1,125 research outputs found

    Pushing AI to Wireless Network Edge: An Overview on Integrated Sensing, Communication, and Computation towards 6G

    Full text link
    Pushing artificial intelligence (AI) from central cloud to network edge has reached board consensus in both industry and academia for materializing the vision of artificial intelligence of things (AIoT) in the sixth-generation (6G) era. This gives rise to an emerging research area known as edge intelligence, which concerns the distillation of human-like intelligence from the huge amount of data scattered at wireless network edge. In general, realizing edge intelligence corresponds to the process of sensing, communication, and computation, which are coupled ingredients for data generation, exchanging, and processing, respectively. However, conventional wireless networks design the sensing, communication, and computation separately in a task-agnostic manner, which encounters difficulties in accommodating the stringent demands of ultra-low latency, ultra-high reliability, and high capacity in emerging AI applications such as auto-driving. This thus prompts a new design paradigm of seamless integrated sensing, communication, and computation (ISCC) in a task-oriented manner, which comprehensively accounts for the use of the data in the downstream AI applications. In view of its growing interest, this article provides a timely overview of ISCC for edge intelligence by introducing its basic concept, design challenges, and enabling techniques, surveying the state-of-the-art development, and shedding light on the road ahead

    Wireless for Machine Learning

    Full text link
    As data generation increasingly takes place on devices without a wired connection, Machine Learning over wireless networks becomes critical. Many studies have shown that traditional wireless protocols are highly inefficient or unsustainable to support Distributed Machine Learning. This is creating the need for new wireless communication methods. In this survey, we give an exhaustive review of the state of the art wireless methods that are specifically designed to support Machine Learning services. Namely, over-the-air computation and radio resource allocation optimized for Machine Learning. In the over-the-air approach, multiple devices communicate simultaneously over the same time slot and frequency band to exploit the superposition property of wireless channels for gradient averaging over-the-air. In radio resource allocation optimized for Machine Learning, Active Learning metrics allow for data evaluation to greatly optimize the assignment of radio resources. This paper gives a comprehensive introduction to these methods, reviews the most important works, and highlights crucial open problems.Comment: Corrected typo in author name. From the incorrect Maitron to the correct Mairto

    Learning and Management for Internet-of-Things: Accounting for Adaptivity and Scalability

    Get PDF
    Internet-of-Things (IoT) envisions an intelligent infrastructure of networked smart devices offering task-specific monitoring and control services. The unique features of IoT include extreme heterogeneity, massive number of devices, and unpredictable dynamics partially due to human interaction. These call for foundational innovations in network design and management. Ideally, it should allow efficient adaptation to changing environments, and low-cost implementation scalable to massive number of devices, subject to stringent latency constraints. To this end, the overarching goal of this paper is to outline a unified framework for online learning and management policies in IoT through joint advances in communication, networking, learning, and optimization. From the network architecture vantage point, the unified framework leverages a promising fog architecture that enables smart devices to have proximity access to cloud functionalities at the network edge, along the cloud-to-things continuum. From the algorithmic perspective, key innovations target online approaches adaptive to different degrees of nonstationarity in IoT dynamics, and their scalable model-free implementation under limited feedback that motivates blind or bandit approaches. The proposed framework aspires to offer a stepping stone that leads to systematic designs and analysis of task-specific learning and management schemes for IoT, along with a host of new research directions to build on.Comment: Submitted on June 15 to Proceeding of IEEE Special Issue on Adaptive and Scalable Communication Network

    Intelligence artificielle à la périphérie du réseau mobile avec efficacité de communication

    Get PDF
    L'intelligence artificielle (AI) et l'informatique à la périphérie du réseau (EC) ont permis de mettre en place diverses applications intelligentes incluant les maisons intelligentes, la fabrication intelligente, et les villes intelligentes. Ces progrès ont été alimentés principalement par la disponibilité d'un plus grand nombre de données, l'abondance de la puissance de calcul et les progrès de plusieurs techniques de compression. Toutefois, les principales avancées concernent le déploiement de modèles dans les dispositifs connectés. Ces modèles sont préalablement entraînés de manière centralisée. Cette prémisse exige que toutes les données générées par les dispositifs soient envoyées à un serveur centralisé, ce qui pose plusieurs problèmes de confidentialité et crée une surcharge de communication importante. Par conséquent, pour les derniers pas vers l'AI dans EC, il faut également propulser l'apprentissage des modèles ML à la périphérie du réseau. L'apprentissage fédéré (FL) est apparu comme une technique prometteuse pour l'apprentissage collaboratif de modèles ML sur des dispositifs connectés. Les dispositifs entraînent un modèle partagé sur leurs données stockées localement et ne partagent que les paramètres résultants avec une entité centralisée. Cependant, pour permettre l' utilisation de FL dans les réseaux périphériques sans fil, plusieurs défis hérités de l'AI et de EC doivent être relevés. En particulier, les défis liés à l'hétérogénéité statistique des données à travers les dispositifs ainsi que la rareté et l'hétérogénéité des ressources nécessitent une attention particulière. L'objectif de cette thèse est de proposer des moyens de relever ces défis et d'évaluer le potentiel de la FL dans de futures applications de villes intelligentes. Dans la première partie de cette thèse, l'accent est mis sur l'incorporation des propriétés des données dans la gestion de la participation des dispositifs dans FL et de l'allocation des ressources. Nous commençons par identifier les mesures de diversité des données qui peuvent être utilisées dans différentes applications. Ensuite, nous concevons un indicateur de diversité permettant de donner plus de priorité aux clients ayant des données plus informatives. Un algorithme itératif est ensuite proposé pour sélectionner conjointement les clients et allouer les ressources de communication. Cet algorithme accélère l'apprentissage et réduit le temps et l'énergie nécessaires. De plus, l'indicateur de diversité proposé est renforcé par un système de réputation pour éviter les clients malveillants, ce qui améliore sa robustesse contre les attaques par empoisonnement des données. Dans une deuxième partie de cette thèse, nous explorons les moyens de relever d'autres défis liés à la mobilité des clients et au changement de concept dans les distributions de données. De tels défis nécessitent de nouvelles mesures pour être traités. En conséquence, nous concevons un processus basé sur les clusters pour le FL dans les réseaux véhiculaires. Le processus proposé est basé sur la formation minutieuse de clusters pour contourner la congestion de la communication et est capable de traiter différents modèles en parallèle. Dans la dernière partie de cette thèse, nous démontrons le potentiel de FL dans un cas d'utilisation réel impliquant la prévision à court terme de la puissance électrique dans un réseau intelligent. Nous proposons une architecture permettant l'utilisation de FL pour encourager la collaboration entre les membres de la communauté et nous montrons son importance pour l'entraînement des modèles et la réduction du coût de communication à travers des résultats numériques.Abstract : Artificial intelligence (AI) and Edge computing (EC) have enabled various applications ranging from smart home, to intelligent manufacturing, and smart cities. This progress was fueled mainly by the availability of more data, abundance of computing power, and the progress of several compression techniques. However, the main advances are in relation to deploying cloud-trained machine learning (ML) models on edge devices. This premise requires that all data generated by end devices be sent to a centralized server, thus raising several privacy concerns and creating significant communication overhead. Accordingly, paving the last mile of AI on EC requires pushing the training of ML models to the edge of the network. Federated learning (FL) has emerged as a promising technique for the collaborative training of ML models on edge devices. The devices train a globally shared model on their locally stored data and only share the resulting parameters with a centralized entity. However, to enable FL in wireless edge networks, several challenges inherited from both AI and EC need to be addressed. In particular, challenges related to the statistical heterogeneity of the data across the devices alongside the scarcity and the heterogeneity of the resources require particular attention. The goal of this thesis is to propose ways to address these challenges and to evaluate the potential of FL in future applications. In the first part of this thesis, the focus is on incorporating the data properties of FL in handling the participation and resource allocation of devices in FL. We start by identifying data diversity measures allowing us to evaluate the richness of local datasets in different applications. Then, we design a diversity indicator allowing us to give more priority to clients with more informative data. An iterative algorithm is then proposed to jointly select clients and allocate communication resources. This algorithm accelerates the training and reduces the overall needed time and energy. Furthermore, the proposed diversity indicator is reinforced with a reputation system to avoid malicious clients, thus enhancing its robustness against poisoning attacks. In the second part of this thesis, we explore ways to tackle other challenges related to the mobility of the clients and concept-shift in data distributions. Such challenges require new measures to be handled. Accordingly, we design a cluster-based process for FL for the particular case of vehicular networks. The proposed process is based on careful clusterformation to bypass the communication bottleneck and is able to handle different models in parallel. In the last part of this thesis, we demonstrate the potential of FL in a real use-case involving short-term forecasting of electrical power in smart grid. We propose an architecture empowered with FL to encourage the collaboration among community members and show its importance for both training and judicious use of communication resources through numerical results

    Towards Fairer and More Efficient Federated Learning via Multidimensional Personalized Edge Models

    Full text link
    Federated learning (FL) is an emerging technique that trains massive and geographically distributed edge data while maintaining privacy. However, FL has inherent challenges in terms of fairness and computational efficiency due to the rising heterogeneity of edges, and thus usually results in sub-optimal performance in recent state-of-the-art (SOTA) solutions. In this paper, we propose a Customized Federated Learning (CFL) system to eliminate FL heterogeneity from multiple dimensions. Specifically, CFL tailors personalized models from the specially designed global model for each client jointly guided by an online trained model-search helper and a novel aggregation algorithm. Extensive experiments demonstrate that CFL has full-stack advantages for both FL training and edge reasoning and significantly improves the SOTA performance w.r.t. model accuracy (up to 7.2% in the non-heterogeneous environment and up to 21.8% in the heterogeneous environment), efficiency, and FL fairness.Comment: 8 pages, 7 figure

    A Decade of Research in Fog computing: Relevance, Challenges, and Future Directions

    Full text link
    Recent developments in the Internet of Things (IoT) and real-time applications, have led to the unprecedented growth in the connected devices and their generated data. Traditionally, this sensor data is transferred and processed at the cloud, and the control signals are sent back to the relevant actuators, as part of the IoT applications. This cloud-centric IoT model, resulted in increased latencies and network load, and compromised privacy. To address these problems, Fog Computing was coined by Cisco in 2012, a decade ago, which utilizes proximal computational resources for processing the sensor data. Ever since its proposal, fog computing has attracted significant attention and the research fraternity focused at addressing different challenges such as fog frameworks, simulators, resource management, placement strategies, quality of service aspects, fog economics etc. However, after a decade of research, we still do not see large-scale deployments of public/private fog networks, which can be utilized in realizing interesting IoT applications. In the literature, we only see pilot case studies and small-scale testbeds, and utilization of simulators for demonstrating scale of the specified models addressing the respective technical challenges. There are several reasons for this, and most importantly, fog computing did not present a clear business case for the companies and participating individuals yet. This paper summarizes the technical, non-functional and economic challenges, which have been posing hurdles in adopting fog computing, by consolidating them across different clusters. The paper also summarizes the relevant academic and industrial contributions in addressing these challenges and provides future research directions in realizing real-time fog computing applications, also considering the emerging trends such as federated learning and quantum computing.Comment: Accepted for publication at Wiley Software: Practice and Experience journa
    • …
    corecore