7,142 research outputs found

    A heuristic-based approach to code-smell detection

    Get PDF
    Encapsulation and data hiding are central tenets of the object oriented paradigm. Deciding what data and behaviour to form into a class and where to draw the line between its public and private details can make the difference between a class that is an understandable, flexible and reusable abstraction and one which is not. This decision is a difficult one and may easily result in poor encapsulation which can then have serious implications for a number of system qualities. It is often hard to identify such encapsulation problems within large software systems until they cause a maintenance problem (which is usually too late) and attempting to perform such analysis manually can also be tedious and error prone. Two of the common encapsulation problems that can arise as a consequence of this decomposition process are data classes and god classes. Typically, these two problems occur together – data classes are lacking in functionality that has typically been sucked into an over-complicated and domineering god class. This paper describes the architecture of a tool which automatically detects data and god classes that has been developed as a plug-in for the Eclipse IDE. The technique has been evaluated in a controlled study on two large open source systems which compare the tool results to similar work by Marinescu, who employs a metrics-based approach to detecting such features. The study provides some valuable insights into the strengths and weaknesses of the two approache

    Structured Review of the Evidence for Effects of Code Duplication on Software Quality

    Get PDF
    This report presents the detailed steps and results of a structured review of code clone literature. The aim of the review is to investigate the evidence for the claim that code duplication has a negative effect on code changeability. This report contains only the details of the review for which there is not enough place to include them in the companion paper published at a conference (Hordijk, Ponisio et al. 2009 - Harmfulness of Code Duplication - A Structured Review of the Evidence)

    Security Code Smells in Android ICC

    Get PDF
    Android Inter-Component Communication (ICC) is complex, largely unconstrained, and hard for developers to understand. As a consequence, ICC is a common source of security vulnerability in Android apps. To promote secure programming practices, we have reviewed related research, and identified avoidable ICC vulnerabilities in Android-run devices and the security code smells that indicate their presence. We explain the vulnerabilities and their corresponding smells, and we discuss how they can be eliminated or mitigated during development. We present a lightweight static analysis tool on top of Android Lint that analyzes the code under development and provides just-in-time feedback within the IDE about the presence of such smells in the code. Moreover, with the help of this tool we study the prevalence of security code smells in more than 700 open-source apps, and manually inspect around 15% of the apps to assess the extent to which identifying such smells uncovers ICC security vulnerabilities.Comment: Accepted on 28 Nov 2018, Empirical Software Engineering Journal (EMSE), 201

    From a Domain Analysis to the Specification and Detection of Code and Design Smells

    Get PDF
    Code and design smells are recurring design problems in software systems that must be identified to avoid their possible negative consequences\ud on development and maintenance. Consequently, several smell detection\ud approaches and tools have been proposed in the literature. However,\ud so far, they allow the detection of predefined smells but the detection\ud of new smells or smells adapted to the context of the analysed systems\ud is possible only by implementing new detection algorithms manually.\ud Moreover, previous approaches do not explain the transition from\ud specifications of smells to their detection. Finally, the validation\ud of the existing approaches and tools has been limited on few proprietary\ud systems and on a reduced number of smells. In this paper, we introduce\ud an approach to automate the generation of detection algorithms from\ud specifications written using a domain-specific language. This language\ud is defined from a thorough domain analysis. It allows the specification\ud of smells using high-level domain-related abstractions. It allows\ud the adaptation of the specifications of smells to the context of\ud the analysed systems.We specify 10 smells, generate automatically\ud their detection algorithms using templates, and validate the algorithms\ud in terms of precision and recall on Xerces v2.7.0 and GanttProject\ud v1.10.2, two open-source object-oriented systems.We also compare\ud the detection results with those of a previous approach, iPlasma

    STARS:software technology for adaptable and reusable systems

    Get PDF
    corecore