9,276 research outputs found

    Effect preservation in transaction processing in rule triggering systems

    Get PDF
    Rules provide an expressive means for implementing database behavior: They cope with changes and their ramifications. Rules are commonly used for integrity enforcement, i.e., for repairing database actions in a way that integrity constraints are kept. Yet, Rule Triggering Systems fall short in enforcing effect preservation, i.e., guaranteeing that repairing events do not undo each other, and in particular, do not undo the original triggering event. A method for enforcement of effect preservation on updates in general rule triggering systems is suggested. The method derives transactions from rules, and then splits the work between compile time and run time. At compile time, a data structure is constructed, that analyzes the execution sequences of a transaction and computes minimal conditions for effect preservation. The transaction code is augmented with instructions that navigate along the data structure and test the computed minimal conditions. This method produces minimal effect preserving transactions, and under certain conditions, provides meaningful improvement over the quadratic overhead of pure run time procedures. For transactions without loops, the run time overhead is linear in the size of the transaction, and for general transactions, the run time overhead depends linearly on the length of the execution sequence and the number of loop repetitions. The method is currently being implemented within a traditional database system

    Error-Bounded and Feature Preserving Surface Remeshing with Minimal Angle Improvement

    Get PDF
    The typical goal of surface remeshing consists in finding a mesh that is (1) geometrically faithful to the original geometry, (2) as coarse as possible to obtain a low-complexity representation and (3) free of bad elements that would hamper the desired application. In this paper, we design an algorithm to address all three optimization goals simultaneously. The user specifies desired bounds on approximation error {\delta}, minimal interior angle {\theta} and maximum mesh complexity N (number of vertices). Since such a desired mesh might not even exist, our optimization framework treats only the approximation error bound {\delta} as a hard constraint and the other two criteria as optimization goals. More specifically, we iteratively perform carefully prioritized local operators, whenever they do not violate the approximation error bound and improve the mesh otherwise. In this way our optimization framework greedily searches for the coarsest mesh with minimal interior angle above {\theta} and approximation error bounded by {\delta}. Fast runtime is enabled by a local approximation error estimation, while implicit feature preservation is obtained by specifically designed vertex relocation operators. Experiments show that our approach delivers high-quality meshes with implicitly preserved features and better balances between geometric fidelity, mesh complexity and element quality than the state-of-the-art.Comment: 14 pages, 20 figures. Submitted to IEEE Transactions on Visualization and Computer Graphic

    Acta Cybernetica : Volume 18. Number 4.

    Get PDF

    BPGrad: Towards Global Optimality in Deep Learning via Branch and Pruning

    Full text link
    Understanding the global optimality in deep learning (DL) has been attracting more and more attention recently. Conventional DL solvers, however, have not been developed intentionally to seek for such global optimality. In this paper we propose a novel approximation algorithm, BPGrad, towards optimizing deep models globally via branch and pruning. Our BPGrad algorithm is based on the assumption of Lipschitz continuity in DL, and as a result it can adaptively determine the step size for current gradient given the history of previous updates, wherein theoretically no smaller steps can achieve the global optimality. We prove that, by repeating such branch-and-pruning procedure, we can locate the global optimality within finite iterations. Empirically an efficient solver based on BPGrad for DL is proposed as well, and it outperforms conventional DL solvers such as Adagrad, Adadelta, RMSProp, and Adam in the tasks of object recognition, detection, and segmentation

    A Systematic Approach to Constructing Incremental Topology Control Algorithms Using Graph Transformation

    Full text link
    Communication networks form the backbone of our society. Topology control algorithms optimize the topology of such communication networks. Due to the importance of communication networks, a topology control algorithm should guarantee certain required consistency properties (e.g., connectivity of the topology), while achieving desired optimization properties (e.g., a bounded number of neighbors). Real-world topologies are dynamic (e.g., because nodes join, leave, or move within the network), which requires topology control algorithms to operate in an incremental way, i.e., based on the recently introduced modifications of a topology. Visual programming and specification languages are a proven means for specifying the structure as well as consistency and optimization properties of topologies. In this paper, we present a novel methodology, based on a visual graph transformation and graph constraint language, for developing incremental topology control algorithms that are guaranteed to fulfill a set of specified consistency and optimization constraints. More specifically, we model the possible modifications of a topology control algorithm and the environment using graph transformation rules, and we describe consistency and optimization properties using graph constraints. On this basis, we apply and extend a well-known constructive approach to derive refined graph transformation rules that preserve these graph constraints. We apply our methodology to re-engineer an established topology control algorithm, kTC, and evaluate it in a network simulation study to show the practical applicability of our approachComment: This document corresponds to the accepted manuscript of the referenced journal articl

    Automatic generation of simplified weakest preconditions for integrity constraint verification

    Get PDF
    Given a constraint cc assumed to hold on a database BB and an update uu to be performed on BB, we address the following question: will cc still hold after uu is performed? When BB is a relational database, we define a confluent terminating rewriting system which, starting from cc and uu, automatically derives a simplified weakest precondition wp(c,u)wp(c,u) such that, whenever BB satisfies wp(c,u)wp(c,u), then the updated database u(B)u(B) will satisfy cc, and moreover wp(c,u)wp(c,u) is simplified in the sense that its computation depends only upon the instances of cc that may be modified by the update. We then extend the definition of a simplified wp(c,u)wp(c,u) to the case of deductive databases; we prove it using fixpoint induction

    Mechanized semantics

    Get PDF
    The goal of this lecture is to show how modern theorem provers---in this case, the Coq proof assistant---can be used to mechanize the specification of programming languages and their semantics, and to reason over individual programs and over generic program transformations, as typically found in compilers. The topics covered include: operational semantics (small-step, big-step, definitional interpreters); a simple form of denotational semantics; axiomatic semantics and Hoare logic; generation of verification conditions, with application to program proof; compilation to virtual machine code and its proof of correctness; an example of an optimizing program transformation (dead code elimination) and its proof of correctness
    • …
    corecore