draw cell boundaries and assess ECD based on

the masked region. We compared ECD measured by the algorithm with manual and

automated results from the specular microscope.
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2.1.3 Results

We analyzed a total of 303 images manually, using the Auto Tracer, and with the

proposed image processing method. Relative to manual analysis across all images,

the mean error was 0.04% in the proposed method (p = 0.23 for difference) whereas

Auto Tracer demonstrated a bias towards overestimation, with a mean error of 5.7%

(p = 2.0610−8). The relative mean absolute errors were 6.9% and 7.8%, respectively,

for the proposed and Auto Tracer. The average time for analysis of each image using

the proposed method was 2.5 s.

2.1.4 Conclusion

We demonstrate a computationally efficient algorithm to analyze corneal endothelial

cell density that can be implemented on devices for clinical and research use.

2.2 Introduction

The corneal endothelium is a cellular monolayer with predominantly hexagonal mor-

phology. During the human lifespan, endothelial cell density (ECD) begins with its
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highest values at approximately 3500 to 4000 cells/mm2 [63]. The ECD reduces with

the natural process of aging over time [64] to approximately 2000 cells/mm2 at older

age, resulting in an increase in cell size [65]. Hereditary diseases, trauma, infection

or surgical procedures can also contribute to a decrease in ECD [66]

Cell density is only one metric of overall corneal health; polymegethism and pleo-

morphism are two other important factors that reflect the well-being of the corneal

endothelium,[66] [67] features that are affected by cell size and shape, respectively.

To capture and analyze these features of the corneal endothelium, confocal and spec-

ular microscopy are both widely used by clinicians and researchers. Specular mi-

croscopy, introduced by Maurice [68] in 1968, has improved across multiple iterations

[69] [70] and is widely used across the globe for endothelial imaging in clinical settings.

While contact-based confocal imaging with a coupling gel is advantageous in image

quality [33, 71, 72], especially in the setting of corneal edema, specular microscopy is

more frequently utilized in clinical settings because of its fast and non-contact nature

[73].

The Konan CellChek microscope is designed for specular imaging in clinical settings

and includes software that can analyze captured images with either automatic, semi-

automatic or manual techniques. Data from multiple studies suggest that automatic
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analyses produce significantly different results from manual analyses [33, 74, 75], lead-

ing many clinicians to use manual counts, although under certain circumstances, the

results may be comparable [36]. Manual cell count, however, is a time-consuming

procedure as a technician needs to go through each cell and mark its border and/or

centers before the software can scan the marked image to obtain cell count and mor-

phology. Moreover, manual techniques introduce bias, and based on the number of

counted cells, different technicians may produce significantly different results. [76]

These shortcomings provide a motivation for the development of a fully automatic

technique to perform endothelial cell analysis.

Historically, while several algorithms for automatic segmentation and cell count of

endothelial images have been proposed to date [37, 49], most work relies on small

datasets that do not necessarily correspond to images from a real clinical setting,

using images instead from eye banks [42, 44, 77] or from deceased animals [57, 78],

that are pre-processed for better imaging.

More recent approaches include frequency domain analysis [39, 42]. Discrete Fourier

Transform (DFT) is a widely used technique for cell size determination as well as

parameter estimation for spatial filters. The DFT of an endothelial image produces

a circular ring pattern around the center. The size and shape of this ring varies with

the cell shape and density [79]. This information can be used to estimate ECD.
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Other techniques involve K-means based image segmentation [57], genetic program-

ming [80] and single cell model descriptor [44]. In recent past, we have observed the

introduction of artificial neural network-based techniques [51, 53, 54, 81, 82, 83] , with

U-net and Seg-Net models for cell segmentation being most widely used for biomedical

imaging applications. Although the current neural network algorithms seem to work

fairly well on the test images, the smaller size of the dataset makes them less suitable

for deep learning models, as it may introduce bias in the network. Most reported

techniques for cell count involve morphological operations [38, 77, 84, 85, 86]. Gener-

ally these techniques are divided into two steps. In the first step, endothelial images

are segmented and a skeleton type structure is formed from the main image. In the

second step, these skeleton structures are used to extract morphological information

of the cells.

The existing techniques, unfortunately, cannot produce consistent results across a

range of clinical settings where the quality of the acquired images is compromised. In

typical clinical settings, the image quality varies widely due to uneven illumination,

and movement of the patient. Further, the presence of Fuchs endothelial corneal

dystrophy (FECD) creates dark cavities in the image. In most algorithms, these

images are excluded from the dataset, or the dataset is manually preprocessed to

demark the areas affected with disease, or uneven illumination [54]. In this work

we propose an automatic exclusion of such areas, as the first step of an algorithm

through a process of region of interest (RoI) demarcation.
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In this paper, we propose an automatic technique to accurately determine cell density

of the corneal endothelium. The technique uses the image information to detect the

regions that are affected by uneven illumination and the FECD dark cavities in an

image for exclusion from filtering and segmentation. We also use a dataset of 100

images with varying quality to validate the robustness of the proposed algorithm.

2.3 Methods and Materials

2.3.1 Materials

The images used in this study were collected during a previous study of specular

microscopy using the Konan CellChek specular microscope, approved by the Institu-

tional Research Board at the Johns Hopkins University School of Medicine. Informed

consent was obtained from all participants and data were deidentifed at the time of

initial collection.

The dataset contained a total of 303 images of fairly healthy eyes from 162 patients

with 124 females and 38 males. We only selected images with more than 2000 cells

as cell density and where a manual grader was able to count 30 contiguous cells.

No images in this study were acquired from eyes that had previously undergone

keratoplasty. The age and sex distribution of the patients are illustrated in Figure 2.1,
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Figure 2.1: (From left) patients age distribution, and sex distribution

suggesting a normal distribution across all age groups with a mean of 36 years of age,

and mode in the 40- to 50-year age group. Images were captured from both left and

right eyes. In no case were two images from the same eye used in the analysis.

These images had been analyzed using the Konan CellChek software using the flex-

center method. Each image had a dimension of 304×446 gray-color pixels, a standard

output image dimension from CellChek. Graders employed a computer mouse to draw

cell borders and cell centers on the captured images. We then repeated analyses with

the CellChek Auto Tracer, to detect cell boundaries and calculate cell density using

the commonly utilized automated method.

For the algorithm described below, we used MATLAB 2018b running on an Intel 2

GHz hexa-core CPU with an NVIDIA 1060Ti GPU. The per image processing time

of 2.5 s was obtained by averaging over time to process 303 images.
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2.3.2 Methods

To address variability of illumination and the presence of diseases such as FECD in

the acquired image, we divided the development of the algorithm into three steps.

† Region of interest demarcation: First, the region of interest (RoI) is de-

marcated to remove the unwanted bright areas or dark patches on the image.

This step also masks out the areas affected by FECD.

† Cell border detection: Second, the RoI is filtered to differentiate the cells

boundaries from their interiors.

† Cell count:Third, stochastic watershed segmentation is utilized to draw cell

boundaries and count cell density based on the masked region.

Figure 2.2 illustrates the outputs from blocks that represent the steps described,

along with the final result. We use classical image filtering techniques along with

morphological image processing tools to filter the image and obtain the cell bound-

aries. Later, we use the a priori criteria about the cell shape and size to filter out

the over and under-segmented cells that do not match the criteria.
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Figure 2.2: Proposed algorithm block diagram
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2.3.2.1 Region of Interest Demarcation

The input image is passed through a local entropy filter to detect abnormalities.

Entropy, defned by the Shannon’s Entropy [87], is a statistical measure of randomness,

and is represented as,

H = −
n∑

i=1

pilogpi (2.1)

where n (= 256) is the number of gray levels and pi is the probability associated with

each gray level.

The entropy folter processes the image such that each output pixel contains the

entropy value of a neighborhood window size of I × I (I = 9), around the corresponding

pixel in the input image. If a section of the image is too bright or dark that no edge

information could be obtained from that neighborhood, the value returned by the

entropy filter is very low. In the constructed entropy map of an image, the affected

areas look much darker than their nearby regions. We next threshold the image based

on the entropy values to obtain a binary mask. The threshold value is chosen to be

around 25% of the maximum entropy value. Masked out regions, unfortunately, do

not fully cover the affected areas of the image and leaves some spurious links and small

noise speckles on the image. Hence, we apply an image erosion operation first, and

then follow it by an image opening. Image opening [88] is a morphological operation
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that applies dilation over the eroded image.

(A⊖B) ⊕B (2.2)

Here A is the input image, and B is the structuring element. The operators ⊖ and

⊕, respectively, are the erosion and dilation.

The opening morphological operations create a mask with a wider area that com-

pletely masks out the unevenly illuminated areas of the image. The binary mask is

then used with the main input image to mark RoI.

2.3.2.2 Feature enhancement

The feature enhancement block processes the image with different spatial domain

filtering to detect the cell boundaries. The cell boundaries are generally darker than

the cell interior, so edge detection techniques result in demarcation of the cell bound-

aries. However, due to poor image quality and illumination effects, direct application

of normal edge detection techniques results in random edges that do not correspond

to any cell boundaries. This causes cell oversegmentation. To reduce this problem,

we apply the following filtering steps multiple times.
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† Gaussian blur: We apply Gaussian blur to remove, from the input image,

random spatial noise with a set standard deviation of σ

† Laplacian of Gaussian edge detector: Next the image is processed with

Laplacian of Gaussian (LoG) [89] edge detector. As Laplacian is a second

derivative operator, LoG filter works better in detecting cell boundaries than

any first order derivative-based edge detectors like Sobel [89] or Canny [90].

† Morphological operations: We then apply morphological opening on the

output of the edge detector. Because of uneven illumination, the cell borders

are not always prominent. Thus, the edge detector does not always detect the

cell borders clearly. Erosion helps in breaking small links between cells. To

restore the cell size, reduced due to erosion, we perform a dilation operation

with the same structuring element.

† Cell count: After the image opening, we again apply LoG filtering one more

time to detect the cell boundaries in a more prominent manner.

We repeat these steps N number of times with increasing values of standard deviation

of the Gaussian kernel, σ. These N filtered images are then averaged to produce the

final output. In this work, we have chosen to be in the range between 0.25 and 10

at regular interval of 0.25 (N = 40). Figure 2.2 presents the output after the feature

enhancement step.
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Finally, we apply stochastic watershed segmentation on the image. Before performing

this operation, we blur the image using Gaussian kernel with standard deviation σ, in

the range between 0.25 and 11 in 25 equal steps. The binary outputs from all blurred

images are then averaged to obtain the final cell borders.

2.3.2.3 Cell counting:

All the cells segmented and detected by the filtering process cannot be included in

the cell density estimation. As corneal endothelial cells are predominantly hexagonal

in shape [22, 89, 90], we only include the cells that meet this shape criterion in the

cell density count. Symmetry in the hexagonal shape can be used in the circularity

test of the cells to separate it from other shapes.

The circularity of an object is defined as,

C =
4πA

P 2
(2.3)

where A is the area and P is the perimeter of the object. Based on this, the circularity

of an ideal hexagon is 0.907. We only select cells with circularity estimates closer to

this value. All other cells are rejected because they are highly likely to be result of

over-segmentation than representation of a true cell. Empirically, we found that most

of the cells can fall under the circularity threshold value of 0.75 and 1.6. Everything
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outside this range is either under-segmented merged cells or over-segmented micro

segments and they can be rejected. Furthermore, our observations show that the cell

size variability itself is limited, allowing us to remove outliers from our observation.

Using these two priors, we set a threshold that only includes the cells that satisfy

these two criteria in the cell count.

2.3.3 Statistical analysis

Correlation coefficients were calculated between manual and automated methods of

measurement of ECD. Paired t-test was conducted between the distribution ECD

from manual count, and Auto Tracer and the proposed algorithm to determine the

error performance of both techniques.

2.4 Results

Figure 2.3 demonstrates the cell segmentation and marking produced by the manually

counted flex-center technique, Auto Tracer, and our proposed technique, using a

typical image produced by the specular microscope. In this image, the left side is

darker and no cellular information can be extracted. As a result, the Auto Tracer

performed segmentation over the whole image, resulting in a higher cell count, and
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affecting its measurements of cell morphology. The proposed technique masks these

darker regions, allowing for ECD counts comparable to manual counts.

Figure 2.3: Segmentation results produced by the Auto Tracer, manual
technique with flex-center, and the proposed technique, with their corre-
sponding cell densities (CD)

The ECD values for the images counted manually ranged between 2004 and 3623

cells/mm2, with a mean of 2706 cells/mm2. The average manual cell count by tech-

nicians was 117 per image for these images, whereas our algorithm and Auto Tracer

counted 167 and 151 cells respectively.

All images were also analyzed automatically by Auto Tracer, where the count ranged

between 2392 and 3378 cells/mm2, with a mean of 2834 cells/mm2. Across the range of

cell density values, Auto Tracer exhibits an overestimation bias relative to the manual

counts by 5.7% on average (p− value = 2.1 × 10−8, paired t test for difference). The

percentage mean absolute error (MAE) was 7.8% with a Pearson correlation coefficient

(R2) value of 0.85.
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Figure 2.4 presents test results from an image using the proposed algorithm. Using

this technique, the ECD values ranged from 2186 to 3754 cells/mm2, with mean of

2679. Bias was minimal and is appreciated in the Bland-Altman Plot in Figure 2.6,

an average of 0.04% of the manual cell count (p − value = 0.24, paired t-test for

difference). The percentage MAE was 6.95% with a standard deviation of 9.14%.

The R2 value was 0.75 (Figure 2.5).

Figure 2.4: (From left) input image, feature-enhanced output, watershed
segmented output, final segmented cells

While a difference existed in accuracy between groups, precision was comparable,

with an MAE of 196 cells/mm2 with the Auto Tracer technique versus 186 cells/mm2

for the proposed algorithm.

We also evaluated the coefficient of variance (CV) and hexagonality (HEX) for all

images. Compared to the manual technique across all images, the algorithm produced

a median absolute error of 10.0% and 15.15% for the CV and HEX, respectively, while

for Auto Tracer, these values were 17.14% and 20.00% respectively. For the Auto
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Figure 2.5: (Left) Scatter-plot comparison between the cell count density
obtained from the proposed technique and CellCheck Auto Tracer with re-
spect to the cell manual method. (Right) Scatter-plot of the percentage
error values for the proposed technique and CellCheck Auto Tracer with re-
spect to the manual count e proposed technique, with their corresponding
cell densities (CD)

Figure 2.6: Bland-Altman plot comparing proposed algorithm and Auto
Tracer
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Tracer, we observed that the error was significantly higher than the proposed method

for both CV (p − value = 8.15 × 10−22) and HEX (p − value = 3.51 × 10−71). We

observed that the mean absolute error was high because of a few images producing

high error values for HEX and CV. These images were poor in image quality.

The average processing time for the analysis of each image was 2.5 secs.

2.5 Discussion

In this study, we describe a proposed algorithm for analysis of specular microscopy

images that are computationally efficient and demonstrate its ability to determine

corneal ECD with a high degree of accuracy relative to manual counts using the

flex-center method.

In clinical settings, technicians capturing images with specular microscopy often face

a choice between efficiency and accuracy. The automated endothelial cell analysis

provided by device manufacturers allows for rapid assessment of an image, but as

described in this study, are prone to error when image quality is not ideal. The man-

ual, flex-center approach optimizes the assessment of corneal endothelial health, but

implementation demands huge time and human resources, as it requires an adequate

number of cells to be identified in order to minimize error. The proposed algorithm
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seeks to offer an approach that is both efficient and accurate.

We have compared the performance of this work with the set of state-of-the-art tech-

niques in Table 2.1. Due to the absence of a publicly available dataset, we could

not benchmark our algorithm on other datasets. However, Table 2.1 mentions the

dataset used in the algorithm development for fair comparison. In performing this

study, we have sought to build a robust algorithm by utilizing specular microscopy

images acquired in a clinical setting, where the imaging quality may be limited, and

there is a need to assess ECD with a relatively large set of data. We achieve an

accuracy of 6.95% using 303 images. As a comparison, one technique that assessed

confocal images in the clinical setting achieved an accuracy within 5% using 11 images

[86]. Another study of 130 specular microscopy images from post-transplant corneas

reports segmentation, but not the ECD [51].

A deep learning method was proposed in [53] where an MAE of 2.5% is reported. Al-

though the performance of their algorithm was better for CV and HEX parameters,

the method proposed here demonstrated a superior ability to determine ECD, the

parameter most often sought by clinicians. Furthermore, the main problem with a

typical deep learning method is data bias. Algorithms trained with a certain dataset

do not always provide sufficient accuracy with a different dataset. The method pro-

posed here does not rely on the training on any particular dataset and therefore would

be free from data bias.
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Table 2.1
Comparison of results between proposed algorithm and state-of-the-art

methods

Approach Material
Dataset
size

Mean
absolute
error

U-Net
UT-DSAEK
surgery patients

383 2.5%

U-Net
Specular images of
the donor cornea

130 —

Neural net and
morphology

Specular images from
healthy diseased patients

30 6.78%

K-means and
watershed

Porcine corneal tissue
using Alizarine red dye

30 3.2%

Snake and
particle swarm

Specular and confocal
images from patients

11 5%

Cellular lattice
Inverse phase contrast
microscope from deceased patients

21 5%

CellCheck Auto
Specular images
from clinical patients

303 7.80%

Proposed algorithm
(morphology)

Specular images
from clinical patients

303 6.95%

In this study, analysis of each image required approximately 2.5 s, for the platform

described in the “Methods and material” section. However, speed is dependent on

both the complexity of the algorithm and the computing power of the imaging appa-

ratus. Deployment for clinical use will require further experimentation with various

algorithms and imaging apparatuses.

While this study demonstrates a technique that can identify ECD in specular mi-

croscopy images with opacities, a limitation is that it does not compare its ability

to determine ECD in the setting of specific pathologies, such as Fuchs dystrophy or

endothelial pigment. Future studies may be able to ascertain how well ECD can be
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assessed in each of these settings. Additionally, all images in this study were acquired

from a single specular microscope; future studies may be able to assess the extent to

which this technique is valid across microscopes from various manufacturers.

In conclusion, we offer a method to estimate ECD in specular microscopy images

with opacities of varying illumination and evidence of strong correlation with manual

analysis.
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Chapter 3

Mobile-CellNet: Automatic

Segmentation of Corneal

Endothelium Using an Efficient

Hybrid Deep Learning Model

Authors: Ranit Karmakar, Saeid Nooshabadi, Allen Eghrari 1

1Karmakar, R., Nooshabadi, S.V. and Eghrari, A.O., 2022. Mobile-CellNet: Automatic Segmenta-
tion of Corneal Endothelium Using an Efficient Hybrid Deep Learning Model. Cornea, pp.10-1097.
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3.1 Abstract

3.1.1 Purpose

The corneal endothelium, the innermost layer of the human cornea, exhibits a mor-

phology of predominantly hexagonal cells. These endothelial cells are believed to have

limited regeneration capacity, and their density decreases over time. Endothelial cell

density (ECD) can therefore be used to measure the health of the corneal endothe-

lium and the overall cornea. In clinical settings, specular microscopes are used to

image this layer. Owing to the unavailability of reliable automatic tools, technicians

often manually mark the cell centers and borders to measure ECD for such images,

a process that is time and resource-consuming.

3.1.2 Methods

In this article, we propose Mobile-CellNet, a novel completely automatic, efficient

deep learning–based cell segmentation algorithm to estimate ECD. This uses two sim-

ilar image segmentation models working in parallel along with image postprocessing

using classical image processing techniques. We also compare the proposed algorithm

with widely used biomedical image segmentation networks U-Net and U-Net++.
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3.1.3 Results

The proposed technique achieved a mean absolute error of 4.06% for the ECD on

the test set, comparable with the error for U-Net of 3.80% (p − value = 0.185 for

difference), but requiring almost 31 times fewer floating-point operations (FLOPs)

and 34 times fewer parameters.

3.1.4 Conclusion

Mobile-CellNet accurately segments corneal endothelial cells and reports ECD and

cell morphology efficiently. This can be used to develop tools to analyze specular

corneal endothelial images in remote settings.

3.2 Introduction

The cornea is the transparent, avascular outer layer of the human eye that works as

a windshield to protect the inner contents of the eye and to transmit light [91]. It

consists of five layers: epithelium, Bowman’s layer, stroma, Descemet’s membrane,

and endothelium. The innermost layer of the cornea, the corneal endothelium, is
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approximately 5.0 microns thick with predominantly hexagonal cells [92]. Cells in

the endothelial layer are not thought to regenerate, and so with the death of one cell,

neighbouring cells expand in size to take its place. This is a common process and over

time the cell density of the endothelium layer decreases [64]. For a newborn child, the

cell density is around 5000 − 6000 cells/mm2 while for an adult the cell density may

drop to 2000 cells/mm2 [65]. The presence of diseases, trauma, or medical surgery

may rapidly decrease cell density [66]. The corneal endothelium maintains stromal

hydration [93]. Lower endothelial cell density (ECD) or diseases such as Fuchs dystro-

phy cause stromal edema and reduce corneal transparency [94]. Hence, clinicians use

ECD as one measure of overall corneal health. Along with ECD, polymegethism, the

variation in cell size, is measured by coefficient of variance (CV), and polymorphism,

the variation of cell shape, is measured by hexagonality (HEX).

In clinical settings, specular microscopes are used to take detailed pictures of the

corneal endothelium. These pictures are then analyzed by trained technicians to mea-

sure ECD, CV and HEX. The techniques used in clinical settings for analyzing corneal

endothelium can be divided into three categories, 1) fully automatic where technicians

use vendor provided software for the cell count estimation; 2) semi-automatic where

the technician inputs the size of an average cell for the analysis by a software; 3) man-

ual where the technicians manually mark the area and cell centers for the software.

Manual methods can also be sub-divided into center method, flex-center method, and
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corner method. While no significant difference is found between the manual meth-

ods [35], automatic methods fail to produce consistent accurate segmentation [33].

Hence, manual methods (center and flex-center) are the most accepted practices in

clinical settings. However, due to time and resource constraints, automatic methods

are frequently used which leads to inaccurate measurements.

To address this problem, different techniques to automate the process have been

proposed. Most techniques to date are based on the classical image processing, such

as frequency domain analysis [42] [79] [39] and morphological analysis [1] [38] [86] [85]

[77] [84]. However, recent works focused on machine and deep learning techniques.

Deep learning methods [53] [54] [51] [82] [83] have reported better results. These

techniques suffer from the complication of the need for the availability of suitable data

for the training, and need for deployment of fast processor hardware, thereby limiting

their use in clinical settings. Additionally, there is a challenge in the evaluation deep

learning techniques due to lack of publicly available, labelled datasets.

In this paper, we propose Mobile-CellNet, an efficient deep learning network that

combines the power and robustness of deep learning with the efficiency of classical

image processing. We also introduce a novel efficient deep learning based image

segmentation network that is computationally efficient and still maintains the same

level of accuracy as other widely used networks. Previous works in the area have

relied on use of a small subset of high quality images for cell density estimation. The
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biggest strength of this study is that we have used all the images available for the

training and testing of our models. This allowed us to cover a wide variety of image

quality, and imaging conditions resulting in a highly robust model. In addition to the

models, we also propose a hybrid workflow that has proved to work better compared

to using a single image segmentation networks proposed in the literature.

3.3 Materials and Methods

3.3.1 Materials:

The dataset used on this study was collected at the Johns Hopkins University School of

Medicine 2. A total of 612 images with varying image quality, cell size, cell density, and

disease condition were collected using a Konan CellCheck XL specular microscope.

Image have a size of 304 × 446. Out of these 612 images, clinical analysis using the

flex-center method was available for 362 images. These 362 images were collected

from 219 patients with a mean age of 38 years (Figure 3.1). 148 patients were female

and 71 were male. 188 images were of the right eye and 174 images were of the left

eye. In no case were multiple images from the same eye used in the training or testing.

2Data was collected for a different study approved by Johns Hopkins University School of Medicine
Institutional Review Board (IRB00039261)
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Figure 3.1: Age distribution of all the patients with a mean age of 38 years

To prepare the benchmark training set, we manually labeled all the images using

Photoshop. Based on the manual labels, out of the 612 images 116 images were

either poorly illuminated or were affected by diseases. The remaining 496 images had

an average cell density of 2747 cells/mm2 with an average of 107 cells counted per

image. Figure 3.2 presents the histogram of the number of images for several cell

count bins. Any image with less than 10 adjacent countable cells were not used to

measure the cell density. In the dataset 26 images were affected by Fuchs dystrophy.

For testing, we used a holdout set of 125 images ( 20.4% of the entire dataset). One

of these images had a CV over 100 which was removed, an outlier as by definition CV

cannot have a value larger than 100. We suspect that this was due to an error. So,

our final test set had a total of 124 images. Test images were randomly selected from

the 362 images for which clinical flex-center analysis was present. The remaining 487

images were used for training.
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Figure 3.2: Histogram of the number of cells counted for 612 images in
manual analysis

3.3.2 Methods:

The technique proposed in this work can be divided into three steps shown in Fig-

ure 3.3 (a); cell segmentation, region of interest (RoI) extraction, and post-processing.

At the core of cell segmentation and RoI extraction steps are two identical deep

learning network trained separately. The post-processing step, on the other hand, is

classical image processing technique. Details of each processing step is given below.
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3.3.2.1 Image labeling and data preparation

We created two different types of labels as shown in Figure 3.4. Cell segmentation

label delineates the cell borders. The RoI label, on the other hand, only identified the

areas where the cells are clearly visible. We also used the RoI label to mask images

for training.

To artificially increase the size of the training set, we extracted 5 random patches of

dimension 224 × 224 from all 487 training images. This increased our final training

set size to 2435 images.

3.3.2.2 Cell segmentation

The purpose of this block, as the name suggests, is to produce a fine segmentation of

the cells from the corneal endothelial images. To train this network, specular images

were masked, using the RoI labels in Figure 3.4 to hide the areas without visible cell

information. Figure 3.5 presents the process of image preparation for the training set

for the cell segmentation. The masking allows the model to focus more on learning

the difference between the cells and cell boundaries. It should be noted that the

masking was only used during the network training and not the inference.
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Figure 3.3: Mobile-CellNet architecture and block diagram

3.3.2.3 RoI Extraction

RoI extractor network produces a much coarser segmentation output to identify areas

in the image with clearly visible cells. Original specular image (Figure 3.5 (a)) manu-

ally prepared RoI labels (Figure 3.5 (b)) was used to train the models. The output of

the RoI extractor is processed using morphological opening operation to remove any
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Figure 3.4: Sample training image and labels. (a) original specular image,
(b) manual cell segmentation label, (c) manual RoI label

micro pixels. It was observed that in presence of disease, all the areas with enough

visible cells may not be adjacent to each other, resulting in RoI extractor to identify

multiple disconnected areas. However, for accurate analysis, only the adjacent cells

should be counted. So, if multiple areas with visible cells are identified, the one with

the largest area is selected. This ensures that only the adjacent cells are counted for

the measurement.

The output from the ROI extractor step is then used as a mask on the output of the

cell segmentation step to produce the final cell segmentation output.
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Figure 3.5: Steps of preparing the training images for the Cell Segmenta-
tion network model. (a) original specular image, (b) manual RoI label, (c)
original image masked using the RoI label to create the masked image for
the training, (d) output label

3.3.2.4 Segmentation post processing

Finally, the masked cell segmentation output is processed with a series of morpho-

logical operations to produce the final output. First, we use morphological opening

followed by a closing to fill gaps that has smaller than 16 pixels in diameter. Next, we

measure the area of each cell and only select the ones that contain between 50 pixels

and 2000 pixels. From the training-set, we empirically found that 99.86% of the cells

have sizes within those limits. Hence, any segment with area outside that range has

a higher possibility of being the result of an over or under-segmentation. Finally, we

measure the ECD, CV, and HEX.

Cell density was measured by calculating the number of cells counted in the area. CV

was measured as the ratio between the mean and the standard deviation of the area

of the cells in an image. To measure the HEX, we used the circularity C , defined as,
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C =
4πA

P 2
(3.1)

where A is the area, and P is the perimeter of each cell. A perfect hexagon has

a circularity of 0.907. Hence, if a cell has a circularity between 0.85 and 0.91, we

consider that as a hexagon.

3.3.2.5 Mobile-CellNet Architecture

For networks in cell segmentation and ROI extraction processing we designed Mobile-

CellNet depicted in Figure 3.3 (b). This architecture uses U-Net [95], backbone with

the bottleneck residual block for encoder and decoder. Each bottleneck residual block

consists of a depthwise convolution layer stacked between two pointwise convolutions

layers. Each convolution layer is followed by a batch normalization and a relu6 acti-

vation except the last layer where a sigmoid activation was used for the final output.

While the original U-Net had four resolution layers, Mobile-CellNet goes one level

deeper with five resolution levels.

We start with the input image that is first convolved using a regular 2D convolution

with 32 filters, followed by a batch normalization and ReLu6 activation. This is then

processed using bottleneck residual blocks in four levels. In each level feature maps

are convolved by the level bottleneck residual three times (×3) with the last being
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a stride two convolution to reduce the image resolution. Four level residual blocks,

employ, respectively 8, 16, 32, and 32 numbers of filters. Similar to MobileNetv2

[96], we used an expansion factor of six resulting in 48, 96, 144, and 144 filters for the

residual blocks. Finally, a encoder-decoder bridge bottleneck residual block is applied

six times before increasing the image resolution through a transpose convolution layer

for presentation to the decoder.

On decoder side, there are four levels with each applying the bottleneck residual block

twice. The number of contraction filters on each level were, respectively, 16, 16, 8,

and 8, and the number of expansion filters were 96, 96 ,48, and 48. The output

of the last top level bottleneck residual block was processed using the three regular

convolution layers with, respectively, 32, 16 and one filters.

3.3.3 Training hyperparameters

Our models were trained with the binary cross-entropy loss and Adam optimizer [97]

with a learning rate of 0.0001. Validation dice coefficient was monitored to track the

model’s performance. The training was terminated if the validation dice coefficient

did not improve after 50 epochs. Out of the 2435 training images, 20% was held out

for validation to guard against overfitting. We used a batch size of eight based on the

availability of the resources on the training platform. The models were trained and
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tested on a computer with 6GB NVIDIA GTX 1060 GPU and 2GHz hexa-core Intel

core i7 8th generation processor.

3.3.4 Statistical analysis

In this paper we used one-way ANOVA and t-test for statistical comparisons. Since

both the ANOVA and t-test assume that the sample distribution is normal, a sample

size larger than 20 is ideal. As our testset had a total of 125 images, 107 of which

had measurable cell density, ANOVA and t-test were appropriate to use.

3.4 Results

Figure 3.6 shows the output of various techniques and their corresponding cell den-

sities for a randomly selected sample test image. As can be observed, manual and

the deep learning methods produce similar results. On the other hand, the classical

image processing method fails to produce similar segmentation results, and accurate

cell density. As the last three images in Figure 3.6 shows, the results for three deep

learning techniques being almost identical, with Mobile-CellNet being most consis-

tent. It should be noted that both manual and UNet++ [98] have missed some cells

from the middle of the image. On the other hand, UNet and Mobile-CellNet were
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able to mark those cells.

Figure 3.6: Output of a randomly selected sample image using different
methods and cell statistics. (a) original image, (b) manual analysis, (c)
clinical flex-center method, (d) AutoTracer, (e) classical analysis, (f) UNet,
(g) UNet++, (h) Mobile-CellNet

Figure 3.7 shows the output of the Mobile-CellNet after each operation where (b)

through (g) represents output of the cell segmentation processing step, output of the
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RoI extractor, post-processed output of the RoI, masked cell segmentation image,

post-processed cell segmentation, and the final output with cell centers marked in

red. This figure shows the importance of each step and the use of post-processing to

improve the outcome.

Figure 3.7: Output for each layer of a randomly selected sample image
using the Mobile-CellNet. (a) original image, (b) output of the cell segmen-
tation block, (c) output of the RoI extractor block, (d) post-processed RoI
extractor, (e) Masked cell segmentation, (f) filtered and post-processed seg-
mentation, (g) final output with cell centers marked in red.

Our test set had a total of 124 images with 18 images having the zero cell density due

to the poor image quality. Table 3.1 presents the the summary of the results. Using

the manual analysis, the mean cell density of the test set was 2805 cells/mm2 with a

range of 2036 and 3847 cells/mm2. The average number of cells count per image was

119. Clinical analysis using the flex-center method had an average cell density of 2717

cells/mm2 with the range of 2064 and 3390 cells/mm2. The mean absolute difference

between the two manual method is 4.59% with a Pearson correlation coefficient of

0.89.

Also from Table 3.1 we observe that UNet/UNet++ the mean cell density is

53



2766/2831 cells/mm2 with a range between 1964/2010 and 4096/3993 cells/mm2

and with an average of 112 cells count per image. The mean absolute error was

3.80%/4.38% and a Pearson correlation coefficient of 0.94/0.91.

For Mobile-CellNet we observe that the mean cell density is 2699 cells/mm2 with a

range between 2015 and 3560 cells/mm2 and with an average of 156 cells count per

image. The mean absolute error was 4.08% and a Pearson correlation coefficient of

0.94.

The two classical methods, AutoTracer and classical image processing reported in our

previous work [1] performed least accurately with a mean absolute error of 7.20% and

8.37%, respectively.

We have also measured CV and the hexagonality. UNet and the classical methods

had the smallest mean absolute error respectively, for CV and hexagonality. However,

performance of Mobile-CellNet was comparable with mean absolute error of 15.81%

and 31.90% respectively for these parameters.

Having comparable accuracy with the other deep learning techniques, Mobile-CellNet

outperforms the others in terms of efficiency. It required a total of only 7.78 GFLOPs

per inference and only 0.25 million parameters (Table 3.2). UNet on the other hand

requires 237.59 GFLOPs with 8.56 million parameters. UNet++ was the least efficient

model with 696.31 GFLOPs and 11.80 million parameters. The average times required
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to run 125 images were, respectively, 1.55, 1.98 and 1.31 seconds for UNet, UNet++,

and Mobile-CellNet on the chosen platfrom.

Table 3.1
Accuracy comparison table between different techniques

Manual
(benchmark)

Clinical
(flex-center)

Auto Tracer Classical

CD CD MAE% CD MAE% CD MAE%
Mean 2805 2717 4.59 2841 7.20 2678 8.37
SD 392 324 3.98 191 5.66 177 5.36
Min. 2036 2064 0.04 2283 0.16 2289 0.34
Max. 3847 3390 19.98 3356 23.44 3133 25.54

CV CV MAE% CV MAE% CV MAE%
Mean 32 35 18.03 30 16.77 34 13.39
SD 6 6 22.68 7 16.49 3 11.17
Min. 22 21 0 19 0 26 0
Max. 48 58 145.45 90 157.14 40 63.64

HEX HEX MAE% HEX MAE% HEX MAE%
Mean 60 62 11.70 49 19.36 62 19.97
SD 9 8 12.30 10 14.12 9 14.99
Min. 39 44 0 0 0 32 0
Max. 80 88 76 75 100 79 70.73

UNet UNet++ Mobile-CellNet

CD MAE% CD MAE% CD MAE%
Mean — 2766 3.80 2831 4.38 2699 4.06
SD — 392 3.08 409 4.45 349 3.94
Min. — 1964 0.10 2010 0 2015 0.08
Max. — 4096 14.99 3993 23.79 3560 19.25

CV MAE% CV MAE% CV MAE%
Mean — 35 14.05 38 22.57 41 31.90
SD — 6 10.45 7 20.59 8 29.52
Min. — 24 0 24 0 28 0
Max. — 50 58.33 66 164 63 148

HEX MAE% HEX MAE% HEX MAE%
Mean — 61 14.69 35 40.81 55 15.81
SD — 8 14.30 10 16.73 8 11.51
Min. — 35 0 18 0 35 0
Max. — 88 69.23 62 75.34 74 52.70
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Table 3.2
Performance comparison for different models

FLOPs
(Giga)

Parameters
(Millions)

Time/Image
(seconds)

MAE%

Clinical
(Flex-center)

— — — 4.59%

Auto Tracer — — — 7.20%
Classical — — 2.50 8.37%
UNet 237.59 8.56 1.55 3.80%

UNet++ 696.31 11.80 1.98 4.38%
Mobile-CellNet 7.78 0.25 1.31 4.06%

Figure 3.8: Scatter plot comparing the accuracy of different models with
respect to the benchmark manual analysis.

3.5 Discussion

One-way ANOVA between our benchmark manual analysis, clinical analysis using

flex-center, UNet, and the proposed Mobile-CellNet showed no significant difference

with a p−value of 0.11 in the cell count. This indicates time, and resource-consuming
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Figure 3.9: Scatter plot of the performance of the three deep learning
models with respect to FLOPs count, number of parameters and inference
time. While X and Y axis represents the number of parameters and FLOPs
respectively, the size of the markers are determined by the inference time.

manual count can be automated through a deep learning technique. Among the deep

learning techniques, however, Mobile-CellNet requires 30.5 times fewer floating-point

operations (FLOPs) and 34.2 times fewer parameters compared with UNet, a desirable

feature for low-resource embedded computing devices. One study shows [34] that

manual inter-rater technicians’ reliability for 2 different centers could be ±10%, while

for the same technician, the error could be between ±2% and ±5%. Deep learning

techniques produced a mean error below the acceptable threshold.

To measure and identify the effectiveness of the RoI extractor, we only used the Cell

Segmentation processing step in Figure 3.3. We observed that for the Mobile-CellNet,

the MAE increased from 4.06% to 7.20% with a CV of 0.87. This is a significant (P
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value = 0.0001) reduction in accuracy compared with the manual analysis. On the

other hand, the model inference time was only reduced by 50 milliseconds to 1.26

seconds. This minor difference comes with a significant (p − value = 0.045) 3.40%

reduction in accuracy.

Figure 3.8 shows a strong correlation between the benchmark data and UNet with a

correlation coefficient of 0.94. Mobile-CellNet achieved the same correlation of 0.94

followed by UNet++ with a CV of 0.91. Auto Tracer and the classical method could

not perform as accurately, and the correlation is much lower.

Figure 3.9 compares the efficiency of 3 deep learning models where the x-axis rep-

resents the number of parameters used and y-axis represents the number of FLOPs

required by the model to process a single image. The closer the marker to the origin,

the more efficient the model is. In addition, the marker size was determined by the

MAE of the model. As can be observed, Mobile-CellNet is closest to the origin with

the lowest inference time. It can also be observed that while the size of the marker is

the smallest for the UNet, the difference is minimal.

In [53], a similar RoI extraction step was used. However, the work used a more

complex DenseNet model. The key difference between that model and Mobile-CellNet

is that the work in Ref. 20 used the RoI extractor on the segmentation map to identify

the RoI before applying it as a mask and performing postprocessing to produce the

cell statistics. In the case of Mobile-CellNet, 2 parallel networks were used to detect
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the RoI and perform the cell segmentation simultaneously. The work [53] reported a

2.5% error for ECD compared with the 4.08% that we estimated using Mobile-CellNet;

the difference is a major part because of the use of the Topcon specular microscope

that produces higher quality images. The work collected images from the Descemet

stripping automated endothelial keratoplasty (DSAEK) patients over a year; for each

patient, at least 4 images of the same eye were taken over the course of a year. It is

unclear from [53] how the data set was divided for training and testing; however, if

the images of the same patient were used both for training and testing, that accounts

for the model’s boosted performance.

Figure 3.10 compares the performance between classical image processing [1] and the

deep learning method. Although the similar use of RoI demarcation helped the classi-

cal technique to eliminate darker areas from the measurement, the cell segmentation

was not as consistent as the deep learning method as we can observe from the side-

by-side comparison. Classical image processing suffered more from over-segmentation

compared with Mobile-CellNet. This ultimately led to a higher MAE. We can also

observe from Table 3.1 that the range for both classical methods, Auto Tracer, and

the technique in reference [1], was smaller compared with the deep learning methods

and manual techniques. Previous classical image processing methods [77, 86] and a

hybrid technique [38] also reported higher errors compared with the proposed model

in this article.
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Figure 3.10: Three sample images comparing the output of classical image
processing [1] and Mobile-CellNet. From left, column 1 is the original image,
column 2 is the output of the classical image processing, and column 3 is the
output of the Mobile-CellNet using the method proposed in this paper.

Although all 3 deep learning methods produced the most consistent results and an

acceptable MAE, a closer look at the outputs showed that they suffer from minor

under segmentation. Figure 3.11 shows 2 erroneous segmentation results from 2

randomly selected sample images using the Mobile-CellNet model. Although these

errors did not significantly affect the overall ECD estimation, they affected HEX and
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Figure 3.11: Sample outputs of the proposed method using Mobile-CellNet
showing the limitation of this model to produce under segmented results.

CV measurements leading to a higher error. This limitation needs to be addressed in

the future work

3.6 Conclusion

In this article, we proposed a corneal endothelial cell segmentation technique that

uses a hybrid approach with deep learning and classical image processing. We also

proposed a novel efficient cell segmentation architecture that produces similar results

as other state-of-the-art techniques but requires significantly fewer parameters and

FLOPs for a single segmentation task.
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4.1 Abstract

4.1.1 Background

Alcohol consumption is highly prevalent throughout the world. We sought to detect,

in a large sample of cornea donors, whether alcohol abuse is associated with changes

in corneal endothelial morphology after accounting for other comorbidities including

tobacco use.

4.1.2 Methods

At a single eye bank, 10,322 eyes from a total of 5,624 unique donors underwent

imaging with a Konan CellChek D specular microscope. Demographic information

and medical history was associated with each tissue. Images were analyzed using

a standardized protocol for assessment of endothelial cell density, hexagonality, and

variation. In this retrospective analysis, a multivariable regression was conducted

to assess for an association between alcohol abuse and corneal endothelial metrics.

Measurements were averaged across eyes for each donor. Bonferroni corrections were

applied to account for multiple comparisons.
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4.1.3 Results

Among 5,624 donors, the mean (standard deviation) endothelial cell density was

2,785 (383.0) cells/mm2. Indicators of alcohol abuse were present in 1,382 donors

(24.5%). In a multivariable regression model that included age, sex, tobacco use,

history of cataract surgery and diabetes mellitus, alcohol abuse was associated with

a decrease of 60.9 cells/mm2 (95% confidence interval (CI), -83.0 to -38.7 cells/mm2,

p=7.6 × 10−8), an increase in the coefficient of variation by 0.0048 (95% CI, 0.17 to

0.79, p=0.002), and a decrease in percent hexagonality by 0.93% (95% CI, -1.3 to

-0.6, p=4.5 × 10−7).

4.1.4 Conclusions

Alcohol abuse is associated with significant alterations to corneal endothelial density

and morphology.
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4.2 Introduction

Alcohol abuse is one of the most prevalent substance use disorders in the world, af-

fecting approximately 283 million people in 2018 [99]. Heavy alcohol consumption

contributes to damage at both cellular and structural levels throughout the central

nervous system [100]. Within the eye, a well-established association exists between

alcohol abuse and optic nerve, retinal, and lens pathology [101]. Nevertheless, more

research is needed to understand the clinical effects of alcohol on the corneal endothe-

lium.

Comorbidities and use of additional substances among heavy users of alcohol create a

challenge in conducting clinical research into the effects of alcohol use or abuse. For

example, a strong association exists between use of alcohol and use of cigarettes [102],

and tobacco is associated with decreased corneal endothelial function [103]. Although

a direct comparison of individuals affected and unaffected by alcohol dependence

suggests a deleterious impact on corneal endothelial cell density (ECD) [104], no study

to date to the best of our knowledge has examined an association between heavy

alcohol use and corneal endothelial characteristics in the context of comorbidities.

Analyses with a large data set and adjusting for additional variables would be helpful

to address potential confounders.
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Data from eye banks, which conduct specular microscopy and collect clinical data

for every cornea received, offer a unique opportunity to assess the impact of envi-

ronmental factors on the corneal endothelium. Large studies from eye banks have

successfully identified the effects of diabetes, cataract surgery, and smoking on the

corneal endothelium [102, 103], but heavy alcohol use has yet to be considered among

such factors.

In this study of over 10,000 corneal endothelial images and associated medical history

analyzed from an eye bank, we examined the effect of heavy alcohol use on the corneal

endothelium in the setting of additional factors, such as smoking and diabetes, to

better ascertain the specific contribution of this risk factor for corneal endothelial cell

loss.

4.3 Methods

During routine evaluation, all donor corneas that were processed at the Rocky Moun-

tain Lions Eye Bank (RMLEB) in Colorado, United States underwent specular mi-

croscopy for quantitative and qualitative analysis of the corneal endothelium, analyzed

manually using a single Konan CellChek D. Medical history and demographic infor-

mation was associated with each image. Corneal endothelial density (CD), coefficient

of variation (CV), and percent hexagonality (HEX) were calculated and documented
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for each image at the time of tissue processing.

All images from September 15, 2016 to August 3, 2020 were acquired for analysis. For

statistical analyses, values were averaged across eyes and duplicates were removed.

Three eyes were excluded from analysis as the CV value was recorded as greater than

100, which is a statistical impossiblity and suggests that data entry may have been

compromised for these individuals. These represent less than a tenth of one percent

of total donors.

To determine the quality of analysis, we assessed the total number of cells counted

per image, applying a standardized grading system for eye bank images.6 In this

system, we applied a grade of 4 if 100 or more cells were analyzed, 3 if 50–99 cells

were analyzed, 2 if 15–49 cells were analyzed, or grade of 1 if less than 15 or no cells

were analyzed.

Medical history for each patient was acquired by RMLEB from hospital medical

records and included whether alcohol dependence or its sequelae were present. To

apply a conservative estimate for the association and prevent selecting for only the

most well-documented severe cases of alcohol abuse, which would artificially inflate

the effect of alcohol consumption, we performed a search in the medical history of

donors for the term “alcohol” or “EtOH”. Once a list of all medical histories with

these terms were acquired, the list was manually curated to exclude non-alcohol re-

lated terms, such as “non-alcoholic hepatitis” that would appear in the search. Cases
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of secondary organ failure, such as cirrhosis, specifically mentioned as being due to

alcohol (“alcoholic cirrhosis”) were included. Similarly, for tobacco use, medical his-

tories were searched for the terms “tobacco” or “smoking”. For diabetes, we included

the terms “diabetes,” “diabetic,” “DM1” and “DM2” and then excluded cases with

terms such as “pre-diabetes.” For lens status, we searched for the terms “pseudopha-

kic,” “pseudophakia” and “cataract surgery”.

We first conducted a descriptive analysis and assessed differences in values between

donors with each factor compared to donors without any of these factors. To do so,

we conducted a multivariable regression including age and sex as variables. Second,

we utilized a multivariable regression to account for the combined effect of age, sex,

cataract surgery status, diabetes, history of heavy alcohol use, and history of tobacco

use on corneal endothelial characteristics. Given these six factors considered, we

applied Bonferroni corrections and α was reduced from 0.05 to to 0.0083.

4.4 Results

The dataset included 10,322 images from a total of 5,624 unique donors. The average

analysis included 99 cells per image. The distribution plot of the cells analyzed is

included in the Supplemental Data. More than 100 cells were counted on average

from 2,564 donors (Grade 4 of 4), between 50-99 cells from 3,055 donors (Grade 3
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of 4), between 15-49 cells from 5 donors (Grade 2 of 4), and no donors contributed

tissues with a mean of less than 15 cells counted (Grade 1/4).

Of these donors, the median age was 58, with an interquartile range (IQR) of 47 (25th

percentile) to 65 years old (75th percentile). A total of 2357 donors (41.9%) were

female. Indicators of alcohol use were present in 1382 donors (24.5%), tobacco use in

1113 donors (19.8%), diabetes mellitus in 1271 donors (22.6%), and pseudophakia in

585 donors (10.4%). The remaining 2423 individuals (43.1%) had none of these risk

factors for endothelial cell loss.

Table 4.1
Common terms associated with alcohol in the medical history of 5624
donors to a single eye bank over a four-year period. The terms below

represent those included in the medical history of at least 30 donors. Of
350 total alcohol-related terms identified in the dataset, “Alcohol Abuse”
was the most common, while 265 terms were used only once. Terms not

associated with alcohol abuse, such as “non-alcoholic steatohepatitis” were
excluded from the dataset.

Most Common Exact Terms in Donor Medical History
Associated with Alcohol (n > 30)

Medical History Term Number of Entries
Alcohol Abuse 958
Alcoholic Cirrhosis 109
Alcoholism 88
Alcoholic hepatitis 68
Alcohol withdrawal 58
Alcohol abuse with alcoholic cirrhosis 41
Alcohol abuse in the past 31

A total of 350 alcohol-related medical history phrases were identified in the dataset, of

which seven appeared more than 30 times each. Of these, “Alcohol Abuse” (n=958),

“Alcoholic Cirrhosis” (n=109), and “Alcoholism” (n=88) were by far the three most
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common descriptors. The majority of terms were only used once (265/350, 75.7%).

Many of these terms were variations or additions to simple terms, such as “history of

alcohol abuse chronically” (n=1) or “former alcohol abuse with recent relapse” (n=1).

Table 4.1 includes the most common exact terms associated with heavy alcohol use

in the medical history of donors. All alcohol-associated terms and their frequency are

included in the Supplemental Data.

Table 4.2
Corneal endothelial characteristics in eyes of 5624 cornea donors to Rocky
Mountain Lions Eye Bank. For each risk factor, a multivariable regression
was conducted including age and sex as variables. Assessments for age

included sex and the risk factor in question as variables. ECD: Endothelial
Cell Density. HEX: Hexagonality. CV: Coefficient of Variation.

All (n=5624) Alcohol Abuse (n=1382) Pseudophakia (n=585)
Mean
(SD)

Median
(IQR)

Mean
(SD)

Median
(IQR)

Effect Estimate
(95% CI)

p-value
Mean
(SD)

Median
(IQR)

Effect Estimate
(95% CI)

p-value

Age
(years)

54.2
(-14)

58
(47-65)

52.4
(12.5)

55
(43 - 62)

-2.4
(-3.3 - -1.6)

3.6 × 10−8 63.4
(-7.6)

65.0
(60-68)

10.1
(9.0 - 11.3)

3.9 × 10−63

ECD
(cells/mm2)

2785
(-383)

2780
(2548 - 3027)

2756
(-343.5)

2756
(2538 - 2977)

-60.9
(-83.0 - -38.7)

7.6 × 10−8 2631.7
(408.7)

2630.5
(2392 - 2884)

-88.1258
(-120.0 - -56.3)

6.0 × 10−8

HEX (%)
56

(-6.2)
56

(52 - 60)
56

(-6.1)
56

(52 - 60)
-0.93

(-1.3 - -0.57)
6.6 × 10−7 55.7

(5.6)
55.5

(52.0 - 59.0)
0.44

(-0.085 - 0.97)
0.1

CV (×100)
36.5

(-5.2)
36

(33 - 39)
37

(-4.9)
36

(34 - 39)
0.48

(0.17 - 0.79)
0.002

37.0
(5.4)

36.0
(34.0 - 40.0)

-0.23
(-0.68 - 0.21)

0.31

Unaffected by selected
risk factors (n=2423)

Diabetes Mellitus (n=1271) Tobacco Abuse (n=1113)

Mean
(SD)

Median
(IQR)

Mean
(SD)

Median
(IQR)

Effect Estimate
(95% CI)

p-value
Mean
(SD)

Median
(IQR)

Effect Estimate
(95% CI)

p-value

Age
(years)

51.9
(15.9)

57
(43 - 64)

59.1
(9.4)

61.0
(54.0-66.0)

6.2
(5.4 - 7.1)

4.4 × 10−45 55.7
(12.7)

60.0
(48.0-65.0)

1.9
(1.0 - 2.8)

4.2 × 10−5

ECD
(cells/mm2)

2838
(-386)

2825
(3595.5 - 3075.3)

2731.8
(396.4)

2735.0
(2492.0-2976.0)

-15.8
(-38.9 - 7.3)

0.18
2737.7
(367.5)

2732.0
(2500.0-2985.0)

-42.9
(-66.7 - -19.0)

4.3 × 10−4

HEX (%)
56.8

(-6.5)
56.5

(52.5 - 56.5)
55.7
(5.6)

56.0
(52.0-60.0)

-0.092
(-0.48 - 0.29)

0.64
56.0
(5.8)

56.0
(52.0-60.0)

-0.16
(-0.56 - 0.24)

0.42

CV (×100)
36.1

(-5.3)
35.5

(33 - 38.5)
37.1
(5.2)

36.5
(34.0-40.0)

0.31
(-0.011 - 0.64)

0.058
36.8
(5.1)

36.0
(34.0-40.0)

0.18
(-0.150 - 0.52)

0.28
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The median endothelial cell density in the dataset was 2780 (IQR 2548 to 3027).

Table 4.2 summarizes demographic and endothelial (CD, CV and HEX) values. In-

cluding age and sex as additional variables, alcohol abuse, tobacco abuse, diabetes

mellitus, and pseudophakia were all associated with significantly different values rel-

ative to controls without any such factors.

Table 4.3
Multivariable linear regression of risk factors for corneal endothelial

damage in a set of specular microscopy images from 5624 unique donors.
Even after adjusting for additional risk factors, alcohol abuse is strongly
associated with changes in endothelial cell density, coefficient of variation,
and hexagonality. Numbers in bold are those that reached the threshold

for statistical significance after adjusting for multiple comparisons.

Endothelial
Cell Density

Coefficient
of Variation

Hexagonality

Factor
Coefficient

(cells/mm2)
p-value

Coefficient
(x100)

p-value
Coefficient

(%)
p-value

Intercept 3263.7 — 32.4 — 62.2 —

Age -8.2
6.8×

10−111 0.07
2.2×
10−43 -0.1

2.5 ×
10−63

Female
Sex

-0.67 0.95 0.28 0.044 -0.39 0.016

Alcohol
Abuse

-60.7
9.8×
10−8 0.49 0.002 -0.94

4.8×
10−7

Tobacco
Use

-35.8 0.003 0.15 0.39 -0.07 0.729

Diabetes -12.8 0.28 0.42 0.011 -0.21 0.285

Pseudophakia -87.7
8.7×
10−8 -0.3 0.19 0.45 0.099

In the multivariable regression model of multiple factors (Table 4.3), alcohol abuse

was significantly associated with changes to each of the endothelial characteristics

studied. The data demonstrated a decrease of approximately 60.9cells/mm2 relative

to donors without history of alcohol abuse (95% confidence interval (CI), −83.0 to
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−38.7 cells/mm2, p − value = 7.6 × 10−8). A small increase in the coefficient of

variation (+0.0048, 95% CI, 0.17 to 0.79, p − value = 0.002), and a decrease in

hexagonality of approximately one percentage point (-0.93%, 95% CI, -1.3% to -0.6%,

p − value = 4.5 × 10−7) was appreciated in donors with a history of alcohol abuse.

In this model, tobacco use and cataract surgery also each contributed to decreased

endothelial cell count, with an estimated decrease of 36 (p − value = 0.003) and

88cells/mm2 (p− value = 8.7× 10−8) respectively, among those harboring these risk

factors.

4.5 Discussion

This study contributes a large dataset to explore the effect of heavy alcohol use on the

corneal endothelium. Quantitative and qualitative changes in endothelial morphology

appeared even after adjusting for additional factors.

Drawing on eye bank data offers unique insights into disease associations in a region,

and selects from a patient population broader than a specific hospital. Previous work

drawing on such data has assessed the effects of hypertension, glaucoma, depression,

dementia and neurodegenerative diseases, thyroid dysfunction, and tobacco use [105].

Here, we confirm heavy alcohol use among known deleterious factors to the corneal

endothelium and identify a strong association with ECD loss. Replication of this
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finding by eye banks in additional regions of the world would be helpful to confirm that

this finding is generalizable across populations. Given the strength of this association,

it may be helpful to consider alcohol abuse as a potential comorbidity when studying

the effects of other clinical variables on corneal endothelial health.

Further research is needed to understand the specific pathological changes that take

place in the setting of heavy alcohol use. It has been postulated that conversion

of alcohol to acetaldehyde may result in direct cytotoxicity to the corneal endothe-

lium [106], which offers one possible pathway, but the physical, social and behavioral

aspects of alcohol abuse, which can include malnutrition and metabolic alterations,

offer alternative mechanisms worthy of study.

By including all medical histories specifically mentioning alcohol use, we sought to

identify a conservative estimate; the true association of alcohol abuse with endothelial

cell loss may be even greater than what was described in this study. Further research

into a dose-response curve between light and heavy alcohol use would offer additional

insights into the alcohol-associated risks to the endothelium. In this study, we did

not distinguish between former and recent alcohol abuse, as endothelial cell loss is

sustained over time and corneal endothelial cells do not replicate. Therefore, any

endothelial cell loss would be expected to sustain over the lifespan. However, whether

there is a difference in endothelial cell morphology between patients with varying

histories of alcohol dependence could be an area of additional future research.
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This study suggests that, in addition to decreased endothelial cell density, changes

occur in hexagonality and the coefficient of variation with heavy alcohol use. While a

previous clinical study that assessed alcohol dependence did not identify a difference

in these characteristics [103], these patterns may be more discernible in this larger

dataset, and particularly when adjusting for confounding variables. Variability in the

shape and size of cells is of particular importance as it is associated with cell stress

and has been associated with a higher likelihood of corneal decompensation after

intraocular surgery [107] [108].

The estimated effect of alcohol abuse on ECD was modest at 60.9 cells/mm2, a small

percentage of the median ECD in this study. This suggests that the findings, while

statistically significant, may not reach the threshold for clinical significance for most

donors. Nevertheless, the strength of the association was particularly notable, and

this knowledge may be of particular interest for people with compromised corneal

endothelium, for whom cell density is under 1000 cells/mm2, and who are seeking

specific strategies to maintain as much clarity of the cornea as possible. Further

research will be needed to determine if certain individuals are more susceptible to

alcohol-associated ECD loss.

Given the multiple comparisons made, we applied a strict threshold for statistical

significance. While this more conservative estimate allows the observer to have con-

fidence in the associations identified, it reduces statistical power and increases the
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likelihood of type II error. Therefore, it is possible that some true associations may

not be recognized. Several associations demonstrated a p-value between 0.0083 and

0.05; we interpret these as trends worthy of investigation with additional datasets.

Moreover, we were unable to quantify tobacco use and future work could investigate

this phenomenon.

In this study, the proportion of specular microscopy images analyzed by counting at

least 100 cells was less than half, with the majority of images analyzed by counting

50-99 cells. To rule out the possibility that the findings in the study were affected by

the number of cells counted, we conducted two post-hoc analyses of ECD, one analysis

adjusting for the cells counted and a second analysis stratified for those donors whose

images averaged 100 cells counted per image across both eyes. The results appear in

Supplemental Data 3 and demonstrate the persistent association with alcohol in both

analyses.

In summary, data from this large set of corneal endothelial images from an eye bank

point to significant changes in endothelial cell density and morphology associated

with heavy alcohol use, a strong association maintained even when comorbidities are

taken into account.
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Chapter 5

Conclusion
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In this dissertation, we addressed some of the challenges faced by the eye banking

professionals and proposed solutions to mitigate them. Chapter 1 introduced human

cornea, importance of corneal evaluation, and eye banking in general. In addition to

that, chapter 1 surveyed the literature. Corneal evaluation plays a major role in eye

banking. Due to the current unavailability of reliable automatic software, technicians

still use manual method to evaluate the corneal endothelium health.

Chapter 2 proposed a classical image processing based algorithm for analysis of spec-

ular microscopy images that is both efficient and accurate. The algorithm was tested

on a dataset of 303 images and achieved an accuracy of 6.95%, which was compared

to other state-of-the-art techniques. The algorithm was found to be superior in its

ability to determine ECD, the parameter most often sought by clinicians, and was

not biased by training on a specific dataset. However, the study did not compare the

algorithm’s ability to determine ECD in the setting of specific pathologies. Another

limitation of this algorithm was poor performance on the morphological parameters

such as CV and HEX.

Overall, the proposed algorithm offers a promising method to estimate ECD in spec-

ular microscopy images with opacities of varying illumination and evidence of strong

correlation with manual analysis. The algorithm’s ability to balance efficiency and

accuracy makes it a potentially useful tool in clinical settings, where technicians often

face a tradeoff between the two. However, further experimentation and testing will
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be needed to determine the extent to which the algorithm is valid across different

microscopes and in different pathological settings.

Chapter 3 extends the work from Chapter 2 and presented a deep learning-based

corneal endothelial cell segmentation technique that utilizes a hybrid approach com-

bining classical image processing with deep learning. The proposed Mobile-CellNet

architecture was compared with benchmark manual analysis, clinical analysis using

Flex-Center, and two other deep learning techniques, UNet and UNet++. While

U-Net had the highest accuracy, one-way ANOVA test showed that there was no

significant difference in cell density between U-Net and Mobile-CellNet. However,

Mobile-CellNet was found to be more efficient as it required significantly fewer pa-

rameters and FLOPs than UNet and UNet++. Furthermore, the proposed technique

produced mean errors below the acceptable threshold compared to manual inter-rater

technicians’ reliability.

The study also measured and identified the effectiveness of the RoI extractor and

found that Mobile-CellNet produced an acceptable MAE of 4.08% with a correlation

coefficient of 0.94. However, it was observed that the technique suffered from minor

under-segmentation, which needs to be addressed in future work.

Overall, the proposed technique significantly reduced the time and resource-

consuming manual count by automating the cell segmentation and counting process.
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The Mobile-CellNet architecture, with its lower computational requirements and ef-

ficient segmentation, could be utilized in low-resource embedded computing devices.

The study’s findings suggest that this technique has potential for wider adoption in

the clinical setting and could aid in more accurate diagnosis and treatment planning

for other medical segmentation problems as well. We explore them in Chapter 5 and

Chapter 6.

In addition to corneal endothelial cell density, medical history of the donors play a

crucial role in determining whether a tissue can be used for transplant or not. Chap-

ter 4 provided valuable insights into the effect of heavy alcohol use on the corneal

endothelium, with quantitative and qualitative changes observed even after adjusting

for additional factors. The study confirms the association between heavy alcohol use

and endothelial cell density loss and highlights the importance of considering alcohol

abuse as a potential comorbidity when studying the effects of other clinical variables

on corneal endothelial health. The study also suggests that changes occur in hexago-

nality and the coefficient of variation with heavy alcohol use, which are of particular

importance as they are associated with cell stress and corneal decompensation.

Further research is needed to understand the specific pathological changes that take

place in the setting of heavy alcohol use, and whether there is a difference in endothe-

lial cell morphology between patients with varying histories of alcohol dependence.

The study’s estimated effect of alcohol abuse on ECD was modest, but the strength
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of the association was particularly notable, and this knowledge may be of particular

interest for people with compromised corneal endothelium.

However, the study’s multiple comparisons and conservative threshold for statistical

significance may reduce statistical power and increase the likelihood of type II error.

The study also has limitations in terms of the number of cells counted, and future

work could investigate the effects of tobacco use.

5.1 Future Scope

The proposed algorithm offers a promising method for estimating ECD in specular

microscopy images with varying illumination. However, the algorithm’s ability to

determine ECD in the setting of specific pathologies was not assessed, and future

studies may be needed to assess this. While Mobile-CellNet architecture does a

better job in terms of accuracy and robustness, future work could include images with

varying pathologies. Additionally, the efficiency of the model, Mobile-CellNet needs

to be tested on ARM processors in absence of GPU to test its run-time and efficiency.

Finally, all the images used in this research were collected at clinical settings from

live patients. Images of the donor cornea, while looks similar, uses different imaging

techniques that makes the images look different. Future work needs to be performed

in training the models on eye bank images to test the performance.
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While this paper provides valuable insights into the effect of heavy alcohol use on

the corneal endothelium, there are many other factors that may have effects on the

corneal endothelial cell density. Some of these were tested on the available dataset (see

Appendix). Future work will require further analysis. In addition to that, running

the same experiments using the dataset from other eye banks across the country will

solidify the findings of this study.

Finally, while this research focuses on developing AI tools to improve the eye banking

system, it only analyzes specular endothelial images. Eye banking involves multi-

ple imaging modalities such as slit-lamp imaging and optical coherence tomogra-

phy (OCT). Multi-modal image analysis, along with a patient’s medical history, can

provide better understanding and help make the eye banking system more efficient.

Therefore, future research should focus on developing AI tools that can analyze differ-

ent imaging modalities and patient information to improve the eye banking system’s

efficacy.
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A.1 Abstract

Colon polyps, a small clumps of cells on the lining of the colon, can lead to col-

orectal cancer (CRC), one of the leading types of cancer globally. Hence, early de-

tection of these polyps automatically is crucial in the prevention of CRC. The deep

learning models proposed for the detection and segmentation of colorectal polyps are

resource-consuming. This paper proposes a lightweight deep-learning model for col-

orectal polyp segmentation that achieved state-of-the-art accuracy while significantly

reducing the model size and complexity. The proposed deep learning autoencoder

model employs a set of state-of-the-art architectural blocks and optimization objec-

tive functions to achieve the desired efficiency. The model is trained and tested on

five publicly available colorectal polyp segmentation datasets (CVC-ClinicDB, CVC-

ColonDB, EndoScene, Kvasir, and ETIS). We also performed ablation testing on the

model to test various aspects of the autoencoder architecture. We performed the

model evaluation by using most of the common image-segmentation metrics. The

backbone model achieved a DICE score of 0.935 on the Kvasir dataset and 0.945 on

the CVC-ClinicDB dataset, improving the accuracy by 4.12% and 5.12%, respectively,

over the current state-of-the-art network, while using 88 times fewer parameters, 40

times less storage space, and being computationally 17 times more efficient. Our abla-

tion study showed that the addition of ConvSkip in the autoencoder slightly improves

the model’s performance but it was not significant (p-value = 0.815).
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A.2 Introduction

Colorectal cancer (CRC) is the third leading type of cancer globally, and the second

principal cause of cancer-related death in the United States [142]. Approximately 4%

of the female and 4.3% of the male population in the United States [152] suffer from

colorectal cancer. However, with early detection and proper treatment, 90% of the

patients have an increased life span of more than five years [153].

Over the years, different traditional image processing and deep learning networks

have been proposed. Although deep learning models outperformed classical image

processing [2], they require high computing resources, typically expressed as a frames-

per-second (FPS) processing rate (a platform-dependent metric), or the number of

floating-point operations (FLOPs) that network executes in order to achieve the task.

This paper develops a deep learning model that produces highly accurate segmenta-

tion while being extremely low in resource consumption. This allows the development

of image-segmentation tools that could be run on mobile devices in remote locations

or in resource-limited settings for medical applications.

This paper presents a novel lightweight image-segmentation architecture that is signif-

icantly less complex, requiring a fraction of training parameters and a lower number

of FLOPs. By using the bottleneck residual blocks on the U-Net [95] backbone, the
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model was able to achieve a significant reduction in complexity while maintaining

high accuracy. The model achieved state-of-the-art performance on the test dataset.

The significance of this work is in its novel encoder–decoder architecture backbone

that is lightweight and suitable for deployment on mobile devices. We adopted DICE

coefficient as objective loss function, which yields more accurate results. We used

the same training and testing sets as the current state-of-the-art network, PraNet [2],

and performed extensive testing by using important semantic segmentation metrics

for better benchmarking.

A.3 Related Work

A.3.1 Traditional image processing techniques:

Early works in polyp segmentation proposed the use of handcrafted features. These

works mainly focused on two aspects of CRC polyps, shape-based features, and tex-

ture or color-based features. The works on shape-based features detection include

edge detection, morphological operations, and shape curvature fitting [119, 120, 121].

The work on texture-based includes color wavelet covariance (CWC)[114], discrete

wavelet transform (DWT), local binary pattern (LBP) [115], gray level co-occurrence

matrix (GLCM) [116] or different combination of these as descriptors [118]. These
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feature descriptors are then classified using different classification methods such as

linear discriminant analysis (LDA) or support vector machine (SVM).

A.3.2 CNN based methods:

In recent years, different deep learning methods have been proposed. Based on the

output labels, these networks can be classified into detection and localization type

networks, and semantic segmentation type networks.

A.3.2.1 Localization of colonal polyp:

The work in [125] proposed a network that first extracts three different types of

handcrafted features viz. color, shape and temporal. It, next, used three different

convolutional networks to process features to make binary decision based on the

summation of the output of these networks. Other works [124, 126] on detection

and localization have explored widely used architectures such as fully convolutional

network (FCN) [137], and you-only-look-once (YOLO).
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A.3.2.2 Semantic segmentation of colon polyp:

Semantic segmentation has emerged as a preferred technique over localization as it

provides more precise information about the polyp, such as its size and shape. Ac-

cess to multiple publicly available datasets [127, 128, 129] have facilitated the related

investigations. The work in [95] proposed an effective deep learning architecture for

biomedical image segmentation that utilizes data augmentation to produce semantic

segments. Later works such as residual UNet [132], Unet++ [131] and other network

[139, 140, 141] have been proposed for semantic segmentation tasks and tested for

polyp segmentation. By proposing deeper networks, these works were able to achieve

higher accuracy. However, the high accuracy came at a cost – large model size and

computational complexity. SFANet [134] introduced a cascade network that utilizes

a single encoder block and subsequently uses separate decoder blocks for boundary

and area segmentation. Finally, it uses a lighter UNet for the final output. PraNet

[2], took a different approach from the encoder-decoder structure and introduced a

novel architecture that first predicts the coarse region and then models the boundaries

for the final segmentation. The model’s performance has been tested on five differ-

ent datasets and achieved good performance with high generalizability. However,

the model complexity is high, especially for deployment for resource-limited mobile

devices.
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Figure A.1: Mobile-PolypNet model backbone architecture with the bot-
tleneck residual blocks and skip connection where x, e and c in each residual
block represent the number of bottleneck residual blocks in each resolution
level, number of filters for expansion phase, and number of filters for the
contraction phase, respectively.

A.4 Methods

A.4.1 Network architecture

Our autoencoder model, Mobile-PolypNet 2 (Figure A.1), uses a similar design phi-

losophy as the original UNet. However, Mobile-PolypNet is significantly different

from UNet in its building blocks. The original UNet, employs the traditional con-

volution layer as building block. Mobile-PolypNet, instead, uses bottleneck residual

blocks with depthwise and pointwise separable filters [96]. The building blocks in

2https://github.com/rkarmaka/Mobile-PolypNet
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Mobile-PolypNet have been architectured for the single purpose of significant reduc-

tion in computational complexity, memory footprint, while maintaining similar level

of accuracy reported by the state-of-the-art networks.

A.4.1.1 Input layer

In Mobile-PolypNet, the input image is first processed using a traditional convolution

layer with 32 filters followed by a depthwise convolution and a pointwise convolution.

Batch normalization and Relu6 activation is used after each convolution layer except

for the last pointwise convolution layer where a linear activation is used. All the

depthwise convolution layers used 3 × 3 convolution.

A.4.1.2 Encoder

On each image resolution level Mobile-PolypNet uses three bottleneck inverted resid-

ual blocks [96] (see the insert box on the left side of Figure A.1). The inverted residual

blocks contrary to the commonly used residual block, first expands the compressed

feature map representation to higher dimension, filter it with efficient depthwise con-

volution [149], and then projects it back to a low-dimensional feature map represen-

tation. Stride-2 convolution is used on the first bottleneck residual block to reduce

the image dimensions (height and width) by half. Number of expansion filters used
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in five resolution levels are 48, 96, 144, 144, 144. We used a contraction factor of 6

for the first 2 levels and 4.5 for the last 3 levels. Also note that each inverted residual

block has its own skip connection.

A.4.1.3 Decoder

Similar to encoder, the decoder in Mobile-PolypNet uses the bottleneck residual

blocks. We use traditional transpose convolution to double the image resolution.

Each resolution level contains two bottleneck residual blocks with 96 layers for bot-

tom two levels and 48 for the top two levels. A contraction factor of 6 was used

throughout the decoding path.

A.4.1.4 Output layer

The final output from the decoder has eight channels. Rather than directly reducing it

down to one channel, we processed the image further using two traditional convolution

layers. First we expanded the image using 32 filters and then reduced it to 16,

and finally to one channel. Each convolution operation was followed by a batch

normalization and activation (ReLu6 ) except for the output layer which uses sigmoid

activation without batch normalization.
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A.4.2 Network Training

A.4.2.1 Loss function:

Binary cross-entropy loss, used in UNet, is a standard loss function for semantic

segmentation. Although it works well in certain applications, blob segmentation

tasks such as polyp segmentation do not give enough global information about the

segmented area, making the training difficult. Instead, we have used a negative ”Dice”

score to evaluate the training loss.

LDice =
2
∑N

i pigi∑N
i p2i +

∑N
i g2i

(A.1)

where p is the predicted label and g is the ground truth label.

A.4.2.2 Training setup:

All models discussed in this paper have been implemented in TensorFlow with support

for graphical processing units (GPU). We have used a platform with NVIDIA GTX

1060 6GB GPU. Input and output both have a size of 224×224. We also used Adam

optimizer [97] with a learning rate of 1e − 3. The batch size was limited by the
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available hardware resources and was set to 8, amounting to 979 batches per epoch.

After each iteration best model was stored, and the training was stopped when the

validation Dice score did not improve after 25 epochs.

A.4.3 Statistical analysis

To compare the similarity and differences between the two results, we performed two-

tailed t-test. Statistical analysis of the results was performed in Python using the

SciPy library. We used α = 0.05 as our cut-off value for significance testing.

A.5 Experiments

A.5.1 Dataset and image preparation

We used the same datasets as the current state-of-the-art model PraNet which re-

ported a significant increase in performance compared to the other available mod-

els. Choice of datasets allowed us to do better benchmarking. The training dataset

contains 1450 images, with 900 images from the Kvasir dataset and 550 from the

CVC-ClinicDB. For the training, we applied data augmentation to achieve a five-fold

increase in the size of the dataset; four random rotations between −90◦ and 90◦, and
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one Gaussian blurring. Test images, however, were only resized. Our final train-

ing set had 8700 images. For testing, we used hold-out test sets from Kvasir and

CVC-ClinicDB, considered as seen, along with CVC-300, CVC-ColonDB, and ETIS,

considered as unseen. All the images in the training set and the test set were resized

to 224 × 224 for uniformity.

A.5.2 Settings for the training and performance metrics

For training and validation, we divided the datasets into 90% for training and 10%

for validation. We used the validation set to monitor for overfitting. For the model’s

performance metrics, we have used the Dice coefficient, mean intersection over union

(mIoU), mean absolute error (MAE), and Fβ. We have avoided using frames per

second (FPS) as the performance measure as it is a platform-dependent measure.

Instead, we used the platform-independent measure, the number of floating-point

operations (FLOPs) per image prediction, to measure the model’s computational

efficiency.
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Figure A.2: Model’s performance on test images from different datasets
(from left) Kvasir, CVC-ClinicDB, CVC-300, Colon-DB, ETIS where first
two are the seen datasets and last three are the unseen datasets.

A.6 Results

This section presents our results and the model’s performance on different datasets,

seen and unseen. The seen datasets are Kvasir and CVC-ClinicDB, as the model

was trained using the sample images from these datasets. In contrast, the unseen

datasets are CVC-300, CVC-ClinicDB, and ETIS, containing images the model has

never seen. Figure A.2 shows the model’s performance on sample test images from

all five datasets.
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A.6.1 Accuracy on individual dataset:

As the model was trained using sample images from Kvasir and CVC-ClinicDB, we

can observe that the model accuracy is very high (Table A.1). Except for MAE on the

Kvasir dataset, our model outperformed the current state-of-the-art in all evaluation

metrics.

Table A.1
Model’s performance and comparison with other models on the test

dataset. Results have been reported from the PraNet [2] paper and have
not been verified.

Dataset Kvasir CVC-ClinicDB

Models Dice mIoU F2 MAE Dice mIoU F2 MAE
U-Net 0.818 0.746 0.794 0.055 0.823 0.755 0.811 0.019
U-Net++ 0.821 0.743 0.808 0.048 0.794 0.729 0.785 0.022
ResUNet-mod 0.791 — — — 0.779 — — —
ResUNet++ 0.813 0.793 — — 0.796 0.796 — —
SFA 0.723 0.611 0.670 0.075 0.700 0.607 0.647 0.042
PraNet 0.898 0.840 0.885 0.030 0.899 0.849 0.896 0.009
Proposed 0.935 0.888 0.894 0.031 0.945 0.906 0.870 0.008

A.6.2 Model Generalization:

Model generalization is measured by the accuracy of the model on unseen datasets

(CVC-300, Colon-DB, and ETIS). Similar to the accuracy on the seen dataset, our

model outperformed the state-of-the-art PraNet [2] (Table A.2). Similar to PraNet,

our model achieved better performance on CVC-300 and Colon-DB compared to
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ETIS. Images on the ETIS dataset are very different which causes the less accuracy.

Table A.2
Model’s accuracy comparison on the unseen test dataset CVC-300,

Colon-DB, and ETIS.

Dataset CVC-300

Models Dice mIoU MAE
U-Net 0.71 0.627 0.022
U-Net++ 0.707 0.624 0.018
SFA 0.467 0.329 0.065
PraNet 0.871 0.797 0.010
Proposed 0.901 0.864 0.016
Dataset Colon-DB

Models Dice mIoU MAE
U-Net 0.512 0.044 0.061
U-Net++ 0.483 0.41 0.064
SFA 0.469 0.347 0.094
PraNet 0.709 0.64 0.045
Proposed 0.867 0.728 0.038
Dataset ETIS

Models Dice mIoU MAE
U-Net 0.398 0.335 0.036
U-Net++ 0.401 0.344 0.035
SFA 0.297 0.217 0.109
PraNet 0.628 0.567 0.031
Proposed 0.826 0.728 0.024

A.6.3 Model’s computational efficiency:

In the development of Mobile-PolypNet, major consideration was given to the model’s

size and computational efficiency. Table A.3 summarizes the number of parameters,

disk space required, and FLOPs count, along with accuracy metrics while testing

on the Kvasir dataset. The FLOPs counts for the other models have been measured
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using TensorFlow with the code provided by the authors. Where the TecsorFlow code

was unavailable, we tried to imitate the model using the information provided by the

authors. While outperforming the current state-of-the-art on the accuracy metrics,

the proposed model is approximately 83 times smaller in size and about 17 times less

computationally expensive compared to PraNet (Table A.3).

PraNet model uses traditional convolution layers with a high number of filters (512,

1024, 2048), resulting in large number of trainable parameters and FLOPS count. In

comparison, Mobile-PolypNet uses separable convolution and reduces the number of

filters by one order of magnitude, with the highest number equal to 144 resulting in

much smaller number of trainable parameters and FLOPs count.

Table A.3
Model efficiency is measured in terms of the number of parameters required

by the model and the number of floating-point operations (FLOPs)
performed by the model to process a single image of dimension 352× 352
(this image size was only used for the FLOPs count). The FLOPs count
has been tested on TensorFlow, and accuracy metrics comparison were

made on the Kvasir dataset.

Models
Number of
parameters

Disk space
FLOPs
count

Dice mIoU MAE

U-Net 7.85M 30MB 52.6G 0.818 0.746 0.055
U-Net++ 9.04M 34.6MB 112.6G 0.821 0.743 0.048
ResUNet-mod 7.85M 30MB 52.6G 0.791 — —
ResUNet++ 9.04M 34.6MB 112.6G 0.813 0.793 —
SFA 25.59M 97.7MB 222.4G 0.723 0.611 0.075
PraNet 20.52M 78.4MB 81.9G 0.898 0.840 0.030
Proposed 246K 1.72MB 4.9G 0.935 0.888 0.031
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A.6.4 Model modification and performance (Ablation

study):

To further investigate features of Mobile-PolypNet, we tried several of its variations.

Table A.4 summarizes different model architectures and their performances on the

Kvasir dataset. In the first variation (Mobile-Polypnet + MaxPool), in the inverted

residual block, we replaced each stride-2 convolution with a stride-1 convolution fol-

lowed by maxpooling. We also replaced upsampling transpose convolution with inter-

polated upsampling. Direct connection between the encoder and decoder in Mobile-

PolypNet backbone is the simplest form of skip connection. In the next variation we

replaced the skip connection with a single convolution operation (Mobile-PolypNet +

ConvSkip). This extra block increased the FLOPs count. It also took longer for the

model to converge. However, an improvement in the accuracy was observed. In the

next variation (Mobile-PolypNet + PT), we used the MobileNetV2 [96] pre-trained

with the ImageNet dataset from the Keras library as our encoder. The decoder

remained the same. We observed that although the model converged quickly, it suf-

fered from overfitting. To reduce overfitting, we inserted dropout layers in between

convolution layers (Mobile-PolypNet + Dropout) in the Mobile-PolypNet backbone.

Although it converges quickly, the achieved dice score was lower compared to other

models.
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As the average dice score for five models presented in Table A.4 is different, we did

t-tests to measure the significance. While the addition of the convolution skip connec-

tion produced the highest accuracy, the difference is not significant (p-value=0.815).

The use of maxpooling for dimension reduction compared to stride-2 convolution

and interpolation compared to transpose convolution is highly debated in the litera-

ture [155, 156]. In our model, we observed a significant (p− value = 0.018) reduction

in accuracy due to the use of maxpooling. The additional parameters required by

the stride-2 and transpose convolution help to learn and preserve important spatial

features in the network which improves the performance.

Table A.4
Computation and accuracy performance comparison of different modified
models based on the same Mobile-PolypNet backbone architecture on the
Kvasir dataset. FLOPs have been calculated for an image dimension of

224x224

.

Model
Number of
trainable
parameters

Number of
non-trainable
parameters

FLOPs
count

Number of
epochs to
converge

Dice MAE

Baseline 233,001 13,616 2.0G 145 0.935 0.031
Baseline
+ MaxPool

223,913 13,616 1.8G 217 0.900 0.047

Baseline
+ ConvSkip

250,601 13,616 2.2G 186 0.938 0.028

Baseline
+ PT

234,618 2,495,257 1.5G 50 0.912 0.037

Baseline
+ Dropout

233,001 13,616 2.0G 110 0.928 0.035
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A.6.5 Model’s limitations:

Although our model achieved state-of-the-art accuracy, we observed that it failed

to properly segment the polyp in some images. It also wrongly segmented certain

blobs as polyps in some images. However, we believe by processing video frames

and comparing two consecutive frames, we can reduce wrong segmentation in some

images.

A.7 Conclusion

In this paper, we presented a novel Mobile-PolypNet architecture for automatic seg-

mentation of the colorectal polyp. The model has been tested on five publicly avail-

able datasets and compared with the current state-of-the-art models. The network

achieved state-of-the-art accuracy with orders of magnitude reduction in the compu-

tational cost. Compared with the current state-of-the-art Pranet, Mobile-PolypNet

requires 83 times fewer parameters and is about 17 times more computationally effi-

cient, making it an excellent model for a segmentation backbone for deployment on

resource-sensitive devices.
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Appendix B

Mobile-RetinaNet : A Deep U-net

for Retinal Fundus Image

Segmentation for Use in

Low-resource Settings

Ranit Karmakar, Saeid Nooshabadi, Allen O. Eghrari
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B.1 Abstract

B.1.1 Purpose

Retinal fundus photography is used by physicians to detect and track different eye

diseases such as glaucoma and diabetic retinopathy (DR). Extracting the retinal

vessels and optic discs manually is time and resource-consuming. This work presents

a computer-aided automatic segmentation model for the retinal blood vessels and

optic disc in retinal fundus images.

B.1.2 Method

We proposed a novel and efficient deep learning image segmentation architecture

fundus image with the efficient use of bottleneck residual blocks on the U-Net like

encoder-decoder convolutional neural network (CNN) backbone. The model has been

trained and tested on two publicly available retinal datasets with widely used param-

eters accuracy, sensitivity, specificity, and the area under the curve (AUC). To mea-

sure the model’s computational efficiency, we used the platform-independent FLOPs

count.
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B.1.3 Results

This model achieved close to state-of-the-art performance with much higher computa-

tional efficiency. While our base model achieved the AUC score within 2% compared

to the SA-UNet, our model requires almost half the number of parameters and is 4.5

times more efficient.

B.1.4 Conclusion

Accurate automatic detection of these image features will reduce the manual effort

while producing consistent results in clinical settings instantaneously. High efficiency

and low FLOPs count make it suitable for low-resource implementation.

B.2 Introduction

Retinal fundus photography is used to image the posterior segment of the eye. These

images are used by clinicians to measure the health of the retina and check for diseases

such as diabetic retinopathy (DR) and Glaucoma. While DR damages the blood

vessels, optic disc to optic cup ratio from fundus images is used to detect and measure
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glaucoma in patients. While both DR and Glaucoma can cause irreversible blindness,

early detection and tracking may help prevent vision loss [207].

The first step in automatic detection of DR and glaucoma is segmenting the retinal

fundus images. Manual segmentation is very strenuous and can add manual biases,

affecting the measurement. Automatic segmentation can eliminate these challenges

and make the segmentation quick and observer independent.

Vessel segmentation and optic disk segmentation come with different challenges. For

retinal blood vessels, due to their unique and fine structure, developing a robust and

automatic image segmentation technique is challenging. Over the years, different

methods have been proposed, that are broadly divided into two categories; classi-

cal methods that are simple but less accurate, and deep learning techniques that

are highly accurate but computationally inefficient [164]. Recently light-weight deep

learning models have been proposed that provide a balance between accuracy and

computational efficiency [164]. Development of models that yields to computation-

ally efficient implementation are critical for several reasons:

1. Deep learning models generally require high power GPUs to run. Computation-

ally efficient models have the benefit of running on low resource devices with

limited computational power and memory.

2. While being accurate, efficient models can produce faster, real-time results,
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necessary necessary for embedded environment.

In this work, we achieved a balance between accuracy and efficiency, proposing a novel

Mobile-RetinaNet architecture that is highly computationally efficient compared to

the current state-of-the-art models, making it suitable for deployment in low resource

devices. Portable, handheld retinal fundus cameras are widely available in the market,

that are connected to either mobile phones or similar low-power device. Our model

because of it low computational and memory footprint can run on these devices and

produce real-time results.

Mobile-RetinaNet has similarities to the M2U-Net [164] but is different in three sig-

nificant ways.

1. Decoding path: In Mobile-RetinaNet, the bottleneck residual block is used as

the fundamental building block for the network, even in the decoding path,

which is a novel decoding architecture used on the U-Net backbone.

2. Untrained encoder: In Mobile-RetinaNet, we have replaced the pre-trained Mo-

bileNetV2 [96] in the encoder with our untrained encoder architecture (ex-

plained in the methods section), which is also struturally different from the

M2U-Net [164] and original MobileNetV2 [96].

3. Upsampling operation in decoder: Our decoder block uses transposed convo-

lution with trainable parameters to increase the feature resolution (height and
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width) in the decoder block, instead of bilinear upsampling in M2UNet [164].

The proposed method is 4.5 times more efficient with comparable accuracy

compared to the state-of-the-art model, SA-UNet [167].

B.3 Related Works

B.3.1 Medical Image Segmentation

The first reported deep learning method with significant results in biomedical image

segmentation was U-Net [95]. It also showed substantial improvement even with

a small dataset. Modifications of the U-Net have been employed to improve the

performance in specific applications. U-Net++ [113], Residual U-Net [184], Recurrent

Residual U-Net [185] Dense-UNet [186, 187], and U-Net with pre-trained encoders

[188] are a few examples.

B.3.2 Retinal Vessel Segmentation

Specific to retinal vessel segmentation, there are several convolutional neural network

(CNN) based architectures [208, 209, 210, 211]. Notable are Vessel-Net [162], DEUNet

[161], AGNet [181], MS-NFNet [160]. They all share some similarities with U-Net.
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These deep neural networks have reported a significant improvement over the previous

models. However, they all suffer from large size and high complexity.

SA-UNet [167], the current state-of-the-art, achieves high accuracy with a compar-

atively simpler network by replacing the bottleneck layer between the encoder and

decoder of a regular U-Net with a Spatial Attention Module (SAM) [189]. This

model reduced the number of parameters required to 0.5 million while achieving high

accuracy. However, due to the use of regular convolution blocks, SA-UNet is still

reasonably computationally expensive.

Model efficiency in terms of model size and computational efficiency are important

factors for deep learning models. To this end, in MobileNetV2 [96] convolution was

replaced with separable depthwise convolution and pointwise filters. To take advan-

tage, M2U-Net [164], a work for retinal vessel segmentation, replaced the encoder

in U-Net with a pre-trained MobileNetV2 [96]. In the decoder part M2U-Net used a

residual block with a contraction factor of 0.15 [164]. This modification of the decoder

block significantly reduced the computational cost of this architecture with respect

to SA-Unet [167]. However, the reduction in complexity in M2U-Net has come at the

expense of a significant reduction in the model’s accuracy and a small increase in the

number of tunable parameters.

One more recent work (W-Net [212]) proposed a cascaded network of two minimalistic
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U-Net models, W-net, for retinal vessel segmentation. The work achieves a higher ac-

curacy compared to other related works using only 68.5 thousand parameters. While

the reduction in the use of number of parameters is significant, it comes with a cost

of accuracy.

Our model on the other hand while has 2.5 times fewer parameters, has no significant

drop in accuracy compared with the best reported results by SA-UNet [167].

B.3.3 Retinal Optic Disc Segmentation

The unsupervised methods mostly use classical image processing techniques such as

morphological processing [194, 196] to detect and segment the optic discs. Due to

their unique shape, size, and brightness, optic discs are easily distinguishable from

the background and the retinal vessels for morphological processing to work well.

However, in the presence of unusual pathology or uneven illuminations, these methods

tend to fail. There are also shape-based image segmentation techniques [197, 200] for

optic disc contour detection which face similar challenges.

With the emergence of multiple supervised learning-based approaches, they have

been applied to optic disc segmentation. These works are primarily divided into

semi-supervised learning and fully supervised methods. The semi-supervised meth-

ods involve shape, size, color-based image features, wavelet feature selections followed
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by classification. There has also been the use of superpixels [197] and pixel-wise k-

means clustering [198, 199] for the semantic segmentation of the optic discs. The use

of fuzzy systems such as c-means clustering methods [195], and fuzzy broad learning

systems [202] have also been proposed. Although these methods perform better than

the classical image processing methods, they still lack the robustness required in the

clinical setting.

On the other hand, fully supervised methods, primarily use deep neural networks such

as U-Net [205], fully-connected CNN [193], and modified U-Net-based models such

as multi-label deep learning networks [203] and Res-UNet models [204]. Although

deep neural networks can overcome the challenge of generalizability, they are highly

resource-consuming.

B.4 Material and Method

B.4.1 Dataset Preparation and image augmentation

For training and testing, we used most widely used publicly available dataset, DRIVE

[165] and CHASE [166]. For the vessel segmentation task, we used the same dataset

as SA-UNet as they are the current state-of-the-art in terms of accuracy. This also
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Figure B.1: (a) Mobile-RetinaNet architecture, (b) Inverted residual con-
volution building block, (c) Output convolution block

allowed us to make a meaningful comparison with the experimental results from SA-

UNet. However, we have resized the images in both datasets to 512x512 (similar to

Vessel-Net).

For the optic disc segmentation, however, we took a slightly different approach. We

cropped each image around the optic disc to create patches. Next, we applied random

rotation, Gaussian noise, color jittering, horizontal and vertical flip, and changed the

image brightness. The ground truth labels were created under the supervision of
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Table B.1
Description of the dataset based on image dimension, number of images for

training, validation, testing, and the applied image augmentations.

Dataset
Original
Dimension

Output
Dimension

Number of
training
images

Number of
validation
images

Number of
testing
images

Retinal Vessels
DRIVE[165] † 584x565 512x512 234 26 20
CHASE[166]† 999x960 512x512 247 13 8
†Vessels augmentation: Random rotation, Gaussian noise, color jittering,
horizontal, vertical and diagonal flips.

Optic Disc
DRIVE[165] ∗ 584x565 256x256 203 51 20
CHASE[166] ∗ 999x960 256x256 208 52 8
∗Optical disc augmentation: Random rotation, Gaussian noise, color jittering,
horizontal and vertical flips, and brightness adjustment.

an ophthalmologist. Table B.1 provides more information about the dataset size,

dimension of the images, and augmentations applied.

B.4.2 Network Architecture

The model proposed in this paper uses the fundamental encoder-decoder architecture

with skip connection similar to UNet (Figure B.1). However, the biggest difference

between the UNet and our model is the model building blocks. While UNet used

traditional convolution operations, we replaced it with bottleneck residual blocks (b

in Figure B.1) with an expansion factor of 6. Details of the encoder and decoder path

are given below. Each convolution operation is followed by batch normalization and
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Figure B.2: Optic disc locaization workflow. The first operation is classical
image processing based optic disc localization. Second block is the Mobile-
RetinaNet trained with cropped images for optic disc segmentation. Third
block uses the semantic segmentation and draw a elliptical contour around
it.

ReLu6 activation unless otherwise noted.

B.4.2.1 Encoder path

For the encoder path, input image is first processed with a traditional convolution

layer to increase the number of channels to eight while preserving the image resolu-

tion. This convolution layer was followed by a depthwise convolution and another

traditional convolution with eight filters. The output from this layer was fed to a

series of bottleneck residual blocks while progressively reducing the resolution (height

and width) of the feature map by a factor of two. Each level has three bottleneck

residual blocks where first depthwise convolution operation of the first bottleneck

residual block uses stride-2 convolution to reduce the feature map resolution. Num-

ber of filters used in the contraction operation are 8, 8, 16, 32, and 32 for the encoding
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path.

B.4.2.2 Decoder Path

Similar to encoder path, we used the bottleneck residual blocks for the decoder path

as well. However, each level has only 2 bottleneck residual blocks. To increase the res-

olution of the feature map, we used traditional transposed convolution. The number

of filters in the contraction operations were 16, 8, 8, and 8 with an expansion factor

of 6. In the decoder path, we used additional bottleneck residual blocks twice before

passing the feature map to the output convolution layer. In the output convolution

(c in Figure B.1), we used traditional convolution operation twice with 8 filters and

once with 1 filter. Finally, we used a sigmoid activation to get the final output.

B.4.3 Optic Disc Localization

Optic discs are circular and generally brighter than the rest of the image. Vessels,

similarly, tend to be bright; however, their shapes are distinctly different from that

of the optic discs. To better localize the optical disc, we developed a classical image

processing algorithm to perform a localization (Figure B.2). First, we process the

image with an image closing operation with a disc structuring element. This removes

everything from the image except from the area with optic disc which appears as
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a bright area. We then used contrast adjustment to scale the image pixel intensity

between 0 and 255. After processing we observed that the center of the optic disc

was brightest in the processed image. Hence, we used a threshold of 250 to localize

the center of the optic disc. To avoid any micro pixels anywhere else in the image, we

perform another image opening operation with the same structuring element. With

that the center of the optic disc is accurately localized. We determine the centroid of

that blob and crop a patch of 256x256 around the centroid.

B.4.4 Experiments

B.4.4.1 Retinal Vessel Segmentation

To test our model’s accuracy, efficiency, and robustness, we compared it with all the

state-of-the-art retinal vessel segmentation models. We also tested how the model size

changes with the increase in the size of the image. Finally, we modified our backbone

model to test its performance with different modifications. All of these experiments

are elaborated in the results and discussion sections.
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B.4.4.2 Optic Disc Segmentation

For optic disk segmentation, the network was trained with cropped images centered

around the optic disc. For testing we performed two experiments. In the first, the test

images were manually cropped before feeding it to the network to perform semantic

segmentation. In the second experiment, fully-automated, we took a hybrid approach,

where optical disc was first localized using the procedure in Figure B.2. Next a crop

of the localized area was obtained and fed to network.

B.4.4.3 Model Refinement and Modifications

To further explore Mobile-RetinaNet in Figure B.1, we modified the model and tested

it for the vessel segmentation task in three different ways. In two of the modified

models, we replaced the skip connection by convolution (Mobile-RetinaNet + Con-

vSkip) and Spatial Attention Module (SAM) (Mobile-RetinaNet + SASkip) [189].

For the third model (Mobile-RetinaNet + PT), we used MobileNetV2 encoder block

pre-trained with ImageNet dataset from Keras library.
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B.4.5 Loss Function

In segmentation models, cross-entropy loss, Dice loss and Jaccard loss or sometimes

their combination, are widely used as loss metrics. We chose BCE loss as our loss

function for the retinal vessel segmentation, as it produces the best overall results

compared to the other loss functions. for the optical disc segmentation we used Dice

as the best performing loss metric.

B.4.6 Experiment Platform

We used Tensorflow with GPU support to develop our models. The floating point

operations (FLOPs) count was calculated using the Keras library. The FLOPs count

for the other models, we used the codes provided by the authors, if available, or

implemented them ourselves. All the models were trained and tested on an NVIDIA

GTX 1060 6GB GPU running on an Intel i7-8750H CPU with 16GB RAM. The

dimension of input and output images was 512x512 for the vessel segmentation and

256x256 for the optic disc segmentation. We used Adam optimizer with a learning

rate of 1e-3. Due to the limited hardware resources, the batch size was set to 1 for

the vessel segmentation and 2 for the optic disc segmentation.
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B.4.7 Training Performance Metrics

For the retinal vessel segmentation task, the area under the curve (AUC) on the

validation set was monitored to track the model’s performance. The best model was

saved based on the validation AUC. If the validation AUC did not improve after 50

iterations, we stopped the training. For the OD segmentation, we monitored the Dice

score instead and stopped the training when it did not improve after 50 iterations. The

model’s performance was evaluated using the significant metrics for the evaluation of a

segmentation model, including sensitivity (SE), specificity (SP), accuracy (ACC), area

under the curve (AUC), and Dice score/F1 score. To evaluate the model’s efficiency,

we used platform-independent FLOPs count. We also compared the model’s size by

the number of parameters and the disk space required for storing the model.

B.4.8 Statistical Analysis

To compare the performance between two models, we used two-sided t-test using

Python’s SciPy library. As our data came from a normal distribution p-value from

t-test gave us an understanding whether the difference in performance was significant.

We tested the normality using normaltest from the SciPy library. We used a cut-off

of α = 0.05 as a threshold for significance test.
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Table B.2
Model efficiency compared with the current state-of-the-art models in

respect of parameters, FLOPs count, number of training epochs, and the
mode disk space requirement.

Model Parameters FLOPs (G) Epochs disk space

U-Net[95] 34512193 406.4 - 395.2 MB
Yan [159] 25955330 3851.1 - 297.2 MB
AG-Net [163] 9408545 116.4 - 108.0 MB
ERFNet [168] 2095841 26.9 - 24.6 MB
MS-NFN [160] 1480900 285.7 100 17.6 MB
Vessel-Net [162] 662108 86.3 150 7.8 MB
M2U-Net [164] 617013 2.6 300 7.7 MB
SA-Unet [167] 537707 19.7 150 6.5 MB
Mobile-RetinaNet 197385 4.4 28 3.6 MB

B.5 Results

B.5.1 Model Efficiency

Mobile-RetinaNet requires the lowest number of parameters (Table ??). Compared

to the current state-of-the-art, the number of parameters is reduced by half, and the

FLOPs count is reduced by 4.5 times. Compared to similar M2U-Net, the parameter

requirement for our model is 2.5 times less, with a small increase in the number of

FLOPs. When tested on the same hardware as the training, with GPU acceleration

enabled the inference time was 48.1 milliseconds. Compared to that, with GPU

acceleration disabled, the inference time was 122.2 milliseconds.

Table 2 also lists the epoch count for different models. While the other models used a
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Table B.3
Accuracy of Mobile-RetinaNet for the retinal vessel segmentation task on

DRIVE and CHASE datasetsx compared with other state-of-the-art
methods

Model SE SP Acc AUC

DRIVE[165]
Yan [159] 0.765 0.982 0.954 0.975
Liskowski [157] 0.781 0.981 0.954 0.979
MS-NFN [160] 0.784 0.982 0.957 0.981
Orlando [158] 0.79 0.968 0.945 0.951
DEU-Net[161] 0.794 0.982 0.957 0.977
Vessel-Net [162] 0.804 0.98 0.958 0.982
AG-Net[163] 0.81 0.985 0.969 0.986
M2U-Net[164] - - 0.963 0.974
SA-Unet[167] 0.821 0.984 0.97 0.986
Mobile-RetinaNet 0.822 0.974 0.955 0.968

CHASE[166]
Yan [159] 0.763 0.981 0.961 0.978
Liskowski[157] 0.782 0.984 0.963 0.982
MS-NFN [160] 0.754 0.985 0.964 0.983
Orlando[158] 0.728 0.971 0.946 0.952
DEU-Net [161] 0.807 0.982 0.966 0.981
Vessel-Net[162] 0.813 0.981 0.966 0.986
AG-Net [163] 0.817 0.985 0.974 0.986
M2U-Net[164] - - 0.97 0.967
SA-Unet[167] 0.857 0.984 0.976 0.991
Mobile-RetinaNet 0.877 0.976 0.97 0.985

fixed number of epochs for training, we made it flexible by monitoring the performance

on the validation set. As we can observe, our model also converges rapidly and does

not require a great deal of training. Although the training time is not always a

significant concern, it impacts the overall time during the development.
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B.5.2 Model Accuracy

B.5.2.1 Retinal Vessel Segmentation

Mobile-RetinaNet yields the highest sensitivity the CHASE and DRIVE datasets

(Table B.3). On all the other metrics, the results achieved for Mobile-RetinaNet are

very close to the other models. A random set of sample output from the model is

presented in Figure B.3.

B.5.2.2 Retinal Optic Disc Segmentation

Optical disc is localized in small neighborhood in the overall image, training the

model with patches make the training very efficient. For all the test images, our

fully-automatic localization algorithm was able to localize the optical disc. After

which Mobile-RetinaNet was used to successfully segment the optical disc. Both

fully-automatic and semi-automatic methods were able to produce high quality seg-

mentation (Table B.5) close to the true labels. Figure B.4 presents the sample outputs

from both the methods used.

We did not observe any significant difference between the semi-automatic and fully-

automatic methods proving the effectiveness of the workflow. By performing t-test
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Figure B.3: Comparison of models accuracy on different images with the
true label. Second row is true label and third row is the output. First
two images are from the DRIVE dataset and last two images are from the
CHASE dataset.

between the results from these two methods (Table B.5), we found no significant dif-

ference (p−value = 0.8) proving the efficacy of the fully automated hybrid approach.

B.5.2.3 Loss Function Evaluation

Table ?? summarizes Mobile-RetinaNet’s performance on different loss functions. For

the mixed loss, we used the average of Dice and Jaccard losses. Experimentally, we
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Figure B.4: Sample output using semi-automatic and fully-automatic optic
disc segmentation. (a) original image, (b) manual localization, (c) optic
disc segmentation on the manually localized image, (d) automatic optic disc
localization, (e) optic disc segmentation on the automatic localized image.
Blue ring shows the true label and green ring shows the predicted label.

found BCE loss produced the best results for the retinal vessel segmentation, and

Dice for the optical disc segmentation. Figure B.5 provides a side-by-side comparison

of the true segments and predicted segments for several loss functions.
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Table B.4
Mobile-RetinaNet model’s performance comparison with different loss

functions

Loss function SE SP Acc AUC F1

DRIVE[165]
BCE loss 0.822 0.974 0.955 0.968 0.818
Dice loss 0.862 0.964 0.949 0.929 0.806
Jaccard loss 0.837 0.910 0.901 0.915 0.675
Mixed loss 0.830 0.972 0.954 0.918 0.817

CHASE[166]
BCE loss 0.877 0.976 0.970 0.985 0.776
Dice loss 0.869 0.971 0.965 0.932 0.749
Jaccard loss 0.852 0.965 0.958 0.920 0.713
Mixed loss 0.836 0.975 0.967 0.916 0.749

Table B.5
Comparison of segmentation accuracy between fully-automatic and

semi-automatic workflow for optical disc segmentation task.

SE SP Acc AUC F1

DRIVE [165]
Semi-auto 0.891 0.984 0.975 0.948 0.858
Fully-auto 0.898 0.984 0.975 0.950 0.862

CHASE [166]
Semi-auto 0.989 0.967 0.970 0.986 0.859
Fully-auto 0.966 0.970 0.969 0.981 0.866

B.5.3 Model Refinement

From Table B.6 it can be seen that out of the four models, Mobile-RetinaNet + PT

was quickest to converge and produced the best F1 score but the diskspace required,

FLOPs count, and the number of parameters were the highest. However, the FLOPs

requirement for Mobile-RetinaNet + PT was still lower than the SA-UNet. Mobile-

RetinaNet + PT was also produced state-of-the-art results, better than SA-UNet,
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Figure B.5: Side-by-side comparison of the Mobile-RetinaNet model’s seg-
mentation with different loss functions. It can be observed that with BCE,
we were able to detect tiny vessels with high resolution than other loss func-
tions

on the CHASE dataset. For the DRIVE dataset, F1 score is only 0.2% lower than

SA-UNet.

B.6 Discussion

Depending on the model and the task in hand, different loss functions produce differ-

ent results. Hence, choosing the right loss function is very crucial for the training of a
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Table B.6
Accuracy and efficiency comparison between the modified models with two

state-of-the-arts M2U-Net and SA-UNet

Modified models
Efficiency

Trainable
Parameters

Epochs FLOPs Disk Space

DRIVE[165]
Mobile-RetinaNet 197385 28 4.4 G 3.6 MB
Mobile-RetinaNet + ConvSkip 210377 49 4.6 G 3.8 MB
Mobile-RetinaNet + SASkip 197385 39 4.5 G 3.7 MB
Mobile-RetinaNet + PT 449041 7 6.4 G 14.8 MB
M2U-Net [164] 617013 300 2.6 G 7.7 MB
SA-UNet 537707 150 19.7 G 6.5 MB

CHASE[166]
Mobile-RetinaNet 197385 12 4.4 G 3.6 MB
Mobile-RetinaNet + ConvSkip 210377 34 4.6 G 3.8 MB
Mobile-RetinaNet + SASkip 197385 7 4.5 G 3.7 MB
Mobile-RetinaNet + PT 449041 51 6.4 G 14.8 MB
M2U-Net 617013 300 2.6 G 7.7 MB
SA-UNet [167] 537707 150 19.7 G 6.5 MB

Modified models
Accuracy

SE SP Acc AUC F1
DRIVE[165]

Mobile-RetinaNet 0.822 0.974 0.955 0.968 0.818
Mobile-RetinaNet + ConvSkip 0.827 0.973 0.954 0.967 0.816
Mobile-RetinaNet + SASkip 0.798 0.978 0.956 0.959 0.816
Mobile-RetinaNet + PT 0.815 0.978 0.957 0.970 0.824
M2U-Net [164] - - 0.963 0.974 0.809
SA-UNet 0.821 0.984 0.970 0.986 0.826

CHASE[166]
Mobile-RetinaNet 0.877 0.976 0.970 0.985 0.776
Mobile-RetinaNet + ConvSkip 0.807 0.978 0.966 0.970 0.768
Mobile-RetinaNet + SASkip 0.827 0.973 0.963 0.975 0.761
Mobile-RetinaNet + PT 0.940 0.987 0.983 0.996 0.883
M2U-Net - - 0.970 0.967 0.801
SA-UNet [167] 0.857 0.984 0.976 0.991 0.815

deep learning model. For the vessel segmentation using Mobile-RetinaNet, we found

(Table B.4) BCE loss produced the best result. The AUC was found to be highest for
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the BCE loss and by performing t-test, we observed that the difference is significant

(p− value ≤ 0.0001).

The Dice and Jaccard losses are more useful in blob segmentation tasks such as

optical disc where the global neighborhood information is as much relevant as the local

neighborhood. For vessel segmentation, however, local neighborhood information is

more important which can be better represented using BCE loss. That said mixed

loss (average of Dice and Jaccard) achieved the second-best performance for F1 score

after BCE. In Figure B.5, we can observe the BCE loss was able to track and extract

fine vessel features better compared to other loss functions.

For the blob type optical disc segmentation, on the other hand, because global infor-

mation was relevant, we used negative Dice loss to train the model and achieved high

accuracy.

In this work, developing an efficient image segmentation model while maintaining

high accuracy was our utmost priority. By using the bottleneck residual blocks, we

brought the FLOPs count down to 4.4G for the original model. Although this was

slightly higher compared to M2U-Net, which has the smallest FLOPs count, proposed

model is smallest is size and produced better accuracy performance (Table B.2 and

Table B.3). Figure B.6 is visual illustration of Mobile-RetinaNet in comparison with

other related works. We achieved better efficiency compared to any of the previ-

ous models proposed, closest to the state-of-the-art SA-UNet, while computationally
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Figure B.6: (Left) Dice score comparison between models with respect
to the FLOPs count. The size of the circles is evaluated by taking a ratio
of Dice score and FLOPs count. (Right) Dice score comparison between
models with respect to the number of parameters. The size of the circles is
evaluated by taking a ratio of the Dice score and the number of parameters.
Bigger the circle better the performance.

Figure B.7: Increase in FLOPs count for increased image resolution

highly efficient, closest to the most efficient model M2U-Net.

Figure B.7 compares how the input image resolution affects the FLOPs count for
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different models. Although the difference is hardly noticeable for the image resolution

below 256, for the images above that resolution, the FLOPs increased in a quadratic

fashion. For fundus imaging, detection of tiny retinal vessels is important and hence

high image resolution can provide richer information. However, that increases the

computation time significantly if the network is not efficient. In the zoomed in portion

of the plot in Figure B.7, we can observe how the image dimension affects model’s

efficiency. For higher resolutions (2048x2048 or 4096x4096), the difference between

SA-UNet and Mobile-RetinaNet is clearly significant, however, the difference between

M2U-Net and Mobile-RetinaNet is not that high.

We emphasize the fact that our models were trained and tested on two small datasets.

Increasing the diversity of the population for obtaining the images, and the change

in the imaging system for capturing retinal fundus images, might impact the model’s

performance.

B.7 Conclusion

This work presented the development of a highly efficient deep learning model that

produces segmentation for the retinal vessel and optic disc from the retinal fundus

images. With the use of bottleneck residual blocks on a U-Net type architecture, we

were able to produce results with accuracy very close to the state-of-the-art SA-UNet
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while highly computationally efficient. This high efficiency allows the deployment of

this model on mobile devices such as smartphones.

The models were trained and tested on two publicly available fundus datasets, DRIVE

and CHASE. The proposed models achieved highest sensitivity score for both the

datasets with a loss in AUC score of 1.8% and 0.6% for DRIVE and CHASE, re-

spectively. Despite this minimal reduction in loss, our model required 4.5 times less

number of floating point operations and 2.5 times less number of parameters.

Quick and automatic detection of blood vessels and optic disc can help with the

diagnosis for diabetic retinopathy and Glaucoma from retinal fundus images when

resources are limited. As diabetic retinopathy causes the shrinkage of retinal blood,

through automatic segmentation of the blood vessels, we have an objective means to

track identify the presence and progression of diabetic retinopathy. For Glaucoma, in

addition to the segmentation of optical disc, we also need segmentation of the optic

cup. In our future work, as labelled data becomes available, we intend to extent

the work to test the model’s performance in segmentation of optic cup and measure

Glaucoma.

While our model accurately detects major vessels, it still fails to detect tiny vessels

(evident in sample images in Figure B.3) from the fundus images. As the images in

the DRIVE dataset had more fine and tiny vessels compared to the CHASE dataset,

the accuracy is higher in CHASE compared to DRIVE. This is a limitation of our
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model that needs to be addressed in future work.
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Appendix C

Mobile-RetinaNet : A

Computationally Efficient DeepNet

for Retinal Fundus Image

Segmentation for Use in

Low-resource Settings

Authors: Ranit Karmakar, Saeid Nooshabadi, Allen Eghrari 1

1Karmakar, R., Nooshabadi, S. and Eghrari, A., 2022. Mobile-RetinaNet : A Computationally
Efficient DeepNet for Retinal Fundus Image Segmentation for Use in Low-resource Settings. Invest.
Ophthalmol. Vis. Sci.;63(7):2064 – F0053.
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C.1 Abstract

C.1.1 Purpose:

Retinal fundus photography is used by physicians to detect and track different eye dis-

eases such as glaucoma and diabetic retinopathy (DR). Manual segmentation is time-

consuming and may introduce observational bias. This work presents a computer-

aided automatic segmentation model for the retinal blood vessels and optic disc in

retinal fundus images. Accurate automatic detection of these image features will

reduce the manual effort while producing consistent results in clinical settings instan-

taneously.

C.1.2 Methods:

The efficient use of bottleneck residual blocks on the U-Net like encoder-decoder con-

volutional neural network (CNN) architecture requires a significantly lesser number

of floating-point operations (FLOPs) to achieve the desired accuracy. The model

has been trained and tested on two publicly available retinal datasets, digital retinal

images for vessel extraction (DRIVE) and child heart and health study in England

(CHASE). The model’s performance is compared with the prior art using widely used
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accuracy, sensitivity, specificity, and the area under the curve (AUC). For the OD

segmentation, we proposed a fully automatic segmentation that uses classical image

processing to localize the OD and then our network to do the semantic segmentation.

C.1.3 Results:

For retinal vessel segmentation, we achieved an AUC score of 0.968 for the DRIVE

dataset and 0.985 for the CHASE dataset which for the state-of-the-art is 0.986 and

0.991 respectively. With this small degradation in performance, our model needs 2.5

times a lesser number of parameters and 4.5 times fewer FLOPs. For OD segmen-

tation, we achieved an AUC score of 0.950 and 0.981 for the DRIVE and CHASE

datasets respectively.

C.1.4 Conclusions:

While deep learning models can be high resource-consuming, successfully developed a

model that achieves very high efficiency for medical image segmentation task without

loosing much accuracy.
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Appendix D

Understanding the effects of

medical conditions on the corneal

endothelial cell density using eye

bank data

Authors: Ranit Karmakar, Saeid Nooshabadi, Allen Eghrari 1

1Presented as a poster at World Cornea Congress VIII
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D.1 Abstract

D.1.1 Purpose:

In eye banking, measuring the quality of the corneal endothelial tissue is important for

transplant. This measurement is performed using specular microscopes. Alongside

the image analysis, the donor’s medical history was also looked at. In this study,

we assessed the association of different medical conditions with the health of corneal

endothelium.

D.1.2 Methods:

We have used the data from 10,322 eyes from a total of 5,624 unique donors col-

lected over 5 years at an eye bank. All the images underwent imaging with a Konan

CellChek D specular microscope and then analyzed using standard methods by cer-

tified technicians to measure the cell density, hexagonality, and coefficient variance.

The donor’s medical history and demographic information were associated with each

tissue. Using this data, we used multivariate regression to assess the association of

different medical conditions with corneal health.
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D.1.3 Results:

Our analysis showed while measured together, alcohol abuse, tobacco abuse, diabetes,

hypertension, and anemia had a negative effect on the corneal endothelial cell density.

Depression, sleep apnea, post-traumatic stress disorder, and obesity did not have any

effect. While measured in individual models, the same effects were noticed.

D.1.4 Conclusions:

This study helps to identify the effects of common medical conditions on the health

of corneal endothelial cell density.
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Appendix E

Effects of Systemic Medical

Conditions and Previous Cataract

Surgery on Corneal Endothelium

Density– A Big Data Analysis

Authors: Ranit Karmakar, John B. Lohmeier, Staci L. Terrin, Elizabeth Fout,

William B. Buras Sr., Saeid Nooshabadi, Allen O Eghrari, Ellen H. Koo 1

1Accepted as an oral presentation at American Society of Cataract and Refractive Surgery (ASCRS)
2023 Annual Meeting
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E.1 Abstract

E.1.1 Purpose:

To elucidate the effects of diabetes mellitus, hypertension, alcohol and drug abuse, as

well as previous cataract surgery on the corneal endothelium density.

E.1.2 Methods:

Data from 2 eye banks were obtained. Quantitative and qualitative analysis of donor

corneal endothelium was performed manually using the Konan CellChek D specular

microscope. Donors’ medical history was reviewed for the presence of diabetes, hy-

pertension, alcohol and drug abuse (specifically, methamphetamine and cocaine), as

well as history of previous cataract surgery, to elucidate their effects on the health of

the corneal endothelium. Multivariate regression analysis was used to determine the

association between these factors and corneal endothelial cell density. All the models

were adjusted with respect to age and pseudophakia.
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E.1.3 Results:

Donors’ history of diabetes mellitus and hypertension were not associated with neg-

ative effects on the endothelial cell density (ECD), with respective p-values of 0.231

and 0.352. Donors with a history of cocaine and methamphetamine abuse had on av-

erage 54 fewer cells per mm2 with a p-value 0.018. Donors with alcohol abuse history,

the endothelial cell density was lower by 61 cells with a p-value < 0.0001. Donors

with previous cataract surgery had on average 89 fewer cells per mm2 with a p-value

of < 0.0001.

E.1.4 Conclusions:

This study helps to identify the effects of common medical conditions on the health

of corneal endothelial cell density.
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Appendix F

An Analysis of Demographic and

Medical Information of Eye Bank

Donors: Utilizing Big Data from

the Florida Lions Eye Bank

Authors: Ranit Karmakar, Elizabeth Fout, William Buras, Allen Eghrari, Ellen Koo

1

1Submitted as an Abstract at Eye Bank Association of America (EBAA) 2023 Annual Meeting
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F.1 Abstract

F.1.1 Purpose:

The purpose of this study is to analyze the demographic and medical characteristics

of eye bank donors at the Florida Lions Eye Bank using big data techniques, with

the aim of improving eye donation and transplantation outcomes.

F.1.2 Methods:

This study utilized big data from the Florida Lions Eye Bank, which included de-

mographic data such as age, gender, and race, as well as medical data such as cause

of death, medical history, and tissue suitability. Descriptive statistics were used to

summarize the data, while inferential statistics were used to identify any significant

relationships between the variables.
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F.1.3 Results:

A total of 7,168 donor records from January 2015 to December 2022 were analyzed.

The results revealed that 67% of the donors were male, while only 33% were female.

The average age of the donors at the time of death was 59 years. We also observed

that EtOH abuse had a negative effect on the endothelial cell density.

F.1.4 Conclusions:

This study provides important insights into the characteristics of eye bank donors,

which can inform the development of strategies to improve donor outreach and tissue

screening processes. Our findings suggest that the proportion of male donors in eye

donation is higher than in organ donation, which warrants further investigation. The

study emphasizes the need for increased public awareness and education about the

benefits of eye donation.
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