2 research outputs found

    Towards IoT data classification through semantic features

    Get PDF
    The technological world has grown by incorporating billions of small sensing devices, collecting and sharing huge amounts of diversified data. As the number of such devices grows, it becomes increasingly difficult to manage all these new data sources. Currently there is no uniform way to represent, share, and understand IoT data, leading to information silos that hinder the realization of complex IoT/M2M scenarios. IoT/M2M scenarios will only achieve their full potential when the devices work and learn together with minimal human intervention. In this paper we discuss the limitations of current storage and analytical solutions, point the advantages of semantic approaches for context organization and extend our unsupervised model to learn word categories automatically. Our solution was evaluated against Miller-Charles dataset and a IoT semantic dataset extracted from a popular IoT platform, achieving a correlation of 0.63

    Incremental Hierarchical Clustering driven Automatic Annotations for Unifying IoT Streaming Data

    Get PDF
    In the Internet of Things (IoT), Cyber-Physical Systems (CPS), and sensor technologies huge and variety of streaming sensor data is generated. The unification of streaming sensor data is a challenging problem. Moreover, the huge amount of raw data has implied the insufficiency of manual and semi-automatic annotation and leads to an increase of the research of automatic semantic annotation. However, many of the existing semantic annotation mechanisms require many joint conditions that could generate redundant processing of transitional results for annotating the sensor data using SPARQL queries. In this paper, we present an Incremental Clustering Driven Automatic Annotation for IoT Streaming Data (IHC-AA-IoTSD) using SPARQL to improve the annotation efficiency. The processes and corresponding algorithms of the incremental hierarchical clustering driven automatic annotation mechanism are presented in detail, including data classification, incremental hierarchical clustering, querying the extracted data, semantic data annotation, and semantic data integration. The IHCAA-IoTSD has been implemented and experimented on three healthcare datasets and compared with leading approaches namely- Agent-based Text Labelling and Automatic Selection (ATLAS), Fuzzy-based Automatic Semantic Annotation Method (FBASAM), and an Ontology-based Semantic Annotation Approach (OBSAA), yielding encouraging results with Accuracy of 86.67%, Precision of 87.36%, Recall of 85.48%, and F-score of 85.92% at 100k triple data
    corecore