30,503 research outputs found

    Creating a Distributed Programming System Using the DSS: A Case Study of OzDSS

    Get PDF
    This technical report describes the integration of the Distribution Subsystem (DSS) to the programming system Mozart. The result, OzDSS, is described in detail. Essential when coupling a programming system to the DSS is how the internal model of threads and language entities are mapped to the abstract entities of the DSS. The model of threads and language entities of Mozart is described at a detailed level to explain the design choices made when developing the code that couples the DSS to Mozart. To show the challenges associated with different thread implementations, the C++DSS system is introduced. C++DSS is a C++ library which uses the DSS to implement different types of distributed language entities in the form of C++ classes. Mozart emulates threads, thus there is no risk of multiple threads accessing the DSS simultaneously. C++DSS, on the other hand, makes use of POSIX threads, thus simultaneous access to the DSS from multiple POSIX threads can happen. The fundamental differences in how threads are treated in a system that emulates threads (Mozart) to a system that make use of native-threads~(C++DSS) is discussed. The paper is concluded by a performance comparison between the OzDSS system and other distributed programming systems. We see that the OzDSS system outperforms ``industry grade'' Java-RMI and Java-CORBA implementations

    REBA: A Refinement-Based Architecture for Knowledge Representation and Reasoning in Robotics

    Get PDF
    This paper describes an architecture for robots that combines the complementary strengths of probabilistic graphical models and declarative programming to represent and reason with logic-based and probabilistic descriptions of uncertainty and domain knowledge. An action language is extended to support non-boolean fluents and non-deterministic causal laws. This action language is used to describe tightly-coupled transition diagrams at two levels of granularity, with a fine-resolution transition diagram defined as a refinement of a coarse-resolution transition diagram of the domain. The coarse-resolution system description, and a history that includes (prioritized) defaults, are translated into an Answer Set Prolog (ASP) program. For any given goal, inference in the ASP program provides a plan of abstract actions. To implement each such abstract action, the robot automatically zooms to the part of the fine-resolution transition diagram relevant to this action. A probabilistic representation of the uncertainty in sensing and actuation is then included in this zoomed fine-resolution system description, and used to construct a partially observable Markov decision process (POMDP). The policy obtained by solving the POMDP is invoked repeatedly to implement the abstract action as a sequence of concrete actions, with the corresponding observations being recorded in the coarse-resolution history and used for subsequent reasoning. The architecture is evaluated in simulation and on a mobile robot moving objects in an indoor domain, to show that it supports reasoning with violation of defaults, noisy observations and unreliable actions, in complex domains.Comment: 72 pages, 14 figure

    Transformation As Search

    Get PDF
    In model-driven engineering, model transformations are con- sidered a key element to generate and maintain consistency between re- lated models. Rule-based approaches have become a mature technology and are widely used in different application domains. However, in var- ious scenarios, these solutions still suffer from a number of limitations that stem from their injective and deterministic nature. This article pro- poses an original approach, based on non-deterministic constraint-based search engines, to define and execute bidirectional model transforma- tions and synchronizations from single specifications. Since these solely rely on basic existing modeling concepts, it does not require the intro- duction of a dedicated language. We first describe and formally define this model operation, called transformation as search, then describe a proof-of-concept implementation and discuss experiments on a reference use case in software engineering

    Implementing distributed concurrent constraint execution in the CIAO system

    Full text link
    This paper describes the current prototype of the distributed CIAO system. It introduces the concepts of "teams" and "active modules" (or active objects), which conveniently encapsulate different types of functionalities desirable from a distributed system, from parallelism for achieving speedup to client-server applications. The user primitives available are presented and their implementation described. This implementation uses attributed variables and, as an example of a communication abstraction, a blackboard that follows the Linda model. Finally, the CIAO WWW interface is also briefly described. The unctionalities of the system are illustrated through examples, using the implemented primitives

    Logic programming in the context of multiparadigm programming: the Oz experience

    Full text link
    Oz is a multiparadigm language that supports logic programming as one of its major paradigms. A multiparadigm language is designed to support different programming paradigms (logic, functional, constraint, object-oriented, sequential, concurrent, etc.) with equal ease. This article has two goals: to give a tutorial of logic programming in Oz and to show how logic programming fits naturally into the wider context of multiparadigm programming. Our experience shows that there are two classes of problems, which we call algorithmic and search problems, for which logic programming can help formulate practical solutions. Algorithmic problems have known efficient algorithms. Search problems do not have known efficient algorithms but can be solved with search. The Oz support for logic programming targets these two problem classes specifically, using the concepts needed for each. This is in contrast to the Prolog approach, which targets both classes with one set of concepts, which results in less than optimal support for each class. To explain the essential difference between algorithmic and search programs, we define the Oz execution model. This model subsumes both concurrent logic programming (committed-choice-style) and search-based logic programming (Prolog-style). Instead of Horn clause syntax, Oz has a simple, fully compositional, higher-order syntax that accommodates the abilities of the language. We conclude with lessons learned from this work, a brief history of Oz, and many entry points into the Oz literature.Comment: 48 pages, to appear in the journal "Theory and Practice of Logic Programming
    corecore