112 research outputs found

    Ultrawideband Technology for Medical In-Body Sensor Networks: An Overview of the Human Body as a Propagation Medium, Phantoms, and Approaches for Propagation Analysis

    Full text link
    [EN] An in-body sensor network is that in which at least one of the sensors is located inside the human body. Such wireless in-body sensors are used mainly in medical applications, collecting and monitoring important parameters for health and disease treatment. IEEE Standard 802.15.6-2012 for wireless body area networks (WBANs) considers in-body communications in the Medical Implant Communications Service (MICS) band. Nevertheless, high-data-rate communications are not feasible at the MICS band because of its narrow occupied bandwidth. In this framework, ultrawideband (UWB) systems have emerged as a potential solution for in-body highdata-rate communications because of their miniaturization capabilities and low power consumption.This work was supported by the Programa de Ayudas de Investigación y Desarrollo (PAID-01-16) at the Universitat Politècnica de València, Spain; by the Ministerio de Economía y Competitividad, Spain (TEC2014-60258-C2-1-R); and by the European FEDER funds. It was also funded by the European Union’s H2020:MSCA:ITN program for the Wireless In-Body Environ-ment Communication–WiBEC project under grant 675353.Garcia-Pardo, C.; Andreu-Estellés, C.; Fornés Leal, A.; Castelló-Palacios, S.; Pérez-Simbor, S.; Barbi, M.; Vallés Lluch, A.... (2018). Ultrawideband Technology for Medical In-Body Sensor Networks: An Overview of the Human Body as a Propagation Medium, Phantoms, and Approaches for Propagation Analysis. IEEE Antennas and Propagation Magazine. 60(3):19-33. https://doi.org/10.1109/MAP.2018.2818458S193360

    Implanted Antennas for Biomedical Applications

    Get PDF
    Body-Centric Wireless Communication (BCWC) is a central topic in the development of healthcare and biomedical technologies. Increasing healthcare quality, in addition to the continuous miniaturisation of sensors and the advancement in wearable electronics, embedded software, digital signal processing and biomedical technologies, has led to a new era of biomedical devices and increases possibility of continuous monitoring, diagnostic and/or treatment of many diseases. However, the major difference between BCWC, particularly implantable devices, and conventional wireless systems is the radio channel over which the communication takes place. The human body is a hostile environment from a radio propagation perspective. This environment is a highly lossy and has a high effect on the antenna elements, the radio channel parameters and, hence a dramatic drop in the implanted antenna performance. This thesis focuses on how to improve the gain of implanted antennas. In order to improve the gain and performance of implanted antennas, this thesis uses a combination of experimental and electromagnetic numerical investigations. Extensive simulation and experimental investigations are carried out to study the effects of various external elements on the performance improvement of implanted antennas. The thesis also shows the design, characterisation, simulation and measurements of four different antennas to work at ISM band and seventeen different scenarios for body wireless communication. A 3- layer (skin, fat and muscle) and a liquid homogenise phantom were used for human body modelling in both simulation and measurements. The results shows that a length of printed line and a grid can be used on top of the human skin in order enhance the performance of the implanted antennas. Moreover, a ring and a hemispherical lens can be used externally in order to enhance the performance of the implanted antenna. This approach yields a significant improvement in the antenna gain and reduces the specific absorption rate (SAR) in most cases and the obtained gain varies between 2 dB and 8 dB

    Antenna Systems

    Get PDF
    This book offers an up-to-date and comprehensive review of modern antenna systems and their applications in the fields of contemporary wireless systems. It constitutes a useful resource of new material, including stochastic versus ray tracing wireless channel modeling for 5G and V2X applications and implantable devices. Chapters discuss modern metalens antennas in microwaves, terahertz, and optical domain. Moreover, the book presents new material on antenna arrays for 5G massive MIMO beamforming. Finally, it discusses new methods, devices, and technologies to enhance the performance of antenna systems

    Increasing the robustness of active upper limb prostheses

    Get PDF
    This thesis is based on my work done at the Institute for Neurorehabilitation Systems at the University Medical Center Goettingen. My work has been partially founded by German Ministry for Education and Research (BMBF) via the Bernstein Focus Neurotechnology (BFNT) Göttingen under grant number 1GQ0810 The local ethics committee approved all studies involving human subjects, and all subjects signed informed consents prior to their participation in the studies. The entire thesis has been originally written by me. Part of the materials used in this thesis have also been published in journals or conferences, where I am the first or corresponding author. All rights for re-use of previously published material were obtained. Reused figures and tables of IEEE publications are marked with © [Year] IEEE. Hereby I declare that I have written this thesis independently and with no other aids and sources than quoted

    Detecting Vital Signs with Wearable Wireless Sensors

    Get PDF
    The emergence of wireless technologies and advancements in on-body sensor design can enable change in the conventional health-care system, replacing it with wearable health-care systems, centred on the individual. Wearable monitoring systems can provide continuous physiological data, as well as better information regarding the general health of individuals. Thus, such vital-sign monitoring systems will reduce health-care costs by disease prevention and enhance the quality of life with disease management. In this paper, recent progress in non-invasive monitoring technologies for chronic disease management is reviewed. In particular, devices and techniques for monitoring blood pressure, blood glucose levels, cardiac activity and respiratory activity are discussed; in addition, on-body propagation issues for multiple sensors are presented

    System design and performance analysis of wireless body area networks

    Get PDF
    One key solution to provide affordable and proactive healthcare facilities to overcome the fast world population growth and a shortage of medical professionals is through health monitoring systems capable of early disease detection and real-time data transmission leading to considerable improvements in the quality of human life. Wireless body area networks (WBANs) are proposed as promising approaches to providing better mobility and flexibility experience than traditional wired medical systems by using low-power, miniaturised sensors inside, around, or off the human body and are employed to monitor physiological signals. However, the design of reliable and energy efficient in-body communication systems is still a major research challenge since implant devices are characterised by strict requirements on size, energy consumption and safety. Moreover, there is still no agreement regarding QoS support in WBANs. The first part of this work concentrates on the design and performance evaluation of WBAN communication systems involving the ‘in-body to in-body’ and ‘in-body to on-body’ scenarios. The essential step is to derive the statistical WBAN path loss (PL) models, which characterise the signal propagation energy loss transmitting via intra-body region. Moreover, from the point of view of human body safety evaluation, the obtained specific absorption rate (SAR) values are compared with the latest Institute of Electrical and Electronics Engineers (IEEE) 802.15.6 Task Group technical standard and the International Commission on Non-Ionizing Radiation Protection (ICNIRP) safety guidelines. Link budget analysis is then presented using a range of energy-efficient modulation schemes, and the results are given including the transmission distance, data rate and transmitting power in individual sections. On the other hand, major quality of service (QoS) support challenges in WBANs are discussed and investigated. To achieve higher lifetime and lower network energy consumption, different data routing protocol methods, including incremental relaying and the two-relay based routing technique are taken into account. A set of key QoS metrics for linear mathematical models is given along with the related subjective functions. The incremental relaying routing protocol promises significant enhancements in in-body WBAN network lifetime by minimising the overall communication distance while the two-relay based routing method achieves better performance in terms of emergency data transmission and high traffic condition, QoS-aware WBANs design. Moreover, to handle real-time high data transmission applications such as capsule endoscope image transmission, a flexible QoS-aware wireless body area sensor networks (WBASNs) model is proposed and evaluated that can bring novel solutions for a realistic multi-user hospital environment regarding information packet collision probability, manageable numbers of sensor nodes and a wide range of data rates

    Enhancing the Performance of Medical Implant Communication Systems through Cooperative Diversity

    Get PDF
    Battery-operated medical implants—such as pacemakers or cardioverter-defibrillators—have already been widely used in practical telemedicine and telecare applications. However, no solution has yet been found to mitigate the effect of the fading that the in-body to off-body communication channel is subject to. In this paper, we reveal and assess the potential of cooperative diversity to combat fading—hence to improve system performance—in medical implant communication systems. In the particular cooperative communication scenario we consider, multiple cooperating receiver units are installed across the room accommodating the patient with a medical implant inside his/her body. Our investigations have shown that the application of cooperative diversity is a promising approach to enhance the performance of medical implant communication systems in various aspects such as implant lifetime and communication link reliability

    Anatomical Region-Specific In Vivo Wireless Communication Channel Characterization

    Get PDF
    In vivo wireless body area networks (WBANs) and their associated technologies are shaping the future of healthcare by providing continuous health monitoring and noninvasive surgical capabilities, in addition to remote diagnostic and treatment of diseases. To fully exploit the potential of such devices, it is necessary to characterize the communication channel which will help to build reliable and high-performance communication systems. This paper presents an in vivo wireless communication channel characterization for male torso both numerically and experimentally (on a human cadaver) considering various organs at 915 MHz and 2.4 GHz. A statistical path loss (PL) model is introduced, and the anatomical region-specific parameters are provided. It is found that the mean PL in dB scale exhibits a linear decaying characteristic rather than an exponential decaying profile inside the body, and the power decay rate is approximately twice at 2.4 GHz as compared to 915 MHz. Moreover, the variance of shadowing increases significantly as the in vivo antenna is placed deeper inside the body since the main scatterers are present in the vicinity of the antenna. Multipath propagation characteristics are also investigated to facilitate proper waveform designs in the future wireless healthcare systems, and a rootmean- square (RMS) delay spread of 2.76 ns is observed at 5 cm depth. Results show that the in vivo channel exhibit different characteristics than the classical communication channels, and location dependency is very critical for accurate, reliable, and energy-efficient link budget calculations

    A Three – tier bio-implantable sensor monitoring and communications platform

    Get PDF
    One major hindrance to the advent of novel bio-implantable sensor technologies is the need for a reliable power source and data communications platform capable of continuously, remotely, and wirelessly monitoring deeply implantable biomedical devices. This research proposes the feasibility and potential of combining well established, ‘human-friendly' inductive and ultrasonic technologies to produce a proof-of-concept, generic, multi-tier power transfer and data communication platform suitable for low-power, periodically-activated implantable analogue bio-sensors. In the inductive sub-system presented, 5 W of power is transferred across a 10 mm gap between a single pair of 39 mm (primary) and 33 mm (secondary) circular printed spiral coils (PSCs). These are printed using an 8000 dpi resolution photoplotter and fabricated on PCB by wet-etching, to the maximum permissible density. Our ultrasonic sub-system, consisting of a single pair of Pz21 (transmitter) and Pz26 (receiver) piezoelectric PZT ceramic discs driven by low-frequency, radial/planar excitation (-31 mode), without acoustic matching layers, is also reported here for the first time. The discs are characterised by propagation tank test and directly driven by the inductively coupled power to deliver 29 μW to a receiver (implant) employing a low voltage start-up IC positioned 70 mm deep within a homogeneous liquid phantom. No batteries are used. The deep implant is thus intermittently powered every 800 ms to charge a capacitor which enables its microcontroller, operating with a 500 kHz clock, to transmit a single nibble (4 bits) of digitized sensed data over a period of ~18 ms from deep within the phantom, to the outside world. A power transfer efficiency of 83% using our prototype CMOS logic-gate IC driver is reported for the inductively coupled part of the system. Overall prototype system power consumption is 2.3 W with a total power transfer efficiency of 1% achieved across the tiers
    corecore