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I. Introduction

THE semantic technologies address the problem of various 
heterogeneous devices, communication protocols, and data formats 

of the generated data in the Internet of Things. Annotation of IoT sensor 
data is the substance of IoT semantics [1]. The future generation of IoT 
not only deals with the physical sensor devices but also the meanings 
they carry with virtual representation of smart data. On an average, 
every day around 3.2 quintillion bytes of data are generated on the 
Internet. The CISCO predictions state that more than 60 billion devices 
will be connected to the internet by 2025, as a result zetta bytes of sensor 
data will be generated continuously and exponentially. The IoT sensors 
generated raw data is stored in the data repositories and it supports to 
heterogeneous smart city applications. Therefore, applying the raw data 
into applications may result in structural data with pre-notified format, 
date, source, affiliation, unit, and encryption. The next level of data is 
perception data that contains the multi abstraction from low-level to 
high-level applications to perform actionable and predictive data for the 
final evaluation. For understanding the perception data more concisely, 
the structural information is needed. Without structural information, 
the data may mislead to false results and may fail to integrate the real-
time application data [2]. The perception data is extracted from the 

structured data that is more compressive and occupies less space than 
the raw data. Machine Learning (ML) clustering techniques are used for 
performing analysis on the perception data and automatic generation of 
semantic annotations. Moreover, in IoT, the real-time streaming data 
plays a major role to perform cluster analysis. The streaming data is 
flowing continuously as data stream from the IoT device to the peer 
network. The stream processing has been effectively analyzes the 
cluster data, improve the cluster efficiency, and able to make quicker 
decisions on clustered data [3]-[5].

The hierarchical clustering techniques are used for representing 
logical, temporal, and spatial relations on the IoT streaming data. The 
most important aspect of clustering IoT streaming data is its dynamic 
and heterogeneous nature. Therefore, a novel clustering mechanism is 
needed to represent the hierarchical relationships-based annotations 
for the IoT streaming data [6]. In this paper, incremental hierarchical 
clustering is deployed for unifying the streaming data in a hierarchical 
manner. SPARQL queries are used for extracting semantic annotations 
between the hierarchical clustered data. The agents will receive the raw 
data streams as input data from the IoT sensor devices and then perform 
the classification between the data streams for generating the RDF 
data patterns for the hierarchical clustering. The RDF data patterns 
are combined with the pre-notified metadata of the IoT sensors for the 
incremental hierarchical clustering process. At last, the hierarchical 
streaming data is annotated with the automatic semantic annotations 
using SPARQL queries.
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Semantic annotation has mainly taken from the field of text 
annotation. It provides machine-readable descriptions along with labels 
for URIs. Dealing with IoT semantic data is a difficult and challenging 
task for researchers and developers with technical issues. To solve 
this problem on providing the manual annotation and semi-automatic 
annotation, one approach for providing a semantic annotation to 
IoT semantic data is proposed [7]-[8]. Using manual annotation and 
semi-automatic annotation cannot be applicable if the IoT sensor data 
is huge in volume. It consumes more time to annotate the huge data 
and unable to capture the IoT devices generated data [9]. Therefore, a 
new and innovative automatic semantic annotation with more efficient 
mechanisms are needed. 

The main contributions of this work are listed as follows: Firstly, 
build an architectural model using hierarchical clustering driven 
automatic annotation for unifying IoT streaming data. Thereafter, 
add semantic annotations using SPARQL queries. Then extract and 
visualize the streaming data using the proposed IHC-AA-IoTSD 
mechanism and SPARQL queries. Afterwards, find the performance 
evaluation of the proposed model. Finally, comparison has been made 
of the proposed architectural model with existing approaches.

The remainder of this paper is described as follows: section II 
discuss background of the related work and the state of the art schemes. 
In section III, the authors discuss the proposed mechanism Incremental 
Hierarchical Clustering based Automatic Annotation for IoT Streaming 
data (IHC-AA-IoTSD). Experimental Methodology and Evaluation are 
described in section IV and section V respectively. Finally, section VI 
concludes this work along with the future scope.

II. Background and Related Work

In this section, the related work of semantic annotations in IoT 
platforms for unifying streaming data in efficient way is discussed. 
Majority of the researchers has put their efforts on how to deal 
with big volume and variety of data generated by IoT devices. As a 
result, ontologies and standards, mapping technologies and exchange 
systems, semantic annotations, data integration, interoperability, 
scalability, cluster efficiency and energy-efficient issues are identified. 
In semantic annotations, manual and semi-automatic annotations are 
time consuming and perform the annotation process with labels and 
manually. In addition, these all are dealing with web documents, text 
documents, and sensor networks. While thinking of Cyber-Physical 
Systems (CPS) and IoT dynamic data, it generates the big volume 
of data, therefore, it requires automatic annotation for handling large 
dynamic data. 

Annotation is the process of adding additional information to the 
existing data, which is enriched with labels, keywords, things, etc. 
Semantic annotation is the term of enriching data with meanings and 
descriptions. Annotation plays a major role by providing semantics 
between humans and machines. These are categorized as three ways- 
Manual annotation, Semi-automatic annotation, and Automatic 
annotation. In manual annotation, the data is annotated manually. 
Here keywords are used for annotating the additional information 
with existing data. Humans with their self-imagination annotate the 
keywords. Therefore, it yields the highest accuracy, but it consumes 
more time to complete the entire triple data. In semi-automatic type of 
annotation, some part is carried out with keywords and the rest of the 
part is finished with trained pre-defined set automatically [21]. Two 
steps complete this process. In the first step, the annotator can annotate 
the data with keywords.  In the second step, the semantic annotation 
tools are used to toggle the data. Both accuracy and efficiency are 
improved in this type of annotation system. Automatic annotation is 
the advanced and recently used annotation system by developers and 
researchers. In this, the whole process is measured by the annotation 

system. Annotation tools like Gruff (https://franz.com/agraph/gruff/), 
Jena (http://jena.apache.org/), and Protégé (https://protege.stanford.
edu/) are used for this approach. Based on the instructions given by 
a user, the annotation tool will place corresponding predicates among 
the subject and object. At last, a meaningful label and property are 
assigned to it.

The existing research work on semantic annotation, majority of 
researcher’s intention have been attentive on the semantic based Web 
documents, and a few researches pay attention to the IoT streaming 
data based automatic semantic annotation. As shown in Table I, the 
authors has been associated the former semantic annotation methods 
in seven aspects, such as “Automatic Annotation”, “Semi-Automatic 
Annotation”, “Manual Annotation”, “Training Data Set”, “Application 
Specific Domain”, “Data Type based on” and “Model/Framework/ 
Technology used”. In Table I, the authors has been deliberate based 
seven aspect and it indicates the following:
• Supreme of the annotation methods focus on the Internet field and 

are applied for Web documents.
• The existing research of semantics for Web documents primarily 

pay attention towards Ontology based annotation methods.
• Majority of the existing works on semantic annotation methods 

in the IoT data are manual. Furthermore, they primarily focus on 
architectural models and deployable frameworks.
Nowadays, the methods compared in Table I are the most powerful 

and popular mechanisms to achieve semantic data integration in 
IoT platforms. The existing data models are updates with semantic 
annotations on providing semantic labels to become model elements. 
Kolozali et al. [23] proposed SensorSAX and SAX (Symbolic Aggregate 
Approximation) methods for adaptive and non-adaptive window size 
segmentation of data streams real-time processing. Their algorithms 
are efficient in improving data aggregation in streaming data. However, 
these are unfair while annotating the IoT dynamic data. Mazayev et al. 
[24] proposed a CoRE framework for data integration and profiling of 
objects, as a result, it facilitates semantic data annotation, validation 
of results, and reasoning of annotated data. This framework adopted 
the RESTful resources for validating the user profiling of objects with 
the COAP server. However, the proposed framework is limited for 
validating and annotating IoT dynamic data efficiently. Mayer et al. 
[25] developed an Open Semantic Framework (OSF) for industrial IoT 
applications to make the web of things into semantic web of things. 
This framework is widely designed to enable the industrial things with 
semantics to the IoT domains. However, the OSF is not implemented 
under consideration of various industrial applications.

Shi et al. [26] concentrated on data semantization in IoT 
applications. They reviewed and overviewed all architectural elements 
and applications supported for IoT domain. In addition, they surveyed 
on how to add semantics to the IoT dynamic data, discussed on current 
research issues and challenges faced by semantic scholars. However, 
they limited to perform analysis on IoT data integration techniques. 
Zamil et al. [27] have proposed automatic data annotation techniques 
for smart home environments by adopting temporal relations. In 
addition, they incorporated HMM and Random Field models for 
integrating temporal and spatial relations enhanced by detection 
accuracy rate. The produced results are moderate and there is a 
space for enhancement with other incremental clustering techniques. 
Moutinho et al. [28] have extended the semantic annotations for 
integrating XML-messages using generating translators under the 
domain of arrowhead framework. These annotations are not automatic 
and only domain specific. Therefore, it consumes more time and space 
for annotating the IoT dynamic data.

An exhaustive and optimistic survey has been conducted under the 
literature survey. Nevertheless, these all do not light the prerequisites 
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of the semantic scholars and users for adding automatic semantic 
annotations in IoT streaming data. Therefore, in this paper, we present 
IHC-AA-IoTSD mechanism using SPARQL queries to improve the 
clustering based annotating process in IoT sensor streaming data. 
Through a unification of machine learning and semantic technologies, the 
proposed approach gives better results in terms of efficiency, reliability, 
scalability and security compared to the state of the art schemes.

III. Proposed Mechanism

In this proposed research work, to achieve semantic annotations 
among data samples, a Resource Description Framework (RDF) 
is used to annotate the data objects in meaningful way. The authors 
have analysed an incremental hierarchical clustering driven automatic 
annotation architectural model based on IoT for unifying the streaming 
data. For this reason, in this paper, a new and novel IHC-AA-IoTSD 
mechanism is proposed for annotating the streaming data semantically. 
The Fig. 1 shows an overview of the simplified architectural model 
of the proposed work. At first, the data generated from IoT sensors 
are collected from IoT sensor data world. On identification of the 
sensor data, then the agents will classify and analyze the data. The 

IoT streaming data generated from the data repository section; firstly, 
to interpret the objects in the streaming data, the RDF framework is 
used. Secondly, to abstract the data from the triple store, SPARQL 
queries is required. The SPARQL Query Engine mainly consists of 
three subcomponents. Those are Query Parser (QP), Query Optimizer 
(QO), and Query Processor (QP). The Query Parser (QP) is used for 
generating the triple patterns in a sequential manner. With the use 
of the Query Optimizer (QO), the SPARQL queries are optimized 
and processed. This task is accomplished before it goes to the next 
component called Query Processor (QP). The SPARQL Query Engine 
depicts the overall picture and model of the proposed approach. Each 
component workflow descriptions discussed as follows:

A. Query Parser
This is the first subcomponent of the Query Execution Engine. This 

subcomponent finds the input healthcare related SPARQL queries from 
users, abstracts subsequent resources for the consequent subcomponent 
named as Query Optimizer (QO) and produces a node list for the Query 
Processor (QP). In this work, we used only basic SPARQL queries with 
simple SELECT and WHERE clauses. The proposed approach also 
supports other clauses, such as ORDERBY, GROUP BY, and FILTER.

TABLE I. Comparison of Semantic Annotation Methods

Approaches/ 
Methods

Automatic 
Annotation 

(Yes/No)

Manual 
Annotation

(Yes/No)

Semi-
Automatic 
Annotation

(Yes/No)

Training 
data set

Application 
Specific 
Domain

Data Type 
based on

Model/Framework 
Technology used

SRSM and MTCRF 
[9] No Yes Yes No Internet Web documents Rule, CRFs

Chen et al., 
SSMIMCR [10] No Yes Yes No Internet Web documents Conceptual relationships

De Maio et al., 
FBASAM [11] Yes Yes Yes Yes Internet Web documents Relational concept analysis

Barnaghi et al., 
SM2SS [12] No Yes Yes Yes IoT Sensor 

networks Sensor streams model

Kolozali et al., 
KBA4IoTDS [13] No Yes Yes Yes IoT IoT data 

streams IoT data model

Wei and Barnaghi et 
al., SAM4SD [14] No Yes Yes No IoT sensor 

network
Sensor 

networks Sensors streams model

Chenyi et al., 
SOESAF [15] No Yes Yes No IoT IoT entity 

information
Entity semantic annotation 

framework

Bing, et al., 
SAM4IoTD [16] No Yes Yes No IoT Documents Rule

Ming et al., 
SAM4WSDL [17] No Yes Yes Yes IoT WSDL 

documents Rule, Machine learning

Charton et al., 
ASAM4NE [18] Yes Yes Yes No Internet Web documents Semantic similarity, linked 

data

Diallo et al., OBSAA 
[19] Yes Yes Yes Yes Biomedicine Biomedical 

Texts NLP, TF-IDF

Ahmed E. Khaled 
and Sumi Helal, 

ATLAS[22]
Yes Yes Yes No IoT Text Labelling Topic, REST

IHC-AA-IoTSD 
(Proposed) Yes Yes Yes Yes IoT Streaming 

sensor data

Hierarchical clustering, 
automatic annotations, 

SPARQL Queries
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Fig. 1 Architectural model of the proposed mechanism.

B. Query Optimizer
This is the second subcomponent and generates a Query Execution 

Plan (QEP) for the SPARQL query. The processing of queries is 
optimized by assessing the input query patterns in a meaningful 
way. The query triple patterns are arranged in a hierarchical manner 
for finding matching value result of a triple pattern function for the 
subsequent triple pattern in the query execution plan. 

C. Query Processor
In query processor subcomponent, the matching value results are 

found, verified with triple patterns and finally combined for answering 
the full query result. The validity of the triple patterns and input 
queries are arranged in a hierarchical and topological order. Then the 
intermediate mismatched patterns are reduced. Table II shows  all the 
symbols or notations used in this paper.

TABLE II. Symbols and its Descriptions

Symbol Description Symbol Description

sN starting Node cML common 
Matching List

Tp Triple pattern MV Matching Value

nextN next Node nextNML next  Node 
Matching List

QEP Query Execution 
Plan nextcN next common 

Node

TL Triple List tmpP temporary Plan

Ts Triple store subP sub Plan

TpL Triple pattern 
List nextT next Triple

GenTriple() Generate Triple cN common Node

The Algorithm 1 is used to translate the given label of information 
into a RDF label using TranslateLabel() function. The input is taken as 
n number of triples and correspondingly specify each type of label and 
the processing triple time t is measured. The annotated <label> of RDF 
data is the output.  Firstly, it collects the various types of data from IoT 
devices, to store the triples data starting from 1 to n as decision iterator. 

If the condition p (t, xc) ≤ 1 is satisfied then extract every row and label 
whichever is matched. At last, the list L has to be returned.

Algorithm 1: TranslateLabel () translates the given label into RDF label
Input: Number of triples denoted as n; type of each data item (type); t is 
the processing time.
Output: List out the annotated (<label>) from RDF.
1: First collect the various types of data generated from IoT sensors 
2:  for i: =1 to n     // i is the decision iterator
3.             if p (t, xc) ≤ 1 as per the Eq. 3
4.                  then extract every row and label
5.                   add the matched label
6.                   close the each completed label
7.                   List L: = add element
8.           end if
9.  end for
10. Finally, return the list L.

The Algorithm 2 is used to generate the given RDF label of 
information into triples using GenTriple() function. The input is taken 
as n number of triples value and correspondingly specify each type of 
label and subsequent time t is measured. The annotated <label> of RDF 
data is the output.  Firstly, it collects the various types of data from IoT 
devices, to store the triples data starting from 1 to n as decision iterator. 
If the condition label[i].isElement() = 1 is satisfied then it extracts each 
label and annotates it as a triple, then it allocates the unique id for the 
namely added resource whichever is matched. Finally, the list L with 
RDF triples is returned.

Algorithm 2: For the generation of triples GenTriple() from a given 
RDF label

Input: Number of triples named as n; value measured; type of each data 
item (type); t is the measured time.
Output: List out the annotated (<label>) from RDF.
1. First, expand each label
2.  for i: = 1 to n do   // i is the decision iterator
3.             if label[i].isElement() = 1  // return 1 when the current label 
is matched element
4.                        extract every label and annotate it as triple
5.                        then allocate the unique id for namely added resource
6.                        List T: = add triples
7.                        close the completed triple list
8.             end if
9.  end for
10.   return list L

Algorithm 3: IoT sensor data into annotated RDF data transformation
Input: Dataset to annotate; type of each data item (type)
Output: The annotated (<label>) is transformed into a reduced triple 
format from source data.
1: First, collect the various types of data generated from IoT sensor S
2: Repeat this collection process up to the end of the last triple
3:        Then annotate the List L: GenTriple(TranslateLabel())
4:        There after extract every label and annotate it as triple 
5:        Allocate the unique id for newly added resource
6: End process loop
7: Return list L



- 60 -

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 6, Nº 2

In Algorithm 3, the IoT sensor data into annotated RDF data 
transformation is shown. The input is taken as a dataset to annotate and 
specifies each data item type. The annotated (<label>) is transformed 
into a reduced triple format from source data. Firstly, it collects various 
type of sensor data. It repeats this process until the last triple item is 
matched. Then it annotates the List L: GenTriple (TranslateLabel()). 
Thereafter it extracts every label and annotates it as a triple. It allocates 
the unique id for the newly added resource.

D. Incremental Hierarchical Clustering driven Automatic 
Annotation Process

The agents will play a key role to place the classification of data 
in time basis by using the matching mechanism for grouping each 
instance resources occurrence. 

The matching objects are denoted as m of the RDF data and current 
capture objects as C. the matching m ϵ RDF instances as shown in Eq. 3.1 
and current capture C as shown in Eq. 3.2, at tn ϵ time interval. Xm and Xcc 
form the instances ( ) with the corresponding 
time interval range t1 ≤  t2 ≤ t3 ……≤tn, for each individual i.

 (3.1)

 (3.2)

Here j starts from 1 to n. 
For pattern recognition of data, let us take a resource r that should 

be any category of data d. The scoring function Sd is used to calculate 
the matching pattern data d at a particular time T. The individual match 
value is x at time period t < T and is defined using Eq. (3.3).

 (3.3)

In order to generate the hierarchical clustering driven tree of the 
IoT streaming data, the problem is formulated as follows: the input of 
the sensor raw data is classified with agents and represented as data 
streams DS = {ds1, ds2, ds3,….., dsn} in the D dimensional space, the pre-
notified meta data as the k dimensions {x1,…., xk}, the pre-clustered 
streaming data values as {xk+1,…., xl}, and to measure the cluster 
distance among the data patterns as dist(cl1, cl2). At starting, each 
classified data is assigned to its own cluster. Each data pattern in DS 
and the cluster cli = {dsi}, CL = {cl1,…..,cln} are selected for measuring 
the minimum distance between data object. Then the merge operation 
is performed until the none of the cluster can be left blank or empty. 

 while CL.size > 1 do
  if (clmin1, clmin2) = min dist (cli , clj) then
   for all (cli , clj) in cluster CL
   Remove clmin1, clmin2 from cluster CL
   Add {clmin1, clmin2} to cluster CL
  end if
 end while
The dist (cl1, cl2) is measured as, for example  

cl1 = {ds11, ds12, ds13, ….., ds1n} and cl2 = {ds21, ds22, ds23, ….., ds2n}, 
then . Whereas  dist (ds1i , ds2j) 
may be calculated using any of the mahalanobis distance, Euclidean 
distance, or Minkowski distance function in the D dimensional space.  
The same procedure is performed until the semantic annotations are 
extracted from the hierarchical tree by cutting into horizontally or 
vertically and adding the data streams in incremental manner.

The following list of steps are required to design an incremental 
hierarchical clustering driven automatic annotations for unifying IoT 
streaming data.

The input data streams DS = {ds1, ds2, ds3, ….., dsn} are obtained 
from the IoT sensor data repositories in the D dimensional space.

The incremental hierarchical clustering based nearest neighbor 
chain is used for clustering streaming data.

It starts with any node S in the hierarchical tree, elaborates it until 
a RNN (Reciprocal Nearest Neighbor) pair of data samples, and then 
agglomerates these data samples.

 Continue the same process with the hierarchical tree of the 
previously annotated objects using RNN.

The RNN of object p and q, where object q must satisfy the 
condition 

Thereafter, the clustering distance dist(p, q) using the Euclidean 
similarity distance measuring function is measured.

The establishment of the linkage or distance between clusters of 
the hierarchical tree is done using wards method

 where  is the center of the cluster e 
and ne is the number of data samples involved in it.

Finally, the semantic representations between the clustered 
hierarchical trees are annotated with SPARQL queries.

In the Resource Description Framework (RDF), the data is 
generally warehoused as a combination of statements in triples format 
as {Subject Sb, Predicate Pr, Object Obj}, which is similar to an entity 
representation in DBMS as {entity e, property p, value v}. Subjects 
and predicates stored in triples are URIs when objects can be either 
Uniform Resource Identifiers (URIs) or literal values. SPARQL is a 
Simple Protocol and RDF Query Language is used for retrieving data 
stored in RDF repositories. Its syntax is similar to SQL; thus it contains 
two main clauses, e.g., SELECT and WHERE. The SELECT clause 
identifies the statements as triples that will appear in the query results. 
The WHERE clause provides the basic graph pattern to match against 
the data graph. We consider four disjoint sets Var (variables), Uri 
(URIs), Blnk (blank nodes) and Ltr (literals).

Almost every SPARQL query contains a set of triple patterns called 
a basic graph pattern. A basic graph pattern, BGP, is a finite set of triple 
patterns {tp1, tp2, tp3.…,tpn}, in which each tp is a triple as shown in 
Eq. (3.4).

 (3.4)

The sequence of the patterns is framed with different combinations 
of the triples as shown in Eq. (3.5)

 (3.5)

The Query Execution Plan (QEP) is measured based on the 
sequence of patterns generated by triples (tp1, tp2, tp3, ... tpn) as long 
as the long sequence patterns are generated. Such that there is at least 
one common medium of sequence patterns among tp1 and tpi+1 from 
(Subject as S, Object as O, and Predicate as P) being selected, and it 
follows any one of the patterns as shown in Eq. (3.6-3.8).

 (3.6)

 (3.7)

 (3.8)

Here S(tp), P(tp), and O(tp) are the Subject, Predicate, and Object 
respectively. If anyone of the triple patterns is satisfied with the 
required query then the query execution plan is assigned to the Query 
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Optimizer (QO) subcomponent.
In order to develop the query execution plan, the query in 

Algorithm 4 is processed and stored in the triple store (ts). The 
loaded query is mapped with each triple pattern to subsequent 
nodes. Sometimes, it refers to other triple patterns that are matched 
with the stored triple values i.e. (node, [adjacent_TL]). The subject, 
predicate, and object manner are matched by applying the SPARQL 
query; finally, the corresponding RDF graph is generated. In 
Algorithm 4, the query execution plan is shown. The motivation 
behind this query execution plan is engaging the ordered triple 
patterns to indexed RDF data and improved version of ordered 
triple patterns to process the queries in an efficient manner. After 
generating an ordered triple pattern list for the execution plan, the 
residual sequential triple patterns that are in the triple list are not 
attached to the current execution plan. The Tp is considered as the 
triple pattern in QEP. The nextN <= get_nextN (Tp, sN) is placed 
subject as first node and object as the second node and vice versa 
generated. The subP is the sub plan used for storing the remaining 
triple pattern part for QEP. The appended data triple pattern is a 
subset of adjacent triple list and TpL is the not visited list then 
create an intermediator plan for annotating current pattern objects. 
Such that, consider this one as the current query evaluation plan 
for executing queries. Finally, the next triple and triple pattern are 
merged with adjacent triple list, evaluated with QEP.

Algorithm 4: GET_ Query_Execution_PLAN (sN, Tp)
Input: sN - starting Node; tp- triple pattern; ts- triple store (for storing 
every query generated triple).
Output: QEP, - generates longest triple patterns in RDF format
1:  QEP <=   Tp    // triple pattern is considered in QEP
2:  nextN<= get_nextN (Tp, sN)   
// if N is the Node and it is in subject place, nextN is its object. 
     // if N is the Node and it is in object place,   nextN is its subject
3: adjacentTL<= getTL (Ts, nextN)   // TL- Triple List; Ts- Triple store
4: subP<= Ø // load the remaining triple pattern part for QEP; subP- 
sub Plan
5: for each data triple pattern TpL € adjacentTL do      // TpL- Triple 
pattern List
6:               if (TpL ≠ visited node) then
7:                           tmpP   <= GET_Query_PLAN (nextN, TpL)
8:                           if len (subP)< len (tmpP)then
9:                           subP <=tmpP
10:                         nextT<= TpL
11:                        end
12:             end
13:  end
14: QEP<= adjacentTL \ {nextT, Tp} // nextT is included in subP
15: QEP<=subP
16: return QEP

The following are the list of steps required to execute the query 
plan.
1. Firstly, go to the file menu, in that select new triple store- 

appropriate path name that has been given for storing work in the 
triple store.

2. Once the path is identified by triple store, a maximum number of 
estimated triples are selected. (E.g. 100000).

3. Then load the triples of any format (E.g. N-triples, RDF/XML, 
N-Quads).

4. Go to the Query view in View menu bar. The required query is 
applied for annotating the data in RDF format.

5. Then run the SPARQL query, it shows the result as ?s ?p ?o in 
tabular form.

6. Finally, click on the create visual graph icon, then it generates 
the annotated RDF graph. Make changes on the graph as per the 
neediness of the user.
In the Query Execution Plan (QEP), the subject, predicate, and 

object are placed in triple patterns format. Therefore, at any point, 
only the vertices and edges can be placed. The time complexity for 
generating the query execution plan is O(|S|).|P|). Here, |S| is the 
number of Subjects placed in the healthcare dataset, and |P| is the 
number of Predicates placed in the healthcare dataset. Therefore, the 
proposed algorithm 4 and algorithm 5 take total computational time  
O(|S|) + |P|) as the time complexity, because this work uses every 
Subject and Predicate or node only once.

IV. Experimental Methodolgy

In this section, the proposed mechanism is described with 
automatic annotations for unifying the IoT streaming data. In addition, 
the implementation results of the proposed mechanism with SPARQL 
queries processing is discussed.

A. Adding Semantic Annotations to the IoT Streaming Data 
In this proposed research work, to achieve semantic annotations, 

the query processing mechanism and triple patterns are used. The 
authors have analyzed and tested on three different healthcare datasets 
using incremental hierarchical clustering driven automatic annotations 
based on IoT streaming data.

B. Query Processing
In this section, the queries are processed and executed based on the 

query execution plan so Algorithm 4 is used. To perform that operation 
we need to observe the correct triple patterns from the triple store or 
find the invalid annotation results. The following common steps used 
in Algorithm 5 using a triple store are followed:
1. Firstly, the input cN is considered as the common node or node 

pattern to retrieve the subsequent triple pattern (tp) from query 
execution plan and generate the annotation results from triple store 
to the common node cN.

2. The matching common node cN is attached to the common 
matching list cML.

3. For each common annotated data is resulted to merge the annotator 
list of final matching list.

4. Then, each matching value is a subset of the final matching list and 
contains the annotated attributes for matching value identification.

5. The next value is placed on the basis to get the next node and add 
the mapping value to the triple store.

6. If any node is mapped with the next node then the mapping 
annotations consisting of next node, matching value, and next 
node matching list are added. If any node is not matched with the 
next node then all corresponding matching values and associated 
annotations are removed.

7. This entire process is repeated until the all-existing triples are 
reached and mapping of the common node cN exists that was taken 
from triple pattern tp.
The SPARQL queries are processed for annotating the matching 

healthcare data and its associated values. However, the queries are 
different triple patterns (tp1, tp2, ...., tpn) and the matching subject of 
any common node is retrieved as well as its corresponding predicates.
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Algorithm 5: GET_ PROCESS_TRIPLE_PATTERN (cN)
Input: cN is the common Node (node pattern).
Data: QEP- Query Execution Plan for processing triple patterns using 
SPARQL queries. Tp- Triple pattern; 
Ts- Triple store (for storing every intermediate generated data). Ant- 
annotation
Output: SPARQL query and RDF triple data mapping
1: Tp<= QEP.getNext ()    // next triple pattern is considered in QEP 
and is placed
2: cML <=M (cN)                // common node match list placed
3: for each ant € getAnnotatorList (cML) do
4:               for each MV € cML.getMV (ant) do
5:                             nextN <=get_nextN (Tp, cN)
6:                             nextNML <=findMatches (nextN, MV)
7:                        if any node is mapping with nextN then
8:                                M. addMap (nextN, MV, nextNML)    // now MV is  
                                   the annotator of nextN
9:                         else
10:                            remove (MV)      // remove the matching values and   
                                 associated annotators
11:                       end
12:                  end
13: end
14: if any node is matched with result of Tp then
15:                   nextcN<=findNextcN (Tp)
16:                   PROCESS_TRIPLE_PATTERN (ncN)
17: end

Fig.2. SPARQL Query.

The Fig. 2 is a sample SPARQL query for annotation of triples 
such as subject, predicate, and object manner. The SPARQL queries 
are widely used for annotating the RDF data for machine-readable and 
semantically describable data. There is another option in SPARQL 
queries to extract the full dataset attribute information with a limit basis 
like 10k, 20k, 30k, 100k, and so on triples.

V. Performance Evaluation

This section employs the experimental datasets used for the 
proposed IHC-AA-IoTSD mechanism. In addition, the performance 
evaluation metrics are discussed for evaluating the performance of the 
IHC-AA-IoTSD in detail. In the final analysis, the time complexity of 
the proposed algorithms are measured.

A. Data Setup
For evaluation of the proposed mechanism IHC-AA-IoTSD, three 

different kinds of healthcare datasets, namely Heart diseases, Heart 
attack, and Diabetes are taken. These are openly available datasets 
from the UCI Machine learning repository. Table III shows the dataset 
details including names of datasets, the number of triples in the 
datasets, and downloadable resources information.

TABLE III. Dataset Details

S.No Dataset 
Name

No. of 
Triples Source

1 Heart diseases 212154 https://archive.ics.uci.edu/ml/datasets/
heart+Disease

2 Heart Attack 112896 https://www.kaggle.com/
imnikhilanand/heart-attack-prediction

3 Diabetes 142547 https://archive.ics.uci.edu/ml/datasets/
diabetes

B. Experimental Environment
To evaluate the performance proposed mechanism, a conventional 

and regular laptop was used with the configuration of Windows 10 
Home 64-bit, 8 GB RAM, 1 TB HDD, 2 cores, 2.2 GHz CPU clock 
speed, and Intel® Core™ i7-8th Gen-8750H CPU type. The Gruff tool 
with Java 1.8.0 platform was used to experiment the healthcare data. 
The Tableau and Allegro Graph tools support to visualize the data in 
a good manner for users. The SPARQL query language was used for 
annotating the healthcare data to communicate patient and doctors in 
a meaningful way.

C. Performance Metrics
To evaluate the performance of the proposed framework, the 

following metrics are considered for measuring the framework. These 
metrics are generated from the confusion matrix as shown in Table. IV.

TABLE. IV. Confusion Matrix

Predicted as “YES” Predicted as “NO”

Actually as 
“YES”

True Positive False Negative

Actually as 
“NO”

False Positive True Negative

• True Positive Clant → Clant: This is an assessment of correctly 
clustered annotations considered correctly as clustered annotations.

• True Negative NClant → NClant: This is an assessment of non-clustered 
annotations considered correctly as non-clustered annotations. 

 (4.1)

• False Positive NClant → Clant: This is an assessment of non-clustered 
annotations considered incorrectly as clustered annotations.

• False Negative Clant → NClant: This is an assessment of clustered 
annotations considered incorrectly as non-clustered annotations. 

1. True Positive Rate (TPR)
TPR states the sensitivity value and measures correctly clustered 

annotations from the dataset as shown Eq. (4.1). Eq. (4.2) corresponds 
to the true negative rate (TNR).  

 (4.2)

2. False Positive Rate (FPR)
FPR measures the significance level, which scales the proportion of 

non-clustered annotations that are interpreted as clustered annotations 
in the automatic annotation process, and generated as input dataset 
sequence as shown Eq. (4.3).

 (4.3)



- 63 -

Regular Issue

3. False Negative Rate (FNR)
FNR scales the proportion of clustered annotations that are 

interpreted as non-clustered annotations in the clustered data annotation 
process as shown Eq. (4.4).

 (4.4)

4. Accuracy
Accuracy is the first step towards performance measure where 

it defines the ratio between the total counts of correct clustered 
annotations made to a total count of clustered annotations made as 
shown Eq. (4.5).

 (4.5)

5. Precision, Recall & F-measure
Precision discourses about the exactness of the clustered data, and 

the Recall voices about completeness of the data. The Precision and 
Recall discuss more about the detected accuracy of the data, and the 
accuracy should not deal much about false results. The F-measure is 
the mean of precision and recall. The equations depicted from (4.6) to 
(4.8) is Precision, Recall, and F-measure respectively.

 (4.6)

 (4.7)

 (4.8)

These ML metrics are used on the proposed mechanism for 
improving cluster efficiency and unifying the IoT streaming data. 

D. Experimental Results and Discussions
This experiment is conducted under the stimulus of three healthcare 

datasets namely- Heart Diseases, Heart Attack, and Diabetes by 
applying various triple sizes with 10k, 20k, 30k, 40k, 50k, and 100k 
respectively. Annotating the objects of streaming data, six SPARQL 

queries are used to evaluate the proposed IHC-AA-IoTSD mechanism 
as represented in Fig.3 to Fig.10.

Fig. 3. SPARQL Query 1.

The SPARQL query 1 shown in Fig. 3, queries for the drug types 
and values annotated with hierarchical clustered data. The SPARQL 
query 2 shown in Fig. 4 is used to extract unique heart attack attributes 
and their values from heart attack dataset.

Fig. 4. SPARQL Query 2.

The role of SPARQL queries is highly enrich to all attributes for 
annotation. In addition, the queries are effectively annotated various 
attributes in lower execution time.

Fig. 5. SPARQL Query 3.

The SPARQL query 3 is as shown in Fig. 5 and its resultant RDF 
graph as shown in Fig. 7.  The hierarchical tree based predicates are 
annotated over the various triple data objects.

Fig. 6. SPARQL Query 4.

Fig. 7. Annotated heart attack diagnostic measurement values in a hierarchical tree.
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The SPARQL query 4 as shown in Fig. 6. The Fig. 8 shows the 
resulted output of query 4. Moreover, the diabetes data set contains 
of predicates as row id, value, and number of the deaths, etc. Using 
annotation process, the representation of the year wise death rates have 
been enriched as well as extracted.

Fig. 9. SPARQL Query 5.

The SPARQL query 5 shown in Fig. 9 has been performed on heart 
diseases dataset for annotating the healthcare records by means of 
subject, predicate, and object manner. It indicates that the annotations 
performed on the whole dataset with accurate annotations. The 
SPARQL query 6 shown in Fig. 10 is widely used for annotating the 
heart diseases data on value and predicate basis annotations. In this, 
the corresponding predicate as the number of national payments on 
year wise, payment for heart diseases, measure id, measure name, 
measure start date, measure end date, type and corresponding values 
are annotated. The SPARQL query 5 and query 6 are used in this paper 
to annotate the healthcare data by varying triple data size up to 100k 
triples. These results have not been presented because these annotations 
make the things complex and not visible to the users.

Fig. 10. SPARQL query 6.

However, the results of SPARQL query 1 to query 6 clearly 
indicate that automatic annotations are more concisely preferable than 
the manual and semi-automatic annotations. Because in automatic 
semantic annotations, the trained and classified data are labelled using 

an automated annotation system. The average execution time of the 
various queries are measured, and it achieves the lowest compared with 
ATLAS [22], FBASAM [11], and OBSAA [19] approaches.

The first experimental investigation of IHC-AA-IoTSD is validated 
through TPR by applying various triples with respect to a stable FPR 
10, 20, 30 and 40%  over the benchmark mechanisms such as ATLAS, 
FBASAM, and OBSAA is observed in Figs. 11, 12, and 13 respectively. 

Fig.11 (a-d) shows the leading TPR value on Heart Diseases 
dataset of proposed IHC-AA-IoTSD over ATLAS, FBASAM, and 
OBSAA with respect to the stable FPR of 10%, 20%, 30%, and 40% 
respectively. Fig. 11 (a) result proves that IHC-AA-IoTSD is capable to 
preserve the TPR around 0.95 at dynamically allocated triples and this 
TPR value infers 12% success rate than the benchmark mechanisms 
ATLAS, FBASAM, and OBSAA respectively under 10% FPR. Fig. 11 
(b) shows the dominant TPR value of IHC-AA-IoTSD over ATLAS, 
FBASAM, and OBSAA respectively under 20% FPR and is capable 
to maintain its TPR value around 0.92 at dynamically allocated triples 
even the FPR is increased. In addition, the proposed IHC-AA-IoTSD 
proves a greater TPR around 13% than the benchmark mechanisms 
ATLAS, FBASAM, and OBSAA respectively. Likewise, Fig. 11 (c) 
represent the TPR value of IHC-AA-IoTSD over ATLAS, FBASAM, 
and OBSAA under 30% FPR and is capable to withstand its TPR value 
around 0.9 at various dynamically allocated triples and proves a greater 
TPR around 11% than the benchmark mechanisms ATLAS, FBASAM, 
and OBSAA respectively.  Similarly, Fig. 11 (d) represent the TPR 
value of IHC-AA-IoTSD over ATLAS, FBASAM, and OBSAA 
respectively under 40% FPR. Besides, proposed IHC-AA-IoTSD 
is achieved a marginable TPR around 0.88 at dynamically allocated 
triples and proves this TPR value infers 8% higher accurate than the 
benchmark mechanisms ATLAS, FBASAM, and OBSAA respectively.

Fig.12 (a-d) shows the dominant TPR value on Heart Attack 
dataset of proposed IHC-AA-IoTSD over ATLAS, FBASAM, and 
OBSAA with respect to the stable FPR of 10%, 20%, 30%, and 40% 
respectively. Fig. 12 (a) result proves that IHC-AA-IoTSD is capable 
to preserve the TPR around 0.92 at dynamically allocated triples 
and this TPR value infers 12% success rate than the benchmark 

Fig. 8. Annotated diabetes diagnostic measurement values.
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Fig. 11. True Positive Rate (TPR) on Heart Diseases dataset by varying triple size (a) false positive rate =10%, (b) false positive rate =20%, (c) false positive 
rate =30%, (d) false positive rate =40%.
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Fig. 12. True Positive Rate (TPR) on Heart Attack dataset by varying triple size (a) false positive rate =10%, (b) false positive rate =20%, (c) false positive rate 
=30%, (d) false positive rate =40%.
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mechanisms ATLAS, FBASAM, and OBSAA respectively under 10% 
FPR. Fig. 12 (b) shows the dominant TPR value of IHC-AA-IoTSD 
over ATLAS, FBASAM, and OBSAA respectively under 20% FPR 
and is capable to maintain its TPR value around 0.9 at dynamically 
allocated triples even the FPR is increased. In addition, the proposed 
IHC-AA-IoTSD proves a greater TPR around 13% than the benchmark 
mechanisms ATLAS, FBASAM, and OBSAA respectively. Likewise, 
Fig. 12 (c) represent the TPR value of IHC-AA-IoTSD over ATLAS, 
FBASAM, and OBSAA under 30% FPR and is capable to withstand 
its TPR value around 0.88 at various dynamically allocated triples and 
proves a greater TPR around 11% than the benchmark mechanisms 
ATLAS, FBASAM, and OBSAA respectively.  Similarly, Fig. 12 (d) 
represent the TPR value of IHC-AA-IoTSD over ATLAS, FBASAM, 
and OBSAA respectively under 40% FPR. Besides, proposed IHC-
AA-IoTSD is achieved a marginable TPR around 0.86 at dynamically 
allocated triples and proves this TPR value infers 7% higher accurate 
than the benchmark mechanisms ATLAS, FBASAM, and OBSAA 
respectively.

Fig.13 (a-d) shows the dominant TPR value on Heart Diseases 
dataset of proposed IHC-AA-IoTSD over ATLAS, FBASAM, and 
OBSAA with respect to the stable FPR of 10%, 20%, 30%, and 40% 
respectively. Fig. 13 (a) result proves that IHC-AA-IoTSD is capable to 
preserve the TPR around 0.94 at dynamically allocated triples and this 
TPR value infers 13% success rate than the benchmark mechanisms 
ATLAS, FBASAM, and OBSAA respectively under 10% FPR. Fig. 13 
(b) shows the dominant TPR value of IHC-AA-IoTSD over ATLAS, 
FBASAM, and OBSAA respectively under 20% FPR and is capable 
to maintain its TPR value around 0.92 at dynamically allocated triples 
even the FPR is increased. In addition, the proposed IHC-AA-IoTSD 
proves a greater TPR around 12% than the benchmark mechanisms 
ATLAS, FBASAM, and OBSAA respectively. Likewise, Fig. 13 (c) 

represent the TPR value of IHC-AA-IoTSD over ATLAS, FBASAM, 
and OBSAA under 30% FPR and is capable to withstand its TPR value 
around 0.9 at various dynamically allocated triples and proves a greater 
TPR around 11% than the benchmark mechanisms ATLAS, FBASAM, 
and OBSAA respectively.  Similarly, Fig. 13 (d) represent the TPR 
value of IHC-AA-IoTSD over ATLAS, FBASAM, and OBSAA 
respectively under 40% FPR. Besides, proposed IHC-AA-IoTSD 
is achieved a marginable TPR around 0.87 at dynamically allocated 
triples and proves this TPR value infers 9% higher accurate than the 
benchmark mechanisms ATLAS, FBASAM, and OBSAA respectively.

In the second experimental investigation of IHC-AA-IoTSD 
validated through the detection accuracy, TNR, FNR, TPR, Precision, 
and FPR over the benchmark mechanisms such as ATLAS, FBASAM, 
and OBSAA techniques respectively.

Fig. 14 (a) represents the average detection accuracy of IHC-
AA-IoTSD on three healthcare datasets with various triple sizes. The 
results confirm that IHC-AA-IoTSD is capable to accomplish superior 
detection accuracy in heart dataset from the UCI data repository, and it 
acquired detection accuracy of 9–94% from 10k triples to 100k triples 
respectively. Nevertheless, ATLAS facilitates a detection accuracy 
of 7–90% from 10k triples to 100k triples respectively, FBASAM 
achieves a detection accuracy of 5–81% from 10k triples to 100k triples 
respectively and OBSAA ensures a detection rate of 2–75% from 10k 
triples to 100k triples respectively. Performing tests on heart attack 
dataset from the kaggle data repository, it got a detection accuracy of 
11–97% from 10k triples to 100k triples respectively. Nevertheless, 
ATLAS facilitates a detection accuracy of 9–93% from 10k triples to 
100k triples respectively, FBASAM achieves a detection accuracy of 
7–89% from 10k triples to 100k triples respectively and OBSAA ensures 
a detection rate of 4–84% from 10k triples to 100k triples respectively. 
Performing tests on diabetes dataset from the UCI data repository, it 
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Fig. 13. True Positive Rate (TPR) on Diabetes dataset by varying triple size (a) false positive rate =10%, (b) false positive rate =20%, (c) false positive rate 
=30%, (d) false positive rate =40%.
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got a detection accuracy of 10–96% from 10k triples to 100k triples 
respectively. Nevertheless, ATLAS facilitates a detection accuracy 
of 7–90% from 10k triples to 100k triples respectively, FBASAM 
achieves a detection accuracy of 5–84% from 10k triples to 100k triples 
respectively and OBSAA ensures a detection rate of 3–80% from 10k 
triples to 100k triples respectively.  On an average IHC-AA-IoTSD 
got the 4% detection accuracy increases from ATLAS mechanism at 
10k triples whereas at 100k triples got the same improvement. After 
combining the three healthcare dataset results with increased detection 

accuracy, the results indicating that 2%, 4%, and 7% decrease than 
the ATLAS, FBASAM, and OBSAA techniques respectively. This 
effectiveness of IHC-AA-IoTSD by means of detection accuracy 
is primarily payable to the enhanced process of multi-agent based 
semantic annotation used for classifying and testing. This detection 
accuracy is also because of the agent-based automatic semantic process 
stimulated in the IHC-AA-IoTSD annotation mechanism.

Fig.14 (b) shows the TNR value of IHC-AA-IoTSD under varying 
triple data size and the result endorses that it is effective in enlightening 
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Fig. 14. (a) Detection Accuracy of IHC-AA-IoTSD under various triple sizes, (b) True Negative Rate of IHC-AA-IoTSD under various triple sizes (c) False 
Negative Rate of IHC-AA-IoTSD under various triple sizes (d) True Positive Rate of IHC-AA-IoTSD under various triple sizes (e) Precision Rate of IHC-AA-
IoTSD under various triple sizes (f) False Positive Rate of IHC-AA-IoTSD under various triple sizes.
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the TNR value by 15-23% differing to ATLAS, FBASAM, and OBSAA, 
which enable an improvement of 2%, 5%, and 10% from 10k triples to 
100k triples. The results about the enhancement of TNR value prove 
that the IHC-AA-IoTSD performs better because of the patient and 
doctor annotating the healthcare data enabled in the detection process.

Fig.14 (c) depicts the reduced FNR of IHC-AA-IoTSD under 
changing triple rate and ensures that, it can minimize the FNR of 
about 16–30%, which is hardly 8% decrease at 10k triple size and 12% 
decrease at 100k triple size than ATLAS framework testing on heart 
diseases dataset. Testing on heart attack dataset, it can minimize the 
false negative rate of about 17–29%, which is nearly 8% decrease at 10k 
triple size and 8% decrease at 100k triple size than ATLAS framework. 
Similarly, by testing on diabetes dataset, it can minimize the false 
negative rate of about 18–29%, which is nearly 8% decrease at 10k 
triple size and 12% decrease at 100k triple size than ATLAS approach. 
The results depict that, the decrease in false positive rate at 10k triple 
size is nearly 8, 14, and 16% testing on Heart diseases dataset, nearly 
8, 12, and 22% testing on Heart Attack dataset, and nearly 6, 14, 22% 
testing on Diabetes dataset than the ATLAS, FBASAM, and OBSAA 
techniques respectively. After combining the three healthcare dataset 
results with reduced False Negative Rate (FNR), the results indicate a 
7%, 13%, and 18% decrease compared to the ATLAS, FBASAM, and 
OBSAA techniques respectively.

Fig. 14 (d) represents the TPR value of IHC-AA-IoTSD under 
changing triple rate and the result evidences its capacity of enhancing 
the TNR value by 34–23%, which is nearly 5, 9 and 11% higher than 
the TNR obtained by ATLAS, FBASAM, and OBSAA tested on three 

healthcare datasets at 10k triples. The results are considered on an 
average and it achieves the 5, 9, and 11% more than the TPR value 
achieved by ATLAS, FBASAM, and OBSAA. The importance of 
IHC-AA-IoTSD is based on agent preprocessing mechanism used for 
annotating the triple data and SPARQL queries that could be optimally 
applicable for healthcare data annotations.

Fig. 14 (e) represents the Precision rate of IHC-AA-IoTSD under 
varying data triple sizes at 10k, 20k, 30k, 40k, 50k, and 100k on 3 
different datasets. The result evidences by enhancing the Precision 
value around 5–21%, which is nearly 5, 10 and 17% higher than 
the Precision rate simplified by ATLAS, FBASAM, and OBSAA 
testing on Heart Diseases dataset using 10k triples. Similarly, nearly 
6, 10 and 15% higher than the Precision rate simplified by ATLAS, 
FBASAM, and OBSAA testing on Heart Attack dataset at 10k triples, 
and nearly 7, 12 and 21% higher than the Precision rate obtained by 
ATLAS, FBASAM, and OBSAA testing on Diabetes dataset using 
10k triples. After combining the three healthcare dataset results with 
increased Precision rate, the results indicate that around 6%, 11%, and 
17% increase than the ATLAS, FBASAM, and OBSAA techniques 
respectively.

Fig.14 (f) depicts the reduced FPR of IHC-AA-IoTSD under 
varying data triples and ensures that, it can minimize the FPR around 
6–24%, which is nearly 3% decrease at 10k triple size and 6% decrease 
at 100k triple size compared to the ATLAS framework, testing on heart 
diseases dataset. Testing on heart attack dataset, it can reduces the 
FNR about 8–29%, which is nearly 5% decrease at 10k triple size and 
8% decrease at 100k triple size compared to the ATLAS framework. 
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Fig.15. Average Execution Time (ms) by various queries (a) at 10k triples (b) at 20k triples (c) at 30k triples (d) at 50k triples
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Similarly, by testing on diabetes dataset, it can minimize the false 
negative rate of about 5–25%, which is nearly 7% decrease at 10k triple 
size and 11% decrease at 100k triple size than ATLAS approach. The 
results depict that, the decrease in false positive rate at 10k triple size is 
nearly 3%, 6%, and 10% testing on Heart diseases dataset, nearly 5%, 
8%, and 14% testing on Heart Attack dataset, and nearly 7%, 11%, and 
16% testing on Diabetes dataset compared to the ATLAS, FBASAM, 
and OBSAA techniques respectively. After combining the three 
healthcare dataset results with reduced False Positive Rate (FPR), the 
results indicate 5%, 8%, and 13% decrease compared to the ATLAS, 
FBASAM, and OBSAA techniques, respectively.

In the third experimental investigation of IHC-AA-IoTSD 
validated through the Average Execution Time of various queries over 
the benchmark mechanisms such as ATLAS, FBASAM, and OBSAA 
techniques respectively.

Fig. 15 (a-d) shows measured average execution time by various 
queries from Q1 to Q6 at 10k triples, 20k triples, 30k triples, and 50k 
triples, respectively. The result proves that IHC-AA-IoTSD is able 
to maintain the Average Execution Time of 27 ms at various queries 
and this Average Execution Time infers 12% success rate higher 
than ATLAS, FBASAM, and OBSAA. Figs. 15 (a-d) highlights the 
predominance Average Execution Time of IHC-AA-IoTSD over 
ATLAS, FBASAM, and OBSAA under the 10k triples, 20k triples, 
30k triples, and 50k triples respectively. The result confirms that IHC-
AA-IoTSD is able to endure its Average Execution Time of 86 ms at 
various queries even when the triple size is increased. IHC-AA-IoTSD 
enables a superior Average Execution Time of 16% when compared to 
ATLAS, FBASAM, and OBSAA with all the queries.

E. Complexity Analysis
Moreover, the time complexity of IHC-AA-IoTSD scheme, which 

used algorithms from 1 to 3, is determined to be T(n) for algorithm 
perceived instances staring from j is 1 to n and i value between 1 to 9.  
The time complexity of algorithm 1 is calculated by T1(n), algorithm 
2 is by T2(n), and algorithm 3 is by T3(n). At last, these three times 
complexities will be combined to get the overall time complexity T(n). 
Let us see how to find the time complexity of T1(n), it is as follows in 
Eq. (5.1).

 (5.1)

Similarly, the time complexity is generated for algorithm 2 as 
follows in Eq. (5.2).

 (5.2)

Similarly, the time complexity is generated for algorithm 3 as 
follows in Eq. (5.3).

 (5.3)

Hence the total time complexity of IHC-AA-IoTSD is T(n)=θ(n3 

).

VI. Conclusion and Future Work

In the IoT streaming data era, the sensor devices are generating 
dynamic data continuously, which is heterogeneous. The IoT data 
also consists of the real-time streaming data. To perform analysis and 

annotating the streaming data is a current research problem faced by 
researchers. Therefore, in this paper, the authors proposed IHC-AA-
IoTSD mechanism for unifying the hierarchical clustered data using 
SPARQL queries. The experimental investigation of IHC-AA-IoTSD 
has been conducted on three popular healthcare datasets by varying 
triple data and measuring detection accuracy, precision, TPR, TNR, 
FPR, and FNR. In the first experimental investigation, the TPR 
value has been measured under the streaming of triples with stable 
FPR diverse with 10, 20, 30 and 40%, respectively. In the second 
experimental investigation, the average results have been taken for an 
account and proves that the IHC-AA-IoTSD outperforms compared to 
benchmark mechanisms such as ATLAS, FBASAM, and OBSAA. In 
the third experimental investigation, the query average execution time 
has been calculated by taking six different queries under 10k, 20k, 30k, 
and 50k triples. Considering that IoT streaming data is dynamic and 
heterogeneous, the proposed mechanism overwhelmed by efficiently 
annotating the hierarchical clustered data. Moreover, the proposed 
IHC-AA-IoTSD mechanism outperforms compared to the existing 
state of the art schemes. In future, the proposed mechanism can be 
optimized by considering the hash table (key, value pair) for storing 
SPARQL queries. In addition, artificial intelligent systems need quicker 
decisions on streaming data. In this scenario, the proposed mechanism 
may be useful and can achieve efficient results. Besides, it can be 
considered applying advanced deep learning techniques like Recurrent 
Neural Networks (RNN) and Convolutional Neural Networks (CNN), 
for annotating IoT sensor data with optimum results.
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