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Abstract

The technological world has grown by incorporating billions of small sensing

devices, collecting and sharing huge amounts of diversified data. As the number of

such devices grows, it becomes increasingly difficult to manage all these new data

sources. Currently there is no uniform way to represent, share, and understand

IoT data, leading to information silos that hinder the realization of complex

IoT/M2M scenarios. IoT/M2M scenarios will only achieve their full potential

when the devices work and learn together with minimal human intervention. In

this paper we discuss the limitations of current storage and analytical solutions,

point the advantages of semantic approaches for context organization and extend

our unsupervised model to learn word categories automatically. Our solution was

evaluated against Miller-Charles dataset and a IoT semantic dataset extracted

from a popular IoT platform, achieving a correlation of 0.63.
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1. Introduction

With the advent of the Internet of Things (IoT) [1], an increasing number of

devices has been equipped with sensing and processing capabilities. These allow

them to communicate with each other, and even with services on the Internet, to
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accomplish a given objective. A major component of this connectivity landscape

is machine-to-machine communications [2]. M2M generally refers to information

and communication technologies able to measure, deliver, digest and react upon

information autonomously, i.e. with none or minimal human interaction.

Context-awareness is an intrinsic property of IoT scenarios. The data gathered

by these devices has no value in its raw state, it must be analyzed, interpreted and

understood. As discussed in [3], an entity’s context can be used to provide added

value: improve efficiency, optimize resources and detect anomalies. Context-

awareness computing plays an important role in tackling this issue [4]. However,

recent projects follow a vertical approach [5, 6, 7], with devices/manufacturers

not sharing context information, or sharing it with a different structure, leading

to low interoperability and information silos respectively. This has hindered

interoperability and the realization of powerful IoT/M2M scenarios. Another

important issue is the need for a way to manage, store and process such di-

verse machine made context information, unconstrained and without limiting

structures.

Being able to gather data from multiple sources, analyse and understand the

data, and discover new patterns and relations will be fundamental to develop and

deploy complex IoT and M2M scenarios. Thus, in our view, the full potential

of IoT/M2M scenarios can only be achieved when we overcome the previous

limitations. However, the potential and definitions of context information [8, 9]

is so broad that any information related to an entity can be considered context

information. These definitions also do not provide any insight about the structure

of context information. Currently there is no uniform way to share/manage vast

amounts of IoT information. It is possible (but unlikely) that in the future a

context representation standard will be widely adopted.

In our approach we accept the diversity of context representation as a

consequence of economic pressures, and have developed concepts that excel in

these environments. In previous works we proposed a d-dimension organization

model [3] and semantic features specifically for IoT [10]. We extend our semantic

model to support multiple word categories and devised an unsupervised learning
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method to learn word categories automatically from public Web Services. Our

new model was tested against Miller-Charles dataset and a IoT semantic dataset

(extracted from a popular IoT platform) achieving a correlation of 0.64. Apart

from context-aware applications and IoT/M2M scenarios, several other areas

benefit from semantic based context organization. For example these methods

could provide a decisive contribution towards the exploration of name-based

information centric network architectures in IoT environments [11].

The remainder of this paper is organized as follows. In Section 2 we discuss

the limitations of conventional databases and analytical tools when dealing with

IoT information. The advantages of semantic features and similarity approaches

are detailed in Section 3. In Section 4 we present the most relevant methods for

estimating semantic similarity. We detail our semantic model and the devised

unsupervised learning method in Section 5. Section 6 contains implementation

details of our prototype. The results of our evaluation are in Section 7. Finally,

the discussion and conclusions are presented in Section 8.

2. Dealing with IoT data

In order to develop and deploy complex IoT/M2M scenarios we need to

address the issues regarding storing, analyzing and understanding IoT data.

However, correctly managing IoT data has become a difficult task to accomplish.

The volume and diversity of data puts a toll on conventional storage and

analytical tools, restricting and limiting the realization of complex IoT/M2M

scenarios. Due to the volume and lack of formal representation, IoT data can be

characterized as a combination of the unstructured data and Big Data paradigms.

These paradigms are inherently connected, and are one of the factors that led to

the advent of NoSQL databases [12, 13].

This insight highlights one of the limitations of current technology when

dealing with massive unstructured data. Relational databases rely on predefined

representations and a priori relations in order to correctly store and retrieve

information. That is rather difficult to accomplish when the data is mostly
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unstructured, as is the case of IoT data. NoSQL databases relax some constraints

and are good alternatives to several workloads and even small IoT scenarios.

However, they lack advanced query capabilities, restricting the discovery of

information and complex patterns [3].

The limitations are not purely technological. Even if we were able to store and

query all data gathered by IoT devices, we would still need methods to organize,

analyse and discover relevant relations between data sources and target functions.

Most analytical tools rely on a priori relations or on a human to analyse data.

Both approaches impose some latent knowledge to the underlying model, this

type of model is called top-down classification. Top-down classification limits

the dimension along which one can make distinctions, and local choices at the

leafs are constrained by global categorizations in the branches. It is therefore

inherently difficult to put things in their hierarchical places, and the categories

are often forced. For illustration lets us considers the following example. The

information gathered from an accelerometer inside a vehicle can be used by city

officials to detect potholes and other anomalies on the road. But can also be

used by policeman to detect dangerous manoeuvres and behaviours, a complete

orthogonal classification structure. These examples illustrate how difficult it can

be to define a priori relations in complex environments.

Some authors [14, 15, 16] point out that probabilistic models based on

bottom-up characterization produce better results than binary schemes based on

top-down classification. Based on this approach we have devised a bottom-up

model to organize context information without enforcing a specific representation.

Our organization model is divided into two main parts, as depicted in Figure 1.

The first part is composed by two components that represent the structured

part of our model and account for the source ID and fixed d-dimensions respec-

tively. These d-dimensions allow human users to select information based on

time, location or even other dimensions, and can be understood as an OLAP cube

helping in the process of filtering information. The second part represents ma-

chine learning features, that can be used to find similar or related sources of data.

Up until known we have worked on semantic [17] and stream features [18]. In
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Figure 1: Context organization model based on semantic and stream similarity.

this paper we focus on semantic features, specifically on extending our semantic

model to account for multiple word categories.

3. Semantic Features for IoT

Semantic distance/similarity is a property of lexical units, typically between

words but this notion can be generalized to larger units such as phrases, sentences,

etc. Two words are considered semantically close if there is a lexical semantic

relation between them. There are two types of lexical relations: classical relation

(such as synonyms, antonyms and hypernymy) and ad-hoc non-classical relation

(such as cause-and-effect). If the closeness in meaning is due to a certain classical

relation, then the terms are said to be semantically similar. On the other hand,

semantic relatedness is the term used to describe the more general form of

semantically closeness caused by any semantic relation. For instance the nouns

liquid and water are both semantically similar and related, whereas the nouns

water and boat are semantically related but not similar.

Semantic features allow us to estimate similarity between concepts (formal

discussion in Section 5). This similarity allow us to organize, extract and cluster

information based on concepts and not on sub-strings nor regular expressions. In

other words, the devices are able to autonomously learn concepts and not only

strings. These concepts provide latent knowledge to the underlying information
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and do not depend on human users or context representation. This is specially

important for IoT/M2M scenarios. IoT/M2M devices share a diverse amount

of data. We can classify the data into two different categories: semantically

rich and poor. In order to better understand these concepts let us consider the

following example. A sensor node in a greenhouse measures 6 variables: air

and soil temperature, air and soil humidity, CO2 and leaf wetness. The node

can periodically share the measurements individually or grouped in a single file.

Each document shared in the first option is semantically poor. Based on the

semantic value of its attributes it is quite difficult to associate the greenhouse

concept with each stream individually. By contrast, a single document with all

the attributes is closer to the greenhouse concept, and is semantically rich.

We can improve our IoT/M2M data organization based on this observation.

Through semantic methods [19, 20] it is possible to learn higher level concepts

from semantically rich documents. Moreover, these high level concepts can

be propagated to other data sources based on other features (e.g. stream

similarity [18]).

4. Background and Related Work

There are three major types of semantic measures: i) lexical-resource-based

measures that rely on manually created resources such as Wordnet, ii) cor-

pus-based measures that rely only on co-occurrence statistics from large corpora,

iii) hybrid measures that are distributional in nature, and also exploit information

from a lexical resource.

Lexical-resource-based measures rely on manually created and annotated

lexical resources, such as WordNet [21], to determine the distance between two

words. WordNet is a curated hierarchical network of nodes (taxonomy), where

each node represents a fine-grained concept or word-sense. An edge between two

nodes represents a lexical semantic relation such as hypernymy or troponymy.

WordNet interlinks not just word forms (strings of letters) but specific senses

of words. As a result, words that are found in proximity to one another in the
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network are semantically related. Several authors proposed semantic measures

based on WordNet [22, 23, 24].

Semantic measures can only be used in languages that have (a sufficiently

developed) WordNet. However, creating and maintaining lexical databases is a

tedious task that requires human interaction. Furthermore, updating a lexical

resource is expensive and there is usually a lag between the current state of

language usage/comprehension and the resource representing it. For example,

due to funding and staffing issues the WordNet project is no longer accepting

comments and suggestions1. Due to these limitations, several authors proposed

methods for large-scale acquisition of lexical knowledge, such as KnowNet [25]

and BabelNet [26]. KnowNet is an extensible, large and accurate knowledge base,

which as been derived by semantically disambiguating small portions of Topic

Signatures [27] acquired from the Web. BabelNet is a very large, wide-coverage

multilingual semantic network. It combines lexicographic and encyclopaedic

knowledge from WordNet and Wikipedia.

Besides these, several other methods exist to build large semantic networks.

However, they rely on some sort of structured information, most of them main-

tained by human users. For example, BabelNet relies on WordNet and Wikipedia,

while KnownNet relies on Topic Signatures. Although the information exchanged

in IoT/M2M scenarios is limited in vocabulary, usually consists of very special-

ized words associated with specific fields, topics and contexts. As a consequence,

the lexical resource may not contain the correct vocabulary or even the relevant

associations between the words.

Strictly corpus-based measures rely on the hypothesis that words with similar

contexts tend to be semantically close [28, 29]. The set of contexts of each

target word u is represented by its distributional profile, the set of words that

tend to co-occur with u within a certain distance, along with numeric scores

signifying this co-occurrence tendency with u. Measures such as cosine and

α-skew divergence [30] are used to determine how close two distributional profiles

1http://wordnet.princeton.edu/wordnet/

7



are. These methods are very appealing because they rely solely on raw text,

however they tend to perform poorly when compared with lexical-resource-based

measures.

These methods do not required a lexical-resource, but require a large corpus

with representative usages of the target words. Due to the poor vocabulary

present in M2M scenarios, the corpus made up from the information shared

by M2M devices is not suitable to learn distributional profiles. Our previous

solution [10] minimizes this issue using public web services to gather corpus. It

is important to mention that the primary objective of this work is to develop

semantic features and metrics that are suitable for IoT/M2M scenarios. Devices

in M2M networks may not have enough processing power or memory to analyse

large corpus of raw text. We are developing methods that extract reliable

distributional profiles with the least amount of raw text.

Another important issue is the sense-conflation problem. The distributional

profile of a target word u conflates information about potentially many senses

of u. Some authors [31] proposed hybrid measures that are distributional

in nature but also rely on lexical resources to exploit the manually encoded

information to overcome the sense-conflation problem. For example, they extract

distributional profiles for each sense of a word. They use categories from a

Roget-style thesaurus [32, 33, 34] as coarse sense or concepts. A Roget-style

thesaurus classifies all word types into approximately 1000 categories. Words

with more than one sense are listed in more than one category. Each category has

a head word that best represents the meaning of all the words in that category.

The distance between words u and v is the closest distance between all their

possible senses. Hybrid methods require a lexical resource, as such these methods

have exactly the same disadvantages as lexical-resource-based measures for M2M

scenarios.

It is worth mentioning that the previous solutions provides very accurate

methods to estimate semantic similarity. However, those solutions rely heavily on

structured information or well maintained corpus. The ever-increasing number of

IoT/M2M devices, scenarios and applications makes it very difficult to build and
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maintain semantic networks or clean relevant corpus. In this paper we proposed

an unsupervised learning method to identify categories without the need of a

Roget-style thesaurus. The method we propose in this paper trades accuracy

with flexibility and simplicity. Our solution does not require a specialized (large)

corpus, and learns distributional profiles through web services using minimal

textual information. This is also the reason we do not evaluate our solution

against the ones discussed here, we would be using strategies outside their design

constrains.

5. Distributional profiles from Public Web Services

Given a target word u we use public web services, namely search engines, to

gather a potentially relevant corpus and extract the word u distributional profile.

The profile is built based on proximity, which means if a word w is within the

neighbourhood of a target word u it is properly processed and extracted. This

distributional profile of a word (DPW ) is defined as

DPW (u) = {w1, f(u,w1); ...;wn, f(u,wn)} (1)

where u is the target word, wi are words that occur with u and f stands for

co-occurrence frequency (can be generalized for any strength of association

metric). A distributional profile can also be interpret as a vector that represents

a point in high dimensional space, each word wi represent a dimension and

f(u,wi) represents its value in that dimension. From this point onward we will

refer to words inside a DPW as dimensions. We evaluate the similarity between

two DPW with cosine similarity:

S(u, v) = cosine(u, v) =
∑n

i=1 f(u,wi)× f(v, wi)√∑n
i=1 f(u,wi)2 ×

√∑n
i=1 f(v, wi)2

(2)

Other similarity measures can be used, however cosine is invariant to scale, which

means it does not take into account the vector’s magnitude, only their direction.

This property is import for unbalanced corpus, such as corpus in M2M scenarios

or corpus gathered from web services (due to the ranking algorithms used by

web-services).
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Although public web services offer some important advantages, they also have

some disadvantages. Distributional profiles can be noisy, and contain several

dimensions with low relevance. A dimension with low relevance is a dimension

with a low value of co-occurrence frequency (f(u,wn)). The combined weight of

several low relevance dimensions can change the direction of the word vector and

damage the cosine similarity. Also, a profile can contain several senses of the

target word (sense-conflation). Multiple words senses in a single profile may also

change the word vector direction and decrease accuracy, limiting the potential

of this method.

We developed two filters to reduce DPW ’s unwanted dimensions. The first

filter uses stemming to merge words that have the same stem, minimizing issues

with, e.g.plural words.

The second filter uses statistical significance to discard low relevant dimen-

sions, and it is based on the p-value statistical significance test. We defined the

null hypothesis (H0) as the dimension generated randomly and the alternative

hypothesis (Ha) as the relevant dimension. Each dimension value is compared

with a IID (Independent and Identically Distributed) model, where all the words

that compose the distributional profile have exactly the same probability of

appearing. If the dimension’s value is high compared with the IID model, then

we discard the null hypothesis and assume that the dimension is relevant. Every

time the DPW learning method finds the target word u, it extracts the corre-

sponding neighbourhood. We count the number of distinct words extracted from

the neighbourhood (named V ) and the total number extracted words (named P ).

Assuming that each words has the same probability of appearing, the probability

of a word appearing exactly k times is express as follows:

p(k) =
(

P
k

)
× (V − 1)P−k

V P
(3)

Based on the previous expression we can compute the probability of a word

appearing at least k times as follows:

p(≥ k) = 1−
k∑

i=1

(
P
i

)
× (V − 1)P−i

V P
(4)
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Using the previous expression we compute the probability for each dimension, if

the result is greater than a predefined p, the dimension is discarded2.

These filters minimize the impact of low relevant dimensions, improve ac-

curacy and processing speed. However, they do not minimize the effect of

sense-conflation, where a distributional profile can learn dimensions from multi-

ple word senses. In order to minimize this issue we propose using clustering on

the distributional profile to identify categories/word senses. The rational is that

dimensions belonging to the same category are closer to each other than words

from other categories. Clustering methods require a distance metric in order

to group similar elements. From this point we will discuss similarity metric,

knowing that a similarity can be converted to a distance using the following

expression

D(u, v) = 1− S(u, v) (5)

Since we are dealing with semantic similarity, a natural solution is to use

cosine similarity over each dimension’s distributional profile. However, as stated

previously, profiles extracted from Web Services may contain multiple senses of

the target word and low relevance dimensions. Alternatively we propose using

co-occurrence frequency as an estimator of similarity metric. Co-occurrence

does not take into account the neighbourhood of a target word, preventing

the previously stated issue. In Section 7 we evaluate the performance of both

metrics.

These clusters do not represent word senses from a Roget-style thesaurus.

Which means that there is not a one-to-one relation between the clusters and a

word in a thesaurus. Conceptually the clusters are more similar to categories

in latent semantic analysis, and may not have a correspondence to our human

perception. Since a cluster may not represent a classical word sense, from

this point onward we will refer to them as categories. One implication of this

statement is that some clusters represent high relevance categories, while others

2In the evaluation we used p = 0.01, which means 99% confidence of being a true relevant

dimension.
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represent low relevance categories. Consider the following scenario, two target

words u and v are not related, but may end up with the same low relevance

category. This category will match and produce a false positive.

In order to minimize this issue our model incorporates an affinity value

between the target word and each category, can be understood as a bias, it

measures the natural tendency from a word to be used as a specific category.

The affinity is computed as the average similarity between the target word and

all the cluster’s elements. After the clustering and computing the affinity of the

target word to each cluster, the distributional profile of multiple words categories

(DPWC) is extracted from the DPW and grouped according to the clusters

obtained. After computing all the affinity values, they are normalized between

]0, 1] with the following expression

a′i = ai

max(a) (6)

The profile is defined as follows:

DPWC(u) =


a1; {w1, f(u1, w1); ...;wn, f(u1, wn)}

...

an; {w1, f(uc, w1); ...;wn, f(uc, wn)}

 (7)

where u is the target word, wi are words that occur with u in a certain category,

f stands for co-occurrence frequency and ai is the affinity between u and a word

category.

Finally, the similarity between two DPWC is given by the following expres-

sion

S(u, v) = max(cosine(uc, vc)× (auc
+ auv

/
2)) (8)

where uc and vc represent a specific category from u and v respectively and a

represents the category’s affinity. Our final similarity measure is the maximum

similarity between all the possible categories weighted by the average category’s

affinity. By incorporating affinities our model minimizes the effect of low relevance

categories.
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6. Implementation

In this section we discuss some relevant details about our prototype imple-

mentation. Our prototype is divided into 5 different components as depicted in

Figure 2. All the components were written in Java.

Figure 2: Proposed DP extraction system’s architecture.

The first component (corpus extraction) bridges our solution with web search

engines. Given a target word u our prototype uses web search engines to extract

its DPW (u) and DPWC(u). It can be used with any search engine, and

currently it uses three: Faroo3, Yacy4and Searx5. This component basic function

is to extract a corpus from search engines. The corpus is composed of snippets

returned by searching for the target word. In a previous work [10] we compared

the impact of using only snippets against the full web-pages. We observed that

snippets contain enough information to build reliable DPW s.

The second component (text processing) implements a preprocessing pipeline

3http://www.faroo.com/hp/api/api.html
4http://yacy.net/en/index.html
5https://searx.me/
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that cleans the corpus and divides it into tokens. The various spaces of the

pipeline are depicted in Figure 3. First the snippets are tokenized and the

resulting tokens are filtered using a stop word filter. Stop words are deemed

irrelevant because they occur frequently in the language and provide little

information. We used the MySQL stop word list6. For the exact same reason

we also remove tokens that are too big or too small: any token with less than 3

or more than 14 (9 being the average word length in English) characters were

removed from the pipeline.

Figure 3: Text processing pipeline.

The DPW extraction component analyses the output of the pipeline and

extracts the DPW of the target word u. This component also applies the filters

mentioned in Section 5 that minimize the issue with low relevant dimensions.

After extracting and optimizing the DPW , we cluster the profile dimensions

based on cosine and co-occurrence similarity. K-means++ [35] was used to

cluster the profile dimensions and identify the categories. K-means++ is a

variant of the well-known and widely used K-means that improves both speed

and accuracy.

These types of algorithms have a drawback, as they require the number of

clusters a priori. Normally gap statistics [36] is used to identify the ideal number

of clusters from a possible range. However, this method requires generating

reference features based on the elements to compare the clustering with a

6https://dev.mysql.com/doc/refman/5.1/en/fulltext-stopwords.html
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uniform sample. DPW s are highly dimensional by nature, meaning that using

this method is quite expensive. As an alternative, we used the framework

proposed in [37], as it only requires the number of dimensions.

Finally, the DPWC component uses the DPW and the clusters to return

the DPWC(u) of the target word, this component also computes the affinity

between the target word and each category.

7. Performance evaluation

We evaluate our model against Miller-Charles dataset [38], the reference

dataset for semantic similarity evaluation. It is composed of 30 word-pairs rated

by a group of 38 human subjects. The word pairs are rated on a scale from 0

(no similarity) to 4 (perfect synonymy).

To the best of our knowledge, there is no semantic dataset specifically for

IoT/M2M available. In order to evaluate our semantic features against IoT

vocabulary, we devised one. We mined a popular IoT plaform7 to extract the

most common used terms (ranked by term frequency). The 20 most used terms

were collected and organized into 30 word pairs. Each pair was rated on a

scale from 0 to 4 by five fellow researchers. Although not as comprehensive

as the Miller-Charles dataset, our still reach 0.8 correlation amongst human

classification. In a future work we intend to further explore and improve our

dataset. The final similarity of each pair is the average of the previous stated

rates. This dataset is publicly available8 and can be used by other researchers.

Correlation between sets of data is a measure of how well they are related.

The correlation r can range from −1 to 1. An r of −1 indicates a perfect

negative linear relationship between variables, an r of 0 indicates no linear

relationship between variables, finally and an r of 1 indicates a perfect positive

linear relationship between variables. In short, the highest correlation indicates

the most accurate solution.

7ThingSpeak: https://thingspeak.com/
8https://atnog.av.it.pt/ mantunes/semantic/
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Normally, Pearson correlation is used to evaluate distance measures against

the ground truth (human classification). One advantage of Pearson correlation

is its independence from scale and distance metric. The rationale is that even

in different scales if the linear correlation between the ground truth and the

similarity metric is high, then the performance is also high. Our model uses

unsupervised learning methods to identify categories and improve accuracy.

However, the improvement is not the same to each word pair in the dataset,

damaging the linear correlation. As such, we also evaluate our model using mean

squared error (MSE), a typical performance metric used in regression problems.

It is worth mentioning that in order to use MSE metrics we had to normalize

the dataset score.

Finally, we evaluated the performance of DPW (u), DPWC(u) with and

without affinity for different neighbourhood dimensions and two distinct clus-

tering metrics: one based on co-occurrence and other on cosine similarity. We

tested our models on corpus formed from the top 300 snippets returned by three

search engines: Faroo, Yacy and Searx.

The results of the evaluation using Miller-Charles dataset are listed in Table 1

and Table 2. The optimal neighbourhood’s size appears to be 7. DPWC with

affinity outperforms the previous model (DPW ) consistently on both metric

(Pearson and MSE). This is expected as the affinity value allows the model

to minimize the impact of low relevance categories. Clustering based on co-

occurrence outperforms clustering based on cosine similarity. Again, this is to

be expected since the distributional profiles contain some unwanted dimensions

and damage the cosine similarity accuracy. Although co-occurrence similarity is

simpler in nature (expresses little information regarding semantic similarity), is

robust against unwanted dimensions.

The results of the evaluation using the IoT dataset are listed in Table 3 and

Table 4. Again, DPWC with affinity outperforms the previous model (DPW )

consistently on both metric. However, this dataset exposes the drawbacks of

clustering based on cosine similarity and DPWC without affinity. We can see

that clustering based on cosine similarity does not outperform our previous
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Table 1: Performance evaluation on Miller-Charles dataset (cosine distance)

Neighborhood size

Methods 3 5 7

Pearson MSE Pearson MSE Pearson MSE

DPW 0.32 0.31 0.37 0.29 0.45 0.29

DPWC 0.36 0.23 0.30 0.25 0.31 0.27

DPWCAff 0.47 0.24 0.45 0.20 0.63 0.15

Table 2: Performance evaluation on Miller-Charles dataset (co-occurrence distance)

Neighborhood size

Methods 3 5 7

Pearson MSE Pearson MSE Pearson MSE

DPW 0.32 0.31 0.37 0.29 0.45 0.29

DPWC 0.40 0.21 0.24 0.26 0.29 0.29

DPWCAff 0.43 0.22 0.55 0.19 0.63 0.15

model, especially at higher value neighbourhoods. Similarly, DPWC without

affinity is outperformed by all the other metrics, small cluster with low relevance

are being matched producing a false negative.

As discussed in Section 4, other semantic methods achieved higher accuracy.

Nonetheless, our model outperforms some methods that also rely on web-engines

(a comparative study of semantic similarity can be found in [39]). We cannot

draw a direct comparison, since our model was designed with a specific set of

constrains (intended to be a viable solution for IoT). In order to highlight the

performance improvement of word category extraction we plotted the best results

from both datasets in Figure 4. Similarity based on DPW tends to low values

(similarity values close to zero), hindering the ability to make binary choices

(similar/not similar concepts). On the other hand, similarity based on DPWC

with affinity do not cluster together close to zero, being correctly spaced. Our
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Table 3: Performance evaluation on IoT dataset (cosine distance)

Neighborhood size

Methods 3 5 7

Pearson MSE Pearson MSE Pearson MSE

DPW 0.27 0.25 0.37 0.23 0.33 0.24

DPWC 0.15 0.30 −0.01 0.34 −0.04 0.33

DPWCAff 0.34 0.17 0.37 0.13 0.24 0.15

Table 4: Performance evaluation on IoT dataset (co-occurrence distance)

Neighborhood size

Methods 3 5 7

Pearson MSE Pearson MSE Pearson MSE

DPW 0.27 0.25 0.37 0.23 0.33 0.24

DPWC 0.05 0.31 0.07 0.32 −0.11 0.13

DPWCAff 0.41 0.25 0.46 0.13 0.55 0.12

DPWC model does not only improve accuracy, it also aids binary systems by

providing a larger margin to make a decision.

8. Conclusions

The number of IoT devices is increasing at a steady step. Each one of them

generates massive amounts of diverse data. However, each device/manufactures

share context information with different structure, hindering interoperability in

IoT and M2M scenarios.

In this paper we discussed the limitations of conventional storage and analyt-

ical tools, and pointed out the advantages of bottom-up context organization

model. We also discussed semantic approaches specifically designed for IoT/M2M

scenarios. Our semantic model was extended to support multiple word categories

and a new unsupervised learning method was designed. Distributional profiles
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Figure 4: Visual comparison between the DP W and DP W C similarity, using the Miller-Charles

dataset.

extracted from web services may contain noisy dimensions and several senses of

the target word (sense-conflation). These issues decrease accuracy, and limit the

potential of this model. Our learning method minimizes these issues through

dimensional reduction filters and clustering.

Our solution was evaluated against Miller-Charles dataset [38] and an IoT

semantic dataset, achieving a correlation of 0.63. There is still room for im-

provement, hypernyms can be used to learn more abstract dimensions improving
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performance. Non-negative matrix factorization can also be used to discover

latent semantic information in distributional profiles and increase accuracy. Fur-

thermore, a recursive method can be used to evaluate distributional profiles, each

dimension is evaluated using semantic distances instead of string matching. We

intent to explored several of the previous mentions optimizations and improve

our model. Nevertheless, our model was able to learn distributional profiles from

a small corpus, achieving a relative high accuracy on both datasets.
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