6 research outputs found

    Indoor environment monitoring in search of gas leakage by mobile robot

    Get PDF
    Inspection based on mobile autonomous robots can assume an important role in many industries. Instead of having fixed sensors, the concept of assembling the sensors on a mobile robot that performs the scanning and inspection through a defined path is cheaper, configurable and adaptable. This paper describes a mobile robot, equipped with several gas sensors and a LIDAR device, that scans an established area by following a trajectory based on way-points searching for gas leakage and simultaneously avoid obstacles in the map. In other words, the robot follows the trajectory while the gas concentration is under a defined value and surrounding the obstacles. Otherwise, the autonomous robot starts the leakage search based on a search algorithm that allows to find the leakage position. The proposed methodology is verified in simulation based on a model of the real robot. The search test performed in a simulation environment allows to validate the proposed methodology.This work is financed by the ERDF - European Regional Development Fund through the Operational Programme for Competitiveness and Internationalisation- COMPETE 2020 Programme within project (POCI-01-0145-FEDER- 006961), and by National Funds through the FCT - Funda~ao para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) as part of project UID/EEA/50014/2013.info:eu-repo/semantics/publishedVersio

    Classification of Two Volatiles Using an eNose Composed by an Array of 16 Single-Type Miniature Micro-Machined Metal-Oxide Gas Sensors

    Get PDF
    The artificial replication of an olfactory system is currently an open problem. The development of a portable and low-cost artificial olfactory system, also called electronic nose or eNose, is usually based on the use of an array of different gas sensors types, sensitive to different target gases. Low-cost Metal-Oxide semiconductor (MOX) gas sensors are widely used in such arrays. MOX sensors are based on a thin layer of silicon oxide with embedded heaters that can operate at different temperature set points, which usually have the disadvantages of different volatile sensitivity in each individual sensor unit and also different crossed sensitivity to different volatiles (unspecificity). This paper presents and eNose composed by an array of 16 low-cost BME680 digital miniature sensors embedding a miniature MOX gas sensor proposed to unspecifically evaluate air quality. In this paper, the inherent variability and unspecificity that must be expected from the 16 embedded MOX gas sensors, combined with signal processing, are exploited to classify two target volatiles: ethanol and acetone. The proposed eNose reads the resistance of the sensing layer of the 16 embedded MOX gas sensors, applies PCA for dimensional reduction and k-NN for classification. The validation results have shown an instantaneous classification success higher than 94% two days after the calibration and higher than 70% two weeks after, so the majority classification of a sequence of measures has been always successful in laboratory conditions. These first validation results and the low-power consumption of the eNose (0.9 W) enables its future improvement and its use in portable and battery-operated applications

    Assessment of smoke contamination in grapevine berries and taint in wines due to bushfires using a low-cost E-nose and an artificial intelligence approach

    Get PDF
    Bushfires are increasing in number and intensity due to climate change. A newly developed low-cost electronic nose (e-nose) was tested on wines made from grapevines exposed to smoke in field trials. E-nose readings were obtained from wines from five experimental treatments: (i) low-density smoke exposure (LS), (ii) high-density smoke exposure (HS), (iii) high-density smoke exposure with in-canopy misting (HSM), and two controls: (iv) control (C; no smoke treatment) and (v) control with in-canopy misting (CM; no smoke treatment). These e-nose readings were used as inputs for machine learning algorithms to obtain a classification model, with treatments as targets and seven neurons, with 97% accuracy in the classification of 300 samples into treatments as targets (Model 1). Models 2 to 4 used 10 neurons, with 20 glycoconjugates and 10 volatile phenols as targets, measured: in berries one hour after smoke (Model 2; R = 0.98; R2 = 0.95; b = 0.97); in berries at harvest (Model 3; R = 0.99; R2 = 0.97; b = 0.96); in wines (Model 4; R = 0.99; R2 = 0.98; b = 0.98). Model 5 was based on the intensity of 12 wine descriptors determined via a consumer sensory test (Model 5; R = 0.98; R2 = 0.96; b = 0.97). These models could be used by winemakers to assess near real-time smoke contamination levels and to implement amelioration strategies to minimize smoke taint in wines following bushfires.Sigfredo Fuentes, Vasiliki Summerson, Claudia Gonzalez Viejo, Eden Tongson, Nir Lipovetzky, Kerry L. Wilkinson ... et al

    Towards Gas Discrimination and Mapping in Emergency Response Scenarios Using a Mobile Robot with an Electronic Nose

    No full text
    Emergency personnel, such as firefighters, bomb technicians, and urban search and rescue specialists, can be exposed to a variety of extreme hazards during the response to natural and human-made disasters. In many of these scenarios, a risk factor is the presence of hazardous airborne chemicals. The recent and rapid advances in robotics and sensor technologies allow emergency responders to deal with such hazards from relatively safe distances. Mobile robots with gas-sensing capabilities allow to convey useful information such as the possible source positions of different chemicals in the emergency area. However, common gas sampling procedures for laboratory use are not applicable due to the complexity of the environment and the need for fast deployment and analysis. In addition, conventional gas identification approaches, based on supervised learning, cannot handle situations when the number and identities of the present chemicals are unknown. For the purpose of emergency response, all the information concluded from the gas detection events during the robot exploration should be delivered in real time. To address these challenges, we developed an online gas-sensing system using an electronic nose. Our system can automatically perform unsupervised learning and update the discrimination model as the robot is exploring a given environment. The online gas discrimination results are further integrated with geometrical information to derive a multi-compound gas spatial distribution map. The proposed system is deployed on a robot built to operate in harsh environments for supporting fire brigades, and is validated in several different real-world experiments of discriminating and mapping multiple chemical compounds in an indoor open environment. Our results show that the proposed system achieves high accuracy in gas discrimination in an online, unsupervised, and computationally efficient manner. The subsequently created gas distribution maps accurately indicate the presence of different chemicals in the environment, which is of practical significance for emergency response
    corecore