
Volume 18 Number 4

ACTA
CYBERNETICA

Editor-in-Chief: János Csirik (Hungary)

Managing Editor: Zoltán Kato (Hungary)

Assistant to the Managing Editor: Attila Tanács

Associate Editors:

Luca Aceto (Iceland)
Mátyás Arató (Hungary)
Stephen L. Bloom (USA)
Hans L. Bodlaender (The Netherlands)
Wilfried Brauer (Germany)
Lothar Budach (Germany)
Horst Bunke (Switzerland)
Bruno Courcelle (France)
Tibor Csendes (Hungary)
János Demetrovics (Hungary)
Bálint Dömölki (Hungary)
Zoltán Ésik (Hungary)
Zoltán Fülöp (Hungary)

Ferenc Gécseg (Hungary)
Jozef Gruska (Slovakia)
Tibor Gyimóthy (Hungary)
Helmut Jürgensen (Canada)
Alice Kelemenová (Czech Republic)
László Lovász (Hungary)
Gheorghe Paun (Romania)
András Prékopa (Hungary)
Arto Salomaa (Finland)
László Varga (Hungary)
Heiko Vogler (Germany)
Gerhard J. Woeginger (The Netherlands)

Szeged, 2008

ACTA C Y B E R N E T I C A

I n f o r m a t i o n f o r a u t h o r s . Ac ta Cyberne t i c s publishes only original papers in t he field
of C o m p u t e r Science. Manuscr ip ts must be wri t ten in good English. Con t r ibu t ions are
accepted for review with the unders tanding t h a t the same work has not been publ ished
elsewhere. Papers previously published in conference proceedings, digests, p repr in ts are
eligible for considerat ion provided tha t the author informs the Edi to r a t t he t ime of
submission and t h a t the papers have undergone substant ial revision. If au thors have used
their own previously published material as a basis for a new submission, they are required
t o cite the previous work(s) and very clearly indicate how the new submission offers
substant ively novel or different contr ibut ions beyond those of the previously publ ished
work(s). Each submission is peer-reviewed by at least two referees. T h e length of t he
review process depends on many factors such as the availability of an Edi tor and the
t ime it takes to locate qualified reviewers. Usually, a review process takes 6 mo n t h s to
be completed. The re are no page charges. Fif ty repr ints are supplied for each art icle
published.

M a n u s c r i p t F o r m a t t i n g R e q u i r e m e n t s . All submissions mus t include a t i t le page
wi th the following elements:

• t i t le of t he paper

• au thor name(s) and affiliation

• name, address and email of t h e corresponding au thor

• An abs t rac t clearly s ta t ing the na tu re and significance of the paper . Abs t rac t s mus t
not include ma themat ica l expressions or bibliographic references.

References should appear in a separa te bibliography a t the end of the paper , wi th
i tems in a lphabet ical order referred to by numerals in square brackets. Please prepare your
submission as one single PostScr ip t or P D F file including all e lements of the manusc r ip t
(t i t le page, main text , i l lustrations, bibliography, etc.). Manuscr ip ts must be submi t t ed by
email as a single a t t a chmen t to ei ther the most competent Edi tor , the Managing Edi tor ,
or t h e Editor-in-Chief. In addi t ion, your email has to contain t he information appea r ing
on the t i t le page as plain ASCII tex t . W h e n your paper is accepted for publ icat ion, you
will be asked to send t h e complete electronic version of your manuscr ip t to the Manag ing
Edi tor . For technical reasons we can only accept files in format .

S u b s c r i p t i o n I n f o r m a t i o n . Ac ta Cybernet ica is published by the Ins t i tu te of Infor-
matics, University of Szeged, Hungary. Each volume consists of four issues, two issues
are published in a calendar year. Subscript ion rates for one issue are as follows: 5000 F t
within Hungary, € 4 0 outside Hungary. Special rates for d is t r ibutors and bulk orders are
available upon request from the publisher. Pr inted issues are delivered by surface mail
in Europe , and by air mail t o overseas countries. Claims for missing issues are accepted
within six months from the publicat ion date . Please address all requests to:

Ac ta Cybernet ica , Ins t i tu te of Informatics , University of Szeged
P.O. Box 652, H-6701 Szeged, Hungary
Tel: + 3 6 62 546 396, Fax: + 3 6 62 546 397, Email: a c t a S i n f . u - s z e g e d . h u

W e b a c c e s s . T h e above informations along with the contents of past issues are available
a t t he Acta Cyberne t ica homepage h t t p : / / w w u . i n f . u - s z e g e d . h u / a c t a c y b e r n e t i c a / .

http://wwu.inf.u-szeged.hu/actacybernetica/

E D I T O R I A L B O A R D

Editor-in-Chief: Jänos Csirik
Department of Computer Algorithms
and Artificial Intelligence
University of Szeged
Szeged, Hungary
csi rik@i nf. u-szeged. h u

Managing Editor: Zoltan K a t o
Department of Image Processing
and Computer Graphics
University of Szeged
Szeged, Hungary
kato@inf.u-szeged.hu

Assistant to the Managing Editor:

A t t i l a Tanâcs
Department of Image Processing
and Computer Graphics
University of Szeged, Szeged, Hungary
ta n acs@i nf. u-szeged. H u

Associate Editors:

Luca A c e t o
School of Computer Science
Reykjavik University
Reykjavik, Iceland
luca@ru.is

Mátyás Arató
Faculty of Informatics
University of Debrecen
Debrecen, Hungary
arato@inf.unideb.hu

Stephen L. B l o o m
Computer Science Department
Stevens Institute of Technology
New Jersey, USA
bloom@cs.stevens-tech.edu

Hans L. Bodlaender
Institute of Information and
Computing Sciences
Utrecht University
Utrect, The Netherlands
hansb@cs.uu.nl

Wilfried Brauer
Institut für Informatik
Technische Universität München
Garching bei München, Germany
brauer@informatik.tu-muenchen.de

Lothar B u d a c h
Department of Computer Science
University of Potsdam
Potsdam, Germany
lbudach@haiti.cs.uni-potsdam.de

Horst B u n k e
Institute of Computer Science and
Applied Mathematics
University of Bern
Bern, Switzerland
bunke@iam.unibe.ch

B r u n o Courcel le
LaBRI
Talence Cedex, Prance
courcell@labri.u-bordeaux.fr

Tibor Csendes
Department of Applied Informatics
University of Szeged
Szeged, Hungary
csendes@inf.u-szeged.hu

J&nos D e m e t r o v i c s
MTA SZTAKI
Budapest, Hungary
demetrovics@sztaki.hu

mailto:kato@inf.u-szeged.hu
mailto:luca@ru.is
mailto:arato@inf.unideb.hu
mailto:bloom@cs.stevens-tech.edu
mailto:hansb@cs.uu.nl
mailto:brauer@informatik.tu-muenchen.de
mailto:lbudach@haiti.cs.uni-potsdam.de
mailto:bunke@iam.unibe.ch
mailto:courcell@labri.u-bordeaux.fr
mailto:csendes@inf.u-szeged.hu
mailto:demetrovics@sztaki.hu

Bálint Dömölki
IQSOFT
Budapest, Hungary
domolki@iqsoft.hu

Zoltán Ésik
Department of Foundations of
Computer Science
University of Szeged
Szeged, Hungary
ze@inf.u-szeged.hu

Zoltán Fülöp
Department of Foundations of
Computer Science
University of Szeged
Szeged, Hungary
fulop@inf.u-szeged.hu

Ferenc Gécseg
Department of Computer Algorithms
and Artificial Intelligence
University of Szeged
Szeged, Hungary
gecseg@i nf. u-szeged. h u

Jozef Gruska
Institute of Informatics/Mathematics
Slovak Academy of Science
Bratislava, Slovakia
gruska@savba.sk

Tibor Gyimóthy
Department of Software Engineering
University of Szeged
Szeged, Hungary
gyimothy@inf.u-szeged.hu

Helmut Jürgensen
Department of Computer Science
Middlesex College
The University of Western Ontario
London, Canada
helmut@csd.uwo.ca

Alice Kelemenová
Institute of Computer Science
Silesian University at Opava
Opava, Czech Republic
Alica.Kelemenova@fpf.slu.cz

László Lovász
Department of Computer Science
Eötvös Loránd University
Budapest, Hungary
lovasz@cs.elte.hu

Gheorghe Páun
Institute of Mathematics of the
Romanian Academy
Bucharest, Romania
George.Paun@imar.ro

András Prékopa
Department of Operations Research
Eötvös Loránd University
Budapest, Hungary
prekopa@cs.elte.hu

Arto Salomaa
Department of Mathematics
University of Turku
Turku, Finland
asalomaa@utu.fi

László Varga
Department of Software Technology
and Methodology
Eötvös Loránd University
Budapest, Hungary
varga@ludens.elte.hu

Heiko Vogler
Department of Computer Science
Dresden University of Technology
Dresden, Germany
vogler@inf.tu-dresden.de

Gerhard J. Woeginger
Department of Mathematics and
Computer Science
Eindhoven University of Technology
Eindhoven, The Netherlands
gwoegi@win.tue.nl

mailto:domolki@iqsoft.hu
mailto:ze@inf.u-szeged.hu
mailto:fulop@inf.u-szeged.hu
mailto:gruska@savba.sk
mailto:gyimothy@inf.u-szeged.hu
mailto:helmut@csd.uwo.ca
mailto:Alica.Kelemenova@fpf.slu.cz
mailto:lovasz@cs.elte.hu
mailto:George.Paun@imar.ro
mailto:prekopa@cs.elte.hu
mailto:asalomaa@utu.fi
mailto:varga@ludens.elte.hu
mailto:vogler@inf.tu-dresden.de
mailto:gwoegi@win.tue.nl

INTELLIGENT SYSTEMS 2 0 0 7
SECOND SYMPOSIUM OF YOUNG

SCIENTISTS

Selected Papers

Guest Editors:

Tibor Gregorics

Department of Software Technology
and Methodology
Eötvös Loránd University
Budapest, Hungary
gregorics@inf.elte.hu

Péter Szeredi

Department of Computer Science
and Information Theory
Budapest University of Technology
and Economics
Budapest, Hungary
szeredi@cs.bme.hu

Bál int Molnár

Department of Information Systems
Corvinus University of Budapest
Budapest, Hungary
molnar@informatika.bke.hu

Edit Sántáné-Tóth

Department of Software Technology
and Methodology
Eötvös Loránd University
Budapest, Hungary
santa@inf.elte.hu

Zoltán V á m o s s y

Institute of Software Technology
Budapest Tech
Budapest, Hungary
vamossy.zoltan@nik.bmf.hu

László Zsolt Varga

System Development Department
Computer and Automation Research
Institute of the Hungarian Academy
of Sciences (MTA SZTAKI)
Budapest, Hungary

laszlo.varga@sztaki.hu

mailto:gregorics@inf.elte.hu
mailto:szeredi@cs.bme.hu
mailto:molnar@informatika.bke.hu
mailto:santa@inf.elte.hu
mailto:vamossy.zoltan@nik.bmf.hu
mailto:laszlo.varga@sztaki.hu

Preface

This issue of Acta Cybernetica contains eight papers originally presented at the
Second Symposium of Young Scientists, entitled Intelligent Systems 2007, held in
Budapest, on November 23, 2007. The Symposium, with the Hungarian acronym
IRFIX'07, was organised by the Artificial Intelligence Section of the John von Neu-
mann Computer Society (JvNCS), the Hungarian member of the European Coordi-
nating Committee for Artificial Intelligence (ECCAI). The Programme Committee
was led by the Chair of the AI Section of JvNCS, Péter Szeredi, and included the
five members of the Executive Board of the AI Section, listed as Guest Editors
below.

The main goal of the meeting was to provide a forum for young researchers
in both theoretical and practical AI for presenting their work, and to support the
exchange of ideas between the Hungarian research groups in AI. The Symposium
was part of the Hungarian Science Festival, a month-long series of lectures, confer-
ences, celebrations, and other events commemorating the founding of the Hungarian
Academy of Sciences in 1825.

The IRFIX'07 Symposium included 12 talks and 12 poster presentations, in
various subfields of Artificial Intelligence. The talks weré organised in three ses-
sions, entitled Declarative Technologies, Machine Learning, and Applications. The
conference featured an invited talk by prof. Tibor Vamos, ECCAI fellow, entitled
"What is the use of epistemology, the critical examination of knowledge?". There
were over 50 participants, representing a broad range of Hungarian higher educa-
tion and research institutions, as well as company research labs. There was a lively
discussion after each talk, which continued during the concluding poster session.

The event was hosted by the John von Neumann Faculty of Informatics of the
Budapest Tech, in its new building at Bécsi út, Budapest.

Following the Symposium the authors of both standard and poster presentations
were invited to submit papers to this Special Issue of Acta Cybernetica. Fourteen
papers were received and were then subjected to the normal refereeing process of
the Journal. The eight accepted papers cover a broad spectrum of topics, and
report on progress both in the theory and in the practice of AI. The first three
papers discuss declarative technologies and their applications: a web application
development framework (Hunyadi), a semantic approach to content management
(Kovács), and Prolog-based tools for teaching chemistry (Pántya and Zsakó). The
next three articles, all from the research group of András Lórincz, deal with various
aspects of reinforcement learning (Szita and Lorincz, Jeni et al., Gyenes et al.).
The Special Issue is concluded with two papers on AI algorithms and theory, a
novel evolutionary algorithm is presented by Lomonosov and Renner, while Kárász
discusses a mathematical model of a discrete retrial system.

559

Thanks are due to all the authors presenting their work at IRFIX'07 and espe-
cially those submitting their contributions to this Special Issue. In addition to the
Guest Editors, the following colleagues took part in the reviewing process: Tibor
Ásványi, Balázs Csanád Csaji, László Csink, Zoltán Istenes, Attila Kiss, László
Lakatos, Gergely Lukácsy, József Kázmér Tar, and Zsolt Zombori. Their help is
very much appreciated. Special thanks are due to Zoltán Vamossy, for his excellent
work on the local organisation of the event.

The Third Symposium of Young Scientists, Intelligent Systems 2008, is held on
November 28, 2008, and a similar Special Issue of Acta Cybernetica is scheduled
for 2009.

Tibor Gregorics
Bálint Molnár

Edit Sántáné-Tóth

Péter Szeredi
Zoltán Vámossy

László Zsolt Varga

Guest Editors
Members of the Executive Board of the
Artificial Intelligence Section of JvNCS

560

Acta Cybernetica 18 (2008) 561-578.

Prosper: Developing Web Applications Strongly
Integrated with Prolog

Levente Hunyadi*

A b s t r a c t

Separat ing presenta t ion and application logic, defining presenta t ion in a
declarative way and au toma t ing recurring tasks are fundamen ta l issues in
rapid web appl icat ion development . Albeit Prolog is widely employed in
intelligent systems and knowledge discovery, creat ing a web interface for Pro-
log has been a cumbersome task producing poorly mainta inable code, which
hinders harnessing the power of Prolog in information systems. Th i s paper
presents a f ramework called Prosper t h a t facilitates developing new or extend-
ing existing Prolog applicat ions wi th a presentat ion front-end. T h e f ramework
relies on Prolog to t he grea tes t possible extent , suppor ts code re-use, and in-
tegra tes easily wi th web servers. As a result, Prosper simplifies t h e creat ion
of complex, main ta inable web applicat ions running either independent ly or
as pa r t of a heterogeneous system wi thout leaving the Prolog domain.

K e y w o r d s : Prolog, web applicat ion development framework, applicat ion
integration, XML, heterogeneous systems

1 Introduction
In developing information systems, modelling complex business processes is a chal-
lenging task. The model has to cater for many exceptions to a general rule, has to
adapt to current business demands and has to be able to cope with large volumes
of heterogeneous data sources. Flexibility and quick development are key issues.
On the other hand, Prolog can ease development in a variety of ways. By straight-
forward formalisation of business rules, it yields verifiable code that is still close to
the application domain. Extended BNF-style grammars contribute to the flexibil-
ity of data transformations between different data pools. In addition, constraint
programming and intelligent reasoning based on background knowledge are other
fields where compact Prolog programs can be formulated for complex problems. In
other words, the expressiveness of Prolog can contribute greatly to the development
of information systems.

'Budapest University of Technology and Economics, Department of Automation and Applied
Informatics, H - l l l l Budapest, Goldmann György tér 3., Hungary. E-mail: hnnyadiaaut.bme.hu

562 Levente Hunyadi

Using Prolog in information systems inevitably requires integration with other
parts of a larger system. However, the execution model of Prolog and imperative
languages differs substantially, making it difficult to embed Prolog code in a pro-
gram written in C # , Java or C + + . Even though libraries [16, 14] are available to
support integration to some degree, the resultant code is often very obscure, type
safety is not enforced and debugging code is problematic.

One solution to this problem is presentation-level integration, indicated by the
proliferation of XML and web services. In this approach, it is not the applications
themselves that are integrated but output produced by one application is consumed
by the other, allowing the use of completely different programming languages in
the process.

An interesting application field of presentation-level integration is component-
based development of web portals. In this case, portals are not built as monolithic
applications but are composed of small, fairly independent components, called web
parts or portlets. Each component generates presentation-level code (e.g. XHTML or
XML), which is combined into a whole by a web portal framework. In this scenario,
Prolog can be used to generate parts of the portal that exhibit intelligent behaviour
while the rest can be developed by means of conventional imperative programming
languages.

The idea of generating HTML or XML output in Prolog is not new: several
frameworks [5, 14, 10, 11] exist that give excellent support for structured display
of data in web pages. However, neither of them promotes a clear definition of
presentation (i.e. how data are displayed) that is distinct from application logic
(i.e. the main job of the application). As a result, presentation and application
(or business) logic axe interleaved, which in most cases eventually leads to poor
maintenance. In addition, complex presentation logic, such displaying parts of a
page based on a condition, or displaying variations of a given content repetitively
for each element of a list are tasks that cannot be accomplished in a generic manner.
Moreover, it would be desirable that these tasks be purely restricted to authoring
XHTML or XML documents, possibly by using special annotation.

The proposed system, named PROlog Server Pages Extensible aRchitecture (or
Prosper in short) [8], aims to combine the advantages of conventional web applica-
tion development methods (such as separation of presentation and application logic
and declarative definition of presentation by means of XML) with the potential in
the Prolog language in order to create more intelligent web portals. It supports
integrating Prolog applications in existing information systems as well as extending
existing Prolog applications with a web interface.

Prosper is implemented mainly in swi-Prolog and partially in C. swi-Prolog is
compliant to part one of the Prolog ISO standard and has comprehensive support for
multi-threading. ISO-compliance caters for portability while multi-threading helps
harness the potential in parallel execution. Network communication interfaces have
been written in C to ensure maximum performance. The Prosper project (including
full source code) is available at SourceForge.net [13].

The rest of the paper is structured as follows. Section 2 gives a brief intro-
duction to methodologies and technologies the proposed framework makes use of.

Prosper: Developing Web Applications Strongly Integrated with Prolog 563

Section 3 elaborates on design trade-offs, inspects related work and analyses possi-
ble approaches to create a framework for developing a web front-end with special
attention to the chosen approach. In Section 4, the architecture of the proposed
framework is laid out. Communication of remote parties over a network can be
broken down into a series of requests and associated replies: Section 5 traces the
way a request produces a reply in Prosper by means of an example. Section 6
gives some implementation details and performance metrics while Section 7, with
which this paper concludes, summarises contributions and outlines possible ways
of extension and future work.

Throughout the paper, knowledge of Prolog with basics on SGML-languages
(especially XML [3] and (X)HTML [12]) and some experience in developing web ap-
plications with an application development framework (such as ASP.NET [9] and/or
Java [2]) is assumed. One should consult the indicated sources for further details
on these technologies.

2 Background
Essentially, the web operates in a request-and-reply manner according to the Hyper-
Text Transfer Protocol [6]. First, the client formulates a request querying a docu-
ment. The request is received by the server, which looks up the requested document
in its file system and returns it to the client in reply. In the case of dynamic content
generation, the request received by the server does not correspond to a file system
entry but is forwarded to a possibly external application that outputs the reply
based on the request context (request parameters, session information, user prefer-
ences, etc.). Web application development frameworks are inserted into the chain
either in place of the server (e.g. Java web solutions) or between the server and
the external application (e.g. the ASP.NET framework), and expose a programmer-
friendly view of the web environment to the application developer.

Web frameworks taking the place of the server require a thorough implementa-
tion to provide general web service functionality (e.g. include serving static content)
with sufficient security. For this end, it is often desirable to use a trusted web server
behind which applications are placed rather than using a separate endpoint for each
application. In this scenario, frameworks are often connected to servers by means
of server APIs (application programming interfaces). Here, the application is loaded
as a module of the server and the server forwards requests that match some criteria
(e.g. URL pattern or extension) to the application instead of processing them itself.
This is called strong coupling.

Common Gateway Interface (CGI) describes a protocol that provides loose cou-
pling. In order to process matching requests, the server invokes an external applica-
tion (i.e. one that is not integrated with the server) with the given request context
(query parameters, user settings, etc.) and returns the output it produces to the
client. Loose coupling separates the operating system processes involved, which
therefore minimally affect each other, increasing flexibility. In addition, fatal errors
in the application do not endanger the server. Nonetheless, repetitive invocation of

564 Levente Hunyadi

Figure 1: The web service chain. The dashed rectangle indicates the boundary of
process space, continuous arrows refer to persistent, while dashed arrows to non-
persistent connections.

an external program can take up valuable resources (by successive process initiali-
sations, re-opening database connections, etc.). FastCGi [4] is a persistent version
of the CGI protocol that allows applications to remain active after serving a request
(thereby maintaining database connections, etc.) yet preserving their independence
(i.e. no modification of server internals is required and the application works with
web servers of multiple vendors).

The request and response chains and the relationships of the various application
types are shown in Figure 1.

Applications that process many simultaneous requests have to be multi-threaded
so that processing a request does not keep others waiting. Hence, each request is
assigned a separate newly initialised thread. However, on high demand this can lead
to the so-called thrashing, where threads with already assigned jobs lose computing
resources to dozens of rapidly launched new threads, eventually leading to no thread
performing useful task. Thus, applications often make use of the worker thread
model. In this model, a constant number of threads execute concurrently. Jobs are
assigned threads from a pool, which return to the pool after the job is complete.
This allows fast processing of simultaneous requests with the elimination of thread
startup costs and stability upon high demand.

Many web development platforms make use of the model-view paradigm. In this
paradigm, application logic (what the program does) and visual presentation (how
the results are displayed) are strictly separated. Presentation is defined in a declar-
ative manner, often by means of a markup document (such as XML or XHTML),
albeit additional code that drives the presentation layer (such as data binding or
events) may be required in a code-behind file. On the other hand, application logic
is written in the native language of the platform. While presentation may reference
objects in application logic, the reverse is not true. This allows presentation and ap-
plication logic to be created (more) independently and caters for easier maintenance
of both. While not every web development framework makes it compulsory, the
pattern can be considered fairly wide-spread, and is recognised as a key condition
to creating complex web applications.

Prosper: Developing Web Applications Strongly Integrated with Prolog 565

env (html, [] , [
env(body, [lang=hu],

heading(l, t i t l e) ,
t ex t ,
ref('http://www.aut.bme.hu', hyperlink)

])
])

<html>
<body lang="hu">

<hl>title</hl>
text
hyperlink

</body>
</html>

Figure 2: A PiLLoW Prolog term (above) and the equivalent HTML document it
produces (below, ignoring white space).

3 Possible approaches and related work
In order to expose a web front-end, an application has to emit XML or (X)HTML
documents based on application logic. This can be accomplished in two different
ways:

1. producing and emitting presentation markup code directly using the platform
language, or

2. embedding snippets of code written in the platform language within presen-
tation markup code.

Generating web content directly in a Prolog program (1st approach), possibly
with the help of general-purpose libraries, is fairly straightforward. The PiLLoW
library [5], available in many Prolog implementations, is a notable representative of
this approach. As exemplified by the library, the close relationship of Prolog terms
and the hierarchical structure of HTML easily lends itself to composing the web page
in the form of terms (Figure 2), which are then transformed to and output as plain
text on demand. By means of uninstantiated variables in the term representation,
simple templates can be created.

Nevertheless, a Prolog term representation is inherently not visual and inte-
grates poorly into existing web authoring tools (such as web page designers). More-
over, the approach does not promote clear separation of application logic and pre-
sentation, so that programmers are tempted to violate the model-view paradigm,
which eventually leads to more difficult maintenance. Also, a stand-alone Prolog
server replying to requests on a dedicated port is often assumed, which is hard to

566 Levente Hunyadi

<?, member(number=N, Get),
f o r a l l ((between(1, N, X), f ac to r i a l (X , Y)) ,

?>
The f a c t o r i a l of <?= X ?> i s <?= Y ?>.</ l i>

<?) , ?>

Figure 3: An excerpt from a dynamically generated HTML server page composed
with embedded Prolog escape sequences. The snippet lists all factorials from 1 to
N. N is specified as a query string parameter.

incorporate into a complex environment with an existing web server. However, a
library such as PiLLoW can relieve the programmer from the majority of recurring
tasks and can thus contribute greatly to web application development, especially
in simple scenarios. Commonly aided tasks include parsing HTTP GET and POST
parameters, generating forms, HTTP cookies and session maintenance.

Embedding pieces of Prolog in the presentation layer (2nd approach) is another
natural approach, which can be thought of as the "inside out" version of the pre-
vious one, motivated by various successful server-side technologies such as PHP [1].
Here, web pages are composed as (X)HTML rather than as Prolog terms, and Pro-
log calls are inserted in the text by means of special escape sequences. The helper
library parses the page into a predicate consisting of a series of write/1 s ta tements
and the equivalents of the embedded Prolog calls. Many projects that take this
approach exist in the Prolog domain, [10] and [11] are two such examples.

Albeit simple, this approach is generally insufficient for larger projects as it is
weakly structured. Apparently, even repetitively displaying a variation of a block
of text as in Figure 3 produces code that is difficult to comprehend. More complex
nesting is even harder to implement merely by means of skipping in and out of
escaped blocks. Clearly, escape sequences lead to interleaved application logic and
presentation, and are hence extremely difficult to maintain or extend.

Another variant of the second approach is composing web pages in an exter-
nal framework, such as JSP or ASP.NET, and embedding foreign language calls to
Prolog. PrologBeans for Java and PrologBeans.NET for the .NET platform [14],
both available as s icstus extensions, are representatives of this variant. Here, all
web-related issues are handled by an external framework, which provides optimised
solutions to general patterns in web authoring and offers rapid application devel-
opment. In order to call Prolog predicates, however, wrapper objects, written in
the native language of the framework, are required tha t marshal calls to the Prolog
engine. In fact, from a design perspective, the approach entails two parts, so-called
stubs. The wrapper object constitutes the first stub, while its Prolog counterpart
the other. The stubs maintain a TCP or piped connection to each other through
which Prolog call parameters and results are transmitted, usually as a stream of
characters.

While practical in harnessing the benefits of a web development framework,
this approach undoubtedly requires experience in programming both Prolog and the

Prosper: Developing Web Applications Strongly Integrated with Prolog 567

<html logic-module="factorial">
<hl>Factorial example</hl>
<psp:assign var="E" expr="{atom_number(http.get(number))}">

<psp:for-all function="between(l, E)" iterator="N">
<psp: insert function="factorial(N)11 />

</psp:for-all>
</psp:assign>

</html>

: - module(factorial, [fac tor ia l /2]) ,
factorial(Number, Factorial) : - . . .

Figure 4: The Prosper example document factorial.xhtml (above) and the Prolog
module iactorial.pl associated with it (below). Some XHTML elements (e.g. ul) have
been omitted and full namespaces are not shown for brevity.

external encapsulating language. From a performance point of view, stubs introduce
a further level of indirection into the web service chain and often operate inefficiently
because the Prolog and the foreign language execution model are vastly different.
Lastly, debugging Prolog embedded in foreign code is substantially harder, which
can greatly increase development time.

Prosper offers a balanced mix of the two main approaches. It is a variant of
the first approach in the sense that the majority of request processing and con-
tent generation is performed in Prolog or Prolog-integrated libraries. Only Prolog
programming experience is required and development is eased through improved
debugging. On the other hand, it is closer to the second approach in the sense that
it adopts the model-view paradigm of rapid application development frameworks
by splitting web applications into an application logic and a presentation layer.
Application logic is coded as a regular Prolog module, while presentation is an
(X)HTML document with some elements and attributes carrying extra information
for Prosper to realise so-called visual transformation rules (to be explained in de-
tail). Figure 4 shows a web page and the associated application logic that lists all
factorials up to N, functionally equivalent to the web page generated by the snip-
pet in Figure 3. Despite its verbosity, the presentation layer is not interleaved with
application logic and retains its structure as a regular XHTML document. Roughly
speaking, Prosper can be viewed as an extension of PiLLoW with a more robust
visual front-end. Section 4 elaborates on the design of the proposed framework.

f
4 Architectural overview
From a design perspective, Prosper can be decomposed into two major layers (Fig-
ure 5). The lower layer, Prolog Web Container, either acts as a stand-alone web
server or maintains a direct persistent connection to the web server through the

568 Levente Hunyadi

Figure 5: The architecture of the proposed framework.

FastCGi protocol. The FastCGl module transmits data to and from the Prolog
framework. In addition to acting as or communicating with the web server, Pro-
log Web Container parses headers and payload associated with HTTP requests into
Prolog terms and generates them for replies, maintains a worker thread pool and
assigns jobs to threads. The primary task of the container is to isolate the com-
munication protocol and provide a natural view of request and session data for the
programmer. In accordance, the container provides similar facilities as other Pro-
log libraries in use, PiLLoW in particular, i.e. reversing content encoding, parsing
query strings, etc.

Prolog Server Pages, built on top of the container, defines an XML-based doc-
ument model. The conventional XML document model is extended with special
elements belonging to a dedicated namespace each of which realises a transforma-
tion rule. A transformation rule describes how the (visual) content of an element
is transformed based on attributes, and the local and global context of the given
element. Local context corresponds to variables instantiated in server documents,
while global context refers to request context as extracted by Prolog Web Container
and exposed as Prolog predicates by the context assertion module. In assigning val-
ues to local variables, Prosper offers the so-called expression language. Expression
language can be seen as an extension to the is/2 predicate to include basic atom
manipulation, request context variables and user-defined functions.1

Prosper includes a predefined set of special elements implementing the most
common transformation rules such as conditionals and iteration constructs. How-
ever, the set of transformation rules is not restricted. Relying on the extension

1In this paper, a Prolog function corresponds to a predicate all of whose arguments are strictly
inbound except for the last, which is strictly outbound, and which should be unified with a ground
term and is interpreted as the return value of the function. This corresponds to the Mercury [7]
definition of function.

Prosper: Developing Web Applications Strongly Integrated with Prolog 569

infrastructure, the user may create new modules that contain hook predicates reg-
istered for steps associated with reply generation. Modules correspond to XML
namespaces and exported hook predicate names to element names in server page
documents. In fact, it is via hook predicates that the predefined transformation
rules are realised in the framework, which means - in the extreme case - that they
can also be redefined. Special elements and their implementor hook predicates are
declared in a configuration file. The configuration file also holds connection set-
tings to the web server and parallel execution parameters required by Prolog Web
Container.

Apart from the visual part of Prolog Server Pages, the logic modules give real
power to the architecture. While independent from Prolog Server Pages documents,
they provide the code-behind that encapsulates true application logic as conven-
tional Prolog modules. Server pages can reference code-behind in a variety of ways:
assign server page variables based on application logic, test for the satisfiability of
predicates (goals), and formulate conditions using the return value of functions,
each of which may affect visual layout.

Prolog modules constituting application code reside in a dedicated directory,
the so-called logic module repository. Similarly, Prosper maintains a document
repository, which is the default location to search for server pages.

5 Generating a reply
In order to get a deeper insight into the internals of the framework, in this sec-
tion we will trace how a request dynamically produces a reply in Prosper. As an
example, let us suppose that the user has entered a URL into his browser's loca-
tion bar that corresponds to a web page which lists all factorials up to 3 (e.g.
http://prosper.cs.bme.hu/faetorial.psp?number=3). Albeit the example is simple,
it will illustrate the different stages of the service chain.

Once received by the web server, based on configuration settings, the server
detects that this HTTP request is to be forwarded to Prosper for reply generation.
It dispatches a FastCGl request, which is intercepted by one of the idle Prolog Web
Container worker threads.2 The thread extracts the context associated with the
request as Prolog terms. The context typically includes query parameters in the
URL (typically for HTTP GET requests), HTML form data passed as payload (typically
for HTTP POST requests) and the session identifier. The Prolog representation of
the context is handed over to Prolog Server Pages. In our example, the request
context only contains GET parameters, represented by the list [number='3'].

First, Prolog Server Pages loads the document associated with the URL. The
loaded document is preprocessed into a so-called intermediate term (IT) represen-
tation. Context is then asserted into a dedicated module and the document is
evaluated. Evaluation ends with generating output, which is returned by Prolog
Web Container to the web server as a FastCGl reply (Figure 6). So-called transfor-
mation rules are associated with both the preprocessing and the evaluation phase.

2See predicate worker/1 in module prosper_scrver [13].

http://prosper.cs.bme.hu/faetorial.psp?number=3

570 Levente Hunyadi

server page
document

regular XML in
document repository

intermediate
term

a syntax-verified
representation

preprocessing

evaluated
term

depends on context

context I
derives from _ _

HTTP p ^ 1

output
document

most commonly
(X)HTML

evaluation content generation

Figure 6: The phases of reply generation for server page documents that have not
been cached.

The crucial difference is that in the preprocessing phase, no external context infor-
mation is available, while evaluation-time transformation is context-sensitive. The
aforementioned steps are elaborated below.

Loading a Prosper d o c u m e n t . The role of the loading phase3 is to fetch a
referenced document from disk and construct its Prolog XML term representation,
similar to the one used by the PiLLoW library [5].

Whenever an HTTP request corresponds to a server page that has not been
loaded, Prosper looks for the page in the document repository. Let us suppose tha t
the URL entered by the imaginary user does not correspond to a loaded document.
Therefore, the document factorial.xhtml (Figure 4) is loaded and parsed into a
Prolog XML term representation as seen in Figure 7. This representation mainly
consists of nested element/3 terms, where the arguments represent:

1. the name of the XML element after namespace resolution;

2. a list of attributes associated with the element;

3. a list of nested XML nodes as element/3 terms for XML elements or atoms for
character data.

Preprocess ing phase. The goal of the preprocessing phase,4 the next link in
the service chain, is to validate the loaded document. Preprocessing ensures tha t
special elements referenced by the document exist, they are used correctly in terms
of syntax, and that the logic module associated with the document is loaded and
compiled.

As previously mentioned, special elements correspond to transformation rules.
What the transformation rule exactly does depends on the attributes associated
with the element and its context. In our example, psp.assign, psp:for-all and

imp lemen ted in import-page/3 in module prosper.core [13].
"•implemented in markup.to.term/6 in module prosper.core [13].

Prosper: Developing Web Applications Strongly Integrated with Prolog 571

elem(html, [' logic-module'=factorial] , [
elem(hl, [] , ['Factorial example']),
elem(psp:assign, [var='E', expr='{atom_number(http_get(number))}'], [

elem(psp:for-all , [function='between(l, E) ' , i t e ra tor= 'N '] , [
elem(li, [] , [

elem(psp:insert, [funct ion='factor ia l (N) '] , [])
])

])
])

])

Figure 7: The XML term representation of the example document in Figure 4.

psp:insert are special elements, assuming the namespace psp is registered with
Prosper.5 The psp:assign special element can have a var attribute, which speci-
fies the name of the variable to introduce in the scope of the element. Similarly,
psp:insert is used with the attribute function in the example to insert a return value
but could also be used in conjunction with expr to insert the value of an expression.

However, in the preprocessing phase no context information associated with the
HTTP request is available; it has not yet been asserted. In spite of this, verifying
attributes, parsing atoms into terms, etc. are already possible. These operations
are performed by preprocessing-time hooks for each special element. A hook predi-
cate interprets element attributes and/or contents and has the following signature
(elementName denotes the name of the special element without the namespace):

elementName(+VarTypes, +Attrs, +Contents, -Terms)
Here, VarTypes propagates type information,6 Attrs is a list of Name=Value

pairs, which consists of attributes that parametrise the element. Contents is a list
of inner elements in XML term representation. Terms is the single output argument
of the predicate, which is the IT representation (preprocessed form) of the element
and is commonly bound to a single-element list of the following form:7

f extension(ModuleName:Predicate, ContentTerms)].
In this term, ContentTerms has similar semantics as Terms in the enclosing

element: it is the IT representation of the enclosed child elements. This suggests
a recursive way of operation. Indeed, albeit not compulsory, most special elements
compute their own IT representation based on that of their descendants. Predicate
corresponds to a Prolog predicate, which (augmented with some additional argu-
ments) will be called in the evaluation phase to generate output. In other words,

5 For conciseness, namespaces are not written out as full URLs, even though in the actual
implementation, they are used in that manner.

6 Although there is no strict typing scheme in Prolog, some degree of type enforcement allows
catching errors at an earlier stage.

7In fact, Terms is a list of atoms, element/3 and extension/2 terms. However, only extension/2
terms are subject to evaluation in a later phase thus Terms is usually a list with a single extension/2
element.

572 Levente Hunyadi

elem(html, [] , [
elem(hl, [] , ['Factorial example']),
extension(assign_expression('E', EL), [

extension(for.all(factorial:between(1, E)-['E'=E], 'N ') , [
elem(li, [] , [

extension(insert_function(factorial:factorial(N)-['N'=N]), [])
])

])
])

])

Figure 8: The intermediate term representation of the example document. EL
denotes the execution plan of the expression language term and is omitted for
conciseness.

Predicate is the evaluation-time transformation rule associated with the special ele-
ment parametrised with Attrs. For instance, a different Predicate is associated with
a psp:assign element if it assigns a variable based on an expression than if based
on a function call. In fact, arguments present in Attrs as an association list are
converted into positional arguments with appropriate conversions where necessary
(e.g. atoms converted to Prolog goals).

Hook predicates should never fail but should signal malformed syntax (such as
an unrecognised attribute) by throwing an exception.8 This guarantees that the
document is syntactically well-formed at the end of the preprocessing phase.

In order to better comprehend the preprocessing phase, we compare the XML
term representation of our example document in Figure 7 with its preprocessed
version in Figure 8.

In the case of the root element html, the two representations are identical,
except for the attribute logic-module. This attribute binds a conventional Prolog
module (application logic or presentation code-behind) to the Prosper document.
The exact location of the module source file is either directly specified in the logic-
module attribute as an absolute path, or it may be a relative path, in which case
it is searched for w.r.t. the module repository. Any predicates that occur in the
document are auto-qualified with the name of this module during the preprocessing
phase.

The first notable difference is psp:assign, which has been converted into an
extension/2 term, assign.expression is the name of a predicate that computes an
expression language (EL) term and assigns its value to a (server page) variable.
The scope of the variable is the enclosed contents of the psp:assign element. The
function http-get in the EL term returns the string value of a query string variable,
while atom-number, as its name suggests, converts its operand to a Prolog number.
Just as documents, EL expressions are preprocessed, yielding an execution plan,

8 The rationale behind throwing an exception is that simple failure prevents extracting the
context of the actual error, which is necessary in order to print the proper error message.

Prosper: Developing Web Applications Strongly Integrated with Prolog 573

which is not shown in Figure 8. The execution plan is a compound term that
contains

1. the uninstantiated variables in the expression, and

2. the module-qualified names of the Prolog functions to call to compute the
result.

The representation of the special element psp:for-all has also changed substan-
tially. The atom in its attribute called function has been converted into a real Prolog
term augmented with a list of uninstantiated variables in it. for-all(Function-Insts,
Variable) is a predicate that instantiates variables in Function and calls it, returning
results in a local variable. Subsequent solutions are obtained through backtracking.
Note the number of arguments to between/3 (the third, output argument is absent
and is appended automatically) and the auto-qualification.

For the sake of higher performance, Prosper caches preprocessed documents.
If a document is available in the cache, the loading and preprocessing phases are
skipped.

Request context assertion. Context information available in Prosper docu-
ments and logic modules is loaded in the request context assertion phase. The
primary goal of this phase is to expose HTTP request context (such as request pa-
rameters and session variables) to EL functions and logic module predicates in
a natural manner without having to propagate an extra argument encapsulating
the context. Predicates in the module psp store context information by means
of thread-local blackboard primitives [15]. Whenever a mutable (session) value is
modified while the request is served (e.g. a session variable is assigned to), changes
are recorded in a (thread-global) dynamic fact database at the end of the subse-
quent evaluation phase. Hence, no particular thread is associated with any session
and any worker thread may serve any request. Worker threads load current values
from the dynamic fact database into blackboard primitives before the evaluation
phase and record new values when evaluation ends.

Logic modules have access to context by calling predicates exported by the
module psp. For instance, the http-get/2 and session/2 predicates retrieve the
value of a GET and a session variable, respectively, and the predicate sessionset/2
assigns a value to a session variable.9 For maximum conformance to the Prolog
execution model, they all support backtracking, i.e. assignments to session variables
are undone upon failure in a logic module predicate.10

Evaluation phase. In the last major phase, evaluation,n the preprocessed doc-
ument is transformed w.r.t. the available request context. By the end of the evalu-
ation phase, the document has been transformed into a term representation whose
string equivalent is ready to be sent back directly to the client as response.

9For a full list, see exported predicates in module psp [13].
I 0swi-Prolog provides backtrackable destructive assignment on blackboard primitives.
1 1 Implemented in term-to.elements/3 in module prosper .extensions [13].

574 Levente Hunyadi

Prom a declarative point of view, each IT element represents an (evaluation-
time) transformation rule, influenced by

1. term contents,

2. asserted HTTP request- and session-related data that is globally accessible in
the entire document, and

3. local variables assigned by outer special elements (i.e. that encapsulate the
element to which the rule corresponds) such as psp:assign.

In the case of element/3 terms, the (recursive) transformation rule is trivial:
transformation rules are applied to each child element with the same context as
for the parent element and the evaluated form of the parent element comprises of
the combined results of these transformation rules. For extension/2 terms, recall
that the first argument corresponds to a hook predicate assembled in the prepro-
cessing phase: this is what represents the transformation rule. From a procedural
point of view, in fact, the IT representation is traversed top-down, at each depth
invoking hook predicates or the trivial transformation rule, where hook predicates
may introduce new local variables before processing the children of the term they
correspond to.

Local variables are means to store and reuse calculated data within server page
documents. In contrast to globally available da ta (loaded into the thread-local
module psp in the context assertion phase), they are accessed as Prolog variables
rather than predicates and they are confined to the server page document in which
they are introduced and may not be directly used in presentation code-behind
or application logic files. More precisely, the scope of local variables is always
restricted to the descendants of the element in which they are assigned and are
hidden by variables of the same name. Server page local variables have similar
semantics as Prolog or XSLT variables in the sense tha t they can be assigned only
once. Contrary to Prolog, however, variables cannot remain uninstantiated and are
unified immediately in the element in which they are introduced.

Figure 9 shows the evaluated version of the preprocessed document in Figure 8.
The result should not be surprising. For the elements html, hi and li, the trivial
transformation rule has been applied and they are intact except for their recursively
processed contents. The IT equivalents of special elements psp:assign, psp:for-all
and psp:insert are absent from the output but their effect is apparent. The local
variable E, which is introduced by assign-expression, has been used to instantiate
unbound variables in the function between(l, E), and the iteration variable N of
for.all has been used multiple times to call the function factorial(N). N behaves as
expected, taking a different value for each loop of the iteration.

From the perspective of the framework, local variables are in fact Name=Value
members in an association list. The association list is initially, empty for the root
element but may be extended with further members by any transformation rule, in
which case the recursively processed descendant elements see the extended list. In
our example, the evaluation-time transformation rule associated with the psp:assign

Prosper: Developing Web Applications Strongly Integrated with Prolog 575

elem(html, CD, [
elem(hl, [] , ['Factorial example']),

e lemdi , [] , [' 1 ']) ,
e lemdi , [] , [' 2 ']) ,
e lemdi , [] , [' 6 '])

])
])

Figure 9: The evaluated form of the example document.

element prepends the variable E to the name-value list, while the rule related to
psp:for-all does so with N.

6 Implementation
Prosper is implemented mainly in swi-Prolog and partially in C. The most notable
swi-specific extra services utilised by the framework are XML document parsing
and generation, blackboard primitives, multi-threading and basic thread commu-
nication.

The framework comprises of the following major components:

1. The server module implements Prolog Web Container.

2. The core module manages the lifecycle of a Prosper page. In particular, it
imports pages on demand, initiates context assertion, page preprocessing and
evaluation, and outputs error documents.

3. The context module asserts and retracts thread-local data via blackboard
primitives to expose request, session and user preference values, all of which
are manipulated through dedicated predicates of the module psp.

4. The extension module contains predicates essential to special element imple-
mentors. It includes helper predicates to aid XML attribute parsing and the
predicates element-to-terms/3 and term-td-elements/3, which realise page
preprocessing and evaluation, respectively. The latter two predicates are
called by transformation rule hooks to recursively process child elements.

5. The built-in elements module contains the predefined set of special elements,
including simple and compound conditionals, iteration constructs, variable
assignment and insertion.

6. The expression language module is responsible for expression -language exe-
cution plan generation and expression evaluation.

7. The FastCGI foreign language module, written in C, implements the FastCGl
protocol.

576 Levente Hunyadi

Table 1: Comparative performance of various frameworks.

Development tool Application model small large intensive

SICStus Prolog 3.12.5 CGI, saved state 165.78 225.33 n.a.
SWI-Prolog 5.5.33 CGI, saved state 39.47 60.17 n.a.
PrologBeans.NET ASPX 6.297 7.781 91.91
Prosper (PWC + PSP) multi-threaded FCGI 2.688 8.719 5.828
Prosper (PWC only) multi-threaded FCGI 1.938 6.953 n.a.
SWI-Prolog 5.6.27 standalone server 1.266 6.313 n.a.
static html content 0.875 1.406 n.a.

While primarily designed to increase designer and programmer effectiveness, the
proposed architecture is comparable to other Prolog-based technologies in terms of
speed. In a loopback scenario (i.e. server and client were running on the same
machine), different configurations were polled by HTTP requests with GET param-
eters. All configurations parsed the query string, computed a simple arithmetic
expression based on query parameters, and displayed results in a web page. CGI
and FastCGi-based applications (Prosper inclusive) connected to Apache/2.0.54,
.NET applications ran on the built-in web server provided with Visual Studio 2005.
Benchmarking was performed by ApacheBench 2.0.41 on an AMD Athlon64 3000+
running Microsoft Windows XP Professional SP2.

Table 1 shows cumulative response times in seconds for 1000 requests with 2
concurrent threads. In test cases small and large, responses of about sizes l k B and
50kB were requested with few embedded Prolog calls. In test case intensive, the
architectures had to call about 50 Prolog predicates in application logic to produce
a result of about 3kB in size. n.a. indicates tha t there is no overhead of a Prolog
call-intensive setup (i.e. presentation and application logic are not separated and
both are in Prolog) or it is not meaningful for the test case. Static HTML content
is included for reference, and is meant to indicate the absolute lower bound for
response time as (unlike the other scenarios) it requires no extra overhead owing
to context evaluation.

Three cases are of special interest. The standalone multi-threaded HTTP server
shipped with swi-Prolog can serve as the basis for comparing the performance of
Prolog-based frameworks. It provides convenience tools for HTTP reply generation
but intermixes presentation and application logic. The difference in speed between
Prosper with Prolog Web Container and SWI's standalone server gives an estimate
of the cost of using an intermediary FastCGl transmission. The extra overhead of
Prosper with the Prolog Server Pages document model shows the relative cost of
having a separate presentation and application logic layer. The careful reader may
also notice tha t Prosper is slower than PrologBeans.NET when large documents with
few Prolog calls are served. This is attributable to the greater efficiency ASP.NET
handles strings than Prolog handles atoms in a multi-threaded environment.

Prosper: Developing Web Applications Strongly Integrated with Prolog 577

7 Summary, perspectives for future work
In this paper, a framework that facilitates developing web-oriented Prolog applica-
tions has been presented. With a persistent multi-threaded architecture, an XML-
based document model and a set of reusable transformation rules, it provides an
efficient yet convenient way to create web applications in Prolog. Code changes re-
quired in existing Prolog modules for the sake of web presentation are minimal and
web pages constituting the presentation layer can be composed with a declarative
way of thinking in any arbitrary XML editor. Presentation and application logic are
clearly separated, thus application logic can be debugged and maintained indepen-
dently. Lastly, the framework integrates well in existing web server scenarios and
is open to extension.

As seen in the factorial example, the current implementation of Prosper gener-
ates content by traversing a term that constitutes some transformed version of the
presentation source document. Compilation of these source documents into Prolog
predicates could contribute to increased performance, especially in the case of long
documents that have considerably large tree equivalents.

Besides dynamic content generation based on Prolog application code, web ser-
vices offer another approach to integrate Prolog into complex information systems.
As Prosper provides a straightforward way to parse and generate markup content,
consuming and producing SOAP envelopes corresponding to Prolog calls and solu-
tions seems a natural future extension.

Acknowledgements
The author acknowledges the support of the Hungarian NKFP Programme for the
SINTAGMA project under grant no. 2/052/2004.

References
[lj Achour, Mehdi, Betz, Friedhelm, Dovgal, Antony, Lopes, Nuno, Richter,

Georg, Seguy, Damien, Vrana, Jakub, et al. PHP Manual. PHP Documenta-
tion Group, 2007. h t tp : / /www.php.net /manual /en/ .

[2] Armstrong, Eric et al. The J2EE 1.4 Tutorial (For Sun Java System Appli-
cation Server Platform Edition 8.1 2005Q2 UR2). Sun Microsystems, June
2005.

[3] Bray, Tim et al., editors. Extensible Markup Language (XML) 1.0. World
Wide Web Consortium, 4th edition, August 2006. http://www.w3.org/TR/
2006/REC-xml-20060816/.

[4] Brown, Mark R. FastCGI specification. Open Market, Inc., April 1996. Doc-
ument Version: 1.0.

http://www.php.net/manual/en/
http://www.w3.org/TR/

578 Levente Hunyadi

[5] Cabeza, Daniel and Hermenegildo, Manuel. The PiLLoW Web Programming
Library. The CLIP Group, School of Computer Science, Technical Univer-
sity of Madrid, January 2001. h t t p : / / w w w . c l i p . d i a . f i . u p m . e s / S o f t w a r e /
p i l low/p i l low.h tml .

[6] Fielding, R. et al. Hypertext Transfer Protocol - HTTP/1.1. Network Working
Group, The Intenet Society, June 1999. RFC 2616.

[7] Henderson, Fergus et al. The Mercury Language Reference Manual. University
of Melbourne, 2006. Version 0.12.2.

[8] Hunyadi, Levente. Prosper: A framework for extending Prolog applications
with a web interface. In Dahl, Verónica and Niemelá, Ilkka, editors, Proceedings
of the 23rd International Conference on Logic Programming, Logic Program-
ming, pages 432-433, Porto, Portugal, September 2007. Springer. LNCS 4670.

[9] Hurwitz, Dan and Liberty, Jesse. Programming ASP.NET. O'Reilly, 3rd edi-
tion, October 2005.

[10] Johnston, Benjamin. Prolog server pages. h t tp : / /www.benjaminjohns ton .
com.au/ template .prolog?t=psp, 2007.

[11] Nuzzo, Mauro Di. Prolog Server Pages: A server-side scripting language based
on Prolog, h t tp : / /www.pro logon l ine re fe rence .o rg /psp .psp , April 2006.

[12] Pemberton, Steven et al. XHTML 1.0 The Extensible HyperText Markup Lan-
guage. World Wide Web Consortium, 2nd edition, August 2002.

[13] Prosper hosted at SourceForge.net. h t t p : / / p r o s p e a r . s o u r c e f o r g e . n e t / .

[14] Swedish Institute of Computer Science. SICStus Prolog Users Manual,
May 2007. Release 4.0.1 h t t p : / / w w w . s i c s . s e / s i c s t u s / d o c s / l a t e s t / h t m l /
s ics tus /Pro logBeans .h tml .

[15] Wielemaker, Jan. Native preemptive threads in SWI-Prolog. In Palamidessi,
Catuscia, editor, Practical Aspects of Declarative Languages, pages 331-345,
Berlin, Germany, December 2003. Springer Verlag. LNCS 2916.

[16] Wielemaker, Jan and Anjewierden, Anjo. An architecture for making object-
oriented systems available from Prolog. In WLPE, pages 97-110, 2002.

http://www.clip.dia.fi.upm.es/Software/
http://www.benjaminjohnston
http://www.prologonlinereference.org/psp.psp
http://prospear.sourceforge.net/
http://www.sics.se/sicstus/docs/latest/html/

Acta Cybernetica 18 (4) 579-593.

Improving Content Management - A Semantic
Approach

Barna Kovács*

Abstract
Publ ic adminis t ra t ion inst i tut ions - as well as citizens and businesses -

have to meet challenges of t he constant ly changing business and legal envi-
ronment . T h e complexity and quant i ty of information to be faced wi th by
these actors is increasing a t an alarming rate . Research and development
projec ts must t u r n t o the development of innovative, modern technologies
which enable citizens and businesses to access, unders tand and apply com-
plex information easily. Ontology-based content management systems can
cont r ibu te to the improvement of quali ty and effectiveness of significant pro-
cesses, requir ing t he appl icat ion of complex information, within t he public
adminis t ra t ion or in a corporat ion. Compared to t radi t ional content manage-
ment systems, these systems can suppor t fur ther functions, such as semantic
enabled search, explication of relations between documents , d raf t ing of new
documents , and version management , as well. Ontologies, in addit ion to t he
definition of concepts, suppor t the most detailed and complete exploration of
semant ic relations between the concepts of a given domain.

K e y w o r d s : Ontology-based content management , Semantic-enabled content
management , Conten t management systems, Ontologies, Semant ic technolo-
gies

1 Introduction
Citizens, businesses, and even public administration institutions have to meet chal-
lenges provided by the constantly changing business and legal environment. The
complexity and quantity of laws and regulations is increasing at an alarming rate.
Consequently, research and development projects must turn to the development of
innovative, modern technologies enabling citizens and businesses to access, under-
stand and apply complex legislation and regulations easily. Ontology-based content
management systems can contribute to the improvement of quality and efficiency of
significant processes of public administration requiring the application of complex
laws and other legal sources.

"Corvinus University of Budapest, 1093 Budapest, Fővám tér 8., bkovacs@informatika.uni-
corvinus.hu

580 Barna Kovács

Content management systems (CMSs) support the creation, management, dis-
tribution, publication, and discovery of corporate information. This definition is
strongly coupled to knowledge management and has close ties with the manage-
ment and presentation of information. In contrast with common opinion, content
management systems are more than just web content management systems, which
are designed to build web and community portals.

Ontology-based content management systems can support further functions,
such as semantic enabled search, explication of relations between documents, draft-
ing of new documents, and version management of documents, as well. Ontologies,
in addition to the definition of concepts, support the most detailed and complete
exploration of semantic relations between the concepts of a given domain. Legal
sources, for example, have been coming into existence in many forms and formats,
from different jurisdictions, in various languages, with diverse internal structures.
An ontology-based approach provides support for capturing patterns in a single
framework which is general enough to create a representation of requirements for
content management of legal rules codified in multiple jurisdictions. This approach
also enables establishing links with legal knowledge systems and legal resources and
provides help in maintaining the knowledge base of the CMS as the law is being
changed.

2 Content Management

2.1 What is Content?
2.1.1 Digital Content

Providing a precise definition of content is a real challenge. In the literature, there
exist numerous definitions for content; definitions differ from each other depending
on the authors' focus area. According to Wordnet, the meaning of the word content
varies from one context to another. Content is 'everything included in a collection'.
In the context of messages, subject matter and substance are considered content,
i.e. anything related to communication [19]. A definition more adequate to organ-
isational life can be found in [10]: 'The material, including text and images, that
constitutes a publication or a document.'

When content is considered in today's computerised organisations, usually dig-
ital content is assumed. In this sense, content can be defined as

'a commonly used term with regard to the Internet and other elec-
tronic media [...]. In its broader sense it refers to material which is of
interest to users, such as textual information, images, music and movies,
and it generally excludes (1) formatting information, [...], (2) software
that is used to provide and render [...] it and (3) unrelated advertising'
[16]

The distinction of digital content is necessary, since there are lots of other types

Improving Content Management - A Semantic Approach 581

of content available in an organisation that are on paper or in other forms which
cannot be easily handled by information systems - except when they are digitised.

Information systems deal with the production, processing and retrieving of dig-
ital content. The cost of producing digital content is very low compared to the
production of any other type of content. This can lead to information overload
very soon, which is a relevant problem of today's information sciences. Accordingly,
decreasing costs of information creation increase the cost of information processing,
requiring human work in most of the cases.

2.1.2 Textual Content

In a public administration environment, in the majority of cases, content takes the
form of documents. Documents represent textual data in an unstructured manner,
which makes their processing more difficult. ' Similarly, there are lots of textual
data appearing in an organisation, which cannot be considered documents but can
be equally important. Communication logs (email or discussion threads) are good
examples of such textual data. Currently, other types of content (such as audio,
video materials or pictures) can be considered less important in an organisation,
except in cases where they are crucial resources.

Computer programs can process textual data, since this format can be indexed
and searched easily. Processing of non-textual data, in contrast, is a white area on
the map of information processing. Currently only humans can describe the content
of certain data items, such as videos, audio materials or pictures. These descrip-
tions can be stored as meta-data. However, producing such meta-data requires
tremendous work and still does not ensure reliable results.

2.1.3 How does Content Differ from Regular Data?

As we have seen so far, content and data are related, moreover quite similar terms.
Data itself does not have a certain meaning and usually is a broader term than
content [15]. However, content itself can contain data, as well as information or
knowledge1, depending on the creator's intention. This way, similarly to data,
meta-data can also be assigned to content [14]. Content usually has a specific
context, name or title, and other kinds of meta-data associated with it, which can
be specified using the Dublin Core standard [7], for example. As another example,
consider the meta-data stored by a telecommunication company for every phone
call.

2.2 Managing Content
2.2.1 Content Lifecycle

In the current context, content lifecycle and document lifecycle can be considered
equal. Usually, four phases of content lifecycle are identified, although some au-

1 We refer to the system theory approach to data, information and knowledge, as presented by
[1] '

582 Barna Kovács

thors use a different number of stages. Authors usually agree on the first phase
(content creation) and on the publishing phase. In between these two there is an
editorial process. Furthermore, a final stage can be added, when the document
is retired [6]. Consider the following example: one or more authors create a doc-
ument, which might go through an editorial process of subsequent updates, and
then it gets published. In this published form it can also be updated several times
before it is finally outdated or retired for some reasons, and becomes a subject of
archiving or deletion. Content management systems should support these phases in
a collaborative manner, since several people can work together on the same content.

Non-textual content can have the same lifecycle pattern. However, it might be
more difficult to create or update the content due to the natural characteristics of
non-textual data. Content management systems should support the whole lifecycle
in this case as well.

2.2.2 W h a t is a Con ten t M a n a g e m e n t S y s t e m ?

The goal of content management is to help the users in creating, organising, or, in
other words, managing data, information or knowledge represented in the form of
content. This also includes the retrieval of information, which is one of the greatest
challenges for information systems. Retrieving information means the ability of
the system tó find data which are relevant for a given user. If data is found to be
relevant to the user's problem, then it can be considered as information relevant to
the given user's work. By definition data can be considered information only when
it is relevant in a given context. This is, however, not constrained to information.
Retrieved relevant data can also function as knowledge of the individual or the
organisation when it is used [1].

Content is usually handled by Content Management Systems (CMSs). Most
definitions focus on the functionality of these systems, just like the following one,
stating that a CMS is a:

'system for the creation, modification, archiving and removal of in-
formation resources from an organised repository. Includes tools for
publishing, format management, revision control, indexing, search and
retrieval' [3]

C M S vs. W C M S . The term Content Management System is often confused with
Web Content Management System (WCMS). They share a common root, moreover
both are content management systems, but WCMSs concentrate on managing the
content of web portals, while CMSs are managing more general content. So Web
Content Management Systems are Content Management Systems with more specific
structure and content description formalisms.

C M S Arch i t ec tu re . CMSs usually consist of three major parts: a content cre-
ation, a content management and a presentation subsystem, as it can be observed
in Figure 1. The content creation part is responsible for managing inputs, in other

Improving Content Management - A Semantic Approach 583

Content Management System

Create

to <D O Editor

o CO <D O) T3 0)
O c Importer

Manage

CM Server

f Z J } Version
CM tracking

I Repository!
tracking

Search engine

Publish/Present

Template engine

Presentation layer

Navigation layer

Figure 1: Content Management System Architecture

words gathering content from various knowledge sources. The task of the manage-
ment part is to store content, together with appropriate versioning information;
to ensure access rights management; and to offer information retrieval functions,
such as full-text search. The presentation part displays or prints the content using
different media types, such as computer screens, mobile devices or printed paper.
This part of a CMS has a template engine offering patterns for representing content,
adjusting it to the desired use. The presentation layer also handles user navigation
on the pages of content - although this function is more relevant in the case of a
web content management systems.

Characteristics of CMS. Ideally, the role of a content management system
is to be the nerve centre of an enterprise information infrastructure [2, p.7]. It
should aggregate data and information from various sources and deliver these to
the appropriate recipients. In reality, there are lots of information sources in an
organisation, but most of these, such as laptops of individuals or the heads of
employees, are not directly connected to the content management system.

In the information system approach, content management is more than data
management. For managing pure data, very sophisticated and well-developed tools
are available, namely database management systems (DBMSs). However, DBMSs
reach their limits quite soon, when used to process content, since DBMSs are de-
signed to manage well-structured data. Content, in contrast, is unstructured with
some more-or-less defined meta-data descriptors. This requires an approach com-
pletely different from that of data management.

Commoditisation. As a Gartner-study demonstrated in 2002, content manage-
ment is not a stand-alone product any more [4]. It is integrated with other enterprise
information infrastructure components into larger systems, such as Smart Enter-
prise Suites or corporate portals. Use of CMSs is not a competitive advantage any

584 Barna Kovács

more, but a necessity. At the same time it is very interesting to see that, in the
case of content management, the reason for commoditisation2 was not emerging
technology standards but its simplicity. Technology standardisation is still under
evolution. An example is the standard 'JSR-170 Content Repository for Java Tech-
nology API' [13], which describes a standard interface for content management to
be used in Java-based systems.

2.2.3 Getting the Right Information

Why is content management so relevant? What is the hidden value in content that
made the industry so focused on developing content management systems and then
later on developing enterprise applications using content? The answer is simple: it
adds further value to corporate assets as a very potent source of knowledge.

Content and knowledge have a strong correlation; they complement and overlap
each other in many ways [11]. Content is a storage of relevant data and information,
which can be used and reused in a corporate problem context.

The question is how to extract knowledge from the vast amount of stored con-
tent. Information overload is a common problem in the field of content manage-
ment. New content can be created in many different forms, additionally numerous
distinct resources can be used for this purpose. These pieces of content can be used
and reused many times, thus becoming part of the corporate knowledge body.

On the other hand, existing knowledge can be codified. In other words, knowl-
edge can be expressed in an explicit form and put in the organisational memory as
content.

Vast amounts of data, information and knowledge are stored as content in a
content management system, so the real problem an organisation has to face is
how to use them. As mentioned above, decreasing content creation costs cause an
increase in the costs of content processing, especially if the latter requires human
work. A solution can be the development of content management systems, which
provide facilities for effective information retrieval. The keyword is relevance, espe-
cially relevance to that business context in which the user is working. The primary
challenge in content management is to deliver appropriate content and information
to users. Current content management systems provide full-text searching facilities
or categorisation for enabling the delivery of relevant information. However, still
too many results are provided by these solutions, meaning that the applied methods
are not distinctive enough.

3 Semantic-enhanced Content Management
The main purpose of introducing semantics in content management is to retrieve
relevant information. Employing a semantic-enhanced content management system
(SCMS) can deliver more appropriate information than the currently used methods
of classifying information stored in content. As a prerequisite for making a content

2Commoditisation is the process by which goods become mass products.

Improving Content Management - A Semantic Approach 585

management system semantic-enabled one has to build a domain ontology in the
background3. This means that the knowledge of a specific domain is processed
into a structure representing both the concepts and the relationships between these
concepts. Of course, the larger is the ontology, the more content can be described
using it.

3.1 Content Processing in a SCMS

Having formalised the knowledge of the domain in the form of an ontology, any
content that is fed into the content management system can be annotated with the
concepts of the ontology. Concepts can be assigned to the content in general, or
parts of the content - for example, by marking words or phrases in the text.

A problem of annotation is that it requires human intelligence in most of the
cases. Currently, there are no applications or methods providing a reliable au-
tomatic way of revealing relationships between words or phrases in a text and a
structured ontology. However, there are promising research activities aiming at this
goal.

Annotation is a formalisation of the content, meaning a formal description of
what is depicted in the content itself. As soon as the content is annotated, not only
the usual descriptive meta-data (such as the meta-data specified by the Dublin
Core standard [7]) are known, but, through the structure of the ontology, the
meaning of the content becomes known as well. However, it must be stated, that
this description relates only to one or some domains — it cannot be assumed that
the whole world can be described in a single ontology in finite time.

Figure 2 summarises this process of connecting ontologies and content manage-
ment systems, using an example in the legal domain. The same process can be
applied to other domains as well.

In the following subsections semantic description of content is compared to
classical solutions.

3.1.1 Semantic-Enabled CMSs vs. Document Management Systems

The role of Document Management Systems (DMSs) is to handle textual documents
and sometimes other forms of documents. They usually treat these documents as
black boxes, using only Dublin Core meta-data (such as author, title, creation date,
etc.) for their description. Generally DMSs provide indexing and full-text searching
facilities as well. In the semantic-enabled content management approach the do-
main is represented by an ontology and through this representation the content of a
document can also be formalised. This means that the system has a certain knowl-
edge of what the document is about, thanks to all those relationships which have
already been established between the document and the concepts of the ontology.
This information can also be used for inference or searching.

3 The author presumes a basic knowledge of ontologies. Please refer to [8], [9], [5], [18] and [17]
for more information about this topic.

586 Barna Kovács

Figure 2: Operation of SCMS in the legal domain

3.1.2 Semantic-Enabled CMSs vs. Full-Text Searching

Full-text searching uses a word index of content as the source of its queries. Ranking
of results is determined by different algorithms based on the frequency of words
being searched. This is one of the most effective approaches of information retrieval
used today. However, it has some drawbacks as well. Certain words and expressions
may have one or more synonyms. When searching for a word with synonyms, those
contents which only contain the synonyms may not be found. Homonyms are
problematic as well, since full-text search cannot distinguish the different meanings
of words, making the search results noisy.

Ontology-based content searching means that a concept can be searched inde-
pendently from its linguistic representation. Actually, word forms or expressions
are only instances of a certain concept in the ontology. When a concept is looked
up, it will be found regardless of its actual appearance.

This feature of semantic-enabled CMSs can be easily demonstrated by a simple
example from the field of Value Added Tax (VAT) regulations. In this context
the concept of natural person is referred to by the word customer. Of course, this
word can mean both natural and juristic persons in VAT regulations. When one is
looking up content related to the phrase natural person, using a semantic-enabled
CMS, appropriate parts of the VAT law are expected to be found. This is in spite
of the fact that, in the VAT law, the phrase natural person is referred to by the
expression customer.

Improving Content Management - A Semantic Approach 587

3.1.3 Semantic-Enabled CMSs vs. Categorisation

Categorisation can be a very good approach to organise and retrieve information. It
might have many forms, the simplest of which is the single categorisation approach.
This is analogous to the folder structure of a hard disk, available on almost every
operating system of modern computers, which provides a basic environment for
organising files. The problem with this approach is that it uses only a single type
of logic in content organisation. It is very hard to find appropriate content if the
query follows a different type of logic than that used in the categorisation.

Another approach is multiple categorisation. This uses several terms, and is
nothing but the very popular tagging scheme. This approach can ensure quite
rich content organisation, however, it can also produce noise in the search results.
A drawback is that the person designing the categorisation has to think of all
possible aspects of search queries to ensure proper information retrieval. Thus, in
most cases, huge amounts of search results are returned, because too many tags are
assigned to the content. If sub-categories are used within multiple categorisation,
the same problems will arise as in the case of single categorisation.

In the semantic approach the ontology is independent from the content. Thus
content is not described by words, but, instead, domain concepts (elements of
the ontology) are assigned to parts of the content. When performing information
retrieval, the relationships between the concepts in the ontology can be effectively
exploited. For example, in some content, such as a document requesting a passport,
there is no mention of natural persons. In the corresponding ontology, however,
a relationship between a natural person and a passport is defined, namely that
only a natural person can request a passport, and a passport can only be assigned
to a natural person (both directions can be covered). Even if this relationship is
not explicit in any document, the relationship between the natural person and the
passport can be discovered and exploited using the domain knowledge formalised
in the ontology.

4 Realization in a Pilot Project
In this section we present an application of the principles of semantic-enabled con-
tent management systems described above, in the context of a European Union
project the author is participating in.

The SAKE project4 is an ongoing European Union project aiming at the sup-
port of knowledge-intensive and formalised processes of a public organisation in a
semantic-enabled manner. This system incorporates three major, publicly available

4 SAKE - Semantic-enabled Agile Knowledge-based eGovernment (1ST 027128) is a research
project pursued by an international consortium of partners, and co-financed by the 6th EU'FYame-
work Programme for Research and Technological Development. The SAKE project commenced
on the 1st of March 2006 and lasts for 36 months. The author is leading the development of the
Semantic-enabled content management system, one of the most crucial components of the project,
which is the responsibility of Corvinus University of Budapest. For more information, please refer
to http://www.sake-project.org.

http://www.sake-project.org

588 Barna Kovács

components realizing content, groupware and workflow management functions via
integrating existing open-source systems. Additionally, a semantic layer - includ-
ing an ontology management system and its support tools - has been developed to
capture all kinds of semantic information that are provided by components of the
system.

4.1 Architecture

From an architectural point of view, the system is built using the classical three-
tiered architecture, involving a Presentation Tier, a Business Tier and an Integra-
tion Tier, as presented in Figure 3.

Web Container (JBoss Portal Server}

JSP Q
ISP D
ISP D
JSP Q

< - J

< -

•Ponlet»
GWSPortlet

«Portlet»
CMSPortlet

•Portleb»
PreferencePortlet

«Portlet»
CNSPortlet

A.
ServiceLocator

«Servlet»
InltServlet

Presentation Tier

- > «Facade»
FacadeBean

ÇJB Container (IBoss AS)

ServiceLocator

4 >
«SessJonBean»

4 > PreferenceBean
i
i
i
i

- t >
«SesslonBean»

CWSBean
«Adaptor«

CWSAdaptor
i
i
i
i

- f 5
«SesslonBean»

CMSBean - >
«Adaptor»

DaisyAdaptor

- - >

r->
- f - >

— >

Ontologies (KAON2)

D 10 Q

Preference- 3 I
Framework

Coefficient G w g |

Calendar Servie^

Mail Service 3 |

Daisy CMS g I

Nutch CNS 3 I
Framework

Integration Tier

Database
(MySQL)

1

Figure 3: SAKE System Architecture

The Presentation Tier is responsible for displaying the content to the user, pos-
sibly annotated with additional information. Furthermore, the Presentation Tier
handles user interactions using controllers, according to the Model-View-Controller
(MVC) paradigm.

The Business Tier contains the business logic, realised by the system compo-
nents mentioned earlier, such as content management or the groupware support
modules. A crucial responsibility of the components in this tier is the addition of
semantic functionality to the functions provided by the Integration Tier. The Java
class FacadeBean provides a unified interface for components in this tier.

The Integration Tier consists of various open-source systems on top of which
the SAKE System has been built. These include the Daisy content management
system; the Coefficient groupware system and its supplementary systems (calendar
and mail components); the Preference Framework for handling user-defined prefer-
ence rules; and the Nutch change notification framework, which is basically a web
crawler and a notification system used by the Change Notification System (CNS)

Improving Content Management - A Semantic Approach 589

component. Integration of these components is eventually realised in the business
logic tier, using adaptor components. Adaptors implement the Data Access Object
(DAO) design pattern, decoupling the supporting system functions in the Integra-
tion Tier from the business logic in the Business Tier. Adaptors provide therefore
a homogeneous way of accessing component functionality by applying a transla-
tion between specific SAKE APIs and the APIs of components in the Integration
Tier. This approach makes it possible to attach to SAKE an arbitrary software
system providing the necessary functionality. Thus the SAKE System can be used
in existing public administration or corporate environments, serving as a semantic
integration layer built on top of legacy systems.

The Ontology component, within the Integration Tier, plays a special role as the
storage and reasoning facility for semantic information. It contains various ontolo-
gies, such as the Public Administration (PA) ontology for capturing organisational
information of Public Administration; the Information ontology (10) representing
meta-data of information sources; and the Preference ontology containing prefer-
ence rules and data. The Ontology component is attached to the business logic
components by a special adaptor for the KA0N2 reasoner used in the project.

Business components store semantic data and information in the ontologies
while storing system-specific data in the supporting systems in the Integration
Tier. Business components are realised as Enterprise JavaBeans (EJBs, or beans
in Figure 3), all having an appropriate back-end component in the Integration Tier.

The Presentation Tier consists of Java Server Pages (JSP) descriptor pages,
constituting the user interface, and portlets, implementing control logic. Portlets
govern the page flow of user interfaces and transmit user and context information
to the business components. After processing the user request in the Business Tier,
results are delivered to the portlets and presented by JSP pages.

4.2 System Operation
During the operation of the SAKE System, semantic aspects of user interactions
are captured as presented in Figure 4.

When users work in a formalised process, they use the Workflow component
of the system. The flow of activities is defined in the Process Ontology and is
utilised by the workflow engine. Every activity involves some user activities in the
system: entering data, creating documents, participating in discussions, etc. The
first aspect of semantic information captured by the system is the activity that the
user is working in. This state is called the 'Business Context', in the terminology
of the system.

As the processes in the system are defined in an ontology, working on a specific
process involves the creation of an appropriate instance of a process class in the
Process Ontology. This process instance is recording all the user activities: the
values she submitted, references the documents she created, and so on.

On the other hand, the user can decide to leave the formalised environment
for some reasons, and use other, more knowledge-intensive functions directly in the
system. Users can decide to look for documents in the content management system,

590 Barna Kovács

Figure 4: SAKE System Operation

or to discuss a topic in the groupware system. In such cases, thé appropriate system
component is responsible for recording the user activities.

4.2.1 Capturing Semantics

Various system components record activities by using appropriate ontologies. A
basic principle of the system is that everything happening there should be mirrored
by the ontologies as well. For example, in the case of Content Management System,
when a document is created it is not only stored in the Content Management System
in the Integration Tier, but, simultaneously, a new instance of the class Document
is created in the Information Ontology. This process, however, provides only a
static view as it does not cope with time. The time aspect of user interactions is
recorded by the Logging Ontology, by generating new instances of some specific
classes of this ontology, such as AccessEvent or CreateEvent, which describe the
event. These instances are connected to all other relevant instances in the ontology,
such as the Business Context, the User or the Document instances.

These facilities are also used when the user works in the formalised workflow
environment, which operates as a kind of marshaller, using various functions of
system components. This way all kinds of semantic information are gathered in
specific ontologies as the system is running.

Improving Content Management - A Semantic Approach 591

4.2.2 Using Semantics

In the previous subsection the way of capturing semantics has been demonstrated.
In this process, semantic information about all user activities is stored in various
ontologies. However, capturing this information is not enough: it has to be used
to satisfy the goals of the system, namely to deliver more precise, more relevant
information for its users.

Extracting relevant information of the stored semantic data is the task of the
fourth component, the Attention Management System (AMS). This component
employs a reasoning engine operating on the ontologies. The engine functions by
applying user-defined preference rules. These can be either predefined, for example,
information about changes in the local regulations, or queried in an ad-hoc way,
using complex search expressions. Any data or relationship which can be found in
the ontology can be defined in preference rules. This complexity enables the precise
description of the user needs.

The reasoning capabilities of the Attention Management System are also used
by other components, in the form of related documents or discussions, for example.
This component is a crucial element of the system delivering added value to the
users. The Attention Management System informs the users about the results of
executing predefined preference rules. This is done at user login time, and also in
the form of an RSS (Really Simple Syndication) feed, as a notification independent
from the SAKE System.

5 Further Research Questions

One of the crucial points of system operation is the proper annotation of the stored
documents. Currently, this task is carried out by humans. This is a huge burden on
the human resources of the organisation. However, there is no fully reliable method
to perform this task using automated systems. In this field, natural language
processing and text mining applications show very promising approaches.

The system can be extended to deal with other application fields, involving con-
tent types gaining popularity nowadays, such as video or audio clips and pictures.
The difficulties encountered in these areas are similar to those appearing in the case
of textual documents.

Performance considerations are very exciting and topical problems affecting the
usability of the application. Currently, ontology management and reasoning engines
are quite slow compared to the well-established database management software,
mentioned before. On one hand, this is acceptable since these engines perform
complex operations on possibly huge amounts of data. However, the system should
remain responsive and fast enough, if it is to be applied by the users in real life situ-
ations. Research on improving the speed of reasoning engines shows very promising
results, building on techniques learnt from the field of database management, as it
is shown, for example, in [12].

592 Barna Kovács

6 Conclusions
Current state-of-the-art techniques employed in CMSs are not sufficient enough to
handle the the vast amounts of information created and used in an organisation
in the course of everyday work. CMSs are not able to effectively manage con-
stantly changing and expanding laws and regulations, which are crucial in public
administration.

A major problem is that information in CMSs is stored in an unstructured way.
Due to this problem the retrieval of information is also less effective. Moreover
general information retrieval algorithms (such as full-text search or categorisation)
do not provide results relevant enough.

A solution, as presented in this paper, can be the systématisation and formalisa-
tion of domain knowledge. Ontologies provide a formal representation of the given
domain, which can be used for mapping content onto the conceptual structure of
the domain.

At the same time, building an ontology is far from being a task easy to accom-
plish. Thus, as a prerequisite for the use of semantic-enabled technologies, large
investment of work is needed in the formalisation of a domain. However, the devel-
opment of adequate ontologies helps solving numerous further tasks. The return
on investment is thus realised not only in the field of information retrieval, but also
in other areas, such as system and application development, communication, and
the operation of the organisation in general.

References
[1] Ackoff, R. L. From data to wisdom. Journal of Applied Systems Analysis,

16:3-9, 1989.

[2] APQC. Managing content and knowledge. Report on survey, APQC,
2001. http://www.apqc.org/portal/apqc/ksn7paf_gear Jd=contentgearhome
&paf_dm=full&pageselect=detail&docid=106067.

[3] Browne, G. and Jermey, J. Website Indexing (2nd edition). Auslib Press, 2007.

[4] Caldwell, F., Gilbert, M., and H ay ward, S. CM, portals and collaboration
fading: Enter 'smart' suite. Letter from the editor, Gartner, 2002.

[5] Corcho, O., Fernândez-Lôpez, M., and Gômez-Pérez, A. Methodologies, tools
and languages for building ontologies, where is their meeting point? Data &
Knowledge Engineering, 46:41-64, 2003.

[6] Doyle, B. Seven stages of the CM lifecycle. EContent, 2005.
http://www.ecmag.net/Articles/ArticleReader.aspx?ArticleID=13554.

[7] Dublin Core Metadata Initiative. ANSI/NISO Z39.85, the Dublin Core
metadata element set. Specification, Dublin Core Metadata Initiative, 2007.
http://www.niso.org/standards/standard_detail.cfm?stdJd=725.

http://www.apqc.org/portal/apqc/ksn7paf_gear
http://www.ecmag.net/Articles/ArticleReader.aspx?ArticleID=13554
http://www.niso.org/standards/standard_detail.cfm?stdJd=725

Improving Content Management - A Semantic Approach 593

[8] Gomez-Perez, A. Ontological engineering: A state of the art. Expert Update,
2(3):38-43, 1999.

[9] Gruber, T. R. A translation approach to portable ontology specifications.
Knowledge Acquisition, 5(2):199-220, 1993.

[10] Houghton Mifflin Company. The American Heritage Dictionary of the English
Language. Houghton Mifflin Company, fourth edition, 2004. Answers.com,
http://www.answers.com/topic/content.

[11] Ko, A. and Gábor, A. Content industry and knowledge management. In
Remenyi, Dan, editor, Proceedings of the 3rd European Conference on Knowl-
edge Management (ECKM), pages 255-261. Academic Conferences Limited,
Reading, UK, 2002.

[12] Lukácsy, G. and Szeredi, P. Efficient description logic reasoning in Prolog,
the DLog system. Submitted to: Theory and Practice of Logic Programming,
2008.
http: / / sintagma.szit.bme.hu/lukacsy/publikaciok/dlog_tplp_submission.pdf.

[13] Nuescheler, D. JSR 170: Content Repository for Java Technology API. Spec-
ification, Sun Microsystems, 2005. http://jcp.org/en/jsr/detail?id=170.

[14] Prideaux, R. What does a Content Management System do? TechSoup, 2005.
http: //www. icthubknowledgebase. org. uk / whatdoesacmsdo.

[15] Skidmore, D. What is the difference between transactional and content data
in an internet packet? In Warren, Mark, editor, Fourth Australian Institute of
Computer Ethics Conference, pages 51-59, Deakin University, Geelong Victo-
ria Australia, 2005. Waurn Ponds Campus, Geelong, Deakin University, School
of Information Systems.

[16] The Linux Information Project. Content definition, 2005.
http://www.linfo.org/content.html.

[17] Uschold, M. Building ontologies: Towards a unified methodology. In Proceed-
ings of Expert Systems '96, Cambridge, December 16-18th, 1996.

[18] Uschold, M. and King, M. Towards a methodology for building ontologies.
In IJCA1-95 Workshop on Basic Ontological Issues in Knowledge Sharing,
Montreal, Canada, 1995.

[19] Wordnet. Content, 2007.
http: //wordnet.princeton.edu/perl/webwn?s=content.

http://www.answers.com/topic/content
http://jcp.org/en/jsr/detail?id=170
http://www.linfo.org/content.html

Acta Cybernetica 18 (2008) 595-613.

Computer-Based Intelligent Educational Program
for Teaching Chemistry

Róbert Pántya* and László Zsakó*

A b s t r a c t

Improving problem-solving skills is a basic requirement in present educa-
tion. Logic p rogramming languages, of ten used in the area of artificial intel-
ligence and exper t systems, are very much sui table for developing problem-
solving skills.

This paper presents a computer-based tool for solving different chemical
problems (calculation of q u a n t u m numbers, description of electron configu-
ra t ions of a toms, de terminat ion of oxidation numbers and electronegativi ty) ,
which uses t he logic programming language Prolog. T h e au thors argue t h a t
this intelligent educat ional mater ia l does not only improve chemistry educa-
t ion bu t it also inspires s tuden ts to create rule-based systems when they face
various problems of everyday life.

K e y w o r d s : exper t systems, rule-based systems, intelligent educat ional pro-
grams, artificial intelligence

1 Introduction
Computer-assisted problem solving is an important field of informatics education.
There are countless occasions in everyday life in which people are confronted with
complicated tasks. Students have to decide if such problems can be solved using
the tools of informatics, or not. If solving a problem requires the use of a computer,
they either have to select an existing tool adequate for the task, or have to build a
new one [15].

Computers and programs are frequently used in education. However, such ed-
ucational programs cannot work without intelligent educational modules. Beyond
its basics functions, educational software has to provide advice to students. In the
centre of an intelligent tutoring system there is an expert system which encapsulates
a brief summary of the knowledge of a given topic [3].

Expert systems are used to solve problems that require natural intelligence.
Knowledge is stored in expert systems in a way that makes it possible for the system

'Károly Róbert College, Department of Business Mathematics and Informatics, E-mail:
rpantyaQkarolyrobert .hu

tELU Department of Teacher Training in Computer Science, E-mail: zsako01udens.el te .hu

596 Róbert Pántya and László Zsakó

to provide a solution for a problem, making decisions when necessary, and justifying
its choices using an appropriate argumentation. Besides transforming knowledge
into the most appropriate form, the building of an expert systems also involves
further elements, such as strategies for knowledge representation and consistency
checking, and the use of heuristic search. Such tasks can be implemented efficiently
by using artificial intelligence techniques [12].

There are a lot of existing expert systems (Dendral, MetabolExpert, Mycin, In-
ternist, Guidon, MProlog Shell, Hearsey etc. [12]). Expert systems have attracted
considerable attention in the field of chemistry over the past three to four decades.
Dendral (Dendritic Algorithm), the first successful expert system in chemistry,
was constructed in the 1970's. Its primary aim was to identify unknown organic
molecules by analyzing their mass spectra and using the knowledge of chemistry.
Originally it was developed for being deployed in a satellite in NASA's Mars pro-
gram [6].

Further famous chemical expert systems include the Metabol Expert (used in
chemical, medical and biological predictions), SELEX (which can be used for the
evaluation and quantitative rating of data published on selenium content of foods),
and others, such as expert systems for structure elucidation, relying on spectroscopy
knowledge bases, data property expert systems, etc. [8].

Another interesting expert system, which can be used in teaching chemistry, is
PIRExS (Predicting Inorganic Reactivity Expert System) [2], which predicts the
products of inorganic reactions.

Rule-based expert systems seem to be most appropriate for solving chemical
problems. In relation to this, it may be of interest to study the origins of the
periodic table. In the 19th century, D. I. Mendeleyev arranged the chemical elements
in a table according to their atomic mass. At that time the atomic structure was
unknown, and thus the most important feature of the atoms was their atomic mass.
Mendeleyev realised that every eighth element is similar, and therefore he placed
such similar elements in the same column.

There were blank places in his table but he trusted that appropriate new ele-
ments, which were not yet discovered, would be found later. He could not explain
this similarity of chemical properties, as he did not know the atomic structure.
But his conclusions were correct. He discovered a wonderful natural law. The way
Mendeleyev reasoned is characteristic of rule-based expert systems. 60 years later,
after the discovery of protons and electrons, his system could be explained: the
order of the elements is determined by the number of protons, while the chemical
properties depend on the characteristics of the electron cloud [5].

In a general chemistry course the studies of electron configurations, quantum
numbers and the periodic table are basic topics. There are several papers describ-
ing techniques for improving the process of learning chemistry. Iza and Gil [10]
provide a mnemonic method for assigning the electron configurations to atoms.
According to Mabrouk [11] the periodic table can be used as a mnemonic device
for remembering electron configurations.

Many students have difficulties in learning the oxidation number model. Holder
et al. [9] have developed an intelligent computer tutoring tool for assigning oxidation

Computer-Based Intelligent Educational Program for Teaching Chemistry 597

numbers. Solving quantum number problems has been examined by Ardac [1]. Birk
[4] has also developed a computer program (OXRULES) to test the effect of various
rules on the assignment of oxidation numbers.

In our study we present an intelligent educational material, which can be used
in teaching chemistry. The program was built using the Prolog programming lan-
guage, in Win-Prolog version 4.600 [13]. We assume that the reader is familiar with
the Prolog language.

Our educational material uses a rule-based system for systematic presentation
of the characteristics of chemical elements, such as the electron configuration, the
oxidation numbers, and the electronegativity. Currently, it consists of 50 rules
and 150 facts only. However, the development of the program is still in progress.
We believe that our innovative method of using a logic programming language not
only improves the process of teaching chemistry, but it can also inspire students to
construct other rule-based systems, when they are confronted with a new problem.
Thus we can reach our primary objective, namely the improvement of student
problem-solving skills.

Figure 1 shows the main window of the intelligent educational material. When
the Periodic table button is pressed in the main window, a new window appears,
containing the periodic table with 111 elements. This is shown in Figure 2. The
other buttons lead to various tutorials, as explained later.

Eleclioneflfrtivî]
P«iodic lablc |

Figure 1: The main window of the intelligent educational material

The rest of the paper is structured as follows. In Section 2 we give a short
overview of the basics in chemistry, required for understanding the paper. Next, in
Section 3, we discuss the three tutorials developed. The paper is concluded with a
brief summary in Section 4.

2 A short overview of chemical basics
An atom is composed of a positively charged nucleus and negatively charged elec-
trons. The nucleus consists of positively charged protons and electrically neutral
neutrons. An atom is electrically neutral when the number of protons matches the
number of electrons. The number of protons determines the atomic number in the
periodic table. The electron cloud consists of electron shells and subshells.

An electron orbital is associated with a region in the space where an electron
is likely to be found. The electron configuration of atoms can be described using
quantum numbers [7]. There are four kinds of quantum numbers:

598 Róbert Pántya and László Zsakó

,H
VI»». it 3» 4 a 5a Ű a 7 .

He
la fen

j Li .Be .B
IM

«C
» » »

. O , F
a* a*

„ N e

>i Na „Mg
3b 4k 5k 6k 7k 8k 8k 8k lk 2k

„A1 SI „S „C1
4k* a*

..AT
u»»

i»>•
„Ca - S c „ V *Cr . M n „Fe „Co

» u •U
. C o , Z n «G» „As „Se »Br „ K r

„Rb .Sr »Y £L .Nib «Mo . T c _Ru
«ii • „Rh , P d -t* J n ,,Sn . S b - T e J j .Xt

_Cl - B a boa 57-71 „HT ¿ a , w ,Re - O s O r ; P t - A u
»M

» H g ¿ n , ;Pb „Bi J>o
r '—

- A t _Rii

H-113 ¿ b •H« •»Mt u j j s •»Rg

„La mCt »Pr »Nd «Pm . S r a «Eu „Gd -Tb - D y „Ho «Er J m „Yb aLU

. A c „111 »Pa «U »Np - P n »Am « C m „Bk »cr 1«
Fra

ia
M d ,«No loLr

Figure 2: The periodic table, as displayed by the program

• the principal quantum number (n),

• the azimuthal quantum number (/),

• the magnetic quantum number (mi),

• the spin quantum number (m3).

The principal quantum number can take the values 1, 2, 3, 4, 5, 6, or 7. The different
principal quantum numbers correspond to different shells (n = 1 corresponds to the
shell K, n = 2 to the shell L, etc.; the remaining shells are named M, N, O, P, and
Q). The azimuthal quantum number specifies the shape of an atomic orbital. The
values of the azimuthal quantum number are 0 , 1 , . . . , n — 1, where n is the principal
quantum number. Azimuthal quantum numbers are also denoted by letters: I = 0
by s, I = 1 by p, I = 2 by d, I = 3 by / , etc. This quantum number also has an
orbital meaning, namely it specifies the subshell of the shell [14]. The values of
the principal quantum number and the azimuthal quantum number determine the
energy level of the electron. Accordingly, the shells and subshells are often referred
to as energy levels and sublevels.

The values of the magnetic quantum number can be —I, ..., 0, ..., +/. The
magnetic quantum number determines the energy shift of an atomic orbital due
to an external magnetic field. It indicates spatial orientation. The number of the
orbitals at a given azimuthal quantum number I is 2 • I + 1. The maximum number
of the orbitals in a shell is n2 , where n is the principal quantum number [5]. Finally,

Computer-Based Intelligent Educational Program for Teaching Chemistry 599

the spin quantum number is the intrinsic angular momentum of the electron. The
values of the spin quantum number are — 5 and +

To determine the electron configuration of an atom we have to use certain rules
and principles. According to the Aufbau Principle, electrons fill orbitals starting at
the lowest available energy states before filling higher states. Orbitals are generally
filled according to the (n + Z) rule. This rule states that orbitals with a lower
(n + I) value are filled before those with higher (n + I) values. In case of equal
(n + I) values, the orbital with a lower n value is filled first.

The Pauli Exclusion Principle states that no two electrons can have the same
four quantum numbers. If n, I and m; are the same m s must be different, so that
the electrons have opposite spins. Therefore a subshell can contain up to 4 • I + 2
electrons and a shell can contain up to 2 • n2 electrons. If multiple orbitals of
the same energy are available, Hund's rule says that unoccupied orbitals are filled
before occupied orbitals are reused, by electrons having different spins.

The position of an atom in the periodic table is defined by the number of protons
of the atom. In the periodic table, rows are called periods and the columns are
called groups. There are two types of groups. The primary groups are indicated by
the letter 'a', and the secondary groups are indicated by the letter lb\ The periodic
table consists of 8 primary groups, 8 secondary groups and 7 periods. The row
number is related to the value of the principal quantum number [5].

The valence shell is the outermost shell of an atom. The electrons in the va-
lence shell are referred to as valence electrons. The number of valence electrons
determines the number of the primary group and the number of shells determines
the number of the period. Valence electrons are important in determining how an
element reacts chemically with other elements, i.e. what its chemical behaviour is.
In a group (primary or secondary) the number of valence electrons is the same,
therefore atoms belonging to the same group have similar chemical properties [5].

The oxidation number is a measure of the degree of oxidation of an atom in a
substance. The oxidation number is the real or hypothetical charge that an atom
would have if all bonds to atoms of different elements were completely ionic. There
are several oxidation number rules. The oxidation number of a free element is zero.
In a simple ion the oxidation number is equal to the net charge on the ion. The
algebraic sum of oxidation numbers of all atoms in a neutral molecule must be zero.

Electronegativity is a chemical property that describes the power of an atom
to attract electrons towards it. Electronegativity cannot be directly measured and
must be calculated from other atomic or molecular properties. The most commonly
used method of calculation is that originally proposed by Pauling. This gives a
dimensionless quantity on a relative scale running from 0.7 to 4.0. In our intelligent
program we use these values [5].

3 Tutorials
In this section we discuss three tutorials developed for teaching the principal char-
acteristics of elements.

600 Róbert Pántya and László Zsakó

3.1 Tutorial 1 - Quantum numbers
In this subsection we discuss the features of the program related to answering the
following questions:

• What kind of shells are there?

• What kind of subshells has a given shell?

• How many electron orbitals has a given shell?

• How many electron orbitals has a given subshell?

• What is the maximum number of electrons in a given shell?

• What is the maximum number of electrons in a given subshell?

• What kind of magnetic quantum numbers and spin quantum numbers of a
given shell and subshell are there, according to the Pauli Exclusion Principle?

To answer the above questions we transform the basics of chemistry, as outlined
in Section 2, to the following Prolog facts and rules:

p r i n c i p a l (l) . p r i n c i p a l (2)
p r i n c i p a l (5) . p r i n c i p a l (6)

az imutha l (0) . az imuthal(1)
az imutha l (3) . azimuthal(4)

magnet ic (-6) . magnet ic(-5)
magnet ic (-3) . magnet ic(-2)

p r i n c i p a l (3) . p r i n c i p a l (4) .
p r i n c i p a l (7) .

magnet ic(0) .
magnet ic(3) .

s p i n (0 . 5) .

magne t i c (l) .
magnet ic(4) .

s p i n (- 0 . 5) .

azimuthal(2)
azimuthal(5)

magnetic(-4)
magne t ic (- l)
magnet ic(2) .
magnet ic(5) .

az imutha l (6) .

magnet ic (6) .

s h e l l (N) : - p r i nc ipa l (N) .
subshel l (N, L) : - p r i nc ipa l (N) , az imuthal (L) , L<N.
s h e l l _ o r b i t a l s (N , C) : - p r i nc ipa l (N) , C i s N*N.
she l l_e l ec t rons (N , E) : - p r i n c i p a l (N) , E i s 2*N*N.
s u b s h e l l _ o r b i t a l s (L , C) : - azimuthal(L) , C i s 2*L+1.
subshe l l_e l ec t rons (L , E) : - azimuthal(L) , E i s 4*L+2.
quantum(N, L, M, S) : - p r i nc ipa l (N) , az imuthal (L) , L<N,

magnetic(M),
M>=(-L), M<L+1, sp in (S) .

The first four blocks of Prolog facts list the possible values of the four kinds of
quantum numbers (principal, azimuthal, magnetic and spin). Next, the rules for

Computer-Based Intelligent Educational Program for Teaching Chemistry 601

s h e l l (N) and subshell (N, L) define the possible shell numbers and the possible
pairs of shell and subshell numbers, respectively. Subsequently, given a shell N
or a subshell L, the rules for she l l_orbi ta l s (N, C), shel l_e lectrons(N, E),
subshel l_orbitals(L, C), and subshell_electrons(L, E) return the number
of corresponding orbitals and electrons. Finally, the rule for quantum(N, L, M, S)
is capable of listing all allowed combinations of the four kinds of quantum numbers.

The Prolog queries below, when typed in the console window following the
I ? - prompt, provide the answers to the questions listed at the beginning of the
present subsection. The Prolog built-in predicate f a i l is used to enumerate all
solutions of a query, while the predicates wr i te and n l serve for displaying the
answer:

I ? - s h e l l (J) , w r i t e (J) , n l , f a i l .
I ?- subshel l (3 , L), wr i t e (3) , wri te (' ') , write(L), n l , f a i l .
I ?- she l l _orb i ta l s (3 , C).
I ?- shell_orbitals(N, C) , write(N), writeC '), write (C) , nl, fail.
I ?- shell_electrons(4, E) .
I ?- shel l_electrons(N, C), write(N), wr i te (' ') , write(C),

n l , f a i l .
I ?- subshel l_orbi ta l s (3 , C).
I ?- subshel l_orbitals(N, C), write(N), wri te (' ') , write(C),

n l , f a i l .
I ?- subshel l_electrons(4 , E).
I ?- subshell_electrons (N, C) , write(N), writeC '), write (C) ,

nl, fail.
I ? - quantum(2, 1, M, S) , write(M), w r i t e C ') , w r i t e (S) , n l , f a i l .
I ? - quantum(2, L, M, S) , wr i t e (L) , w r i t e C ') ,

write(M), w r i t e C ') , w r i t e (S) , n l , f a i l .
I ? - quantum(N,L,M,S), wr i te (N) , w r i t e C ') , w r i t e (L) , w r i t e C ') ,

write(M), w r i t e C ') , w r i t e (S) , n l , f a i l .

There are several of object-oriented extensions of Prolog, such as Visual Prolog,
Win-Prolog, etc. These implementations combine the advantages of logic program-
ming and object-oriented programming. As our software for chemistry education
was created using Win-Prolog 4.600, we could implement an appropriate graphical
interface, which is demonstrated by some examples below.

When the Quantum numbers button is pressed in the main window, the panel
shown in Figure 3 is displayed.

Next, using the Shells button in Figure 3, one obtains the window shown in
Figure 4. This window provides important information about the shells. If the
Shells and subshells button is pressed in Figure 3, then the panel in Figure 5 is
presented to the user. Here one can select a shell (e.g. set the principal quantum
number to 5). When the Display button is pressed in this window, all possible
subshell numbers are enumerated in the listbox in the bottom right corner. The
values listed are generated by the rule subshe l l (N, L).

602 Róbert Pántya and László Zsakó

Quantum numbers

The electron configuration of atoms can be described using quantum numbers
There are four kinds of quantum numbers
- the principal quantum number (n),
- the azimuthal quantum number (I),
- the magnetic quantum number (mi),
- the spin quantum number (m»)
Hie principal quantum number can take the values 1 ,2 ,3 ,4 ,5 ,6 , or 7. The different principal
quantum numbers correspond to different shells (n=l corresponds to the shell K, n=2 to the
shell L, etc., the remaining shells are named M, N. 0 . P. and Q). The azimuthal quantum
number specifies the shape of an atomic orbital. The values of the azimuthal quantum number
are 0 ,1 , . . . , n-1, where nis the principal quantum number Azimuthal quantum numbers are
also denoted by letters: /=0 by s, /=1 by p, /=2 by d, /=3 by f, etc This quantum number also
has an orbital meaning, namely it specifies the subshefl of the shell. The values of the
principal quantum number and the azimuthal quantum number determine the energy level of
the electroa Accordingly, the shells and subshells are often referred to as energy levels and
sublevels. The values of the magnetic quantum number can be -Z,..., 0 , . . . , +L The magnetic
quantum number determines the energy shift of an atomic orbital due to an external magnetic field
It indicates spatial orientation. Hie number of the orbitals at a given azimuthal quantum
number I is 2*ff-l The maximum number of the orbitals in a shell is n2, where n is the
principal quantum number. Finally, the spin quantum number is die intrinsic angular
momentum of the electron. The values of the spin quantum number are -1/2 and +1/2

She!$ and stJbsheBs Number of ort*als end elections Back

Figure 3: Quantum numbers

Shells
.11 i. .. ». iu
,111 .«• .a ,u ,F
„KULmj -n

JK •v ¿J l i ¿Or á t •j. ¿J »C* .¡M „0. J» A
sSMáü, j« £ Jfc j S jf- M JM -if £i J» •I. j A
«C» Jfai
"T4 T

rn 3« Ű1 J . .0* u . n • A. -J2? áf
fiSjdf »W ¿ 5 d t -Ml iE:

=Ü - M .rm Jm =2 •Sf J ,

t i1 -TO :2s £ "J? Ü .Am ¿J h. IM -¡íjsí»

The electron cloud consists of electron shells and snbshells An electron orbital is associated with
a region in the space where an electron is likely to be found The electron configuration of atoms
can be described using quantum numbers. There are four kinds of quantum numbers'
- the principal quantum number (n),
- the azimuthal quantum number (I),

the magnetic quantum number (rai),
- the spin quantum number (mi).
The principal quantum number can take the values 1, 2,3,4,5,6, or 7. The different principal
quantum numbers correspond to different shells (n=l corresponds to the shell K, n=2 to the
shell L. etc.; the remaining shells are named M, N. O, P, and Q).

Figure 4: Shells

Computer-Based Intelligent Educational Program for Teaching Chemistry 603

il

s block
p block

Shells
• M S ié

d block
1« la ». *• »» •2t

JU 4M d block .0
. Ha s ü l n »» »» IV »» *» II di ..st J ¿ ja -A.

r2 .V •a jjt * J»U-m Jm •JE? & -A. * fi
«V „V

— iïïT .t. •5>ÍJ¡J £i A¡¡ J¡m
Ä

- r . ¿ JU

d» ¿r i - •o.!-* Si-ir £ -5 J¡> áí Jfc
-if JU á s « J¡J 5ÜÍ A k ü

J j •C. j . M J» ir JM M .n JÇr .b
df & sS •ät a •Üf •S" Î2 tí ta MM

The electi on cloud consists of electron shel ls and subshe l l s Hie electron
configuraron of atoms can be described using quantum numbers. The principal
quantum number can take the values 1, 2, 3 . 4 , 5 , 6 . or 7. The different
principal quantum numbers correspond to different shells. The aamuthal
quantum number specifies the shape of an atomic orbital The values of
the aamuthal quantum number are G, 1 , . . . , n-1, where n is the principal
quantum number. Aamuthal quantum numbers are also denoted by letters:
f=0 by s, 1=1 by p , 1=2 by d, 1=3 by C etc This quantum number also has an
orbital meaning namely it specifies the subshel! of the shell The values
of the principal quantum number and the anmuthal quantum number
determine the energy level of the electron Accordingly, the shells and subshells

are often referred to as energy levels and sublevéis

Shel (n}Subshel (1) Soted a she! !

O«!*«

Figure 5: Shells and subshells

Let us return to Figure 3. Using the Number of orbitals and electrons button
of this window, we get the panel shown in Figure 6. Here, when the user specifies
a shell (e.g. by stating that the principal quantum number is 6), and presses the
Display button, the program enumerates in the listboxes on the left hand side of
the panel all possible subshell numbers, and, for each of these, it lists the number of
orbitals and electrons. To calculate these possibilities, the program uses the rules
subshel l (N, L), s u b s h e l l _ o r b i t a l s (L , C), and subshe l l_e l ec t rons (L , E).

3.2 Tutorial 2 - Electron configurations of the elements
This subsection deals with obtaining the correct electron configuration of a given
element. The program can show which electron orbital is filled, and how many
electrons there are in an orbital. The corresponding rules use the Aufbau Principle
and the (n + I) rule.

The facts used here are the very same as the ones presented in Section 3.1. The
rules are the following:

604 Róbert Pántya and László Zsakó

Figure 6: The number of orbitals and electrons

electron_orbital(E, N, L): -
E>0, N<8,
electron(L, E, E_L, NewE),
write(N), wr i t e (' ') , write(L),
wri teC ') , write(E_L), n l ,
next_n_l(N, L, NewN, NewL),
electron_orbital(NewE, NewN, NewL).

e lectron_orbi ta l (_ , N, _) : -
N=8.

electron_orbital(E, _, _) : -
E=0.

electron(L, E, E_L, NewE):-
E0 i s 4*L+2, E>=E0, E_L i s E0, NewE i s E-EO.

electron(L, E, E_L, NewE):-
E0 i s 4*L+2, E<E0, E_L i s E, NewE i s 0.

next_n_l(N, L, NewN, NewL):-
L=0, S i s N+l, NewL i s N / / 2, NewN i s S-NewL.

next_n_l(N, L, NewN, NewL):-
L>0, NewN i s N+l, NewL i s L- l .

The predicate e l e c t r o n . o r b i t a l (E , N, L) has 3 arguments: E is the number
of electrons, N is the principal quantum number, and L is the azimuthal quantum
number. Its task is to display the correct electron configuration of E electrons,
starting from the principal quantum number N and azimuthal quantum number L.
To display the complete electron configuration of E electrons, the predicate should
thus be invoked in the form e l e c t r o n _ o r b i t a l (E , 1, 0).

The whole predicate can be expressed using three rules. The first rule checks if
there are any remaining electrons (E>0), and that the principal quantum number

Computer-Based Intelligent Educational Program for Teaching Chemistry 605

is valid (N<8). Next, it calls an auxiliary predicate electron, which, given the
azimuthal quantum number L, splits the number of electrons E in two parts: E_L is
the number of electrons to be placed in the subshell L, and NewE is the number of
remaining electrons (here, E = E_L+NewE always holds). Having displayed the triple
(N,L,E_L), a second auxiliary predicate is invoked: next_n_l(N, L, NewN, NewL)
receives the pair (N,L) and returns the next such pair in (NewN,NewL), according to
the (n +1) rule. Finally, the predicate is invoked recursively, with the remaining
number of electrons, the new shell number, and the new subshell number.

The second and third rule of the predicate e lectron_orbital serve for stopping
the recursion, when we run out of shells (N=8), or when there are no more electrons
to place (E=0).

The predicate e lectron (L, E, E_L, NewE) first calculates how many electrons
(E0) can be in the given subshell L. The first rule deals with the case when we have
at least E0 electrons, while in the second rule we have a situation where all the
electrons can be placed in the given subshell.

The predicate next_n_l (N, L, NewN, NewL) determines the new n and I values
using the (n + I) rule. It generates NewN from N, and NewL from L. In the first case,
when L=0, the n + I value increases by 1. In this case NewL becomes N//2 (where
/ / i s the integer division operator). In the second case, the n + I value does not
change: NewN i s N+l and NewL i s L-l.

m in

principal quantum numbers (N)

azimuthal quantum numbers (L)

The value of (N+L) is in the top left
comer of the cells.

The arrows show the order of subshells.

The black arrow can be seen when
(N+L) increases by 1.

The white arrow can be seen when
(N+L) does not change.

Figure 7: The N+L rule, as displayed by the educational tool

Figure 7 displays the order of subshells, i.e. how the n and I values change in

606 Róbert Pántya and László Zsakó

subsequent invocations of the predicate next_n_l.
Figure 8 shows a window for determining the electron configuration. In this

particular case the number 80 has been entered, denoting the atomic number,
i.e. the number of electrons. When the Display button of the window is pressed,
the program lists the possible subshells, together with the number of electrons
in that subshell, in the bottom left listboxes. It uses the predicate invocation
electron_orbital(E, 1, 0) to obtain the numbers shown.

Electron conf igurat ion -SI

To determine the electron configuration of an atom we have to use certain rules and
principles.

According to the Aufbau Principle, electrons SB orbitals starting at the lowest available
energy states before filling higher states. Orbitals are generally filed according to the
(n+l) rule. This rule states that orbitals with a lower (n+l) value are filled before those
with higher (n+l) values. In case of equal values, the orbital
with a lower n value is filled first.
The Fauli Exclusion Principle states that no two electrons can have the same four
quantum numbers
If n, I and m are the same n t must be different, so that the electrons have opposite spins.
Therefore a subshell can contain up to 4 *l+2 electrons and a shell can contain
up to 2*nJ electrons.
If multiple orbitals of the same energy are available, Hund's rule says that unoccupied
orbitals are filled before occupied orbitals are reused, by electrons having different spins.

Shell Subshet Number of elections Type the atomic number of the element!

I

- ><

» « S f p « '.v

T"1 0 2
2 0 2

1 6
3 0 2

1 8
4 0 2

2 10
4 1 6

0 2
4 2 10

1 6
0 2

4 3 14
5 2 10

80

Display

Back

N*Liule

Irtegulat electron cinfiguiations

Figure 8: The electron configuration of a given element

There are 20 elements, out of the 111, for which the exact electron configura-
tion cannot be predicted by these rules. The deviation from the regular electron
configuration is not significant (only 1 or 2 electrons are in another atomic orbital).

These elements are in the d or / blocks. Some of the irregular electron configu-
rations Eire predicted on the basis of the stability of half- or wholly filled subshells
(for example: Cr, Cu, Mo, Ag or Au). The corresponding configurations are s 1 ^ 5

or s'd10.
There are some irregular configurations in the / blocks. When atomic orbitals

6s and 7s are filled, the next electron occupies an orbital d, rather than a 4 / or a
5 / . But appropriate electrons occupy orbitals / , and orbital d is filled completely

Computer-Based Intelligent Educational Program for Teaching Chemistry 607

later [16].
To deal with these irregularities, the button labelled Irregular electron config-

urations is provided in the window. When this button is pressed, the program
displays a new panel shown in Figure 9. This window shows the elements having
an irregular electron configuration.

2l

, H
2 a I r r e g u l a r e l e c t r o n c o n f i g u r a t i o n s 3 a 4 a 5 a 6 a 7 a

, H e

, L i , B e , B . C , N , o <Kftm , F
Oicnu

« N e

u N a 11 M g
3 b 4 b 5 b 6 b 7 b 8 b 8 b 8 b 1 b 2 b

, , A 1 „ S i , , P » S „ C I
cUonw

„ A T

„ K „ C a
ctkim

» S c , , T i
UUIIMU . i l

„ M n » F e ra „ C o
coUk

„ N i
nidal

» C u „ Z n „ G a
¿»il.— "Si » A s „ S e » B r

trcaira
. K r
kJVpttm

, , R b » S r » Y „ Z r „ N b „ M o £ c J R u « P d „ A g „ C d „ I n , . S n
tkt

„ S b „ T e „ 1 , X t

„ C s , B a 57-71 „ H r
hdhim

» R e , O s „ I r
i-ldim

¿ P t » A u
(DÜ

.JO* , , T 1 , , P b u B i , , P o „ A t „to
£ r . R a 89-103 , „ R f r S g „ B h i « H s , „ M t . . . R g

ïïif
. . C e , , P r „ N d „ P m „ S i n o E u , , G d . , T b „ D y „ H o . . E r „ T m , Y b » L u

„ A c . . T i l , , N p „ P u » A m „ C m , 3 k .et „ E s
M

F m M d m N o i ; | L r

There are 20 dements, out of the 111, for which the exact electron configuration cannot be predicted by these rules. The deviation from the regular
electron configuration is not significant (only 1 or 2 electrons are in another atomic orbital) These elements are in the d or f blocks
Some of the irregular electron configurations are predicted on the basis of the stability of half- or wholly filled siibshells
(for example Cr, Cu, Mo, Ag otAu). The corresponding configurations are s V or s'd10. There are some irregular configurations in the f blocks.
When atomic orbitals 6$ and 7s are filled, the next electron occupies an orbital d, rather than a 4f or a 5f.
But appropriate electrons occupy orbitals f. and orbital d is fiEed completely later.

, , 5 f

Figure 9: Irregular electron configurations

We believe that it is important that our rule-based system, in addition to de-
termining regular electron configurations, is also able to draw attention to irregular
electron configurations. These observations can motivate students to examine such
exceptions in more detail.

3.3 Tutorial 3 - Oxidation numbers and electronegativity
In this subsection we show how the program determines the typical oxidation num-
bers of a given element. Furthermore we discuss questions of the following type:

• Which are the typical oxidation numbers of the elements in a group?

• How much electronegativity has an element?

• If there is a bond between elements, which of the two elements has higher
electronegativity?

608 Róbert Pántya and László Zsakó

• How much electronegativity is there in a group?

• How do the electronegativity values change in a period and a group?

To store information on chemical elements, we use the predicate element, which
has the following 6 arguments:

• the atomic number of the element,

• the name of the element,

• the period number of the element,

• the group number of the element,

• the type of the group: primary (letter 'a') or secondary (letter '&'),

• the value of the electronegativity.

There are 111 known elements in the periodic table. We show only a subset of the
111 facts:

e l emen t (l , ' hydrogen ' , 1, 1, ' a ' , 2 .1) .
element(2, ' h e l i u m ' , 1, 8, ' a ' , 0) .
element(3, ' l i t h i u m ' , 2, 1, ' a ' , 1 .0) .
element(4, ' b e r y l l i u m ' , 2, 2, ' a ' , 1 . 5) .
element(5, ' b o r o n ' , 2, 3, ' a ' , 2 .0) .
element(6, ' c a r b o n ' , 2, 4, ' a ' , 2 . 5) .
e lement(7, ' n i t r o g e n ' , 2, 5, ' a ' , 3 .0) .
e lement(8, 'oxygen ' , 2, 6, ' a ' , 3 . 5) .
element(9, ' f l u o r i n e ' , 2, 7, ' a ' , 4 . 0) .
element(10, ' n eon ' , 2, 8, ' a ' , 0) .
element(11, ' sodium' , 3, 1, ' a ' , 0 . 9) .
element(12, 'magnesium', 3, 2, ' a ' , 1 . 2) .
element(13, 'a luminium' , 3, 3, ' a ' , 1 . 5) .
element(14, ' s i l i c o n ' , 3, 4, ' a ' , 1 .8) .
element(15, ' phosphorus ' , 3, 5, ' a ' , 2 . 1) .
element(16, ' s u l f u r ' , 3, 6, ' a ' , 2 . 5) .
element(17, ' c h l o r i n e ' , 3, 7, ' a ' , 3 . 0) .
element(18, ' a r g o n ' , 3, 8, ' a ' , 0) .
element(19, ' po t a s s ium ' , 4, 1, ' a ' , 0 . 8) .
element(20, ' c a l c i u m ' , 4, 2, ' a ' , 1 .0) .
element(21, ' scandium' , 4, 3, ' b ' , 1 .3) .
element(22, ' t i t a n i u m ' , 4, 4, ' b ' , 1 .6) .
element(23, 'vanadium', 4, 5, ' b ' , 1 .6) .

The predicate oxidation_number, shown below, has two arguments. The first
one is the name of the element and the second one is the possible oxidation number
of the element. An element can have several oxidation numbers.

Computer-Based Intelligent Educational Program for Teaching Chemistry 609

The first rule expresses that for every element, the oxidation number 0 is appro-
priate. This is because the oxidation number of a free element is zero. Subsequent
rules express the relation between the group of the element and the oxidation num-
ber.

oxidation_number(X 0) - element(_, X, — y — y
oxidation_number(X Y) - element(_, X, — y Y, _, _) , Y<6.
oxidation_number(X Y) - element(_, X, — y Y, 'b ' , _) , Y>5, Y<8.
oxidation_number(X 3) - element(_, X, — y 5, ' a ' , _) .
oxidation_number(X -3) - element(_, X, s , 5, ' a ' , _) , S<6.
oxidation_number(X -2) - element(_, X, S, 6, ' a ' , _) , S<6.
oxidation_number(X 4) - element(_, X, S, 6, ' a ' , _) , S>2, S<7.
oxidation_number(X - 1) - element(_, X, — } 7, ' a ' , _) .
oxidation_number(X 1) - element(_, x , S, 7, ' a ' , _) , S>2, S<7.
oxidation_number(X 5) - element(_, X, S, 7, ' a ' , _) , S>2, S<7.
oxidation_number(X 3) - element(_, X, 4, 0, 'b ' , _) , 0>3.
oxidation_number(X 2) - element(_, X, 4, 0, 'b ' , _) , 0>4.
oxidation_number(X 2) - element(_, X, S, 8, 'b ' , _) , S>4, S<7.
oxidation_number(X 4) - element(_, X, S, 8, 'b ' , _) , S>4, S<7.

However, experimental evidence shows that there exist several additional values
These are handled using appropriate Prolog facts, such as the ones listed below.

oxidation_number('thallium', 1).
oxidation_number('carbon', 2) .
oxidation_number('lead', 2) .
oxidation_number('nitrogen', 2) .
oxidation_number('oxigen', - 1) .
oxidation_number('sulfur', 6) .
oxidation_number('tellurium', 6)
oxidation_number('chlorine', 3) .
oxidation_number('iodine', 7) .
oxidation_number('zinc', 1).
oxidation_number('mercury', 1).

oxidation_number('carbon', - 4) .
oxidation_number('tin', 2) .
oxidation_number('nitrogen', 4) .
oxidation_number('phosphorus', 4)
oxidation_number('sulfur', 2) .
oxidation_number('selenium', 6) .
oxidation_number('polonium', 2) .
oxidation_number('chlorine'; 7) .
oxidation_number('copper', 2) .
oxidation_number('gold', 3) .
oxidation_number('vanadium', 4) .

Building on the predicates element and oxidation_number, we now define some
further predicates, related to the questions listed at the beginning of the present
subsection.

The rule for group_oxnumber(A, B, C), shown below, determines the values
of oxidation numbers of a given group. The rule for compare_en(A, B) can show
which element's electronegativity is higher. The rule e l e c t r o n e g a t i v i t y (X , En)
retrieves the electronegativity of a given element. The two rules en_period(S, En)
and en_group (P, Q, En) produce the values of the electronegativity in a selected
group or in a selected period, respectively.

610 Róbert Pántya and László Zsakó

group_oxnumber(A, B, C): -
element(_, X, A, B, _) ,
oxidation_number(X, C).

compare_en(A, B): -
element(_, A, _, _, X),
element(_, B, _, _, _, Y) , X>Y,
write(A), n l .

compare_en(A, B): -
element(_, A, X),
element(_, B, _, _, Y), X=Y,
write('They have equal e l e c t r o n e g a t i v i t y ') , n l .

compare;, en (A, B): -
element(_, A, _ , _ , _ , X),
element(_, B, _, Y), X<Y,
write(B) , n l .

e lectronegat iv i ty(X, En):-
element(_, X, En).

en_group(P, Q, En):-
element(_, P, Q, En).

en_period(S, En):-
element(_, _, S, En).

If one types the following queries into the console window, one can get the an-
swers to some questions of the type listed at the beginning of the present subsection.

?- group_oxnumber(4, ' a ' , C), write(C), n l , f a i l .
?- group_oxnumber(1, ' a ' , C), write(C), n l , f a i l .
?- compare_en('carbon', 'hydrogen').
?- compare_en('hydrogen', 'hydrogen').
?- compare_en('bromine', ' ch lor ine ') .
?- oxidation_number('carbon', C), write(C), n l , f a i l .
?- e lec tronegat iv i tyCcarbon' , En).
?- en_group(5, ' a ' , En), write(En), n l , f a i l .
?- en_group(3, ' b ' , En), write(En), n l , f a i l .
?- en_period(5, En), write(En), n l , f a i l .

Figure 10 shows two example questions submitted in the interactive environ-
ment: we ask the oxidation numbers of a given element (17 - chlorine) and of a
group (3.b).

When you press the Display button on the left hand side of the window, the
program lists the possible oxidation numbers of a given element in the listbox. For
this, it uses the set of element facts. When you press the Display button on the

Computer-Based Intelligent Educational Program for Teaching Chemistry 611

E E xj
Oxidation numbers of a given element

Type the atomic number of the element! i

Oxidation numbers:

The name of the element:

Oxidation numbers of a given group

Select a group {primary and secondary)! I 3 ~3
Oxidation nunbas:

Display

The oxidation number is a measure ofthe degree of oxidation of an atom in a substance.
The oxidation number is die real or hypothetical charge that an atom would have if all bonds to atoms
of different elements were completely ionic.
There are several oxidation number rules
The oxidation number of a free element is zero
In a simple ion the oxidation number is equal to the net charge on the ion.
The algebraic sum of oxidation numbers of al atoms in a neutral molecule must be zero

Figure 10: Possible oxidation numbers of a given element and a group

right hand side of the window, the program enumerates in the listbox the possible
oxidation numbers of the given group. It uses the group_oxnumber(A, B, C) rule
for this.

In Figure 11 we present a panel of the program showing the value of the elec-
tronegativity of a given element (80 - mercury), of a period (4), and of a group
(l.a).

bk Electronegativity

Electronegativity {EN] of a given element

Type the atomic number of the element! [80[

The name of the element: I mercury]

Values of electronegativity (EN] of a given period or group

Display Select a period I Hf"

Display

The value of electronegativity: I

Electronegativity is a chemical property that describes
the power of an atom to attract electrons towards it.
Electronegativity cannot be directly measured and must
be calculated from other atomic or molecular properties.
The most commonly used method of calculation is that
originally proposed by Pauling.
This gives a dimensionless quantity on a relative scale
running from 0.7 to 4.0.
In our intelligent program we use these values.

Display

Values of electronegativity.

m
Values ot EN

n

S elect a group (primary and secondary)! j~j T j j"̂ T J

3

Figure 11: The electronegativity of a given element, period and a group

612 Róbert Pántya and László Zsakó

When you press the Display button on the left hand side of the window, the
program displays the value of the electronegativity of the given element. It uses
the element facts. When you press the Display button on the right hand side
of the window, the program lists the possible values of the electronegativity of a
given period and a given group in the listboxes. The en_period(S, En) and the
en_group(P, Q, En) rules are used in this task.

4 Summary
Improving problem-solving skills is a significant aim of education. Logic program-
ming languages are useful tools for computer-assisted problem-solving. Logic pro-
grams consist of facts and rules, therefore one can construct rule-based expert
systems easily. One can use these tools in chemistry education, too. There are a
lot of facts and rules in several subfields of chemistry, learning these is often very
difficult for the students. To improve the effectiveness of our educational activities
we have to develop new teaching methods. One of such methods is to create (with
the active co-operation of the students) a specific rule-based expert system, which
contains facts and rules of the given subject.

While constructing the system, the students understand and memorise impor-
tant facts and rules with much less effort than using traditional learning techniques.
If they are confronted with an exception, they are motivated to ask questions, and
try to answer these. Thus, we can reach our main objective, namely the improve-
ment of the problem-solving skills of the students.

The development of this educational material is in progress. Future work in-
cludes predicting possible chemical bonds and reactions, and determining reaction
equations. Our aim is not only to create educational materials, but to build a
proper chemical expert system, which also includes an electronic user guide.

References
[1] Ardac, D. Solving quantum number problems: An examination of novice

performance in terms of conceptual base requirements. Journal of Chemical
Education, 79(4):510-513, 2002.

[2] Birk, J. P. Predicting Inorganic Reactions: The Development of an Expert Sys-
tem in Expert System Applications in Chemistry. American Chemical Society
Symposium Series No,408. ACS Books, Washington, D.C., 1989.

[3] Birk, J. P. The computer as student - an application of artificial intelligence.
Journal of Chemical Education, 69(4):294-295, 1992.

[4] Birk, J. P. Oxidation number rules: A program to test the effect of various
rules on the assignment of oxidation numbers. Journal of Chemical Education
Software, 6B1, 1993.

Computer-Based Intelligent Educational Program for Teaching Chemistry 613

Bodonyi, F. Summary of Chemistry (in Hungarian). Műszaki Könyvkiadó,
Budapest, 1987.

Borgulya, I. Expert systems, methods and applications (in Hungarian). Com-
puterBooks Kiadói Kft., Budapest, 1995.

Brücher, E. General Chemistry (Structure), educational material (in Hungar-
ian). KLTE Szervetlen és Analitikai Kémiai Tanszéke, Debrecen, 1992.

Heller, S. R.and Bigwood, D. W. Expert systems in chemistry - applications
to data quality. Proceedings of the 2nd ICIK'87, pages 99-120, 1987.

Holder, D. A., Johnson, B. G., and Karol, P. J. A consistent set of oxidation
number rules for intelligent computer tutoring. Journal of Chemical Education,
79(4):465-467, 2002.

Iza, N. and Gil, M. A mnemonic method for assigning the electronic configu-
rations of atoms. Journal of Chemical Education, 72(11):1025-1026, 1995.

Mabrouk, S. T. The periodic table as a mnemonic device for writing electronic
configurations. Journal of Chemical Education, 80(8):894—896, 2003.

Sántáné-Tóth, E. Knowledge-based Technology, expert systems (in Hungarian).
Dunaújvárosi Főiskola Kiadói Hivatala, Dunaújváros, 2000.

Shalfield, R., Spenser, C., Steel, B., and Westwood, A. WIN-PROLOG User
Guide. Logic Programming Associates Ltd., London, 2007.

Strong, J. A. The periodic table and electron configurations. Journal of
Chemical Education, 63(10):834-836, 1986.

Szlávi, P. and Zsakó, L. Informatics as a particular field of education. Teaching
Mathematics and Computer Science, 3(2):283—294, 2005.

Tőkés, B. and Donáth-Nagy, G. Chemical lectures and laboratory exercises (in
Hungarian). Scientia Kiadó, Kolozsvár, 2002.

Acta Cybernetica 18 (2008) 615-635.

Factored Value Iteration Converges

István Szita* and András Lőrincz*

A b s t r a c t

In th is paper we propose a novel algori thm, factored value i terat ion (FVI) ,
for t he approx imate solution of factored Markov decision processes (fMDPs) .
T h e t radi t ional approximate value i teration algorithm is modified in two ways.
For one, the least-squares project ion opera tor is modified so t h a t it does not
increase max-norm, and thus preserves convergence. T h e other modification
is t h a t we uniformly sample polynomially many samples f rom t h e (exponen-
tially large) s t a t e space. Th i s way, the complexity of our a lgor i thm becomes
polynomial in the size of the f M D P description length. We prove t h a t t he
a lgori thm is convergent. We also derive an upper bound on t h e difference
between our approx imate solution and the opt imal one, and also on the error
in t roduced by sampling. We analyse various project ion opera tors with re-
spect to their computa t ion complexity and their convergence when combined
with approx imate value i terat ion.

K e y w o r d s : factored Markov decision process, value i teration, reinforcement
learning

1 Introduction
Markov decision processes (MDPs) are extremely useful for formalising and solv-
ing sequential decision problems, with a wide repertoire of algorithms to choose
from [4, 26]. Unfortunately, MDPs are subject to the 'curse of dimensionality' [3]:
for a problem with m state variables, the size of the MDP grows exponentially
with m, even though many practical problems have polynomial-size descriptions.
Factored MDPs (fMDPs) may rescue us from this explosion, because they offer a
more compact representation [17, 5, 6]. In the fMDP framework, one assumes that
dependencies can be factored to several easy-to-handle components.

For MDPs with known parameters, there are three basic solution methods (and,
naturally, countless variants of them): value iteration, policy iteration and linear
programming (see the books of Sutton & Barto [26] or Bertsekas & Tsitsiklis [4]
for an excellent overview). Out of these methods, linear programming is generally

* Eötvös Loránd University, Hungary, Department of Information Systems, E-mail:
szityuagmail.com

^Eötvös Loránd University, Hungary, Department of Information Systems, E-mail:
a n d r a s . l o r i n c z 9 i n f . e l t e . h u . Please send correspondence to András Lőrincz.

616 István Szita, and András Lőrincz

considered less effective than the others. So, it comes as a surprise that all effective
fMDPs algorithms, to our best knowledge, use linear programming in one way or
another. Furthermore, the classic value iteration algorithm is known to be divergent
when function approximation is used [2, 27], which includes the case of fMDPs, too.

In this paper we propose a variant of the approximate value iteration algorithm
for solving fMDPs. The algorithm is a direct extension of the traditional value iter-
ation algorithm. Furthermore, it avoids computationally expensive manipulations
like linear programming or the construction of decision trees. We prove that the
algorithm always converges to a fixed point, and that it requires polynomial time
to reach a fixed accuracy. A bound to the distance from the optimal solution is
also given.

In Section 2 we review the basic concepts of Markov decision processes, includ-
ing the classical value iteration algorithm and its combination with linear function
approximation. We also give a sufficient condition for the convergence of approxi-
mate value iteration, and list several examples of interest. In Section 3 we extend
the results of the previous section to fMDPs and review related works in Section 4.
Conclusions are drawn in Section 5.

2 Approximate Value Iteration in Markov Deci-
sion Processes

2.1 Markov Decision Processes
An MDP is characterised by a sixtuple (X, A, R, P, x s , 7), where X is a finite set of
states;1 A is a finite set of possible actions; R : X x A —» R is the reward function
of the agent, so that i?(x, a) is the reward of the agent after choosing action a in
state x; P : X x A x X —> [0,1] is the transition function so that P(y | x, a) is the
probability that the agent arrives at state y, given that she started from x upon
executing action a; x s € X is the starting state of the agent; and finally, 7 G [0,1)
is the discount rate on future rewards.

A policy of the agent is a mapping 7r : X x A —> [0,1] so that 7r(x, a) tells
the probability that the agent chooses action a in state x. For any xo € X, the
policy of the agent and the parameters of the MDP determine a stochastic process
experienced by the agent through the instantiation

The goal is to find a policy that maximises the expected value of the discounted
total reward. Let the value function of policy ir be

'Later on, we shall generalise the concept of the state of the system. A state of the system
will be a vector of state variables in our fMDP description. For that reason, we already use the
boldface vector notation in this preliminary description.

xo.aoi^oixiiffl i^i . • • •! x t , a t , r i , . . .

00

t=o

Factored Value Iteration Converges 617

and let the optimal value function be

V*(x) := maxVr7r(x) IT
for each x & X. If V* is known, it is easy to find an optimal policy n*, for which
Vn' = V*. Provided that history does not modify transition probability distri-
bution P(y |x , a) at any time instant, value functions satisfy the famous Bellman
equations

v'(*) = E E ix'a) (R(x>a)+^"(y)) (i)
a y

and
V ' (x) = max J2 p(y I x>«) «) + 7^* (y)J • (2)

y
Most algorithms that solve MDPs build upon some version of the Bellman equa-
tions. In the following, we shall concentrate on the value iteration algorithm.

2.2 Exact Value Iteration
Consider an MDP (X, A, P, R, x s , 7). The value iteration for MDPs uses the Bell-
man equations (2) as an iterative assignment: It starts with an arbitrary value
function Vo : X —> R, and in iteration t it performs the update

V t+1(x) := max £ P(y | x, a) (i?(x, a) + 7V t (y)) (3)
yex

for all x € X. For the sake of better readability, we shall introduce vector no-
tation. Let N := |X|, and suppose that states are integers from 1 to N, i.e.
X = {1 ,2 , . . . , iV}. Clearly, value functions are equivalent to TV-dimensional vec-
tors of reals, which may be indexed with states. The vector corresponding to V
will be denoted as v and the value of state x by v x . Similarly, for each a let us
define the iV-dimensional column vector r a with entries r£ = -R(x, a) and TV x N
matrix Pa with entries P ° y = P(y \ x, a). With these notations, (3) can be written
compactly as

v t + 1 := m a x a e A (r a + 7 P a v t) . (4)
Here, m a x denotes the componentwise maximum operator.

It is also convenient to introduce the Bellman operator T : RN —> R ^ that
maps value functions to value functions as

T v : = m a x a 6 ^ (r a + 7 P a v) .

As it is well known, T is a max-norm contraction with contraction factor 7: for
any v , u S | |Tv —TuHoo < 7 | |v — U H qq . Consequently, by Banach's fixed point
theorem, exact value iteration (which can be expressed compactly as v t + i := Tv t)
converges to an unique solution v* from any initial vector v0 , and the solution v*
satisfies the Bellman equations (2). Furthermore, for any required precision e > 0,
llvt-v'Uoo < e if £ > j ^ l l v o - V H o o . One iteration costs 0 (TV2-\A |) computation
steps.

618 István Szita, and András Lőrincz

2.3 Approximate value iteration
In this section we shall review approximate value iteration (AVI) with linear func-
tion approximation (LFA) in ordinary MDPs. The results of this section hold for
AVI in general, but if we can perform all operations effectively on compact repre-
sentations (i.e. execution time is polynomially bounded in the number of variables
instead of the number of states), then the method can be directly applied to the
domain of factorised Markovian decision problems, underlining the importance of
our following considerations.

Suppose that we wish to express the value functions as the linear combination
of K basis functions hk : X -> R (k e {1 , . ¡ . , K}), where K « N. Let H be the
N x K matrix with entries HXik = /¡.fc(x). Let w t £ denote the weight vector
of the basis functions at step t. We can substitute vt = Hwt into the right hand
side (r.h.s.) of (4), but we cannot do the same on the left hand side (l.h.s.) of the
assignment: in general, the r.h.s. is not contained in the image space of H, so there
is no such wÉ + i that

Hwt+i = m a x o e A (r a + -yPaHwt).

We can put the iteration into work by projecting the right-hand side into w-space:
let Q : R w —> be a (possibly non-linear) mapping, and consider the iteration

w t + 1 : = g [m a x a e 4 r 0 + 7 P a t f w t)] (5)

with an arbitrary starting vector wo.

L e m m a 1. If Q is such that HQ is a non-expansion, i.e., for any v, v ' € RN,

\\HQv - HGv'Wn < ||v-v'Hoo,

then there exists a w* € R K such that

w* = g [m a x a e 4 r a + jPaHw*)}

and iteration (5) converges to w* from any starting point.

Proof. We can write (5) compactly as w t + i = QTHwt. Let v t = Hwt. This
satisfies

vt+i = HGTvt. (6)

It is easy to see that the operator HQT is a contraction: for any v , v ' € RA ',

\\HQTv — HQTv'Woo < | | T v - T v ' | | 0 0 < 7 | | v - v ' | | 0 0

by the assumption of the lemma and the contractivity of T. Therefore, by Banach's
fixed point theorem, there exists a vector v* e such that v* = HQTv* and
iteration (6) converges to v* from any starting point. It is easy to see that w* =
QTv* satisfies the statement of the lemma.

•
Note that if Q is a linear mapping with matrix G € RKxN, then the assumption

of the lemma is equivalent to H-ifGHoo < 1.

Factored Value Iteration Converges 619

2.4 Examples of Projections, Convergent and Divergent
In this section, we examine certain possibilities for choosing projection Q. Let
v £ Rn be an arbitrary vector, and let w = Qv be its ^-projection. For linear
operators, Q can be represented in matrix form and we shall denote it by G.

Least-squares (Z/2-)projection. Least-squares fitting is used almost exclu-
sively for projecting value functions, and the term AVI is usually used in the sense
"AVI with least-squares projection". In this case, w is chosen so that it minimises
the least-squares error:

w := argmin ll-ffw — vllo. w
This corresponds to the linear projection G2 = H+ (i.e., w = H+v), where H+ is
the Moore-Penrose pseudoinverse of H. It is well known, however, that this method
can diverge. For an example on such divergence, see, e.g. the book of Bertsekas &
Tsitsiklis [4]. The reason is simple: matrix HH+ is a non-expansion in L2-norm,
but Lemma 1 requires that it should be an Loo-norm projection, which does not
hold in the general case. (See also Appendix A.l for illustration.)

Constrained least-squares projection. One can enforce the non-expansion
property by expressing it as a constraint: Let w be the solution of the constrained
minimisation problem

w := argmin ||iTw — v j | s u b j e c t to HifwHoo < l l v ^ ,

which defines a non-linear mapping This projection is computationally highly
demanding: in each step of the iteration, one has to solve a quadratic programming
problem.

Max-norm (L^ -) projection. Similarly to ¿^-projection, we can also select
w so that it minimises the max-norm of the residual:

w := argmin ||iTw — vj|oo-

The computation of w can be transcribed into a linear programming task and that
defines the non-linear mapping QOQ. However, in general, jIIQ-^v11^ |v11^. and
consequently AVI using iteration

w t + i := argmin | |Fw - THv/tWoo w
can be divergent. Similarly to L2 projection, one can also introduce a constrained
version G£o defined by

: = argmin | | # w - v||oo, subject to Hi/wll«, < I M ^ ,

which can also be turned into a linear program.
It is insightful to contrast this with the approximate linear programming method

of Guestrin et al. [14]: they directly minimise the max-norm of the Bellman error,
i.e., they solve the problem

w* := argmin | | i iw — TiiwHoo,

620 István Szita, and András Lőrincz

which can be solved without constraints.
Li-norm projection. Let Sl¡ be defined by

Qiv := argmin ||íTw — v||i. w

The Li-norm projection also requires the solution of a linear program, but inter-
estingly, the projection operator Q\ is a non-expansion (the proof can be found in
Appendix A.l).

AVI-compatible operators considered so far (G£. a n d were non-linear,
and required the solution of a linear program or a quadratic program in each step of
value iteration, which is clearly cumbersome. On the other hand, while G?y = H+v
is linear, it is also known to be incompatible with AVI [2, 27]. Now, we shall focus
on operators that are both AVI-compatible and linear.

Normalised linear mapping. Let G be an arbitrary K x N matrix, and
define its normalisation A/*(G) as a matrix with the same dimensions and entries

MG))ii = G i j

that is, N(G) is obtained from G by dividing each element with the norm of the
corresponding row of HG. All (absolute) row sums of H • Af(G) are equal to 1.
Therefore, (i) | | i i • .A/'iGJIloo = 1, and (ii) H • N(G) is maximal in the sense that if
the absolute value of any element of N(G) increased, then for the resulting matrix
G', || H • G'Hoo > 1.

Probabilistic linear mapping. If all elements of H are non-negative and all
the row-sums of H are equal, then Af(HT) assumes a probabilistic interpretation.
This interpretation is detailed in Appendix A.2.

Normalised least-squares projection. Among all linear operators, H+ is
the one that guarantees the best least-squares error, therefore we may expect that
its normalisation, Af(H+) plays a similar role among AVI-compatible linear projec-
tions. Unless noted otherwise, we will use the projection N(H+) subsequently.

2.5 Convergence properties
Lemma 2. Let v* be the optimal value function and w* be the fixed point of the
approximate value iteration (5): Then

\\Hw* - vloo < -i— \\HGv' - vloo.
1 - 7

Proof For the optimal value function, v* = Tv* holds. On the other hand, w* =
QTH-w*. Thus,

l l t f w ' - v l o o = llffer/Tw* - T v l « ,
< \\HQTHw* - HQTv* lloo + IIHQTv* - Tv* U«,
< \\THw* — Tv*^ + \\HQv* — v^loo
< 7 | | #w* - v l o o + \\HQv* - v l o o ,

Factored Value Iteration Converges 621

from which the statement of the lemma follows. For the transformations we have
applied the triangle inequality, the non-expansion property of HQ and the contrac-
tion property of T. •

According to the lemma, the error bound is proportional to the projection error
of v*. Therefore, if v* can be represented in the space of basis functions with small
error, then our AVI algorithm gets close to the optimum. Furthermore, the lemma
can be used to check a posteriori how good our basis functions are. One may
improve the set of basis functions iteratively. Similar arguments have been brought
up by Guestrin et al. [14], in association with their LP-based solution algorithm.

3 Factored value iteration
MDPs are attractive because solution time is polynomial in the number of states.
Consider, however, a sequential decision problem with m variables. In general,
we need an exponentially large state space to model it as an MDP. So, the num-
ber of states is exponential in the size of the description of the task. Factored
Markov decision processes may avoid this trap because of their more compact task
representation.

3.1 Factored Markov decision processes
We assume that X is the Cartesian product of m smaller state spaces (corresponding
to individual variables):

X = X\ x Xi x . . . x Xm.

For the sake of notational convenience we will assume that each Xi has the same
size, |Xi| = 1 = . . . = \Xm\ = n. With this notation, the size of the full state
space is N = |X| = n m . We note that all derivations and proofs carry through to
different size variable spaces.

A naive, tabular representation of the transition probabilities would require
exponentially large space (that is, exponential in the number of variables m). How-
ever, the next-step value of a state variable often depends only on a few other
variables, so the full transition probability can be obtained as the product of sev-
eral simpler factors. For a formal description, we introduce several notations:

For any subset of variable indices Z C {1,2, . . . ,m}, let X[Z] := x Xi, fur-
iez

thermore, for any x £ X, let x[Z] denote the value of the variables with indices in
Z. We shall also use the notation x{Z] without specifying a full vector of values x,
in such cases x[Z] denotes an element in X[Z]. For single-element sets Z = {i} we
shall also use the shorthand x[{i}] = x[z].

A function / is a local-scope function if it is defined over a subspace X[Z] of the
state space, where Z is a (presumably small) index set. The local-scope function
/ can be extended trivially to the whole state space by / (x) := f(x[Z}). If \Z\

622 István Szita, and András Lőrincz

is small, local-scope functions can be represented efficiently, as they can take only
n M different values.

Suppose that for each variable i there exist neighbourhood sets r , such that the
value of x t+i[i] depends only on x t[r,J and the action at taken. Then we can write
the transition probabilities in a factored form

n

P (y | x , f l) = I I P i (y [i] | x [r i] 1 a) (7)
i=l

for each x, y G X, a G A, where each factor is a local-scope function

Pi : X[T4] x A. x Xi -> [0,1] (for all i G {1 , . . . , m}). (8)

We will also suppose that the reward function is the sum of J local-scope functions:
J

R(x,a) =YtRj(x[Zj},a), (9)
j=i

with arbitrary (but preferably small) index sets Zj, and local-scope functions

Rj : X[Zj] x A -» R (for all j G {1 , . . . , J}). (10)

To sum up, a factored Markov decision process is characterised by the param-
eters : 1 < i < m}\ A\ {Rj : 1 < j < J}; {I\ : 1 < i < n}\{Pi : 1 <i<

n};x s ;7^ , where xs denotes the initial state.
Functions Pi and Ri are usually represented either as tables or dynamic Bayesian

networks. If the maximum size of the appearing local scopes is bounded by some
constant, then the description length of an fMDP is polynomial in the number of
variables n.

3.1.1 Value func t ions

The optimal value function is an N.= nm-dimensional vector. To represent it effi-
ciently, we should rewrite it as the sum of local-scope functions with small domains.
Unfortunately, in the general case, no such factored form exists [14].

However, we can still approximate V* with such an expression: let K be the
desired number of basis functions and for each k G {1 , . . . , K}, let Ck be the domain
set of the local-scope basis function hk : X[Cfc] —> R. We are looking for a value
function of the form

K
V(x) = •/lfc(x[Cfc]). (11)

fc=i
The quality of the approximation depends on two factors: the choice of the basis

functions and the approximation algorithm. Basis functions are usually selected by
the experiment designer, and there are no general guidelines how to automate
this process. For given basis functions, we can apply a number of algorithms to
determine the weights Wk- We give a short overview of these methods in Section 4.
Here, we concentrate on value iteration.

Factored Value Iteration Converges 623

3.2 Exploiting factored structure in value iteration
For fMDPs, we can substitute the factored form of the transition probabilities (7),
rewards (9) and the factored approximation of the value function (11) into the AVI
formula (5), which yields

K

J 2 hk{x[Ck}) • wk l t+i « max £ (j [P(y[i] | x ^] , a)) •
y € X ¿=1

J K
Q r ^ (x [Z j] , a) + 7 E hk'(.y[Ck>}) • wk.,ty

k=1 y € X ¿=1

J

j = l k'=1

By rearranging operations and exploiting that all occurring functions have a local
scope, we get

K

E M x [C f c]) • wk,t+1 = Gk m a x

J

Y , R M Z j U)
fe=1

K

E E (I I I x[r i],a))/i^(y[C f c ,])
k ' = l y [C t <] e X [C f c ,] i£Ck,

Lj=i

(1 2)

for all x e X. We can write this update rule more compactly in vector notation.
Let

wt := (wiit,w2,t, • • •, WK,I) €

and let if be an |X| x K matrix containing the values of the basis functions. We
index the rows of matrix H by the elements of X:

HXlk := hk(x[Ck}).

Further, for each a € A, let Ba be the |X| x K value backprojection matrix defined
as

B l k : = E (I I ^(y[i]|xtri],a))hfc(y[Cjfc])

y[C f c]eX[C f c] i€Ck

and for each a, define the reward vector r a e R'x l by
nT.

r x : = E ^ (x [Z 3 -] , a) .
j=l

Using these notations, (12) can be rewritten as

w t + i := GmaxaeA (rQ + 7 B a w () . (13)

Now, all entries of Ba, H and r a are composed of local-scope functions, so
any of their individual elements can be computed efficiently. This means that the

624 István Szita, and András Lőrincz

time required for the computation is exponential in the sizes of function scopes,
but only polynomial in the number of variables, making the approach attractive.
Unfortunately, the matrices are still exponentially large, as there are exponentially
many equations in (12). One can overcome this problem by sampling as we show
below.

3.3 Sampling
To circumvent the problem of having exponentially many equations, we select a
random subset X C X of the original state space so that |X| = poly(m), con-
sequently, solution time will scale polynomially with m. On the other hand, we
will select a sufficiently large subset so that the remaining system of equations is
still over-determined. The necessary size of the selected subset is to be determined
later: it should be as small as possible, but the solution of the reduced equation
system should remain close to the original solution with high probability. For the
sake of simplicity, we assume that the projection operator Q is linear with matrix
G. Let the sub-matrices of G, H, B" and r a corresponding to X be denoted by G,
H, Ba and r°, respectively. Then the following value update

can be performed effectively, because these matrices have polynomial size. Now we
show that the solution from sampled data is close to the true solution with high
probability.

Theorem 1. Let w* be the unique solution of w* = GTHvs* of an FMDP, and
let w' be the solution of the corresponding equation with sampled matrices, w' =
GTHw'. Suppose that the projection matrix G has a factored structure, too. Then
iteration (14) converges to w', furthermore, for a suitable constant E (depending
polynomially on nz, where z is the maximum cluster size), and for any e, S > 0,
||w* — w'Hoo < t holds with probability at least 1 — S, if the sample size satisfies

_?7l2 , rn
Ni> S - = - l o g T .

e2- o
The proof of Theorem 1 can be found in Appendix A.3. The derivation is

closely related to the work of Drineas and colleagues [11, 12] with the important
exception we use the infinity-norm instead of the Z^-norm. The resulting factored
value iteration algorithm is summarised in Algorithm 1.

4 Related work
The exact solution of factored MDPs is infeasible. The idea of representing a large
MDP using a factored model was first proposed by Koller & Parr [17] but similar
ideas appear already in the works of Boutilier, Dearden, & Goldszmidt [5, 6]. More
recently, the framework (and some of the algorithms) was extended to fMDPs with

(14)

Factored Value Iteration Converges 625

Algo r i t hm 1 Factored value iteration with a linear projection matrix G.
% inputs:
% factored MDP, M = ({*(}£i; A; {r j™ l5 {PJ™ i ; x s ; 7)
% basis functions, {/ifc}j[Li
% required accuracy, e
N\ := number of samples
X := uniform random N\-element subset of X
create H and G
create Ba = PaH and r° for each a £ A
w 0 = 0, t := 0
r e p e a t

w t + i := G • rnaxfr" + 7 P ° w t)
a£A \ 1

At := | |w t + i - Wtlloo
t:=t + 1

unt i l At > e
r e t u r n W[

hybrid continuous-discrete variables [18] and factored partially observable MDPs
[23]. Furthermore, the framework has also been applied to structured MDPs with
alternative representations, e.g., relational MDPs [13] and first-order MDPs [24].

4.1 Algorithms for solving factored M D P s
There are two major branches of algorithms for solving fMDPs: the first one ap-
proximates the value functions as decision trees, the other one makes use of linear
programming.

Decision trees (or equivalently, decision lists) provide a way to represent the
agent's policy compactly. Koller & Parr [17] and Boutilier et al. [5, 6] present
algorithms to evaluate and improve such policies, according to the policy iteration
scheme. Unfortunately, the size of the policies may grow exponentially even with
a decision tree representation [6, 20].

The exact Bellman equations (2) can be transformed to an equivalent linear
program with N variables {V(x) : x 6 X} and N • constraints:

maximise: ^ ^ a(x)T^(x)
x 6 X

subject to V(x) < P(x, a) + 7 P (x ' | x, a)V(x'), (Vx eX,aeA).
x ' e x

Here, weights a(x) are free parameters and can be chosen freely in the following
sense: the optimum solution is V* independent of their choice, provided that each
of them is greater than 0. In the approximate linear programming approach, we
approximate the value function as a linear combination of basis functions (11),

626 István Szita, and András Lőrincz

resulting in ah approximate LP with K variables {wk • 1 < k < K] and N •
constraints:

K
maximise: ^ ^ Wk • a(x)/ifc(x[Cfc]) (15)

fe=lx6X
K

subject to ^Tuik • /ifc(x[Cfc]) <
fc=i

K
< ü (x , a) + 7 Y , Wk> Y1 P (x ' I x ' a) " M* ' [Cfc ' I)-

k'=i x ' e x

Both the objective function and the constraints can be written in compact forms,
exploiting the local-scope property of the appearing functions.

Markov decision processes were first formulated as LP tasks by Schweitzer and
Seidmann [25]. The approximate LP form is due to de Farias and van Roy [7].
Guestrin et al. [14] show that the maximum of local-scope functions can be com-
puted by rephrasing the task as a non-serial dynamic programming task and elim-
inating variables one by one. Therefore, (15) can be transformed to an equivalent,
more compact linear program. The gain may be exponential, but this is not nec-
essarily so in all cases: according to Guestrin et al. [14], "as shown by Dechter
[9], [the cost of the transformation] is exponential in the induced width of the cost
network, the undirected graph defined over the variables X\\...; Xn, with an edge
between X[and Xm if they appear together in one of the original functions f j . The
complexity of this algorithm is, of course, dependent on the variable elimination
order and the problem structure. Computing the optimal elimination order is an
NP-hard problem [1] and elimination orders yielding low induced tree width do
not exist for some problems." Furthermore, for the approximate LP task (15), the
solution is no longer independent of a and the optimal choice of the a values is not
known i

The approximate LP-based solution algorithm is also due to Guestrin et al. [14].
Dolgov and Durfee [10] apply a primal-dual approximation technique to the linear
program, and report improved results on several problems.

The approximate policy iteration algorithm [17, 14] also uses an approximate
LP reformulation, but it is based on the policy-evaluation Bellman equation (1).
Policy-evaluation equations are, however, linear and do not contain the maximum
operator, so there is no need for the second, costly transformation step. On the
other hand, the algorithm needs an explicit decision tree representation of the
policy. Liberatore [20] has shown that the size of the decision tree representation
can grow exponentially.

4.1.1 Appl ica t ions

Applications of fMDP algorithms are mostly restricted to artificial test problems
like the "problem set of Boutilier et al. [6], various versions of the S Y S A D M I N task
[14, 10, -21] or the New York driving task [23].

Factored Value Iteration Converges 627

Guestrin, Roller, Gearhaxt and Kanodia [13] show that their LP-based solution
algorithm is also capable of solving more practical tasks: they consider the real-
time strategy game FYeeCraft. Several scenarios are modelled as fMDPs, and solved
successfully. Furthermore, they find that the solution generalises to larger tasks
with similar structure.

4.1.2 Unknown environment

The algorithms discussed so far (including our FVI algorithm) assume that all
parameters of the fMDP are known, and the basis functions are given. In the
case when only the factorisation structure of the fMDP is known but the actual
transition probabilities and rewards are not, one can apply the factored versions of
E3 [16] or R-max [15].

Few attempts exist that try to obtain basis functions or the structure of the
fMDP automatically. Patrascu et al. [21] select basis functions greedily so that the
approximated Bellman error of the solution is minimised. Poupart et al. [22] apply
greedy selection, too, but their selection criteria are different: a decision tree is
constructed to partition the state space into several regions, and basis functions
are added for each region. The approximate value function is piecewise linear in
each region. The metric they use for splitting is related to the quality of the LP
solution.

4.2 Sampling
Sampling techniques are widely used when the state space is immensely large.
Lagoudakis and Parr [19] use sampling without a theoretical analysis of perfor-
mance, but the validity of the approach is verified empirically. De Farias and van
Roy [8] give a thorough overview on constraint sampling techniques used for the
linear programming formulation. These techniques are, however, specific to linear
programming and cannot be applied in our case.

The work most similar to ours is that of Drineas et al. [12, 11]. They investi-
gate the least-squares solution of an overdetermined linear system, and they prove
that it is sufficient to keep polynomially many samples to reach low error with
high probability. They introduce a non-uniform sampling distribution, so that the
variance of the approximation error is minimised. However, the calculation of the
probabilities requires a complete sweep through all equations.

5 Conclusions
In this paper we have proposed a new algorithm, factored value iteration, for the
approximate solution of factored Markov decision processes. The classical approx-
imate value iteration algorithm is modified in two ways. Firstly, the least-squares
projection operator is substituted with an operator that does not increase max-
norm, and thus preserves convergence. Secondly, polynomially many samples are

628 István Szita, and András Lőrincz

sampled uniformly from the (exponentially large) state space. This way, the com-
plexity of our algorithm becomes polynomial in the size of the fMDP description
length. We prove that the algorithm is convergent and give a bound on the differ-
ence between our solution and the optimal one. We also analysed various projec-
tion operators with respect to their computation complexity and their convergence
when combined with approximate value iteration. To our knowledge, this is the
first algorithm that (1) provably converges in polynomial time and (2) avoids linear
programming.

Acknowledgements
The authors, are grateful to Zoltan Szabo for calling our attention to the articles of
Drineas et al. [11, 12]. This research has been supported by the EC FET 'New and
Emergent World models Through Individual, Evolutionary, and Social Learning'
Grant (Reference Number 3752). Opinions and errors in this manuscript are the
author's responsibility, they do not necessarily reflect those of the EC or other
project members.

A Proofs

A . l Projections in various norms
We wish to know whether w0 = argminw | | i iw —v||p implies ||Tiwo||oo < llvl|oo for
various values of p. Specifically, we are interested in the cases when p £ {1,2, oo}.
Fig. 1 indicates that the implication does not hold for p = 2 or p = oo, only for the
case p = 1. Below we give a rigorous proof for these claims.

Consider the example v = [1, l] r e K2, H = [1,2]T, w € R1 . For these values
easy calculation shows that IliffwoJ^Hoo = 6/5 and ¡ | i i [w o] | | o o = 4/3, i.e.,
I I -HwqIIoo ^ IMloo for both cases. For p = 1, we shall prove the following lemma:

L e m m a 3. If w0 = argminw | | # w - v | |1 ; then H-ffwoHoo < IMI°°-

Proof. Let z := Hwo € RN. If there are multiple solutions to the minimisation
task, then consider the (unique) z vector with minimum Z,2-norm. Let r := ||z —v||i
and let S(v, r) be the Li-sphere with centre v and radius r (this is an iV-dimensional
cross polytope or orthoplex, a generalisation of the octahedron).

Suppose indirectly that H z ^ > HvH^. Without loss of generality we may
assume that z\ is the coordinate of z with the largest absolute value, and that
it is positive. Therefore, z\ > HvH^. Let e^ denote the i t h coordinate vector
(1 < i < N), and let Zj = z — i e j . For small enough 8, S(zs,5) is a cross polytope
such that (a) S{zs,6) C S(v , r) , (b) Vz' £ S(z5,S), Wz'W^ > HvH«,, (c) Ve > 0
sufficiently small, (1 - e)z <E S(zs,S). The first two statements are trivial. For the
third statement, note that z is a vertex of the cross polytope S(zg, 5). Consider the
cone whose vertex is z and its edges are the same as the edges of S(zs, S) joining
z. It is easy to see that the vector pointing from z to the origo is contained in this

Factored Value Iteration Converges 629

Figure 1: Projections in various norms. The vector v is projected onto the image
space of H, i.e., the subspace defined by u = Hw. Consider the smallest sphere
around v (in the corresponding norm) that touches the subspace u = Hw (shown
in each figure). The radius ro of this sphere is the distance of v from the subspace,
and the tangent point vo (which is not necessarily unique for L\ projection) is the
projection of v. For this point, vo = Hwo holds. The shaded region indicates
the region {u : HuHoo < llvlloo}. To ensure the convergence of FVI, the projected
vector VQ must fall into the shaded region.

cone: for each 1 < i < N, |zj| < z\ (as z\ is the largest coordinate). Consequently,
for small enough e, z — ez € S(zg, 5).

Fix such an e and let q = (1 — e)z. This vector is (a) contained in the image
space of H because H[(1 — e)w) = q; (b) ||q - v||i < ||z — v||i = r . The vector
z was chosen so that it has the smallest Li-norm in the image space of H, so the
inequality cannot be sharp, i.e., ||q —v||i = r. However, ||q||2 = (1 — e)||z||2 < ||z||2

with strict inequality, which contradicts our assumption about z, thus completing
the proof. •

A.2 Probabilistic interpretation of N(HT)
Defini t ion 1. The basis functions {hkhave the uniform covering (UC) prop-
erty, if all row sums in the corresponding H matrix are identical:

71 (,
k = B for all x € X,

fc=l

and all entries are non-negative. Without loss of generality we may assume that all
rows sum up to 1, i.e., H is a stochastic matrix.

We shall introduce an auxiliary MDP M. such that exact value iteration in M.
is identical to the approximate value iteration in the original MDP M.. Let S be
an /^-element state space with states s j , . . . , sk - A state s is considered a discrete
observation of the true state of the system, x e X.

The action space A and the discount factor 7 are identical to the corresponding
items of M , and an arbitrary element so € S is selected as initial state. In order to

630 István Szita, and András Lőrincz

obtain the transition probabilities, let us consider how one can get from observing
s to observing s' in the next time step: from observation s, we can infer the hidden
state x of the system; in state x, the agent makes action a and transfers to state
x ' according to the original MDP; after that, we can infer the probability that
our observation will be s', given the hidden state x'. Consequently, the transition
probability P(s' | s, a) can be defined as the total probability of all such paths:

P{s' | s ,a) := Y^ P r (x I s) P r (x ' I x > a) P r (s ' I x) '
x . x ' e x

Here the middle term is just the transition probability in the original MDP, the
rightmost term is H x s , and the leftmost term can be rewritten using Bayes' law
(assuming a uniform prior on x):

P r (x | s) = P r (s | x) P r (x) _ _
E x " e x Pr(s I x ") Pr(x") £ x « e x Hx„,. • ^ E X " e x '

Consequently,

P(s' | s, a) = H*'s P(x'\x,a)H^s=[Af(H)TPaH]ssl.

x , x ' 6 X ¿ ^ x " 6 X - ° x " , s

The rewards can be defined similarly:
R(s,a) := Pr(x | s)i?(x,a) = [Af (t f) r r a] s .

x € X

It is easy to see that approximate value iteration in M. corresponds to exact value
iteration in the auxiliary MDP M .

A.3 The proof of the sampling theorem (theorem 1)
First we prove a useful lemma about approximating the product of two large ma-
trices. Let A € R m x n and B 6 R n x f c and let C = A • B. Suppose that we sample
columns of A uniformly at random (with repetition), and we also select the corre-
sponding rows of B. Denote the resulting matrices with A and B. We will show
that A • B « c • A • B, where c is a constant scaling factor compensating for the
dimension decrease of the sampled matrices. The following lemma is similar to
Lemma 11 of [11], but here we estimate the infinity-norm instead of the Z,2-norm.

L e m m a 4. Let A € M m x ; v , B e RNxk and C =<A-B. Let N' be an integer so that
1 < N' < N, and for each i € {1 , . . . , TV7}, let ri be an uniformly random integer
from the interval [1, N]. Let A 6 RmxN be the matrix whose ith column is the Tith

column of A, and denote by B the N' x k matrix that is obtained by sampling the
rows of B similarly. Furthermore, let

N1

¿=1

Factored Value Iteration Converges 631

Then, for any e,5 > 0, \\C-CWoo < eJV||,4||00||.BT||00 with probability at leastl-6,
if the sample size satisfies N' > ^r- log ^ f 1 .

Proof. We begin by bounding individual elements of the matrix C: consider the
element

N N'
Cpq — -jTT, iBTi,q-

t=l
Let Cp„ be the discrete probability distribution determined by mass points {A P,I

Bi,q | 1 < ^ < Ar}. Note that Cpq is essentially the sum of N' random variables
drawn uniformly from distribution Cpq. Clearly,

\ApiBiq\ < max \Aij\ max \Bij\ < max V " \ A i j \ m a x V |J5ij| = H^iloo||-B||oo, ij ij I I

so we can apply Hoeffding's inequality to obtain

Pr

or equivalently, <
N' N

> e i j < 2 exp
N'e\

Pr - [ABU > Ne J < 2 exp

m\\uB\\

N't\ \
2 | W U | B | I

where ei > 0 is a constant to be determined later. From this, we can bound the
row sums of C — C:

Pr(£ | Cpq - Cpq
p = 1

> m Ne^j < 2mexp(-
N'el

2 | I - 4 | U №

which gives a bound on ||C — C||oo. This is the maximum of these row sums:
m

P r (| |C - C||oo > mNe^j = P r (m a x ^ \cpq - Cpq| > mNe^
P= l

< 2km exp
N'e\

Therefore, by substituting e% — e^AWoaWBW^/m, the statement of the lemma is
satisfied if 2 / c m e x p (- f ^) < 5, i.e, if N' > log ^ p . •

If both A and B are structured, we can sharpen the lemma to give a much
better (potentially exponentially better) bound. For this, we need the following
definition:

For any index set Z, a matrix A is called Z-local-scope matrix, if each column
of A represents a local-scope function with scope Z.

632 István Szita, and András Lőrincz

L e m m a 5. Let AT and B be local-scope matrices with scopes Z\ and Z2, and let
No = nlZl'+!Zal> and apply the random row/column selection procedure of the pre-
vious lemma. Then, for any e,5 > 0, \\C — C||oo < eAfollAllooll-BHoo mth probability
at least 1 — S, if the sample size satisfies N' > log .

Proof. Fix a variable assignment x\Z\ U Z2] on the domain Z\ U Z<± and consider
the rows of A that correspond to a variable assignment compatible to x[Zj U Z2],
i.e., they are identical to it for components Z\ U Z2 and are arbitrary on

W:=!{l,2,...,m}\(Z1UZ2).

It is easy to see that all of these rows are identical because of the local-scope
property. The same holds for the columns of B. All the equivalence classes of
rows/columns have cardinality

N1 := n)wV = N/NQ.

Now let us define the mx No matrix A! so that only one column is kept from each
equivalence class, and define the No x k matrix B' similarly, by omitting rows.
Clearly,

A - B = N\A' • B',
and we can apply the sampling lemma to the smaller matrices A' and B' to get
that for any e,5 > 0 and sample size N' > log ^¿p, with probability at least
1 - t f ,

\\A> • B> - A! • B'Hoo < cJVoll^'HoollB'lloo.
Exploiting the fact that the max-norm of a matrix is the maximum of row norms,
Halloo = II^Hoo/iV! and HB'lloo = |jB||qq, we can multiply both sides to get

H ^ I ^ T B ' - A • JBHOO < cJVoiViH^Hoo/iVillJSIloo = eAA0|!^4||ooHalloo,

which is the statement of the lemma. •

Note that if the scopes Z\ and Zi are small, then the gain compared to the
previous lemma can be exponential.

L e m m a 6. Let A = A\ + ... + Ap and B = B\ + ... + Bq where all Ai and Bj
are local-scope matrices with domain size at most z, and let No = nz. If we apply
the random row/column selection procedure, then for any e,S > 0, ||C — CHqq <
eNopq maxj ||ylj|| oo maxj 11 Bj 11 oo with probability at least 1 — S, if the sample size
satisfies N'>^- l o g ^ p .

Proof.

\\c - C||oo < ^ £ \ \aT BJ - Ai • Bjlloo.
1=1 j=i

For each individual product term we can apply the previous lemma. Note that we
can use the same row/column samples for each product, because independence is
required only within single matrix pairs. Summing the right-hand sides gives the
statement of the lemma. •

Factored Value Iteration Converges 633

Now we can complete the proof of Theorem 1:

Proof.

* / w — w oo = \\GTHw* - GTHw'Woo
< \\GTHw* - GTHwI,« + \\GTHw* - GTHw'\\

< \\GTHw* — GTHw'Woo + 7||w* — w'Hoo,

oo

oo

OO!

i.e., ||W* - w'lloo < j^WGTHw* - GTHw'Woo. Let TT0 be the greedy policy
with respect to the value function Hw*. With its help, we can rewrite THw* as
a linear expression: THv/* = r71"0 + jP^"Hw*. Furthermore, T is a component-
wise operator, so we can express its effect on the downsampled value function as
THw* =r 7 r ° + jP*°Hw*. Consequently,

\\GTHvf* — GTHw'Woo < HGr*0 — Gr^Hoo + j\\GPn°H — GP"'0ifHodlw*

Applying the previous lemma two times, we get that with probability greater than
1 - ¿i, ||Gr7^ - Grille*, < exCx if AT' > 2m! i o g a n d w i t h probability greater

than 1 - S2, || GP*«H - G P ^ I U < e2G2 if N' > l o g o f f ; where Gj and
C2 are constants depending polynomially on N0 and the norm of the component
local-scope functions, but independent of N.

Using the notation M = +7C ,2||w*||00), ei = e2 = e/M, ¿i = S2 = 5/2
and E = M2 proves the theorem. •

Informally, this theorem tells that the required number of samples grows quad-
ratically with the desired accuracy 1/e and logarithmically with the required cer-
tainty 1/5, furthermore, the dependence on the number of variables m is slightly
worse than quadratic. This means that even if the number of equations is expo-
nentially large, i.e., N = 0(em), we can select a polynomially large random subset
of the equations so that with high probability, the solution does not change very
much.

References
[1] Arnborg, Stefan, Corneil, Derek G., and Proskurowski, Andrzej. Complexity

of finding embeddings in a k-tree. SIAM Journal on Algebraic and Discrete
Methods, 8(2):277-284, 1987.

[2] Baird, Leemon C. Residual algorithms: Reinforcement learning with function
approximation. In Proceedings of the International Conference on Machine
Learning, pages 30-37, 1995.

[3] Bellman, Richard E. Adaptive Control Processes. Princeton University Press,
Princeton, NJ., 1961.

634 István Szita, and András Lőrincz

[4] Bertsekas, Dimitri P. and Tsitsiklis, John N. Neuro-Dynamic Programming.
Athena Scientific, 1996.

[5] Boutilier, Craig, Dearden, Richard, and Goldszmidt, Moises. Exploiting struc-
ture in policy construction. In Proceedings of the Fourteenth International
Joint Conference on Artificial Intelligence, pages 1104-1111, 1995.

[6] Boutilier, Craig, Dearden, Richard, and Goldszmidt, Moises. Stochastic dy-
namic programming with factored representations. Artificial Intelligence,
121(l-2):49-107, 2000.

[7] de Farias, Daniela Pucci and van Roy, Benjamin. Approximate dynamic pro-
gramming via linear programming. In Advances in Neural Information Pro-
cessing Systems 14, pages 689-695, 2001.

[8] de Farias, Daniela Pucci and van Roy, Benjamin. On constraint sampling
in the linear programming approach to approximate dynamic programming.
Mathematics of Operations Research, 29(3):462-478, 2004.

[9] Dechter, Rina. Bucket elimination: A unifying framework for reasoning. Ar-
tificial Intelligence, 113(l-2):41-85, 1999.

[10] Dolgov, Dmitri A. and Durfee, Edmund H. Symmetric primal-dual approxi-
mate linear programming for factored MDPs. In Proceedings of the 9th Inter-
national Symposium on Artificial Intelligence and Mathematics (AI&M 2006),
2006.

[11] Drineas, Petros, Kannan, Ravi, and Mahoney, Michael W. Fast monte carlo
algorithms for matrices i: Approximating matrix multiplication. SIAM Journal
of Computing, 36:132-157, 2006.

[12] Drineas, Petros, Mahoney, Michael W., and Muthukrishnan, S. Sampling
algorithms for 12 regression and applications. In Proc. 17-th Annual SODA,
pages 1127-1136, 2006.

[13] Guestrin, Carlos, Koller, Daphne, Gearhart, Chris, and Kanodia, Neal. Gen-
eralizing plans to new environments in relational MDPs. In Eighteenth Inter-
national Joint Conference on Artificial Intelligence, 2003.

[14] Guestrin, Carlos, Koller, Daphne, Parr, Ronald, and Venkataraman, Shobha.
Efficient solution algorithms for factored MDPs. Journal of Artificial Intelli-
gence Research, 19:399-468, 2002.

[15] Guestrin, Carlos, Patrascu, Relu, and Schuurmans, Dale. Algorithm-directed
exploration for model-based reinforcement learning in factored mdps. In Pro-
ceedings of the International Conference on Machine Learning, pages 235-242,
2002.

Factored Value Iteration Converges 635

[16] Keaxns, Michael J. and Koller, Daphne. Efficient reinforcement learning in
factored MDPs. In Proceedings of the 16th International Joint Conference on
Artificial Intelligence, pages 740-747, 1999.

[17] Koller, Daphne and Parr, Ronald. Policy iteration for factored mdps. In
Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence,
pages 326-334, 2000.

[18] Kveton, Branislav, Hauskrecht, Milos, and Guestrin, Carlos. Solving factored
MDPs with hybrid state and action variables. Journal of Artificial Intelligence
Research, 27:153-201, 2006.

[19] Lagoudakis, Michail G. and Parr, Ronald. Least-squares policy iteration. Jour-
nal of Machine Learning Research, 4:1107-1149, 2003.

[20] Liberatore, Paolo. The size of MDP factored policies. In Proceedings of the
18th National Conference on Artificial intelligence, pages 267-272, 2002.

[21] Patrascu, Relu, Poupart, Pascal, Schuurmans, Dale, Boutilier, Craig, and
Guestrin, Carlos. Greedy linear value-approximation for factored markov de-
cision processes. In Proceedings of the 18th National Conference on Artificial
intelligence, pages 285-291, 2002.

[22] Poupart, Pascal, Boutilier, Craig, Patrascu, Relu, and Schuurmans, Dale.
Piecewise linear value function approximation for factored mdps. In Proceed-
ings of the 18th National Conference on AI, 2002.

[23] Sallans, Brian. Reinforcement Learning for Factored Markov Decision Pro-
cesses. PhD thesis, University of Toronto, 2002.

[24] Sanner, Scott and Boutilier, Craig. Approximate linear programming for first-
order MDPs. In Proceedings of the 21th Annual Conference on Uncertainty in
Artificial Intelligence (UAI), pages 509-517, 2005.

[25] Schweitzer, Paul J. and Seidmann, Abraham. Generalized polynomial approx-
imations in markovian decision processes. Journal of Mathematical Analysis
and Applications, 110(6):568-582, 1985.

[26] Sutton, Richard S. and Barto, Andrew G. Reinforcement Learning: An Intro-
duction. MIT Press, Cambridge, 1998.

[27] Tsitsiklis, John N. and Roy, Benjamin Van. An analysis of temporal-difference
learning with function approximation. IEEE Transactions on Automatic Con-
trol, 42(5):674-690, 1997,

Acta Cybernetica 18 (2008) 637-635.

InfoMax Bayesian Learning of the Furuta Pendulum

László A. Jeni* György Flóreaj and András Lőrincz^

Abstract

We have studied the InfoMax (D-optimali ty) learning for t he two-link
F u r u t a pendu lum. We compared InfoMax and random learning methods .
T h e InfoMax learning method won by a large margin, it visited a larger
domain and provided be t t e r approximat ion during the same t ime interval.
T h e advantages and the l imitat ions of t he InfoMax solution are t rea ted .

K e y w o r d s : Online Bayesian learning, D-optimality, infomax control, F u r u t a
pendu lum

1 Introduction
In recent years, machine learning methods became more and more accurate and
popular, so that the task of learning the dynamics of plants and the learning of
reactive behaviours to environmental changes seem to be within reach. Such tasks
call for online (i.e., real time) learning methods. For fast learning, one would like
to provide stimuli that facilitate the fastest information gain about the changes of
the plant and its environment [3, 2].

As an example, consider an industrial robot. Programming of industrial robots
is traditionally an off-line task. In typical situations, the trajectory of the robot
is generated from a CAD model of the environment and the robot [12]. However,
this model holds no information about the unavoidable modelling errors especially
if the environment changes. We assume that the environment and the robot have
a parametrised representation and that the goal is to estimate these parameters as
quickly as possible and possibly on-the-flight.

An attractive route replaces trajectory planning and trajectory tracking with
speed-field planning and speed-field tracking. This latter is less strict about the
actual path. The difference between the two methods can be described by the
example when one is walking on a crowded street. Here, the trajectory should be

"Eötvös Loránd University, Department of Software Technology and Methodology, E-mail:
j e d i S i n f . e l t e . h u

'Eötvös Loránd University, Department of Information Systems, E-mail:
r ipps1lQfreemai l .hu , andras . lo r inczf le l t e .hu

'Corresponding author

638 Jeni et a 1.

replanned at each time instant and at full length when anybody moves. Speed-
field, however, undergoes slight changes even if the walker is pushed by the crowd.
Further, speed-field tracking requires a crude model of the inverse dynamics and
still has attractive global stability properties [13, 14].

This underlines our approach, where we try to approximate the dynamics fast.
We use the InfoMax (also called D-optimality) approach. InfoMax learning means
that the next control action is chosen according to Bayesian estimation given what
we have learnt until now, given the actual state that we have at this moment. The
task is the estimation of the best control signal now to gain the most information
about the unknown parameters of the model from the next observation. Note,
however, that the state of the unknown plant is also an issue, we may not know
the order of the dynamics, or the temporal convolution corrupting instantaneous
control actions. We treat the problem of the order of the dynamics here.

It has been shown recently by Poczos and Lorincz [11] that InfoMax control
can be computed analytically without approximations and leads to simple learning
rules by slightly modifying the generalised linear model in [8].

Our particular example that we study is the so called two-link Furuta pendulum
[4]. This pendulum as well as the related InfoMax task are sketched in Fig. 1.

Figure 1: Furuta pendulum and InfoMax learning.
The pendulum stimulator receives the control input from the InfoMax algorithm,
the only output of this exploratory algorithm. The learning system also receives this
control signal. The learning system estimates, the pendulum stimulator computes
the next state. All information, i.e., state, state estimation, control signal are used
to update the parameters of the learning system and to compute the next control
signal by the InfoMax algorithm.

The paper is organised as follows. In Section 2, we review the InfoMax approach.
Section 3 is about the dynamics and the parametrisation of the Furuta pendulum
problem. Section 4 describes the results. We summarise our findings and draw
conclusions in Section 5.

InfoMax Bayesian Learning of the Furuta Pendulum 639

2 Infomax Learning
We introduce the model used in [11]. Let us assume that we have d simple compu-
tational units called 'neurons' in a recurrent neural network:

n+i = 9 \'Y^Firt-i + 'YBjut+i-j + et+\ , (1)
\ j=o j=o J

where {et}, the driving noise of the RNN, denotes temporally independent and
identically distributed (i.i.d.) stochastic variables and P{et) = J\fei(0,V), rt £ 1Zd

represents the observed activities of the neurons at time t. Let ut £ IRC denote
the control signal at time t. The neural network is formed by the weighted delays
represented by matrices Fi (i = 0 , . . . , /) and Bj (j = 0, . . . , J) , which connect
neurons to each other and also the control components to the neurons, respectively.
Control can also be seen as the means of interrogation, or the stimulus to the
network [8]. We assume that function g : Rd —> Rd in (1) is known and invertible.
The computational units, the neurons, sum up weighted previous neural activities
as well as weighted control inputs. These sums are then passed through identical
non-linearities according to (1). The goal is to estimate the parameters Fi £ R d x d

(i = 0,... ,1), Bj £ R d x c (j = 0 , . . . , J) and the covariance matrix V, as well as
the driving noise et by means of the control signals.

We introduce the following notations:

xt+i = [rt-i\• • • \rt; ut-j+i; • •.; u t+i],
Vt+i = g~\rt+1),

A = [Fi,... ,F0, BJ, . . . , j30] £ R d x m .

Using these notations, the original model (1) reduces to a linear equation:

yt = Axt + et. (5)

The InfoMax learning relies on Bayes' method in the online estimation of the
unknown quantities (parameter matrix A, noise et and its covariance matrix V).
It assumes that prior knowledge is available and it updates the posteriori knowl-
edge on the basis of the observations. Control will be chosen at each instant to
provide maximal expected information concerning the quantities we have to esti-
mate. Starting from an arbitrary prior distribution of the parameters the posterior
distribution needs to be computed. This estimation can be highly complex, so
approximations are common in the literature. For example, assumed density filter-
ing, when the computed posterior is projected to simpler distributions, has been
suggested [1, 10, 9]. Poczos and Lorincz [11] used the method of conjugated pri-
ors [6], instead. For matrix A we assume a matrix valued normal (i.e., Gaussian)
distribution prior. For covariance matrix V inverted Wishart (IW) [7] distribution •

(2)
(3)
(4)

640 Jeni et a 1.

will be our prior. There are three advantages of this choice: (i) they are somewhat
more general than the typical Gaussian assumption, (ii) the functional form of the
posteriori distributions is not affected, and (iii) the model (2-4) admits analytical
- i.e., approximation-free - solution for this case as shown in [11]. Below, we review
the main concepts and the crucial steps of this analytical solution.

Let us define the normally distributed matrix valued stochastic variable A S
R d x m by using the following quantities: M € R d x m is the expected value of A.
V e Rdxd is the covariance matrix of the rows, and K £ R m x m is the so-called
precision parameter matrix that we shall modify in accordance with the Bayesian
update. They are both positive semi-definite matrices.

Now, one can rewrite model (5) as follows:

P(A\V) = MA (M,V,K), (6)

P(V) = lWv{Q,n), (7)
P(et\V) = 7Vet(0,V), (8)

P{yt\A,xt,V) = AfVl(Axt,V). (9)

We introduce the following quantities:

7 t + i

. nt+1
Mt+1
Qt+i

for the posterior probabilities. Then - one can show [11] that -

P(A\V,{x}\+\{y}\+1) = tfA{Mt+1,Vtxt+ixT+i+Kt), (11)

W|{s}i+1.{y}i+1) = TWV (Qt+i,nw), (12)
P(Vt+i\{x}[+1, {y}\) = Tyi+1(Qt,nt,MtXt+i,lt+1).

The derivations give rise to a strikingly simple optimal control value expression:

ut+i«vi = a,Tgmax.xf+1K^1xt+i, (13) uEU

The steps of the InfoMax update are summarised in Algorithm 1. We shall
follow these steps in our computer studies on the Furuta pendulum that we detail
in the next section.

3 The Furuta pendulum

3.1 Furuta Pendulum
The Furuta pendulum is shown in Figure 2. The pendulum has two links [4, 5].
Configuration of the pendulum is determined by the length of the links and by two

= ^--xJ+iixt+ixf^+Kt^Xt+i,
= n t + 1,

= {MtKt + yt+1xf+1)(xt+ixj+1 + Kt)'1,

= Qt + (yt+1 - Mtxt+i)7t+i (yt+i - Mtxt+i)T , (10)

InfoMax Bayesian Learning of the Furuta Pendulum 641

Algor i t hm 1 Pseudocode of the InfoMax algorithm.

Con t ro l Calcula t ion
1: ut+1 = a r g m a x u e W x J + l K ^ l x t + i
2: where xt+\ = [r t _ / ; . . . ; r t ; u t _ j + i ; . . . ; ut; u]
3: set xt+1 = [r t _ / ; . . . ; r t ; u t - j + i ; . . . ; u t ; u f + i]

Observa t ion
l: observe r t + i , and let = g~1(rt+1)

Bayesian u p d a t e
l: Mt+1 = (MtKt + j / t + ia;f+ 1)(x t + ia:f+ 1 + ATf)_1

2: l f £ + 1 = a; t + ia;f+ j + Kt

3: nt+1 = Tlt + 1
4: 7t+l = 1 - + K t) - l X t + 1

5: Qt+1 =Qt + [yt+1 - Mtxt+1) 7t+i (y t + i - MtXt+i)T

angles. Dynamics of the pendulum are also determined by the different masses,
i.e. the masses of the links and the mass of the end effector as well as by the two
actuators, which are able to rotate the horizontal link and the swinging link in both
directions, respectively. The angle of the horizontal link is denoted by <fi, whereas
the symbol for the angle of the horizontal link is 9 (Fig. 2). Parameters of our
computer studies are provided in Table 1. The state of the pendulum is given by
tj), 6, <j) and 6. The magnitude of the angular speeds 4> and 0 was restricted to 2
rotations/s, i.e. to the interval [- 2 ^ , 2 ^] .

Figure 2: Furuta pendulum and notations of the different parameters.

Let t^ and rg denote the external torques applied to the vertical arm and to
the horizontal arm, respectively. Introducing

642 Jeni et a 1.

Name of parameter Value Unit Notation
Angle of swinging link rad e
Angle of horizontal link rad 4>
Mass of horizontal link 0.072 kg ma
Mass of vertical link 0.00775 kg mp
Mass of the weight 0.02025 kg M
Length of horizontal link 0.25 m la
Length of vertical link 0.4125 m lp
Coulomb friction 0.015 Nm Ts
Coulomb stiction 0.01 Nm Tc
Maximal rotation speed for both links 2 rotation

3
Approx-. zero angular speed for swinging link 0.02 rad

3 4>e
Time intervals between interrogations 100 ms
Maximum control value 0.05 Nm 5

Table 1: Parameters of the Physical Model

a — J + (M + ^ m a + mp)l2 , (14)

ß = (M + imp)/2, (15)

7 = (M + imp)lalp, (16)

â = (M + i m p) g l p (17)

and using the external torques, we can write the equations of the dynamics of the
pendulum as follows [5]:

(a + f3sin29)(f> + ycosO 6 + 2/3cos9 sinO <§>Q — ^sinQ Q2 = r^ (18)

7cosQ 4> + (30 - ftcosQ sin6 4>2 - Ssind = T0 (19)

The real pendulum exhibits significant friction in the <j>—joint. The friction can be
modelled in several ways. We used Coulomb friction with stiction [5]:

tf
tc sgncj) if 0 t̂ 0,
RU if <¿ = 0 a n d | |TU | | < TS, (2 0)

^ Ts sgnfu otherwise

In our simulations the zero condition on the velocity is replaced by ||< |̂| < <fie, with
<j)c chosen according to [5].

InfoMax Bayesian Learning of the Furuta Pendulum 643

D-OPTIMALITY PENDULUM-SIMULATION

0

f y A+>]

Figure 3: Scheme of D-optimal interrogation. (1) Control Ut+i is computed from D-
optimal principle, (2) control acts upon the pendulum, (3) signals predicted before
control step, (4) sensory information after control step. Difference between (3) and
(4) is used for the computation of the cumulated prediction error. (5) Parameters
were updated according to Algorithm 1. For more details, see text.

3.2 Simulation and learning

The pendulum is a continuous dynamical system that we observe in discrete time
steps. Furthermore, we assume that our observations are limited; we have only 144

644 Jeni et a 1.

crude sensors for observing angles (j> and 6. In each time step these sensors form
our rt £ R1 4 4 observations, which were simulated as follows: Space of angles <p and
6 is [0,27T) x [0,27T). We divided this space into 12 x 12 = 144 squared domains of
equal sizes. We 'put ' a Gaussian sensor at the centre of each domain. Each sensor
gives maximal response 1 when angles 9 and <j> of the pendulum are in the centre
of the respective sensor, whereas the response decreased according to the Gaussian
function. For all sensors, response n scaled as r1 = exp(—)
(1 < i < 144), where angles 9t, (pi correspond to the middle point of our 12 x 12
grid, and a was set to 1.58 in radians. Sensors were crude but noise-free; no noise
was added to the sensory outputs. The inset at label 4 of Figure 3 shows the outputs
of the sensors in a typical case. Sensors satisfied periodic boundary conditions; if
sensor S was centred around zero degree in any of the directions, then it sensed
both small (around 0 radian) and large (around 27r radian) angles. We note that
the outputs of the 144 domains are arranged for purposes of visualisation; the
underlying topography of the sensors is hidden for the learning algorithm.

We observed these rt = (j\(t),..., r^t),..., r 1 4 4 (i)) T quantities and then calcu-
lated the ut+1 € R2 D-optimal control using Algorithm 1, where we approximated
the pendulum with the model ft+i = Frt + But+U F £ M 1 4 4 x 1 4 4 , B e R 1 4 4 x 2 .
Components of vector u t + i controlled the two actuators of the angles separately.
Maximal magnitude of each control signal was set to 0.05 Nm. Clearly -we do not
know the best parameters for F and B in this case, so in the performance mea-
sure we have to rely on prediction error and the number of visited domains. This
procedure is detailed below.

First, we note that the angle of the swinging link and the angular speeds are
important from the point of view of the prediction of the dynamics, whereas the
angle of the horizontal link can be neglected. Thus, for the investigation of perfor-
mance of the learning process, we used the 3D space determined by <p, 9 and 9. As
was mentioned above, angular speeds were restricted to the [— 2 ^ , 2 ^] domain.
We divided each angular speed domain into 12 equal regions. We also used the
12-fold division of angle. 9. Counting the domains, we had 12 x 12 x 12 = 1,728
rectangular block shaped domains. Our algorithm provides estimations for Ft and
Bt in each instant. We can use them to compute the predicted observation vector
f t + i = Ftrt + Btut+An example is shown in the inset with label 4 in Figure 3.
We computed the absolute value of the prediction errors ej(i + l) = | | r i i t + 1 — r i i t + i | |
for all i, and cumulated them over all domains (i = 1 , . . . 1,728) as follows. For
each domain, we set the initial error value at 30, a value somewhat larger than the
maximal error we found in the computer runs. Therefore the cumulated error at
start was 1,728 x 30 — 51,840 and we measured how the error decreases.

4 Results
The D-optimal algorithm does two things simultaneously: (i) it explores new do-
mains, and (ii) it decreases the errors in the domains already visited. Thus, we mea-
sured the cumulated prediction errors during learning and corrected the estimation

InfoMax Bayesian Learning of the Furuta Pendulum 645

at each step. So, if our cumulated error estimation at time t was e(t) = ek(t)
and the pendulum entered the ith domain at time t + 1, then we set + =
for all k / i and ej(i-f 1) = |ki,t+i— ^¿,t+i||- Then we computed the new cumulated
prediction error, i.e., e(i + 1) = Ei=i2 8 + 1) •

We compared the random and the D-optimality interrogation schemes. We
show two sets of figures, Figures 4a and 4b, as well as Figures 4c and 4d. The
upper set depicts the results for the full set of the 1,728 domains. It is hard for
the random control to enter the upper domain by chance, so we also investigated
how the D-optimal control performs here. We computed the performance for cases
when the swinging link was above vertical, that is for 864 domains (Figs. 4c and
4d).

Visited Total Domains Error in Total Domain

2500
Learning Steps

(b)

Visited Upper Domains Error in Upper Domain

2500
Learning St«

(d)

Figure 4: Furuta experiments driven by random and D-optimality controls. Solid
(dotted) line: D-optimal (random) case, (a-b): Number of domains is 1728. (a):
visited domains, (b): upper bound for cumulated estimation error in all domains,
(c-d): Upper half of the space, i.e., the swinging angle is above horizontal and the
number of domains is 864. (c): number of visited domains, (d): upper bound for
cumulated estimation error. For more details, see text.

For the full space, the number of visited domains is 456 (26%) and 818 (47%)
for the random control and the D-optimal control, respectively after 5,000 control
steps (Fig. 4a). The error drops by 13,390 (26%) and by 24,040 (46%), respectively
(Fig. 4b). While the D-optimal controlled pendulum visited more domains and

646 Jeni et a 1.

. A i e values of different orders (InfoMax) BIC values of different orders (tnfoMax)

Order (I)

(c)

2 3
Order (I)

(d)

Figure 5: The Akaike's information criterion (AIC) and the Bayesian information
criterion (BIC) values for random and InfoMax controls and for models up to fourth
order (I = 0 , . . . , 3) and for different control orders (J = 0 , . . . , 3).

achieved smaller errors, the domain-wise estimation error is about the same for the
domains visited; both methods gained about 29.4 points per domains.

We can compute the same quantities for the upper domains as well. The number
of visited upper domains is 9 and 114 for the random control and for the D-optimal
control, respectively (Figure 4c). The decrease of error is 265 and 3,342, respectively
(Figure 4d). In other words, D-optimal control gained 29.3 points in each domain
on average, whereas random control, on average, gained 29.4 points, which are very
close to the previous values in both cases. That is, infomax control gains more
information concerning the system to be identified by visiting new domains.

This observation is further emphasised by the following data: The infomax algo-
rithm discovered 37 new domains in the last 500 steps of the 5,000 step experiment.
Out of these 37 domains, 20 (17) were discovered in the lower (upper) domain. By
contrast, the random algorithm discovered 9 domains, out which 5 (4) was in the
lower (upper) domain. That is, infomax has a similar (roughly fourfold) lead in
both the upper and lower domains, although the complexity of the task is different
and the relative number of available volumes is also different in these two domains.

We studied the learning process as a function of the Gaussian width. We found

InfoMax Bayesian Learning of the Furuta Pendulum 647

that learning is robust in this respect: the estimation error was a very weak function
of cr, the spread of the Gaussian, except for very small variance Gaussians. Learning
was spoiled for very broad Gaussians, too.

By construction, there is a second order dynamical system in the background,
so we studied if one can find this order as the result of the learning process. We
calculated Akaike's information criterion (AIC) and the Bayesian information crite-
rion (BIC) values of the model for different control orders. Figure 5 shows the AIC
and BIC values of both random control and for InfoMax control. We measured the
values for models up to fourth order (I = 0 , . . . , 3), for control orders J = 1 , . . . , 3,
and for a = 1.58 radian. There is a large gain if one increases I = 0 to I = 1,
i.e., if one assumes second order dynamics. Further increases of I give smaller im-
provements. The only exception is the case of J = 0. Here, the improvement is
not so sudden between 7 = 0 and 7 = 1 and considerable further drops can be seen
for 7 = 2. This is most prominent under the InfoMax conditions. Thus, there is a
memory effect in the control: control rendered by InfoMax at time t may depend
on the control rendered by InfoMax at time t — 1. This dependency is learned and is
represented by matrix F2 . From the point of view of the order of the control, there
is little dependence here, except for the case of 7 = 1: there is a large performance
difference - for InfoMax control - between J = 0 and J = 1. Again, this points
to the memory effect in InfoMax, which can be uncovered by matrix B\. Taken
together, the approach can provide an estimation about the order of the dynamical
system, but not in the InfoMax operation mode.

Finally, we note that the InfoMax procedure, which we demonstrated here on
the case of the Furuta pendulum, may gain from discovering the direct product
space behind the 144 sensors. Then explorations might concern the low-dimensional
direct product space, instead of the raw sensory observations.

5 Summary and conclusion
In this paper we have studied the InfoMax learning for the two-link Furuta pendu-
lum. We used a slightly modified version of the generalised linear model described
in [8]. The intriguing property of this slight modification is that it leads to strikingly
simple learning rules [11].

InfoMax intends to optimise the next control action given what has been learned
and what has been observed. We demonstrated that this online (i.e., real time)
learning method explores larger areas than random control without significant com-
promise in the precision of the estimation in the visited domains. The discovery
rate is in favour of the InfoMax algorithm, which had similar leads in the domains
which were easier to find and in the domains, which were harder to find.

The pendulum problem also shows the limitations of the InfoMax solution. This
is a low-dimensional problem and InfoMax cannot learn the hidden regularities.
Connections to reinforcement learning should be established for efficient learning.
Convergent methods that can connect InfoMax learning and reinforcement learning
seem important for machine learning.

648 Jeni efc.ai.

References
[1] Boyen, X. and Roller, D. Tractable inference for complex stochastic processes.

In Fourteenth Conference on Uncertainty in Artificial Intelligence, pages 33-
42, 1998.

. [2] Cohn, D. A. Neural network exploration using optimal experiment design. In
Advances in Neural Information Processing Systems, volume 6, pages 679-686,
1994.

. [3] Fedorov, V. V. Theory of Optimal Experiments. Academic Press, New York,
1972.

[4] Furuta, R., Yamakita, M., and Robayashi, S. Swing-up control of inverted
pendulum using pseudo-state feedback. Journal of Systems and Control Engi-
neering, 206:263-269., 1992.

[5] Gafvert, M. Modelling the furuta pendulum. Technical report ISRN
LUTFD2/TFRT-7574-SE, Department of Automatic Control, Lund Univer-
sity, Sweden, April 1998.

[6] Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. Bayesian Data
Analysis. CRC Press, 2nd erdition, 2003.

[7] Gupta, A. R. and Nagar, D. R. Matrix Variate Distributions, volume 104 of
Monographs and Surveys in Pure and Applied Mathematics. Chapman and
Hall/CRC, 1999.

[8] Lewi, J., Butera, R., and Paninski, L. Real-time adaptive information-theoretic
optimization of neurophysiology experiments. In Advances in Neural Informa-
tion Processing Systems, volume 19, 2007.

[9] Minka, T. A family of algorithms for approximate Bayesian inference. PhD
• thesis, MIT Media Lab, MIT, 2001.

[10] Opper, M. and Winther, O. A Bayesian approach to online learning. In Online
Learning in Neural Networks. Cambridge University Press, 1999.

[11] Poczos, B. and Lorincz, A. D-optimal Bayesian interroga-
tion for parameter estimation and noise identification of re-
current neural networks. Technical Report, Janury 2008.
h t t p : / / uk : a rx iv .o rg /PS_cache / a rx iv /pd f /0801 /0801 .1883v l . pd f .

[12] Solvang, B., Rorondi, P., Sziebig, G, and Ando, N. SAPIR: Supervised and
adaptive programming of industrial robots. In 11th IEEE International Con-
ference on Intelligent Engineering Systems, INES07, Budapest, Hungary, June
2007.

[13] Szepesvari, Cs., Cimmer, Sz., and Lorincz, A. Neurocontroller using dynamic
state feedback for compensatory control. Neural Networks, 10:1691-1708,1997.

InfoMax Bayesian Learning of the Furuta Pendulum 649

[14] Szepesvari, Cs. and Lörincz, A. Approximate inverse-dynamics based robvist
control using static and dynamic feedback. Applications of Neural Adaptive
Control Theory II, 2:151-179, 1997. World Scientific, Singapore.

Acta Cybernetica 18 (2008) 651-635.

Factored Temporal Difference Learning in the New
Ties Environment*

Viktor GyenesJ Ákos Bontovicsj and András Lörincz* *

A b s t r a c t
Al though reinforcement learning is a popular method for t ra ining an agent

for decision making based on rewards, well s tudied t abu la r me thods are not
applicable for large, realistic problems. In this paper , we exper iment wi th a
factored version of t empora l difference learning, which boils down to a lin-
ear funct ion approximat ion scheme utilising na tura l features coming from
the s t ruc tu re of the task. We conducted experiments in t h e New Ties en-
vironment , which is a novel p la t form for multi-agent simulations. We show
t h a t learning utilising a factored representat ion is effective even in large s t a t e
spaces, fu r the rmore it ou tper forms t abu la r methods even in smaller problems
b o t h in learning speed and stability, because of its generalisation capabilities.

K e y w o r d s : reinforcement learning, t empora l difference, factored M D P

1 Introduction
Reinforcement learning (RL) [16] is a framework for training an agent for a given
task based on positive or negative feedback called immediate rewards that the agent
receives in response to its actions. Mathematically, the behaviour of the agent is
characterised by a Markov decision process (MDP), which involves the states the
agent can be in, actions the agent can execute depending on the state, a state
transition model, and the rewards the agent receives.

For small, discrete state spaces well-studied tabular methods exist for solving
the learning task. However, real world tasks include many variables, often contin-
uous ones, for which the state space is very large, or even infinite, making these

"This material is based upon work supported partially by the European Office of Aerospace
Research and Development, Air Force Office of Scientific Research, Air Force Research Labora-
tory, under Contract No. FA-073029. This research has also been supported by an EC F E T
grant, the 'New Ties project' under contract 003752. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the author(s) and do not necessarily
reflect the views of the European Office of Aerospace Research and Development, Air Force Office
of Scientific Research, Air Force Research Laboratory, the EC, or other members of the EC New
Ties project.

'Eötvös Loránd University, Department of Information Systems, E-mail:
gyenesviQinf .e l te .hu , bontovicf le l te .hu, and ras . l o r incz8e l t e .hu

'Corresponding author

652 Gyenes et a 1.

approaches inapplicable. Consider a sequential decision problem with m variables.
In general, we need an exponentially large state space to model it as an MDP.
Thus, no matter if the solution time is polynomial in the number of states, scaling
is exponential in the size of the task description (m). Fortunately, by exploiting
state space structure, it is possible to drastically reduce the time needed for solving
large MDPs. It is often the case that the transition model for a given variable
depends only on a few other variables. Also, rewards may be associated with only
a small number of variables. In such situations, factored MDPs (fMDPs) offer a
more compact representation by taking the state space as the Cartesian product of
m variables: X = X\ x X2 x • • • x Xm. This gives rise to learning in a factored
manner, by separating variables as much as possible, taking into account (a priori
known) dependencies among them and circumventing combinatorial explosion.

One popular method for solving MDPs is based on value functions that represent
long term utilities that can be collected starting from a given state. The agent's
behaviour, also called policy, is then defined by acting greedily according to this
value function, i.e. selecting actions that result in next states with highest possible
value. For factored problems one may be able to define the value function as the
sum of local scope functions, i.e. functions that depend only on a small number of
variables. This way, both the memory capacity needed to store the value function,
and the learning time might be reduced by an exponential factor.

Many algorithms exist for solving factored MDPs. For the value iteration
method convergence proof for factored MDPs has been provided recently [17]. In
this paper, we experiment with the more flexible temporal difference learning (TD)
method, in which the agent updates state values it actually observes during inter-
acting with the world, as opposed to value iteration, which iteratively updates all
state values synchronously. The advantage of our method is known; value iteration
requires a model, whereas no model is required for TD learning.

The rest of the paper is structured as follows: in Section 2 we review the ba-
sics of reinforcement learning, especially value iteration and TD learning, motivate
factored MDPs and derive our factored TD learning algorithm. Section 3 provides
an overview of other approaches to learning in factored MDPs. In Section 4 we
show simulation results utilising the newly introduced factored TD learning algo-
rithm. Section 5 discusses some decisions in the choice of our agent architecture
and experimental setup, and finally Section 6 concludes the paper.

2 Factored Reinforcement Learning

2.1 Value-function based Reinforcement Learning

Consider an MDP characterised by the tuple (X, A, P, R, 7), where X is the (finite)
set of states the agent can be in, A is the (finite) set of actions the agent can
execute, P : X x A x X —> [0,1] is the transition probability model, i.e. P(x, a, x')
is the probability that the agent arrives at state x' when executing action a in state
x, R : X x A —> K is the reward function, and 7 is the discount rate on future

Factored Temporal Difference Learning in the New Ties Environment 653

rewards.
A (Markov) policy of the agent is a mapping 7r : X x A —> [0,1] so that ir(x, a)

tells the probability that the agent chooses action a in state x. For any xq £ X,
the policy of the agent determines a stochastic process experienced through the
instantiation

xo,ao,ro,xi,ai,ri,... ,xt,at,rt,...

where r, is the reward received after executing action a in state xl. In value-function
based reinforcement learning the agent maintains a value function V : X —> R,
which reflects the expected value of the discounted total rewards collected by start-
ing from state x and following policy ir:

oo
llrt X = XQ

t-0

Let the optimal value function be

V*{x) : = m a x r (i)
7T

for each x € X. If V* is known, it is easy to find an optimal policy TT* , for which
V* = V*. Value functions satisfy the famous Bellman equations:

V " (x j ^ ^ l x . f l l P f i . M ' l f Ä t ^ l + T ^ M) . • (2-1)

and
V •(x) = ma.xJ2P(x,a,x')(ll(x,a) +jV*(x')^ . (2.2)

An optimal policy can be defined by acting greedily according to V*, that is, by
selecting actions that maximise V*(x'), the value of the next state:

a*(x) G argmax
x'

One may also define a function of state-action values, or Q-values, expressing
the expected value of the discounted total rewards collected by starting from state
x and executing action a and following policy ir onwards:

Qn{x,a) = YP{x,a,x')(^R{x,a)+ 7^(2')) •
x'

Action selection then becomes a*(x) = arg maxa Q(s, a). It is also true that the
optimal policy satisfies the following equation:

Q*(x,a) = P(x, a, x')(R(x, a)+yarg max Q*(x',a')^ . (2.3)

654 Gyenes et a 1.

There are many alternatives to this setting. For example, one may use a reward
function i? (x ,x ') depending on the current state x and the next state x', but not
on the action executed. Also, one may replace action a by desired next state
Xd, provided that there is an underlying sub-policy (not necessarily optimised) for
reaching state x' from state x in one step [18].

Most algorithms that solve MDPs build on the Bellman equations [1]. In the
following, we shall concentrate on the value iteration and the temporal difference
learning algorithms. In tasks when the transition model P and the reward function
R are not known a priori, the agent also needs to learn them on its own.

2.2 Value Iteration and Temporal Difference Learning

Value iteration uses the Bellman equations (2.2) as an iterative assignment. Start-
ing from an arbitrary value function Vq (represented as a table) it performs the
update

Vt+i (x) := max P(x, a, x') ^R(x, a) + -yVt(ar'))
a x'€X

for all x e X. As it is well known (see e.g. [1]), the above update converges to a
unique solution, and the solution satisfies the Bellman equations (2.2).

As this method updates all states at the same time, it is considered a syn-
chronous algorithm. One sampled, incremental version of the algorithm can be
obtained by updating only the values (by a small amount) of the states actually
observed by the agent during its interaction with the environment, according to the
following formula:

Vt+1(x) := (1 — a)Vt{x) + a(^R(x, a) + jVt(x')^

= Vt(x) + a(^R(x,a) + 1Vt{x')-Vt(x)j

= Vt(x) + a5t,

where a is an update rate and St is the difference between the currently approxi-
mated value of the state x and its approximation based on the next state and the
current reward, hence the name temporal difference. This is the so called temporal
difference (TD) learning method.

The formula presented here is called the TD(0) method, as it only takes the
immediate next state into account when updating the value of a state. It has been
proven that this sampled version of the value function update is convergent. The
method can be extended to longer time spans by means of the so called eligibility
traces (TD(A)) [16]. Note however, that TD learning is a policy evaluation method,
thus it converges to the value function of a fixed policy, while value iteration con-
verges the optimal value function. TD learning can be combined with optimistic
policy iteration to guarantee convergence to the optimal value function (see [16]).

If the model parameters P and R are not known, they must also be learned
from interaction with the environment; these functions are naturally sampled as

Factored Temporal Difference Learning in the New Ties Environment 655

the agent interacts with the world. Estimation of the transition probabilities P
can be performed by frequency counting, whereas the reward function R can be
estimated by averaging if these quantities are represented as tables; i.e. separately
for each state. Also, it is straightforward to rewrite the above update rules for Q
values.

Unfortunately, despite their attractive convergence property, tabular methods
are not applicable for real world tasks, where the state space is very large. The
problem is that memory requirement grows exponentially with the number of the
Cartesian variables and thus learning is slow. There is hope though: many of the
states are similar from the point of view of the long term cumulated reward and
one might try to generalise for similar states.

To this end, RL methods have been extended from tabular methods to function
approximation to represent the value function (for an excellent introduction, see,
e.g., [16]). For example, the value function can be expressed as linear combination
of basis functions that characterise the states, or by more sophisticated techniques,
including multi-layer neural networks. Unfortunately, convergence results are rare
for function approximators: convergence can be proven for linear function approx-
imators under certain conditions. Also, the quality of the function approximation
heavily depends on the basis functions also called 'features'.

One thus prefers features that enable linear function approximation for the value
functions and take advantage of the factorised nature of the state space. The value
of a state variable in the successive time step is conditioned on the previous values
of possibly a few other variables and the action taken. The reward function usually
depends on a couple of variable combinations, i.e. the actual reward can be given by
the actual value of a few variables. Knowledge about these dependencies enables
us to construct relevant features for value function approximation, as it will be
described in the next section.

2.3 Factored Markov Decision Processes
Consider a sequential decision process with m variables. In general, we need an
exponentially large state space to model it as an MDP, thus the number of states
is exponential in the size of the description of the task. Factored Markov decision
processes offer a more compact task representation.

In the fMDP case one assumes that X is the Cartesian product of m smaller
state spaces, corresponding to individual discrete variables having arbitrary (but
finite) number of possible values:

X = Xi x Xi x . . . x Xm .

Continuous valued variables may also be fit into this frame by discretising them,
and substituting with a discrete variable having as many possible values as the
number of (disjoint) intervals used in the discretisation. The actual value of the
new discrete variable become the index of the interval that the continuous value
falls into.

656 Gyenes et a 1.

Furthermore, let us call a function f a local scope function on X if / only
depends on a (small) subset of the variables {J5^}- For the ease of notation, let
us denote a set of variables by X\I] and their corresponding instantiation by x\I],
where I C {1 , . . . , m} is an index set.

Now, let us assume that we have an MDP on state space X. Then, the transition
model of the factored MDP can be defined in a more compact manner than that of
an MDP with states having no internal structure. The transition probability from
one state to another can be obtained as the product of several simpler factors, by
providing the transition probabilities for each variable Xi separately, depending on
the previous values of itself and the other variables. In most cases, however, the
next value of a variable does not depend on all of the variables; only on a few.
Suppose that for each variable Xi there exist sets of indices I \ such that the value
of Xi in the next time step depends only on the values of the variables and the
action a taken. Then we can write the transition probabilities in a factored form:

m
P(x,a,x') = P(x' | x,a)= fJPi(a;- | z[r\],a)

¿=1

for each x,x' € X, a G A, where each factor is a local-scope function

Pi : X[I\] x A x Xi -> [0,1] for all i G {1, . . . ,m}. (2.4)

By contrast, in the non-factored form, the probabilities of the components of x' can
not be computed independently from subsets of all variables. Assuming that the
number of variables of the local scope functions is small, then these functions can
be stored in small tables. The size of these tables is a sharp (exponential) function
of the number of variables in the sets. These tables are essentially conditional
probability tables of a dynamic Bayesian network (see e.g., [3]) of m variables.

The reward model of the factored MDP also assumes a more compact form
provided that the reward function depends only on (the combination) of a few
variables in the state space. Formally, the reward function is the sum of local-scope
functions:

k

j=i with arbitrary (but preferably small) index sets I j , and local-scope functions

Rj : X[Ij] x i - t R for all j G {1 , . . . , k}.

The functions Ri might also be represented as small tables. If the maximum size
of the appearing local scopes is bounded by some constant and independent of
the number of variables m, then the description length of the factored MDP is
polynomial disregard of the number of variables m.

To sum up, a factored Markov decision process is characterised by the parame-
ters

({ X j f , a {Ti : Pi}? , { / , : , 7) •

Factored Temporal Difference Learning in the New Ties Environment 657

The optimal value function can be represented by a table of size [712=1
one table entry for each state. To represent it more efficiently, we may rewrite
it as the sum of local-scope functions with small domains. Unfortunately, in the
general case, no exact factored form exists [8], however, we can still approximate
the function by means of local scope functions:

n
V(x) = Y,Vj(x[Ji])- (2-5)

The local scope functions Vj can be represented by tables of size YlieJ which
are small provided that the sets J j are small, i.e., they involve only a few number
of variables. The question is, how can we provide index sets J j that are relevant
for the approximation of the value function. If the local scopes Tj and I j for the
transition model and the reward model are known (which might be easy to define
manually having sufficient knowledge about the task and the variables involved),
we may use the following reasoning to deduce scopes for the value function: the
value function is the long-term extended version of the reward function (whose
index sets I j are known). If we want to come up with an index set J j of a local
scope value function Vj which reflects long term values one step before reaching
rewarding states, we need to examine which variables influence the variables in the
set I j . We can go on with this recursively to find ancestors of the variables in the
set I j , and iteratively determine the sets of variables that predict values on the long
term. This process is called backprojection through the transition model [8].

We may rearrange the terms of the value function and redefine the linear ap-
proximation as follows. The table entries represent weights corresponding to binary
features. Consider a local scope index set J j , which means that the local value func-
tion Vj depends on the variables {Xj : i £ Jj}. Let Nj = Y\ieJ. \Xl\. We introduce
binary features of the form F[(x) = 6(/\ieJ xl = u;.) for each possible value com-
bination {(vi1 , . . . , !• = I» • • •, Nj} of the variables {Xi : i £ Jj}. Function
S is the indicator function for condition c; 5(c) = 1 if condition c is true, and 0
otherwise. That is, each table defines as many binary features as the size of the
table. Then the value function approximation can be rewritten as:

N

V(x) = Y/wlFl(x), (2.6)
¡=i

where N = Nj, by reindexing the features Fi to run from 1 to N.
This form enables us to employ reinforcement learning techniques developed

for linear function approximators. In this paper, we use (2.6) and apply tempo-
ral difference learning to factored Markov decision processes. The update of the
parameters w is based on gradient descent utilising the temporal difference ¿ t:

wt+i = wt + aStVwV(xt) =wt + adtF(xt) , (2.7)

where F(xt) is the vector of binary feature values for state xt, a is the update
rate. Eligibility traces and TD(A) learning techniques are also applicable to linear
function approximation (see [16] for an introduction).

658 Gyenes et a 1.

It has been shown that the synchronous version of factored value iteration is
convergent [17]. Moreover, when sampling is applied, the algorithm requires only
a number of samples polynomial in the number of variables m (which can be much
smaller than the number of states) to approximate the value function well with
high probability. We expect - based on the close relationship between factored
value iteration and factored temporal difference learning - that tabular temporal
difference learning is also convergent, although we can not prove at the moment
that convergence results for factored value iteration could be transferred to factored
temporal difference learning.

When the factored model parameters, i.e. local scope functions Pi and Ri are
unknown, they can be approximated from experience. The conditional probability
tables corresponding to the local scope functions Pi can be updated separately by
frequency counting for all variables and actions when observing state-to-state tran-
sitions. The factored reward function R can also be thought of as a linear function
approximator, for example R(x,a) = J2iuiGi(x,a) or R(x,x') = ^2tuiGi(x, x')
based on some binary features Gi and parameters u; (similarly to the value func-
tion), and can be updated using standard gradient descent techniques.

3 Related work
The exact solution of factored MDPs is infeasible. The idea of representing a large
MDP using a factored model was first proposed by Koller and Parr [9]. More
recently, the framework (and some of the algorithms) was extended to fMDPs with
hybrid continuous-discrete variables [10] and factored partially observable MDPs
[13]. Furthermore, the framework has also been applied to structured MDPs with
alternative representations, e.g., relational MDPs [7] and first-order MDPs [14].

There are two major branches of algorithms for solving fMDPs: the first one
approximates the value functions as decision trees, the other one makes use of linear
programming.

Decision trees (or equivalently, decision lists) provide a way to represent the
agent's policy compactly. Algorithms to evaluate and improve such policies, ac-
cording to the policy iteration scheme have been worked out in the literature (see
[9] and [2, 3]). Unfortunately, the size of the policies may grow exponentially even
with a decision tree representation [3, 11].

The exact Bellman equations (2.2) can be transformed to an equivalent linear
program with N variables {V(x) : x € X } and N • |A| constraints. In the approxi-
mate linear programming approach, we approximate the value function as a linear
combination of basis functions (see, (2.5)), resulting in an approximate LP (ALP)
with n variables {wj : 1 < j < n} and N • |J4| constraints. Both the objective func-
tion and the constraints can be written in compact forms, exploiting the local-scope
property of the appearing functions.

Markov decision processes were first formulated as LP tasks by Schweitzer [15].
The approximate LP form is a work of Farias [4]. Guestrin [8] shows that the
maximum of local-scope functions can be computed by rephrasing the task as a non-

Factored Temporal Difference Learning in the New Ties Environment 659

serial dynamic programming task and eliminating variables one by one. Therefore,
the ALP can be transformed to an equivalent, more compact linear program. The
gain may be exponential, but this is not necessary in all cases. Furthermore, the
cost of the transformation may scale exponentially [5].

The approximate LP-based solution algorithm was worked out by Guestrin [8].
Primal-dual approximation technique to the linear program is applied by Dolgov
[6], and improved results on several problems are reported.

The approximate policy iteration algorithm [9, 8] also uses an approximate LP
reformulation, but it is based on the policy-evaluation Bellman equation (2.1).
Policy-evaluation equations are, however, linear and do not contain the maximum
operator, so there is no need for the second, costly transformation step. On the
other hand, the algorithm needs an explicit decision tree representation of the
policy. Liberatore [11] has shown that the size of the decision tree representation
can grow exponentially.

4 Experiments

4.1 The scenario
The experiments reported in this paper were performed in a grid-world environ-
ment. This environment is part of an EC FET project, the 'New Ties project',
which is a novel platform for multi-agent simulations. In the present simulations
we experimented with single agents in order to evaluate our learning mechanisms,
but the factored technique enables us to consider multi-agent scenarios in the fu-
ture: agents can compute optimal behaviour by approximating other agents as
additional factors.

The rectangular grid world contained two groups of food items at the fax ends
of the world. The task of the agent was to learn to consume food appropriately to
survive: keep its energy level between two thresholds, that is, avoid being hungry,
but also avoid being too much full; it received punishment for having the energy in
the wrong ranges. Table 1 summarises the rewards of the agent depending on its
energy level.

energy level A e < 0 A E = 0 Ajs > 0
below lower threshold -1 -1 A B
in appropriate range A s 0 0
above upper threshold - A B -1 -1

Table 1: Numer i ca l values of t h e rewards . A^: change in the agent's en-
ergy. Additional component of the reward: cost for the agent's distance from home
changed linearly in the range [0, 0.1].

The agent had a so called metabolism, so that it was better for the agent to
consume both kind of food items, that is, if the agent consumed only one kind of

660 Gyenes et a 1.

food, then its energy did not increase after a while. Also, we augmented the task
with punishments for being far away from home, where home of the agent was its
starting position in the grid world.

The agent was only able to observe the world partially, i.e. it had a cone of sight
in front of it with a limited range. The agent moved on an 8-neighbourhood grid;
it was able to turn left or right 45 degrees, and move forward. It had a cone of
sight of 90 degrees in front of itself. It had a 'bag' of limited capacity, into which
it was able to collect food items, and later consume the food from the bag. The
primitive observations of the agent were food items in its cone of sight, its own
level of energy and the number of food items in its bag of each type. The primitive
actions were 'turning left/right', 'moving forward', 'picking up food to the bag',
and 'eating food from the bag'.

4.2 Agent architecture
Since reinforcement learning in a heavily partially observable environment is very
difficult in general and because the Markovian assumption on the state description
is not met, we augmented the agent with high level variables and actions in order to
transform the task and improve its Markovian properties. We note that there are
formal approaches to tackle the problem of partial observability that aim to trans-
form the series of observations automatically into a Markovian state description via
belief states (see, e.g., [12] and the references therein), we did not choose to utilise
the framework in the present study for the following reasons. First, we aimed to
separate the factored MDP approach in a demanding scenario from the demands
of partial observability. Second, the generation of high level features (state vari-
ables) from low level observations is a great challenge for artificial intelligence and
is far from being solved in general and we wanted to gain insight into this problem
through the scenarios. We do not list our negative experiences here, although they
might be as important as the solution that we describe below.

The predefined high level variables were calculated from the history of observa-
tions and formed the variables of the state space of the factored MDP. The history
of observations were stored using so called long term memory maps, for example
one containing entries about where the agent has seen food items of a certain type
in the past. Also, high level action macros were manually programmed as a series
of primitive actions to facilitate navigation at a higher level of abstraction.

Figure 1 shows our agent architecture that makes use of high level variables and
actions, and the factored architecture for value function approximation.

A sketch of the functioning of the agent architecture is shown in Algorithm 1. In
the core of the algorithm is temporal difference learning with function approxima-
tion, for which memory maps serve as a preprocessing step to generate the current
state of the agent from the history of observations. The agent also performs state
transition and reward model learning.

Table 2 enumerates the high level variables and action macros that we used. In
most cases the macros are related to variables; they can be chosen by the agent to
alter the values of the variables, thus they are shown side by side in the table.

Factored Temporal Difference Learning in the New Ties Environment 661

Figure 1: Agent a rch i t ec tu re . The history of observations is summarised by
long term memory maps. Based on these past and present observations, high
level variables are generated, which form the variables of the factored MDP. The
transition model (P) is learned as the product of local scope functions, and the
reward (R) and value functions (V) are learned as the sum of local scope functions.
Utilising these functions, action macro selection is accomplished in a greedy manner.

To make the description complete, we also need to provide the scopes of the
local scope functions used. For the transition probabilities, this means providing the
variables each state variable depends on, considering its next value when executing
an action. For most variables, its next value depended only on its own previous
value and the action taken, except for the energy level, which depended on itself, and
the food history features as well. The reward function had factors depending on the
energy level and the distance from home. The value function, which expresses long
term cumulated rewards, had factors depending on the energy level, the number of
food items in the bag, food consumption history, and the distance from home.

4.3 Experimental results

We compared three kind of reinforcement learning techniques to test the benefits
of factorisation:

1. Q-table based learning (SARSA(A)), no factorisation, only state-action values
are learned, which implicitly incorporate transition probabilities.

662 Gyenes et a 1.

Algor i thm 1 : Agent life cycle. The agent applies temporal difference learning
with linear function approximation extended with (factorised) model learning and
memory map based preprocessing to generate states from observations

inputs:
state variables {-X"i}i\ actions A,
local function scopes (index sets) {I^}?1 , { / J f and for
transition probabilities, reward function and value function

l: for each time step t do
. collect primitive observations, update long term memory maps
observe reward rt for previous action or state transition
generate current state xt (high level variables) using memory maps
update value approximation according to Eq. 2.7 or using TD(A):

wt+1 = wt + a F(xt)[rt + yV(xt) - V(xt-i)]
6: update transition model parameters based on the observed state transition:

increase frequency counts for variable values in xt~\ —> xt upon a t _ i ,
recalculate probability values from frequency counts

7: update reward function approximation:
ut+i =ut + a G(xt-i,xt)[r - R(xt-i,xt)}

8: choose next action:
at = argmax a Y,x> P(xt,a,x')[R(xt,x') + yV(x')\

9: t * - t + 1
10: end for

2. V-table based learning (TD(A)) along with the estimation of transition proba-
bilities (P) and reward function (R) utilising tables. This step of factorisation
separates state values form state transitions, i.e. from the effect of actions.

3. Factored learning (factored TD(A)), where the V, R and P functions are
factored utilising local scope functions.

Surprisingly, the state space described above already proved to be too large
for the table based methods to make progress in learning in a reasonable amount
of time. To make comparison possible, we had to reduce the state space to a
minimal size; we reduced the number of discretisation intervals for some variables,
and dismissed the feature 'distance from home' and the macro 'go back home'.

To show the learning process of the various methods, we calculated certain
learning curves or performance curves: at each time step when the agent made
a decision, we examined its energy level, and derived a series containing Is and
Os, 1 meaning the energy level was between the two thresholds, 0 meaning it was
not. By moving window averaging this series, this learning curve should tend to 1,
provided that the agent learns to keep its energy between the two thresholds in a
stable manner. We conducted the following experiments:

• We compared the energy curves of the agents during and after learning to ex-
amine how stable the behaviour of the agent was utilising the various methods.

Factored Temporal Difference Learning in the New Ties Environment 663

High level variables Intervals
or values Notes Action macro

energy level 5
lowest and highest

values are meant to
be avoided

eat food, for each
food type

number of food
items in the bag 0-3 for each food type collect food, for

each food type

consumption
history of food

items
5

what fraction of
the food consumed

in the past few
steps was of type i,
for each food type

wait for a few time
steps

distance to the
nearest food item 5 for each type of

food

explore; move in a
random direction

and amount
distance from home 5 go back home

Table 2: High level var iables a n d act ion macros used. With these variables,
(i) size of the state space is 5 x 42 x 52 x 52 x 5 = 250,000, (ii) size of the state-action
space is 5 x 42 x 52 x 52 x 5 x 7 = 1,750,000.

• We compared the learning curves of the various learning methods, to see how
smooth the learning processes were, depending on the learning method.

• We tested how the various methods scale with the state space size.

• We tested the factored learning method in a slightly more complex setting,
when we enabled the 'distance from home' feature and the 'go back home'
macro. Also, in this setting the agent got penalised for being far from home,
thus it had to optimise its behaviour according to two opposing objectives

In Figure 2 in the upper row, we show how the energy of the agent varies
between the minimum and maximum values during a typical run for the three kinds
of learning methods. The lower row shows the corresponding learning curves with
a slight temporal smoothing. It can be seen that the factored model outperforms
the table based methods both in learning speed and in its stability. The learning
curve corresponding to the factored model goes up quickly to 1 right £tt the very
beginning and stays there. The curve is smooth, demonstrating that the energy
of the agent is kept between the two thresholds (which are 0.2 and 0.8). On the
other hand, curves corresponding to table based methods rise towards 1 much more
slowly and are much less stable, since the energy levels of the agents often exceed
the thresholds. This comes from the fact that the factored model generalises very
well, but table based models have no means to generalise, and need to learn the
right actions for every possible combination of state variables.

664 Gyenes et a 1.

(d) Factored model (e) Q table (f) V table

Figure 2: Typical energy levels and learning curves for t he t h r e e lea rn ing
me thods . The energy is the most stable for the factored model, for which learning
is fastest and smoothest due to generalisation.

(a) Factored model (b) Q table

0.751 I

i
OS-:

We also tested how the various methods scale with the state space size. To show
the benefits of the factored approach, we increased the state space from minimal
to a point until all methods could have been tested. In Figure 3, the curves are
averaged over 10 runs and smoothed so that the learning trends could be seen. It
can be seen that the learning time of the factored model is virtually not effected
as the state space is increased, however, for table based methods, learning time
increases greatly.

To see how the factored method behaves in a slightly more complex setting, we
enabled the 'distance from home' feature and the 'go home' macro, and the agent
also got punished based on its distance from home, to encourage it to stay near
home, if possible. Note, that in this setting the agent had to optimise multiple
criteria acting in opposite directions: to survive, it needs to get far from home, in
order to get food, while at the same time it should spend as little time far from
home as possible.

We examined the distribution of the agent's distance from home and concluded
that it successfully learns to spend its time near home whereas it spent equal time
at the two food areas when the feature was not enabled. In Figure 4(a) it can be
seen, that if the agent is not punished for being far from home, it spends much time
at the two ends of the world, which correspond to being close to home (one end of
the world with one of the food sources) and being far from home (the other end

Factored Temporal Difference Learning in the New Ties Environment 665

(a) Factored model

i™ - j

0.75

0.5

0.25

(d) Factored model

(b) Q table

(e) Q table

(c) V table

(f) V table

Figure 3: T h e effect of varying s t a t e space size. Bar plots: averaged perfor-
mances and corresponding standard deviations of the methods after 20,000 steps
for state space sizes 1,620; 3,645; 6,480; 11,520; 20,480; 32,000; 50,000; 112,500;
381,024; 1,075,648; 2,654,208 corresponding to the bars from left to right. Upper
figures: corresponding learning curves up to 100,000 steps. The factored model is
barely effected by the increase in the state space size. Learning time of the table
based methods increases steadily, especially for V tables.

of the world with the other food source), and it spends medium amount of time in
the area between the two ends. On the other hand, if it gets punished for being far
from home, it spends much time near home, and it spends much less time at the
other end of the world (b). Although the agent must occasionally visit the other
end of the world in order to obtain the other kind of food, it can also be seen that
the time spent in the middle of the world also gets lower, which suggests that the
agent learned to quickly rush to the other end, get some food, and return home.

5 Discussion

We have investigated a learning model based on factored Markov decision process
in a task which is real world-like in two ways. First, our agent lives in grid world
in which it observes only a small neighbourhood of its environment. This partial
observability usually entails the fact that the decision process related to the ob-
servations is not Markovian, i.e. past observations are also required to make the
appropriate decisions. Second, the space of observations is overtly large. So in

666 Gyenes et a 1.

• .fl • • • a.B • US. . m w.m.m.m.m m • • a • a.a.j
0 max 0 max

(a) Locations w/o 'home' (b) Locations with 'home'

Figure 4: Locations of the agent, shown by distance from home. The agent
should go to the far end to optimise for the metabolism. It learns to spend less
time at the far end and by 'travelling' if it is penalised for being further away.

a sense, there are too many observations which are still not informative enough.
To enable decision making, the agent needs to form a Markovian description of
its state. To do so, we have utilised hand coded high level variables for spatial
and temporal integration of observations based on long term memory maps. These
variables build up the state of the agent.

However, such a state space is still too large for tabular RL methods even for
the simple task described in this paper. This points to the need for methods of
other type that can take advantage of the structure of the state space. The factored
model builds exactly on the characteristics that the state space is generated as the
Cartesian product of state variables. We have compared the factored method to
traditional table based RL methods. In real-world tasks the agent usually needs to
learn the model of the task, i.e. the state transition probabilities and the reward
function as well.. Q-table methods, on the other hand, naturally incorporate model
learning. In our studies, we investigated how the separation of those learning
subtasks effects learning speed. Thus, we compared (i) Q-table based learning to
(ii) V-table based learning augmented with model learning, and to (iii) factored
value-learning augmented with factored model learning.

The experiments demonstrated that the separation of model learning from value
learning in the tabular case corrupts performance, i.e. the V-table based methods
augmented with model learning were always worse than the Q-table based methods
that incorporate model learning into (state-action) value learning. This is probably
due to the fact that the Q-table based method needs to learn a much smaller num-
ber of parameters, because it does not rely on transition probabilities. Transition
probability tables scale quadratically with the size of the state space, and these pa-
rameters are elegantly cumulated into a much fewer number of Q values. However,
when the model is factored, the number of parameters describing the transition
probabilities and the state values becomes much less, and it becomes beneficial to
separate the model from the values; learning speeds up because of generalisation.
Our experiments show that the factored model learns very quickly and becomes

Factored Temporal Difference Learning in the New Ties Environment 667

stable very soon, since it is able to generalise knowledge learned in one state to an
other.

6 Conclusion
We have experimented with a factored version of temporal difference based rein-
forcement learning. The partially observable nature of the task was diminished by
hand crafted features, which generated the factored state space. We have shown
that factored learning is faster and more stable as compared to tabular methods.
Furthermore, the factored method is also applicable to large state spaces since it
does not suffer from combinatorial explosion. The capability that transition prob-
abilities can be learned for the factored case opens the way for planning in complex
situations, such as the environment of the New Ties project, including the devel-
opment and the execution of joint plans about desired future states. This makes
this method promising for realistic applications.

References
[1] Bertsekas, D. and Tsitsiklis, J. Neuro-dynamic programming. Massachusetts

Institute of Technology, 1996.

[2] Boutilier, C., Dearden, R., and Goldszmidt, M. Exploiting structure in policy
construction. In Proceedings of the Fourteenth International Joint Conference
on Artificial Intelligence, pages 1104-1111, 1995.

[3] Boutilier, C., Dearden, R., and Goldszmidt, M. Stochastic dynamic program-
ming with factored representations. Artificial Intelligence, 121(1—2):49—107,
2000.

[4] de Farias., D. P. and van Roy, B. Approximate dynamic programming via
linear programming. In Advances in Neural Information Processing Systems
14, pages 689-695, 2001.

[5] Dechter, R. Bucket elimination: A unifying framework for reasoning. Artificial
Intelligence, 113(1-2) :41-85, 1999.

[6] Dolgov, D. A. and Durfee, E. H. Symmetric primal-dual approximate lin-
ear programming for factored MDPs. In Proceedings of the 9th International
Symposium on Artificial Intelligence and Mathematics, 2006.

[7] Guestrin, C., Roller, D., Gearhart, C., and Ranodia, N. Generalizing plans
to new environments in relational MDPs. In Eighteenth International Joint
Conference on Artificial Intelligence, 2003.

[8] Guestrin, C., Roller, D., Parr, R., and Venkataraman, S. Efficient solution
algorithms for factored MDPs. Journal of Artificial Intelligence Research,
19:399-468, 2002.

668 Gyenes et a 1.

[9] Koller, D. and Parr, R. Policy iteration for factored mdps. In Proceedings of
the 16th Conference on Uncertainty in Artificial Intelligence, pages 326-334,
2000.

[10] Kveton, B., Hauskrecht, M., and Guestrin, C. Solving factored MDPs with
hybrid state and action variables. Journal of Artificial Intelligence Research,
27:153-201, 2006.

[11] Liberatore, P. The size of MDP factored policies. In Proceedings of the 18th
National Conference on Artificial intelligence, pages 267-272, 2002.

[12] Pineau, J., Gordon, G., and Thrun, S. Anytime point-based approximations
for large PQMDPs. Journal of Artificial Intelligence Research, 27:335-380,
2006.

[13] Sallans, B. Reinforcement Learning for Factored Markov Decision Processes.
PhD thesis, University of Toronto, 2002.

[14] Sanner, S. and Boutilier, C. Approximate linear programming for first-order
MDPs. In Proceedings of the 21th Annual Conference on Uncertainty in Arti-
ficial Intelligence (UAI), pages 509-517, 2005.

[15] Schweitzer, P. J. and Seidmann, A. Generalized polynomial approximations in
markovian decision processes. Journal of Mathematical Analysis and Applica-
tions, 110(6):568-582, 1985.

[16] Sutton, R. and Barto, A. G. Reinforcement Learning: An Introduction. MIT
Press, Cambridge, MA, 1998.

[17] Szita, I. and Lőrincz, A. Factored value iteration converges. Acta Cybernetica,
18(4):615-635, 2008.

[18] Szita, I., Takács, B., and Lőrincz, A. Epsilon-MDPs: Learning in varying
environments. Journal of Machine Learning Research, 3:145-174, 2003.

Acta Cybernetica 18 (2008) 669-635.

An Evolutionary Algorithm for Surface
Modification

Evgeny Lomonosov* and Gabor Renner*

A b s t r a c t
Complex shapes bounded by free form surfaces are designed and modified

by specifying the pa ramete r s of their mathemat ica l descriptions. Al though
most graphics and design sys tems provide high level tools for free form shape
modifications, they are not intuit ive and suitable for a creative designer or a
stylist. In t h e present paper a technique is proposed for the modification of t he
shape of a parametr ic B-spline surface through embedding a set of predefined
characteris t ic curves. Shape modification is performed by an evolutionary
algori thm. T h e evolut ionary algori thm minimises the distance between the
curve and the surface, while mainta ining the global shape and smoothness of
the original surface. Several exper imental results are presented.

K e y w o r d s : shape modification, evolutionary algorithms, B-spline surfaces

1 Introduction
Complex shapes are described as free form surfaces and represented in parametric
forms such as Bézier, B-spline or NURBS surfaces in computer graphics, compu-
tational geometry, and engineering design (CAD/CAM). They are usually created
and modified by defining and modifying parameters of their mathematical repre-
sentations, mainly the control points, eventually degrees, weights and knot vectors.
Working with these requires mathematical knowledge and skills and is not suited to
the engineering concepts and practice of shape design. Shape modification should
be intuitive, easy to define, and resulting in the expected shape. Additionally,
in engineering practice, acceptable compromise has to be found between different,
sometimes contradictory requirements concerning shape and dimensions. Because
of functionality, the resulting shape must meet tight dimensionality and shape con-
straints. It must also be aesthetically pleasing, free from unwanted bumps and
wiggles. All these expectations can only be realised in a highly iterative process,
which is costly and time consuming.

Methods for intuitively designing and modifying complex free form surfaces are
described in several research papers. They try to control the shape by geometri-
cal constraints and user parameters that are easy to manipulate. The so called

*MTA SZTAKI, Budapest, Hungary. E-mail: {elomonosov,rennerj8sztaki .hu

670 Evgeny Lomonosov and Gábor Renner

Dynamic NURBS [9] introduces mass distribution, deformation energies and forces
into the geometrical model in order to deform surfaces in a physically intuitive
manner. In case of the so called variational design tool method, modification is
governed by an underlying mechanical model; a bar network which is associated
with the control polygon of the surface [3]. Due to the complexity of the deforma-
tion process, the allowable geometrical constraints are usually simple, for example,
moving the surface to become tangent to a prescribed plane. Line constraints are
more appropriate for surface modifications; they have been introduced into vari-
ational design by Pernot et al. [6]. Design tools of this kind can be integrated
into a free form feature concept, providing high level tools for shape modifications
[5]. Recently haptic tools were suggested for the direct manipulation of physically
based B-spline surfaces [1].

A basic problem with the above approaches is that the effect of the modifica-
tion is usually not precisely defined. They work well in the design phase, mostly
in conceptual design. However, in many cases of shape modification, e.g. when
redesigning an already existing object, well defined modifications are needed with
precise shape and dimensionality constraints. Because of the free form characteris-
tics of the surfaces, the modification must still be flexible, not constrained by the
features of the mathematical description.

A typical example of the above type of shape modification is when a free form
surface must be created which embeds a previously defined space curve. The de-
signer usually starts with an initial shape, and the modified shape must be similar
to the initial one as much as possible.

The algebraic complexity of free form curves lying on free form surfaces is high
[8], and there is no real chance to embed analytically an arbitrary space curve into
a smooth surface. However we can try to embed a good approximation of the curve,
which also provides the possibility to satisfy additional design constraints, such as
the definition of the surface region to be modified. Alternatively, the requirement
of minimal distortion or of maximal smoothness of the final surface can be used.

These kinds of shape modification problems can be handled successfully by com-
bining geometrical and numerical computations with evolutionary search methods.
In this paper a method based on evolutionary algorithms is proposed to modify the
shape of a complex surface with the constraint of embedding a space curve.

2 Evolutionary algorithms
Evolutionary algorithms are powerful and robust search procedures based on ar-
tificial adaptation. Evolutionary algorithms search for the solution of a problem
simulating a process of evolution in nature. The problem is formulated as a search
for the global maximum (or minimum, for some problems) of a given function which
is called the fitness function. A fitness function depends on a set of parameters char-
acterising the problem. It measures how fit is a potential solution, as specified by
some combination of parameter values, for our purposes. The aim is to find the
most suitable combination which corresponds to the maximal (or minimal) value

An Evolutionary Algorithm for Surface Modification 671

of the fitness function.
Conventional search techniques usually process one candidate solution a time.

In contrast with these, evolutionary algorithms consider several potential solutions
at once. A number of potential solutions form a population. An individual in a
population represents one possible combination of parameter values. By analogy
to natural genetics, the representation of a solution for an evolutionary algorithm
is called a chromosome. A chromosome consists of genes which usually directly
represent the parameters of the problem. Alternatively, an encoded representation
may be used, for instance, a binary encoding proposed in [2]. It is often advanta-
geous to incorporate problem specific knowledge into the problem representation
for evolutionary algorithms.

Random numbers are normally used to generate an initial population. Another
approach is to apply some heuristics to ensure that the individuals of the initial
population cluster in those regions of the parameter space where the final solution
is likely to be found. Subsequent generations are formed by selecting individuals
with better fitness function values. The selected individuals are called parents. In-
dividuals of the next generation (called offsprings) are obtained by applying genetic
operators to parents. Similarly to the way it happens in nature, offsprings inherit
properties of their parents and more fit individuals are more likely to pass their
genes to the next generation.

A number of methods may be used to select parents, but it is essential that
individuals with better fitness values have more chances to be reproduced in the
next generation. Most commonly used genetic operators include crossover and
mutation. The crossover operator exchanges genes between parents to form an
offspring. The mutation operator changes some genes randomly. The evolutionary
process is controlled by a number of parameters, the most important of which are
the population size and the rates of mutation and crossover. As more fit individ-
uals have more chances to pass their genes to the new generation, average fitness
gradually improves. The pseudocode summarising the algorithm is shown below.

Algor i thm 1 Evolutionary algorithm
l: Generate initial population
2: while Termination condition not satisfied do
3: Evaluate fitness functions of individuals
4: Select pairs of individuals to become parents
5: Create offspring using crossover operator
6: Apply mutation operator to offspring
7: end while

3 Surface shape modification
In this paper we consider the task of modifying an existing free-form surface to
satisfy some constraints given as a number of free-form curves that should be em-

672 Evgeny Lomonosov and Gábor Renner

bedded into the resulting modified surface. The resulting surface should also retain
similarity to the initial one and at the same time be smooth and visually pleasing.
The surface is given by B-spline representation defined by the expression:

m n
S(u,v) = ^2J2PijNik(u)Njl(v), (1)

i = 0 j=0

where p¿j are control points forming a control net and Nih(u), Nji(v) are B-spline
basis functions of order k and I [4].

The curves to be embedded into the surface can be given in an arbitrary repre-
sentation commonly used in computer aided geometric design. In our experiments
a cubic B-spline curve was used. Because exact representation of curves on surfaces
has high algebraic complexity [8], we do not aim at producing a surface which em-
beds the given curve algebraically. Instead, the curve is sampled and the sampled
points are used to calculate the fitness function. Curve sampling makes it possible
to define the distance between a curve and a surface. The fitness function to be
minimised is then defined as the sum of squared distances from the sampled points
on the curve to the nearest points on the surface:

N

/ (5) = ^ d 2 (c i l S i) , (2)
¿=o

where N is the number of sampled points, c* is a sampled point on the curve, and s*
is the nearest point on the surface. A rough initial estimate and Newton-Raphson
iteration are used to find Sj.

All the parameters defining a B-spline surface can be used to modify its shape.
The degree can be changed in each parametric direction, knots and control points
can be moved, inserted, or removed. If the algorithm was allowed to change all
the parameters of the surface it would lead to a very large search space and slow
algorithm execution. To simplify the search space and to make the algorithm faster,
we only consider moving control points in this paper, leaving the degrees unchanged
and the knot vectors inherited from the initial surface.

An important property of the B-spline surface representation is its locality in
the sense that a control point has influence only on a well defined region of the
surface. As our goal is to obtain a surface which is similar to the initial one as
much as possible, it is reasonable to alter only the patches of the surface nearest to
the curve. Therefore the search space is further reduced by considering only control
points which have influence on patches of the surface located near the curve. For
each of the sampled curve points we find the nearest point on the surface and the
corresponding knot intervals in the parameter space of the surface. Next, using the
relations between control points and local basis functions, we determine the control
points which have influence on this region of the surface. Alternatively, the region
to be modified can be defined in an interactive way.

In Figure 1 an example of a surface is shown (a car body element) with para-
metric lines and modifying curves. Patches of the surface that have to be modified

An Evolutionary Algorithm for Surface Modification 673

Figure 1: Modified patches

to embed the curve are shown in dark gray. Other patches that were affected by
moving control points are shown in light gray and patches that were not modified
are shown in white.

Some authors (e.g. Watabe [10]) suggest using multidimensional arrays as chro-
mosomes when working with multidimensional data. However, our experiments
showed that a one-dimensional array, where each gene corresponds to a displace-
ment of one particular control point in the two-dimensional control net, performs
better in our task. This can be attributed to the fact that in our case only part
of the control net is varied by the algorithm, and the shape of this part is often
not rectangular. Therefore using rectangular two-dimensional arrays as chromo-
somes would force the algorithm to process a lot of meaningless data, making it
considerably slower.

As a consequence of the above experience and argumentation, a one-dimensional
array of real-valued 3D vectors was used as the genetic representation (chromo-
some). Each vector corresponds to the displacement of one of the affected control
points with respect to its initial position. Each individual surface is therefore de-
fined by

m n

S (u , t >) = + a Pk)Nu(u)Njm(v), (3)

i=0 j—0
where A p t are elements of the chromosomes (genes), k = k(i,j). Mapping of genes
onto the control net is illustrated in Figure 2.

New generations are formed using tournament selection of individuals. Two
individuals are selected at random from the current population. Their fitness values
are compared, and the individual with a better fitness value is used as a parent.

674 Evgeny Lomonosov and Gábor Renner

Ap, A p 2 A p 3 Ap4

control net

chromosome

Figure 2: One-dimensional array of displacement vectors is mapped onto two-
dimensional control net.

The second parent is selected in the same way. Crossover is performed as a random
exchange of genes between the two parents. Any gene in the offspring has an equal
probability of coming from any of the two parents.

Two mutation operators are used in the algorithm. The first mutation operator
changes each component of the current displacement vector by a value not exceed-
ing 10% of the allowed range. The other mutation operator replaces the current
displacement vector in the chromosome with a randomly generated new one. In
both cases each component of the new displacement vector is constrained to lie in
the allowed range.

The allowed range for components of any displacement vectors is defined as a
multiple of the maximum distance between a sampled point on the curve and the
initial surface:

A m a i = CA • max(d2(ci,Si)), (4)

where CA is a coefficient. This effectively constrains control points of the resulting
surface to lie inside a cube with the centre in the initial position of the point and
with an edge size of 2Amax.

In order to make the best fitness non-increasing, elitism is used in the algorithm.
A copy of the most fit individual in the current generation is preserved in the next
generation with no crossover and mutation.

Besides embedding the curve, the resulting modified surface should retain sim-
ilarity to the original one, being as close to it as possible. This is achieved without
incorporating additional constraints in the algorithm or adding extra terms to the
fitness function, by setting all displacement vectors in the initial population to ze-
ros. Preliminary experiments showed that the algorithm that starts from randomly
generated population, tends to move control points more than it is necessary, thus
producing surface that is far from the initial.

The algorithm is terminated if the best fitness does not change for a number of
generations or reaches a desired threshold value.

An Evolutionary Algorithm for Surface Modification 675

4 Surface smoothing
Many different methods can be applied to generate smooth B-spline curves or sur-
faces within an evolutionary process (see e.g. [7]). For instance, a smoothness
criterion can be incorporated into the fitness function. The evolutionaxy algo-
rithm, in this case, optimises the smoothness of the surface simultaneously with
the above distance function. The resulting surface is a compromise between the de-
sired shape and smoothness. In our case, incorporating a smoothness measure into
the fitness function did not yield positive results. A possible explanation is that
minimising the smoothness metric for the surface attempts to control smoothness
globally, while we only need to preserve smoothness in the modified region and its
surroundings. Control point modifications necessary for embedding the curve tend
to spoil smoothness in these regions.

Another way to ensure surface smoothness is to perform additional smoothing
as a separate post processing step, not taking smoothness into account when em-
bedding curves. The drawback of this method is that the distance function usually
deteriorates at the post processing step, and we can lose the desired shape of the
surface. It may be more appropriate to control smoothness during the process of
distance optimisation.

We developed a method that allows local control of surface smoothing. The
proposed method tries to balance the change in the surface smoothness, which is
introduced whenever the algorithm moves a control point, by means of moving
other control points. If the original surface is smooth, embedding the curves which
do not belong to the surface often makes the surface more bumpy. We are trying
to compensate for this by moving neighbouring points whenever a control point is
moved by the algorithm, to minimise changes in curvature as illustrated in Figure 3.

Figure 3: When a control point is moved, its neighbours also move.

If the algorithm moves point Pij by Ap*., then neighbouring control points
Pi_ij, Pi+ij, P i j - i and Pi,j+i are moved automatically by 2/3 Ap^. Further-
more, control points Pi—2,j) Pi+2,j, Pi,j-2, Pij+2, Pj - i j - i , Pi- i j+i , Pi+i , j-i and
P j + i i J + i are also moved, and their displacement is 1/3 Ap^. In this way we avoid

676 Evgeny Lomonosov and Gábor Renner

excessive relative control point movements. Therefore the algorithm produces a
surface which is more visually pleasing and more similar to the initial one than
those obtained by moving control points independently.

Figure 4: A car body part with modifying curves a) Front view b) Side view before
the modification c) Side view after the modification

5 Resul ts

The algorithm was applied to a number of different surfaces from various application
areas, including technical and medical objects. Modifying curves of different shapes
and spatial position were designed to guide the modification process. The aim was
to obtain a surface that embeds the modifying curve and at the same time retains
smoothness and shape similarity to the initial surface.

All the surfaces that we used were reverse-engineered from measured points
using the GEOMAGIC Fashion 6 surface fitting package. The resulting surfaces

An Evolutionary Algorithm for Surface Modification 677

Figure 5: A medical replacement with a modifying curve (shown in white) and its
projection onto the surface (shown in black)

are 3rd degree non-uniform polynomial B-spline surfaces. The modifying curves
were designed using the Blender three-dimensional modelling system.

One of the most important application fields for our algorithm is automobile
design. Therefore we used a real part of a car body, as the first surface for our ex-
periments (Figure 4). We consider the situation when the designer alters the shape
of an existing car body part to satisfy new functional and aesthetic constraints.
For better visualisation of the relationship between the surface and the modifying
curves we show both the front view and the side view. The result of surface shape
modification is shown in Figure 4(c).

Another possible application field for surface modification algorithms is the
reshaping of medical replacements (e.g. knee prostheses) in order to fit them to
the shape and size of the patient. Figure 5 shows the tibia (lower limb) part of
a knee prothesis with a modifying curve above the surface and its projection onto
the surface. The third example is a sheet metal part surface which was chosen for
its complexity and high curvatures (Figure 6).

For all the data sets, similar parameters were used in the evolutionary process,
which were chosen after some preliminary experimentation. The crossover rate was
set to 0.9. The mutation rate was 0.4 for the first mutation operator, and 0.05 for
the second. The population size was set to 50 in all the cases.

For the car body example, both the original and the modified surfaces are shown,
as the difference can be seen clearly. For the other two examples the resulting
surface is very similar to the original one, and the difference cannot readily be seen.
Therefore, the performance of the algorithm should be evaluated using numerical
results.

The results of the experiments are shown in Table 1. Because of its stochastic
nature, the evolutionary algorithm produces slightly different results each time we
run it. Therefore, ten experiments were made with each surface. Table 1 shows the
average values for ten runs of the algorithm. The following values are shown in the
table:

1. the dataset name,
2. the number of control points of the surface,

678 Evgeny Lomonosov and Gábor Renner

Figure 6: A metal sheet with a modifying curve (grey) and its projection (black)

3. the number of control points in the modified region,
4. the average number of generations before the fitness function reaches 0.1% of

its starting value,
5. the average number of generations before the fitness function value stops

changing,
6. the initial value of the fitness function (according to (2)),
7. the average final value of the fitness function,
8. the maximal final value of the fitness function.

Table 1: Numerical results of the experiments

1 Dataset name Car body Medical
replacement

Metal
sheet

2 Num. ctrl. points 156 (12 x 13) 238 (14 x 17) 72 (8 x 9)
3 Num. ctrl. points modified 58 56 59
4 Num. gen. before threshold 596 181 588
5 Num. gen. before stop 1874 1018 1944
6 Initial fitness value 6781.8 35.55 1128.8
7 Avg. final fitness value 2.6319 0.0003 0.3185
8 Max. final fitness value 4.2354 0.0006 0.4358

Two different termination conditions were employed in our experiments. The
algorithm was terminated when the fitness function reached a pre-defined thresh-
old, which was set to 0.1% of the initial fitness function value. The average number

An Evolutionary Algorithm for Surface Modification 679

Figure 7: Fitness function change with generations

of generations needed to reach the threshold is given in the 4th row of Table 1.
Then we continued the execution of the algorithm until the fitness function stopped
changing its value. In practice, we terminated the algorithm as soon as the fitness
function value did not change for 15 generations. The average number of genera-
tions before the fitness function value stopped changing is shown in the 5th row of
the Table 1, the average final value of the fitness function in the 7th row, and the
maximal final value of the fitness function in the 8th row.

Figure 7 shows how the the fitness function changes with the generations. Fit-
ness is displayed here as a percentage of the initial value. Three typical cases were
chosen, one for each example. It can be seen that an acceptable result was obtained
in all the cases by the 150th generation. This result could later be improved only
slightly.

It can be seen from Table 1 and Figure 7 that the algorithm reduced the fitness
function value by three to five orders of magnitude. The resulting fitness function
value is well below the required technical tolerance.

6 Conclusions
Free form shapes are modified in CAD/CAM systems by the parameters of their
mathematical representations, mainly control points. This technique is tedious and
not intuitive for a creative designer. In the paper a method is proposed to modify

680 Evgeny Lomonosov and Gábor Renner

the shape of a B-spline surface in order to embed a previously given characteristic
curve into the surface. Control points of the surface are moved by an evolutionary
algorithm. Genetic representation and control point modifications are constructed
so as to minimise the distance between the curve and the surface, together with the
changes in surface smoothness. Experimental results demonstrated the applicability
of our method to several types of surfaces and curves. Examples from car body
design and medical applications were given. Searching for other field of applications
is in progress.

References
[1] Dachille, Frank, Qin, Hong, Kaufman, Arie, and El-Sana, Jihad. Haptic sculpt-

ing of dynamic surfaces, April 1999.

[2] Goldberg, David E. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley Publishing Company, Reading, Massachusetts,
1989.

[3] Guillet, S. ànd Léon, J.C. Parametrically deformed free-form surfaces as part
of a variational model. Computer Aided Design, 30:621-630, 1998.

[4] Hoschek, Joseph and Lasser, Dieter. Fundamentals of Computer Aided Geo-
metric Design. A K Peters, 1993.

[5] Pernot, J-P., Falcidieno, B., Giannini, F., Guillet, S., and Léon, J-C. Modelling
free-form surfaces using a feature-based approach. In SM '03: Proceedings of
the eighth ACM symposium on Solid modeling and applications, pages 270-273,
New York, NY, USA, 2003. ACM.

[6] Pernot, Jean-Philipe, Guillet, Stephane, Léon, Jean-Claude, Giannini, Franca,
Catalano, Chiara Eva, and Falcidieno, Bianca. A shape deformation tool to
model character lines in the early design phases. In SMI '02: Proceedings of
the Shape Modeling International 2002 (SMI'02), page 165, Washington, DC,
USA, 2002. IEEE Computer Society.

[7] Renner, Gábor and Ekárt, Anikó. Genetic algorithms in computer aided de-
sign. Computer-Aided Design, 35(8):709-726,.2003.

[8] Renner, Gábor and Weiss, Volker. Exact and approximate computation of
B-spline curves on surfaces. Computer-Aided Design, 36(4):351-362, 2004.

[9] Terzopoulos, Demetri and Qin, Hong. Dynamic NURBS with geometric con-
straints for interactive sculpting. ACM Transactions on Graphics, 13(2):103-
136, 1994,

[10] Watabe, Hirokazu and Okino, Norio. A study on genetic shape design. In Pro-
ceedings of the 5th International Conference on Genetic Algorithms, Urbana-
Champaign, IL, USA, June 1993, pages 445-451, 1993.

Acta Cybernetica 18 (2008) 681-693.

Investigating the Behaviour of a
Discrete Retrial System

Péter Kárász*

A b s t r a c t

Cer ta in technological applicat ions use queuing systems where the service
t ime of enter ing entit ies cannot take any value, it can only be a multiple of
a cer tain cycle-time. As examples of this, one can mention the landing of
aeroplanes and the optical buffers of internet networks. Servicing an enter ing
customer can be s ta r ted immediately, or, if the server is busy, or there are
wait ing customers , t he new customer joins a queue, moving along a closed
pa th which can be completed within a fixed cycle-time of T uni ts . Applica-
t ions in digital technology induce the investigation of discrete systems. We
give the mathemat ica l description of systems serving two types of customers,
where inter-arrival t imes follow a geometric distr ibution, and service t imes are
dis t r ibuted uniformly. A Markov-chain is defined and the generat ing func-
t ions of t rans i t ion probabili t ies are calculated. T h e condition of ergodicity is
established and the equilibrium distr ibut ion is given.

K e y w o r d s : discrete retrial systems, Lakatos-type queuing system

1 Introduction
The system investigated in the paper was originally based on a real problem con-
nected with the landing of aeroplanes, but later many other applications emerged
which are strongly related to information technology. We use the original problem
to provide an initial description.

Consider an airport where aeroplanes come to land. The airport can serve only
one plane at a time. Hence, if the runway is used or there are other planes waiting
to land, the incoming plane has to wait. Unlike in classic queuing systems, special
conditions prevail here, which result in significant differences from an ordinary
system. We assume that a plane planning to land approaches the runway in the
optimum position, and, if it is possible, it starts landing immediately. If the plane
is forced to wait, then it starts a circular manoeuvre and can issue further requests
to land only when reaching the original starting point of its trajectory. We assume

'Budapest Tech, John von Neumann Faculty of Informatics, Bécsi út 96/b, H-1034 Budapest,
Hungary, E-mail: karasz .peter0nik .bmf.hu

682 Péter Kárász

that completing each full cycle takes equal time, T, thus the possible instants of
starting to land can differ from the moment of arrival by integer multiples of T.
Because of possible fuel shortage it is natural to use the first-come-first-served
(FCFS) discipline.

We can model the above problem by investigating a retrial system, where the
service of an incoming customer can be started upon arrival if the system is in
free state, otherwise - if the server is busy or there are other entities waiting - the
incoming customer joins a queue and its service is started at the nearest possible
instant differing from the arrival by a multiple of the cycle-time T. The FCFS rule
is obeyed. Different service time distributions lead to various problems, these were
broadly investigated by Lakatos. In [9], service time distribution is exponential,
whereas in [10] it is uniform. In the light of technical applications, it is important
to consider discrete models. In this case the cycle-time is divided into n equal
time-slices, which form the basis of the discrete distributions. A typical application
in digital technology is the use of an optical buffer, which is a device capable of
temporarily storing light (or rather, data in the form of light). As light cannot be
frozen, a typical optical buffer is realised by a single loop, in which data circulate
a variable number of times, and thus n can be the measure of the cycle-time in
clock cycles. The model was investigated by Rogiest, Laevens et al. in [8, 14].
The involved optical" buffers are implemented as a set of N + 1 Fiber Delay Lines
(FDLs), with lengths that are typically multiples of a basic value D, called the
granularity. This results in a degenerate waiting room with waiting times 0, D,
2D, . . . , ND. The problem is investigated from the point of view of the customers,
i. e. their waiting time. Lakatos and myself chose a different approach, the problem
is described from the aspect of the server, i. e. the number of waiting customers,
which is more significant for determining the number of necessary FDLs. The
time elapsed between two arrivals was geometrically distributed and service times
of customers were geometric and uniform in [11] and [12], respectively. The two
different approaches to describe these systems coincide in the condition of ergodicity
and the probability of free state; this was shown in [13]. A numerical investigation
was carried out in [2].

It was Kovalenko's suggestion to generalise the problem for two different types
of customers. Only one customer of the first type can be present in the system.
Such a customer can be accepted for service only in the case of a free system, in
all other cases its request is turned down. There is no such restriction for the
customers of the second type; they are serviced immediately or join a queue, when
the server is busy. This type of system was examined with different continuous
distributions in [4, 5, 6]; simulation results were also included in [6]. In [7] this type
of system using relative priorities was investigated with geometric inter-arrival and
service time distributions. In the present paper the same system is considered
with discrete uniform service time distributions. The endpoints of the interval of
the uniform distributions are presumed to be multiples of the cycle-time T. This
assumption does not restrict the generality of the theory, but without it formulae
are much more complicated.

There are several aspects which can be treated just exactly in the same way as in

Investigating the Behaviour of a Discrete Retrial System 683

the case of continuous distributions. However, there are some differences between
discrete and continuous systems. One such significant phenomenon is collision.
With continuously distributed service times the probability of the appearance of
two different types of customers at the very same instant is zero, but in discrete
systems different types of customers do appear during the same time-slice with
non-zero probability. There are several ways to deal with collisions, we suggest
three methods for treating these, numbered I., II., and III.

The aim is to determine generating functions of transition probabilities, as well
as to establish the condition of ergodicity.

2 Results
Consider a Lakatos-type queuing system serving two types of customers. The cycle-
time T is divided into n equal time-slices. The probability of the appearance
of a customer of type j during a certain time-slice is r j , and there is no entry
with probability 1 — r j , i. e. inter-arrival times are geometrically distributed with
parameters rj (j = 1,2). Service times are uniformly distributed in the interval
[7j,<Sj], (where 7 j and Sj are multiples of T), i. e. the probability that the service
time of a customer of type j is in this interval is qj = •

For the description of the system we are going to use the embedded Markov-
chain technique. Let us consider the number of customers in the system at the
moment just before the service of a new customer begins. In other words, if tk
denotes the moment when the service of the fc-th entity starts, we consider the
sequence, whose states correspond to the number of customers at tk — 0. For the
sake of definiteness, at t = 0 let the system be free. To see that the process is
Markovian we refer to the same argument as in [6], and the memoryless property
of the geometric distribution.

For this chain we introduce the following transition probabilities:

aji: the probability of the appearance of i customers of the second type at the
service of a type j customer (j = 1,2), if at the beginning there is only one
customer in the system;

bi~. the probability of the appearance of i customers of the second type at the
service of a second type customer, if at the beginning of the service there are
at least two customers in the system;

Ci'. the probability of the appearance of i customers of the second type in a free
state.

As the process runs, the busy period can start with a customer of either type.
During the service of this customer only second type customers are accepted for
service, they join the queue. Requests of first type customers are refused. This
explains the need for introducing Cj, the value of which will be determined using a^ ,
depending on the type of customer being serviced. If there are no other requests
present when the service of the next customer begins (which is obviously of the

684 Péter Kárász

second type), the system turns into state 1, and the probabilities of turning into
other states from this one are given by a2i. The probabilities of all other transitions
are 6j. The corresponding generating functions of all these probabilities are

oo oo oo
Aj(z) = J2ajizi, B(z) = J2bizi, and =

i=0 i=0 i=0

Collision disciplines. As far as collisions are considered, three different methods
will be applied:

Method I. In the case of a collision, both types of customers are refused.

Method II. In the case of a collision, the first type customers are accepted for
service, but the second type ones are refused.

Method III. In the.case of a collision, customers of both types are accepted for
service, but the ones of the first type are served first. When applying this
method, in addition to previously defined transition probabilities, new ones
have to be introduced. Let a\2i denote the probability of the appearance of
i customers of the second type at the service of a first type customer, if the
service process started with the simultaneous appearance of customers of both
types; the generating function of these probabilities is A\2(z) = Y^iLo a i 2 i z l-

Let us now summarise the properties of the system and introduce some notation.
Consider a discrete cyclic-waiting system serving two types of customers in which
inter-arrival time distributions are geometric with parameters r3 , whereas service
times are uniformly distributed in the intervals [7j,5j] (j = 1,2), respectively. The
service of an entering customer may start immediately on arrival if the server is free,
but in case of a busy server or waiting customers, first type customers are refused,
and second type customers join the queue. The service of queued customers may
start at times differing from their arrival times by multiples of the cycle-time T,
which is divided into n equal time slices; these form the units of the geometric and
uniform distributions. The states of the corresponding embedded Markov-chain
are identified with the number of customers in the system at moments just before
starting the service of a customer.

Theorem 1. The matrix of the transition probabilities of the defined chain has the
form:

Co c 1 C2 C3
0-20 a 2i a22 a23
0 bo bi b2
0 0 bo bi

/

Investigating the Behaviour of a Discrete Retrial System 685

The elements of the matrix are determined by their generating functions below.

M*) ÎL
T-l

(l - r 2) - n + 1 - (l - r 2) ^ n + 1 +

+ zqj

1-(1 -r2)n
Ijf-n

r2 (1 - r2)

+ ZQj (1 - r2 + r2z)n

(l-r2+r2zN |
> /1 I \ 71 V 1_i"2 / w- (1 - r2 + r2z) ^ +

1 (l-ra+razV
I J

(1 - r2 + r2z) T n - (1 - r2 + r2z)~'
1 - (1 -r2 + r2z)n

(1 -r2)

Al2(z) - znqi

2i.

Î. i /1 sn / _ f
^ • n l - (l - r 2) V l~r2 J ^ 1-7-2 J

T2{l-r2)n I

(1 - r2 + r2zf-+1> - (1 - r2 + r 2 z f - + l >

-jrTl

1-(1 -r2 + r2z)n

B(z) =
r2q2 (1 - r2 + r2z) (1 - r2 + r2z)~

1 - (1 - r j) 1 - (1 - r2 + r2z)n

((l-r2 + r2z) - (l-r2 + r2z)n+1^)x

1 - (1 - r 2) n (1 -r2 + r2z)n n (1 - r 2) " (1 - r2 + r2z)n

\ (1 - (1 - r2) (1 - r2 + r2z)f 1 - (1 - r2) (1 - r2 + r2z)

+ n (l - r2 + r2z)

and C(z) depends on collision policies:

+

n + 1 l - (l - r 2) " (l - r 2 + r 2 z) n

1 — (1 — T2) (1 — r2 + r2z)

T*\-r2—T\V2 '

II. C(z)

ri+r2 - r j r 2

r2(l--n)
ri+r2

r2(1--r,)

n + r j - n r s '

A2(Z),

HI. = + +

(2)

(3)

(4)

(5a)

(5b)

(5c)

Proof. Because of the definitions, the construction of the matrix of transition prob-
abilities is straightforward. However, we draw the attention of the reader to the fact

686 Péter Kárász

that probabilities an do not appear in it explicitly, as customers of the first type
can only be accepted when the system is free. These probabilities are represented
through probabilities Cj.

First we determine a^ . In this case only one customer is present at the be-
ginning of a service (the one whose service is about to start). Time units are of
length and all time intervals are measured using this unit. The service time of
the actual customer is denoted by u, and the next one appears v time units after
the servicing of the first customer started. In order to get aji , the distribution of
u — v must be known. Two separate calculations have to be carried out.

If 0 < I < ^ n :

ÍL
T

\k—l — l P(u -V = l)= 1 ~ r2)' " " r2 =
fc=^n+l

(1 - r) " (1 - r y

and if Tp-7i < I < -?fn:

\k-l-1 P(u -v = l) = qj(1 - r2)L r2 = qj

fc=i+1
l - (l - r) " '-n—l

The waiting time can be determined on the basis of these probabilities. If
u — v = 0 (the next customer appears in the time-slice in which the service of
the present customer is completed), then the service of the next customer can be
started immediately, the waiting time is 0. If u — v is in 1, n1 , then the waiting time
is T, i. e. n units; if it is in n + 1,2n, then the waiting time is 2n; and in general
if u — v takes some value from (i — 1) n + 1, in, then the waiting time of the next
customer is in.

The probability that the waiting time of the second customer is in (i. e. u — v
is in (i — 1) n + 1, in) is the following.

If 0 < i <

P ((i - l) n + l <u-v<in) = ^ qj (1 - r2)^n~l - (1 - r2)^n~l

l=(i-l)n+l L

l - (l - r 2) n 1
= (l - r 2) - n - (l - r 2) r n

r2 (1 - r2)n (i-r2)(i~1)n'

The generating function of the number of customers appearing in a time slice
is 1 — r2 + r2z, hence, the generating function of the number of customers entering

1 Notation a, b is used for integer intervals, i. e. a, b = [a, 6] n Z.

Investigating the Behaviour of a Discrete Retrial System 687

during the waiting time is:

¿=1

= Qj

1 - (1 - r 2) " (1 -r2 + r2z)in

r2 (1 - r 2) " (l _ r 2) (- l) "

(l - r 2) ^ n - (l - r 2) ^ B

1 n ^ 1 - (1 - (1 - r2) n l - r 2 J
x À ¿r {1 ~ r2 + r2z) h-jr-- (6) r 2 (l - r 2) 1 / l - r 2 + r 2 z j

If ^ < î < f :

P ((i - 1) n + 1 < u — v < in) = ^ qj
/=(i-l)n+l

= QjTi - Qj (1 - r2)

and the generating function of entering customers is:

1 - (1 - r2)ra 1_

^ n l - (l - r 2) n 1

£ Qjn - qj (i - r2)

= qjn(1 - r2 + r2z)

r 2 (l - r 2) B (1 - r 2) (i _ 1) n '

(1 - r 2 + r2z)in =
r 2 (l - r 2) n (l _ r 2) (< " 1) B _

n (1 - r2 + r2z)^n - (1 - 7-2 + r2z)-*n

1 - (1 - r2 + r2z)n

(l - r 2+r 2z\ , n _ (l - r 2 +r 2 z \ T "
n ^ l-»-2 J \ 1-ra)

(b a i l o r
V i - ^)

(7)
The probability that the waiting time is zero (which happens when the next

customer enters during the last time-slice of the service of the previous one) is:

i i

~r?)k 1 r2 = 1]
k=2±n+1

(l - r 2) ^ n - (l - r 2) ^ n

while the probability that there is no entry at all is:

(8)

Un
V qj(l - r 2) f e = ^ (l - r 2) ^ n + 1 - (l - r 2) ^ B + 1

' J TN r 2 0)

688 Péter Kárász

Bearing in mind that we examined those possibilities when a customer enters obli-
gatorily, generating functions (6), (7), and (8) have to be multiplied by z, then
added to (9), which yields (2).

If the third method of collision treatment is applied, then A\2(z) has to be
determined. In this case the service starts with the simultaneous arrival of two
customers of different types, and the one of the first type is served first. The
duration of its service can take any value between l^n + 1 and ^ n with equal
probability qi = so

in
P((i — 1) n + 1 < u < in) = ^ q\ = q\n

¡ = (i-l)n+l

for all ^ < i < ^r.
Taking into account that one customer of the second type is already present at

the start of the service of the first type customer, the generating function is:

Ai2(z) = z J] n q i (l - r 2 + r2z)in =

(1 - r2 + r2z)&+1> - (1 - r2 + r2zf*+1)n
znqi -

1 - (1 - r2 + r2z)n

which is identical to (3).
The probability of the appearance of at least one customer of any type in a

time-slice is
1 - (1 - n) (1 - r2) = n + r2 - n r 2 .

The busy period can start with the arrival of a first type customer alone with the
probability , with the arrival of a single second type customer with the
probability r^^Zr ' i ' a n d with the arrival both customers, with the probability
r i + r y j r i r 2 • These easily explain (5c) (collision discipline III.). In the case of
collision treatment method I., customers of both types are lost if they arrive during
the same time-slice, and this may be interpreted as a service of zero length (the
system stays in the free state with this probability), which results in the generating
function (5a). If collision discipline II. is applied, then the busy period can start
with the service of a first type customer with the probability r i + r ^i r i T . 2 (no matter
whether there was a refused customer of the second type at the same time), and
starts with the service of a second type customer with the probability ,
which explains (5b).

Finally, we are going to determine the transition probabilities bj. In this case,
when the service of the actual customer begins, the next one is already present. Let
x = u — [^^-J n, i. e. x is the service time mod n (1 < x < n), and let y denote
the inter-arrival time mod n (1 < y < n). The time elapsed between the starting

Investigating the Behaviour of a Discrete Retrial System 689

moments of services of these two consecutive customers will be:

t f L^Jn + y>
0 I (L^J + + if*>y-

Now, let us fix y, and consider the usual set of integers in + 1, (i -f l) n . If the
service is completed until in + y (inclusive), then the time in question is in + y.
The probability of this event is yq2. If the service finishes later than in + y, then the
time difference between starting services is (i + 1) n + y with probability (n — y) q2.
Summation has to be extended over all possible values of service times, therefore,
the generating function of the number of entering customers on condition that
inter-arrival time mod n is equal to y is:

[q2y(l-r2 + r2z)in+y + q2(u-y)(l-r2+r2z)(i+1)n+v] =

= q2(l-r2 + r2z)v y + (n - y) (1 - r 2 + r2z)n J X

(l~_r2 + r2z)^n - (1 - r2 + r2z)^n

1 - (1 - r2 + r2z)n

The random variable of y has truncated geometric distribution with probabilities
= 1 ,2 , . . . , n). The previously calculated sum has to be multiplied

by T - H U) ' ' ' anc* s u m m e d UP f° r 2A from 1 to n. Expanding this sum we finally
receive (4).

•

Theorem 2. The generating function of ergodic distribution of this chain is:

+ Piz

B(z)
P(r, Po(zC(z)-B(z))+Plz(A2(z)-B(z)) nz) - l^ViZ - — — J - , u u ;

i = 0

where po and p\ are the first two probabilities of the equilibrium distribution. They
are connected with the relation p\ = ^¡^Po, o,nd

D = 1 - ^ (1) (u)

where

°3 <3
(l - r 2) - n - (l - r 2 r

(l - r 2) n

l - (l - r 2) " +

nr2 7j + Sj +T
+ ~T 2 '

690 Péter Kárász

A'12(1) = 1 +

B'(1)

nr2 7i + + T
~T 2 '

nr2 72 + ¿2 + T
(12)

and C ' (l) depends on collision policies:

. I- C'(1) = ^ngzaL^ii) + -agzriL^d),

II. = +

III• CO) = + ^ ^ ^ (i) + .

Proof. The matrix of transition probabilities has the form (1). Using this we can
determine the probabilities of the equilibrium distribution denoted by pi. They
satisfy the equations

f Po \ / Co Ci C2 C3 . .. \
T (Po

Pi Ű20 Ű21 a 2 2 Ö23 Pi
P2 0 bo bi b2 P2
P3 0 0 b0 bi P3

{ / V \)
l. e..

Po = Poco + Pia20,
i+l '

P> = +P0C1 +Pia2i (l > 1),
k=2

from which we receive the following expression for the generating function:

oo oo /+1

(13a)

(13b)

¿=o
p (z) = =Po C(z)+PlA2(z) + Y,YlPkbl-k+lZ' =

1=1 k=2
oo oo

= PoC(z)+PiA2(z) + J2 £ Pkbi-k+izl~k+1zk-1

k=2l=k-l

which yields (10). From (13a)

= poC(z) + piA2(z) + B(z) 1 z z

1 - C o
Pi = Po-

«20

To determine po, the condition P (l) = 1 is used, from which (11) is obtained. •

Investigating the Behaviour of a Discrete Retrial System 691

Lemma 1. The expression C'(1) + (j42(1)— B'(l)) is always positive, for any
values of the parameters, and for any collision discipline.

Proof.

«20
= (l - d >) - 1 +

T (/1 f-1 (l-r2)"

Substituting a2 0 = ra(^2-72) ^ ((1 - r 2) * n - (1 - r 2) ^ n) in the formula, we
get:

^ (A'2(l) - B'(1)) = (1 - Co) (- 1 + . i 1 ' ^ "
020 V l - r 2 l - (l - r 2)

Next, C"(l) is transformed in the following way:

oo oo oo oo
C'{ 1) = Y^iCi=YCi"C 0 + £ (t - l) C i = l - CO + £ (< - l)Ci.

¿=0 i=0 ¿=2 i=2

Substituting all in, we obtain:

c (D + ^ K (i) - B ' d)) = f ; (i - 1) Cl + a - co) (1 ~ r f

a2 o ^ 1 — r 2 1 — (1 — r2)

From the formula rewritten in this form, it is obvious that
a 2 0

•
Theorem 3. The condition of the existence of ergodic distribution is the fulfilment
of the following inequality:

r p 1 2 ± ^ ± T < 1 (1 4)

Proof. As the embedded Markov-chain is irreducible and aperiodic, the condition
of the existence of ergodic distribution is 0 < po < 1. Applying Theorem 2 and
Lemma 1, po = jIb^i^+k ' where K is a positive constant. Thus, the condition
simplifies into

1 - B'{ 1) > 0,

which - together with (12) - gives (14). •

692 Péter Kárász

3 Conclusions
We investigated a special queuing system which serves two types of customers:
customers of the first type are accepted for service only if the system is free; cus-
tomers of the second type - if not serviced immediately - join a queue and can start
their service after a multiple of the cycle-time has elapsed. Inter-arrival time dis-
tributions were geometric, service times were uniformly distributed; three collision
treatment methods were considered.

By applying exact methods we gave formulae for transition probabilities and
established the condition of ergodicity (14). One remarkable thing about (14) is
that it does not depend on the customers of the first type, i. e. such customers
have no effect on the ergodicity of the process. Moreover, the formula expressing
the condition has a clear probabilistic interpretation. Considering that ^ ^ is the
average inter-arrival time, the condition rewritten in the form

7 2 + ¿2 T T
2 2 n r 2

expresses the constraint that the sum of the average service and average idle times
(on average ^ time is needed for the next customer in the queue to reach the
starting position) should be less than the average inter-arrival time.

Although the model was motivated by a real problem, it certainly is only a
simplified version of it, which affects its applicability. For instance, it is assumed,
without any statistical investigation of real data, that arriving entities form Poisson-
processes. Presumably, even if they really do so, the Poisson-processes cannot be
homogeneous, almost certainly. The FCFS rule is often broken in real life, too;
normally the plane reaching the starting position first is to commence landing.
Nevertheless, this simplified model provides exciting tasks to solve, and it can be
modified later to fit the real case more precisely.

References
[1] Falin, G.I. and Templeton, J.G.C. Retrial Queues. Monographs on Statistics

and Applied Probability 75 Chapman & Hall, 1997.

. [2] Farkas, G. and Kárász, P. Investigation of a discrete cyclic-waiting problem by
simulation. Acta Acad. Paed. Agriensis, Sectio Mathematicae, 27:57-62, 2000.

[3] Gnedenko, B.V. and Kovalenko, I.N. Introduction to Queuing Theory. Birk-
háuser, Boston, 1989.

[4] Kárász, P. Special retrial systems with exponentially and uniformly distributed
service times. In proc. of International Conference in Memóriám John von
Neumann, pages 199-207, Budapest, 2003.

[5] Kárász, P. Special retrial systems with requests of two types. Theory of
Stochastic Processes, 10(26)3-4:51-56, 2004.

Investigating the Behaviour of a Discrete Retrial System 693

[6] Kárász, P. and Farkas, G. Exact solution for a two-type customers retrial
system. Computers and Mathematics with Applications, 49:95-102, 2005.

[7] Kárász, P. A special discrete cyclic-waiting queuing system. Submitted to
Central European Journal of Operations Research, 2008.

[8] Laevens, K., Van Houdt, B., Blondia, C., and Bruneel, H. On the sustainable
load of fiber delay line buffers. Electronic Letters, 40:137-138, 2004.

[9] Lakatos, L. On a simple continuous cyclic-waiting problem. Annales Univ.
Sci. Budapest., Sect. Comp., 14:105-113,1994.

[10] Lakatos, L. On a cyclic-waiting queuing system. Theory of Stochastic Pro-
cesses, 2(18)1-2:176-180, 1996.

[11] Lakatos, L. On a simple discrete cyclic-waiting queuing problem. J. Math.
Sci. (New York), 92(4):4031-4034, 1998.

[12] Lakatos, L. and Koltai, T. A discrete retrial system with uniformly distributed
service time. Annales Univ. Sci. Budapest., Sect. Comp., 22:225-234, 2003.

[13] Lakatos, L. and Zbáganu, G. Waiting time in cyclic-waiting systems. Annales
Univ. Sci. Budapest., Sect. Comp., 27:217-228, 2007.

[14] Rogiest, W., Laevens, K, Walraevens, J., and Bruneel, H. Analyzing a de-
generate buffer with general inter-arrival and service times in discrete time.
Queueing Systems, 56:203-212, 2007.

REGULAR PAPERS

Acta Cybernetica 18 (2008) 697-693.

and Barriers in Open Graphs Having a
Perfect Internal Matching*

Miklós Bartha* and Miklós Krész*

A b s t r a c t

A counte rpar t of Tu t t e ' s Theorem and Berge's formula is proved for open
graphs wi th perfect (maximum) internal matchings. Proper t ies of barr iers
and factor-crit ical g raphs are s tudied in the new context , and an efficient
a lgori thm is given to find maximal barriers of g raphs having a perfect internal
matching.

K e y w o r d s : g raph matchings, spli t ters, barriers, factor-crit ical graphs

1 Introduction
The concepts "open graph" and "perfect internal matching" have emerged from
the study of soliton automata introduced in [11]. In this graph theoretical model
for electronic switching at the molecular level, an undirected graph represents the
topological structure of a hydrocarbon molecule having an alternating pattern of
single and double bonds between its carbon atoms. A soliton is a solitary wave that
travels through chains of alternating single and double bonds in small packets, and
has the ability to switch each affected bond to its opposite. See [10] for the physico-
chemical aspects of soliton switching. Soliton waves are initiated and received at
some designated interface points, which are treated as distinguished vertices in the
graph model. These vertices are called external, and for convenience it is assumed
that a vertex is external iff it has degree one. Hence the notion "open graph".

The fact that a molecule has an alternating pattern of single and double bonds
is captured by requiring that the underlying graph has a matching (e.g. the col-
lection of double bonds) which covers each vertex, with the possible exception of
the external ones. The status of any particular external vertex being covered or
not by such a "perfect internal" matching changes when a soliton is initiated from

•Work partially supported by Natural Science and Engineering Research Council of Canada,
Discovery Grant #170493-03

t Department of Computer Science, Memorial University of Newfoundland, St. John's, NL,
Canada, E-mail: barthaflcs.mun.ca

^Department of Computer Science, University of Szeged, Faculty of Juhász Gyula Teacher
Training College, 6725, Szeged, Boldogasszony sgt. 6, Hungary, E-mail: kreszQjgypk.u-szeged.hu

Splitters

698 Miklós Bastha and Miklós Krész

or received at that vertex. A soliton graph is defined as an open graph having a
perfect internal matching. The automaton behavior of soliton graphs arises from
the switching capability of the soliton. See [11] for the precise definition of soliton
automata.

Even though open graphs and perfect internal matchings have been introduced
in [2] with the above specific model in mind, there are other meaningful interpre-
tations of these concepts. Consider, for example, a project on which employees of
a company must work in couples. The company employs both full-time and other
(e.g. part-time) workers, but its preference is to assign as many full-time employees
to the project as possible. In addition, a known compatibility relationship among
the employees must be respected, which determines the possible couplings for the
job. The underlying graph G in this case consists of the employees as vertices
and the compatibility relation among them as edges. Vertices corresponding to
full-time employees are considered internal, whereas the group of other employees
constitutes the set of external vertices of G. The goal is to find a matching M of
G that covers a maximum number of internal vertices.

Considering the latter interpretation of open graphs and perfect/maximum in-
ternal matchings, a splitter is a collection of full-time workers such that no two of
these workers can work together by any optimal coupling. A barrier, on the other
hand, is a collection X of full-time workers (internal vertices) such that, when tak-
ing out X from the compatibility graph G, the number of odd internal components
(i.e., connected components consisting of an odd number of internal vertices) in
G — X exceeds the cardinality of X by the deficiency of G, which is the number of
full-time workers remaining idle by any optimal coupling. Clearly, for collections of
full-time workers, being a barrier is a stronger property than being just a splitter.

Regarding the soliton automaton model, it turns out that an internal vertex
(carbon atom) v may belong to a barrier only if v is "positively inaccessible" for
the soliton with respect to any state (perfect internal matching) M. By this we
mean that every M-alternating path reaching v (if any) starting from an external
vertex will arrive at v on an M-negative edge (i.e. single bond). Consequently,
whenever the soliton first arrives at v on edge e, it must return to v before quitting,
and then leave v on the same edge e in the opposite direction. (See the definition of
soliton paths/walks in [11].) It follows that a viable soliton graph, in which every
carbon atom can be reached by the soliton in an appropriate state, has a unique
maximal barrier, namely the set of its inaccessible vertices.

The present paper is a synthesis of the results obtained in [4], [5], and [6] with
a special emphasis on barriers. A new shorter proof is given for Tutte's Theorem
for open graphs with perfect internal matchings, and Berge's Formula is proved
as a consequence of this theorem. Barriers are studied in the context of a suitable
closure operation, which allows for an analysis of perfect internal matchings in open
graphs via perfect matchings of their closures. Maximal splitters in open graphs
are compared with maximal barriers in closed graphs, and, using a result from [6],
an algorithm is worked out to isolate maximal barriers in linear time.

Splitters and Barriers in Open Graphs ... 699

2 Graphs and matchings
By a graph, throughout the paper, we mean a finite undirected graph in the most
general sense, with multiple edges and loops allowed. Our notation and terminology
follows [14]. For a graph G, V(G) and E(G) will denote the set of vertices and the
set of edges of G, respectively. An edge e = (^1,^2) in E(G) connects two vertices
v\, V2 G V(G), which are called the endpoints of e, and e is said to be incident with
v-i and V2- If t>i = V2, then e is called a loop around v\. Two edges sharing at least
one endpoint are said to be adjacent in G. A subgraph G' of G is a graph such that
V(G') C V(G) and E(G') C E{G). If X C V(G) then G\X} denotes the subgraph
of G for which V(G{X}) = X and E{G[X\) consists of the edges of G having both
endpoints in X. The notation G — X is a shorthand for G\V(G) — X).

For a graph G, the degree of a vertex v, denoted d(v), is the number of occur-
rences of v as an endpoint of some edge in E(G). According to this definition, every
loop around v contributes two occurrences to the count. Vertex v is called external
if d(v) = 1, internal if d(v) > 2 and isolated if d(v) = 0. External edges are those
that are incident with at least one external vertex, and an internal edge is one that
is not external. The sets of external and internal vertices of G will be denoted by
Ext(G) and Int(G), respectively. Graph G is called open if Ext(G) 0, otherwise
G is closed.

A matching M of graph G is a subset of E(G) such that no vertex of G occurs
more than once as an endpoint of some edge in M. As the endpoints of loops count
twice, such edges cannot participate in M. The endpoints of the edges contained
in M are said to be covered by M. A perfect (maximum) matching of G is a
matching that covers all (respectively, a maximum number of) vertices in G, and a
perfect internal (maximum internal) matching is one that covers all (respectively,
a maximum number of) internal vertices in G. In this paper we are primarily
interested in perfect internal matchings of graphs.

An edge e G E(G) is said to be allowed (mandatory) if e is contained in some
(respectively, all) perfect internal matching(s) of G. Forbidden edges are those that
are not allowed. We will also use the term constant edge to identify an edge that is
either forbidden or mandatory. A mandatory external vertex is one that is covered
by all perfect internal matchings.

An open graph having a perfect internal matching is called a soliton graph. Let
G be a soliton graph, fixed for the rest of this section, and let M be a perfect
internal matching of G. An edge e G E(G) is said to be M-positive (M-negative)
if e G M (respectively, e M). An M-alternating path (cycle) in G is a path
(respectively, even-length cycle) stepping on M-positive and M-negative edges in
an alternating fashion. Let us agree that, if the matching M is understood or
irrelevant in a particular context, then it will not explicitly be indicated in these
terms.

An external alternating path is one that has an external endpoint. If both end-
points of the path are external, then it is called a crossing. An alternating path is
positive (negative) if it is such at its internal endpoints (if any), meaning that the
edges incident with those endpoints are positive (respectively, negative). A positive

700 Miklós Bastha and Miklós Krész

(negative) alternating fork is a pair of vertex-disjoint positive (respectively, nega-
tive) external alternating paths leading to two distinct internal vertices. Although
it sounds somewhat confusing, we still say that these two vertices are connected by
the fork.

An alternating unit is either a crossing or an alternating cycle. Switching on
an alternating unit amounts to changing the sign of each edge along the unit. It is
easy to see that the operation of switching creates a new perfect internal matching
for G. Moreover, as it was proved in [1], every perfect internal matching of G can
be transformed into any other perfect internal matching by switching on a number
of pairwise disjoint alternating units. It follows that any edge e of G is not constant
iff there exists an alternating unit passing through e with respect to every perfect
internal matching of G.

Since in our treatment we are particular about external vertices, we do not want
to allow that subgraphs of G possess external vertices other than the ones present
in G. Therefore whenever this happens, and an internal vertex v becomes external
in a subgraph G' of G, we shall augment G' by a looping edge around v. This
augmentation will be understood automatically throughout the paper.

3 Perfect matchings vs. perfect internal matchings
There is an easy way to neutralize the concession that external vertices in open
graphs need not be covered by perfect internal matchings, without actually with-
drawing this privilege. In any open graph G, attach a loop around each external
vertex to obtain a closed graph G. Since loops cannot be part of any matching, the
augmentation G H-* G will simply cancel the privilege existing in G by turning every
external vertex into an internal one. Thus, perfect matchings of G can trivially be
recaptured as perfect internal matchings of G. This observation will allow us to
conveniently refer to results on maximum/perfect matchings without leaving the
realm of our current framework dealing with maximum/perfect internal matchings,
yet preserving the original scope of these results simply by saying that the objects
of consideration are closed graphs.

On the other hand, perfect internal matchings, too, can be studied as ordinary
perfect matchings by introducing an appropriate closure operation on graphs.

Definition 3.1. The closure of graph G is the closed graph G* for which:
— V(G*) = V(G) if |V(G)| is even, and

V{G*) = V(G) U {c}, c g V(G) if |V(G)| is odd;
— E(G*) = E(G) U { { v u v 2) \ v í € Ext(G) U {c}}.

Intuitively, G* is obtained from G by connecting its external vertices with each
other in all possible ways. If |V(G)| happens to be odd, then a new vertex c is
added to G, and edges are introduced from c to all of the external vertices. The
edges of G* belonging to E(G*) — E(G) are called marginal, and the vertex c is
referred to as the collector. Edges incident with the collector vertex will be called
collector, too.

Splitters and Barriers in Open Graphs ... 701

Notice that, in the specification of E(G*), it is not required that v\ / u2-
Consequently, in G*, there will be a loop around each external vertex of G. These
loops have no specific role if G has at least two external vertices, although their
introduction as trivial forbidden edges is harmless. If there is only one external
vertex in G, however, the loop is essential to make G* closed.

Proposit ion 3.1. Graph G has a perfect internal matching i f f G* has a perfect
matching.

Proof. If G* has a perfect matching M*, then deleting the marginal edges from
G* and M* will leave G with a perfect internal matching. Conversely, if G has a
perfect internal matching M, then it is always possible to extend M to a perfect
matching of G* by matching up the external vertices of G not covered by M in an
arbitrary way, using the collector vertex c if necessary. Obviously, the use of c is
necessary if and only if |V(G)| is odd. •

Lemma 3.1. Every M-alternating crossing of G gives rise to an M*-alternating
cycle of G* by any extension of M to a perfect matching M*. Conversely, for an
arbitrary perfect matching M* of G*, every M*-alternating cycle of G* containing
at least one marginal edge opens up to a number of alternating crosses with respect
to the restriction of M* to E(G) when the marginal edges are deleted from G*.

Proof. Straightforward, using the same argument as under Proposition 3.1. •

Corollary 3.1. For every edge e € E(G), e is allowed in G i f f e is allowed in G*.

Proof. Indeed, by Lemma 3.1,
e is allowed in G

i f f there exists a M-alternating unit through e in G
i f f there exists an M*-alternating cycle through e in G*
i f f e is a l lowed in G*. •

Recall from [14] that a closed graph G is elementary if its allowed edges form
a connected subgraph. We shall adopt this definition for open graphs with the
additional requirement that the allowed edges must cover all of the external vertices.

Based on Corollary 3.1, the following statement was proved in [4].

Proposition 3.2. A connected graph G is elementary i f f G* is elementary.

In general, the subgraph of G determined by its allowed edges has several con-
nected components, which are called the elementary components of G. An elemen-
tary component C is external if it contains external vertices of G, otherwise C is
internal. Notice that an elementary component can be as small as a single external
vertex of G. Such a component is called degenerate, and it is the only exception
from the general rule that elementary components are elementary graphs. A de-
generate external component is the external endpoint of a forbidden external edge.
A mandatory elementary component is a single mandatory edge e £ E(G) with a
loop around one or both of its endpoints, depending on whether e is external or

702 Miklós Bastha and Miklós Krész

' i ^ / • \ / * \

Figure 1: Marginal edges that are forbidden in G*.

internal. Note that an edge connecting two external vertices is not mandatory in
G, therefore it is not a mandatory elementary component either.

Observe that if v is a non-mandatory external vertex and the collector vertex
c is present in G*, then the edge (v,c) cannot be forbidden in G*. For, if M is a
perfect internal matching of G not covering v, then it is always possible to extend
M to a perfect matching of G* by adding the edge (v,c) first. Consequently, if G
is elementary, then only those marginal edges can become forbidden in G* that are
different from the collector ones. (An elementary graph G contains a mandatory
external vertex iff G consists of a single edge with a number of loops attached to
one of its endpoints, in which case the collector vertex is not present in G*.) Fig.
1 shows a simple example where all these edges are indeed forbidden.

If G is not elementary, then several of its external elementary components may
be amalgamated in G*. The internal elementary components of G, however, will
remain intact in G*, as every forbidden edge of G is still forbidden in G*. The
mandatory external elementary components of G, too, will remain mandatory in
G*. We claim that the union of all non-mandatory external elementary components
of G, together with the collector vertex if that is present, forms one elementary
component in G*, called the amalgamated, elementary component. Indeed, as we
have already seen, every collector edge incident with a non-mandatory external
vertex is allowed in G*. Similarly, if e is an edge in G* connecting two external
vertices of G belonging to different non-mandatory elementary components, then
it is always possible to find a perfect internal matching M of G by which the two
endpoints of e are not covered. Then M can be extended to a perfect matching
M* of G* by putting in the edge e first, so ensuring that e becomes allowed in G*.

The observations of the previous paragraph are summarized in Theorem 3.1
below, which provides a characterization of the elementary decomposition of G*.

Theorem 3.1. The set of elementary components of G* consists of:
(i) the internal elementary components ofG;
(ii) the mandatory external elementary components ofG;
(Hi) the amalgamated elementary component, which is the union of all non-
mandatory external elementary components and the collector vertex.

Splitters and Barriers in Open Graphs ... 703

The closure operation provides a hint toward a new interpretation of our frame-
work dealing with open graphs and perfect/maximum internal matchings. The key
observation is that, in our arguments relating perfect internal matchings of G to
perfect matchings of G* and vice versa, we did not essentially use the fact that the
external vertices have degree 1. The idea works for any set of vertices designated as
external in G. The concept arising from this remark is that of a perfect (maximum)
matching with a "specified potential defect" explained below.

Let G be a graph, and fix S C V(G) arbitrarily. A perfect (maximum) S-
matching of G is a matching M that covers all (respectively, a maximum number
of) vertices in S. Vertices in V(G) — S need not, although they may be covered by
M. The set Spd(G) = V(G) — 5 is the specified potential defect of such matchings,
which takes over the role of Ext(G) in this setting. Although this generalization
appears to be substantial for the first sight, a closer look at the definition reveals
that it is merely a technical matter. Attach, to each vertex v € Spd(G), a handle
consisting of two adjacent edges leading to a new external vertex v. Furthermore,
"protect" the vertices in V(G) with degree one by attaching a loop around them.
Let G denote the resulting graph. Then the restriction of every perfect (maxi-
mum) internal matching M of G to V(G) is a perfect (maximum) 5-matching M
of G that covers v iff M covers v. Moreover, the connection M u M i s a one-
to-one correspondence. Consequently, in the study of 5-matchings we can always
assume, without essential loss of generality, that the vertices belonging to the spec-
ified potential defect have degree 1. In this way all substantial results on internal
matchings can be rephrased as results on matchings with a specified potential defect
in a straightforward way.

The following sections will show that obtaining results on open graphs with
perfect/maximum internal matchings from corresponding classical results on closed
graphs is by no means a matter of trivial rephrasing, although the results themselves
in most cases come as appropriate rewordings of the original statements.

4 Tutte's Theorem and Berge's Formula
First we restate and prove Tutte's well-known theorem [15] in terms of perfect
internal matchings. Let X C Int(G) be arbitrary, and consider the (connected)
components of G — X. Component K is called external or internal depending
on whether or not K contains external vertices. An odd internal component is
an internal one consisting of an odd number of vertices. The number of such
components is denoted by CQ"(G, X). If M is a perfect internal matching of G, then
by the term "vertex x £ X is taken by component K" - or, equivalently, "K takes
x" - with respect to M we mean that x is connected to some vertex in K by an
M-positive edge.

T h e o r e m 4.1 (Tutte's Theorem). A graph G has a perfect internal matching i f f
C (G , X) < \X\, for all X C Int(G).

Proof. The "only if" part of the proof is the well-known counting argument: if G

704 Miklós Bastha and Miklós Krész

has a perfect internal matching M, then every odd internal component of G — X
must take a vertex from X with respect to M, so that c*0

n(G, X) < To see the
"if" part, consider the closure G* of G, and prove that G* has a perfect matching
whenever C(G,Y) < \Y\ holds for all Y C Int(G). Then, by Proposition 3.1, G
will have a perfect internal matching. Using Tutte's original theorem, it is sufficient
to show that c0{G*,X) < \X\ holds in G* for all X C V(G*), where c 0 (G \ X) is
the number of odd components in G* — X.

To avoid unnecessary complications caused by the collector vertex being present
in G* we can assume, without loss of generality, that | V(G)| is even. If | V(G)| were
odd, then we would rather "duplicate" an arbitrary external edge e of G - that
is, introduce a new external vertex with an incident edge adjacent to e - than
bother with the collector vertex when taking the closure. This slight modification
is equivalent to introducing an extra edge from the collector vertex to the internal
endpoint of one external edge, which preserves the number c0(G*,X) as well as
the correspondence between the perfect internal matchings of G and the perfect
matchings of G* explained in Proposition 3.1.

Let X = Y U {x!,x2,. • • ,xk} C V(G*) be arbitrary such that Y C Int(G) and
Xi e Ext(G), 1 < i < k for some k > 0. We say that a component K in G* — X
is owned by xl if Xi is connected to an internal vertex of K. Component K is
called the joint external component, denoted Jx, if if contains an external vertex
of G. Clearly, Jx is unique, provided that k < |Ext(G)|. Observe that each odd
component K of G* — X falls in exactly one of the following three pairwise disjoint
groups.

Group g\\ the odd internal components of G — Y\
Group g2: the components owned by the vertices x\,..., xk\
Group <?3: the component Jx by itself, if it exists and is not in group g2.

Obviously, |<73| < 1, |<?2| < k, and by assumption, |<7i| < |y| . Thus,

Co(G*,X) < \Y\ + k + I = \X\ + 1.

It remains to show that c0(G*,X) = |X| + 1 is impossible. This follows from the
fact that the parity of c0(G*, X) is the same as that of |X|. Indeed, on the one hand,
the parity of \V{G*)\ is even. On the other hand, |V(G*)| = \X\ + \V{G* -
Concerning | V(G* — an odd (even) number of odd components in G* — X
contain an odd (even) number of vertices altogether, and any number of even
components contribute an even number of vertices to the count. Thus, in order
for (X| and |V(G* — X)\ to have the same parity it is necessary that \X\ and
c0(G*, X) have the same parity, too. This concludes the proof of Theorem 4.1. •

We are going to use Tutte's Theorem to derive Berge's Formula [9] on the defi-
ciency of graphs in our framework. Recall that the deficiency of a closed graph G,
denoted def(G'), is the number of vertices left uncovered by any maximum matching
of G. Then, according to Berge's Formula:

def(G) = max{c0(G,X) - \X\ \ XC V(G)},

Splitters and Barriers in Open Graphs ... 705

where c0(G,X) is the number of odd components in G — X.
For any graph G, let idef(G) denote the internal deficiency of G, that is, the

number of internal vertices left uncovered by any maximum internal matching of
G.

Theorem 4.2 (The Berge Formula). For any graph G,

i d e f (G) = m a x { c j)
n (G , X) - | X | | X C Int(G)}.

Proof. If G is closed, then the statement is equivalent to Berge's original formula.
Therefore we can assume that G is open. We shall follow the idea outlined in [14,
Exercise 3.1.16]. Letting

i ' (G) = m a x { t 4 n (G , X) - | X | | X C Int(G)},

the inequality S'(G) < idef(G) is easily obtained by the standard counting argument
seen already in the "only if" part of the proof of Tutte's Theorem. The argument is
as follows. If M is any maximum internal matching, then at most |X| odd internal
components of G — X can take a vertex from X with respect to M. It is therefore
inevitable that at least c'"(G, X) — |-X"| internal vertices of G remain uncovered by
M.

Now we turn to proving the inequality idef(G) < S'(G). If S'(G) = 0, then the
inequality follows from Theorem 4.1. Assuming that S'(G) > 1, construct a new
graph G' from G by adjoining a set H of 5'(G) new vertices to G, joining each of
these vertices to each internal vertex of G and also to each other. Furthermore,
attach a loop around each vertex in H to ensure that these vertices become internal
in G'. It is sufficient to prove that G' has a perfect internal matching. Indeed, if
M' is a perfect internal matching of G', then leaving out those edges of M' which
are incident with vertices in H results in a matching M of G that covers at least
|Int(G)| - 5'{G) vertices, showing that idef(G) < 6'{G).

We use Theorem 4.1 to show that G' has a perfect internal matching. Let
X C Int(G') be arbitrary, and concentrate on the set of components in G' — X. If
X = 0, then this set consists of a single external component. (Remember that G
is open, and H ^ 0.) Thus, C (G ' , X) = 0. If |X| > 1 and H % X, then G' - X
has at most one internal component, so that cl"(G', X) < 1 < If, however,
X = H U y , then the components of G' — X coincide with those of G — Y. Thus,

C (G ' , X) = C (G , Y) < S'(G) + \Y\ = \H\ + \Y\ -

The statement now follows from Tutte's Theorem. •

Another fundamental theorem in matching theory is the Gallai-Edmonds Struc-
ture Theorem ([12],[13]). The main idea of this theorem is to decompose a closed
graph G into three sets of vertices as follows.

• D(G): vertices not covered by at least one maximum matching of G;
• A(G): vertices in V(G) — D(G) adjacent to at least one vertex in D(G);

706 Miklós Bastha and Miklós Krész

• C(G) = V(G) - A(G) - D(G).

The five statements of the theorem are listed below. To explain statements (a) and
(d), a closed graph G is called factor-critical if G — v has a perfect matching for
every v £ V(G). In this case, a near-perfect matching of G is one that covers all
vertices but one. Clearly, every factor-critical graph is connected and has an odd
number of vertices.

(a). The components of the subgraph induced by D(G) are factor-critical.
(b) The subgraph induced by C(G) has a perfect matching.
(c) The bipartite graph obtained from G by deleting the vertices of G(G) and

the edges spanned by A(G) and by contracting each component of D(G) to
a single vertex has positive surplus (as viewed from A(G)).

(d) If M is any maximum matching of G, it contains a near-perfect matching
of each component of (the graph induced by) D(G), a perfect matching of
C(G), and matches all vertices of A(G) with vertices in distinct components
of D(G).

(e) def(G) = c(D(G)) - |A(G)|, where c(D(G)) denotes the number of compo-
nents in G[D(G)j.

The counterpart of the Gallai-Edmonds Structure Theorem for maximum in-
ternal matchings was proved in [3]. Not surprisingly, the difference between the
statement of the original theorem and that of its counterpart is of a rewording
nature, which can be summarized as follows:

— the set D(G), as well as A(G), is a subset of Int(G);
— the subgraph induced by C(G), which will contain all the external vertices,

has a perfect internal matching;
— in general, the words "perfect matching" and "maximum matching" are re-

placed by "perfect internal matching" and "maximum internal matching",
respectively;

— in statement (e) above, def(G) is replaced by idef(G).

In the light of the Gallai-Edmonds Theorem one can easily argue about the
deficiency of the graph G*. In general, it cannot be expected that def(G*) = idef(G)
holds. Equation of these two deficiencies could only be guaranteed if the decision
whether to add a collector vertex to V(G) or not depended on the number of vertices
in C(G) rather than V(G). This follows immediately from statements (d) and (e)
above. If the parity of |V(G)| and |C(G)| is the same, then C(G*) = (G(G))*, so
that def(G*) = idef(G). Otherwise G(G*) ± (C(G))* and def(G*) = idef(G) + 1,
because the closure of G in this case is implemented through an incorrect closure
of G(G), and the discrepancy caused by the missing or unjustified collector vertex
in the latter closure contributes +1 to the overall deficiency.

Splitters and Barriers in Open Graphs ... 707

5 Splitters, barriers, and the canonical partition
of elementary graphs

Recall from [14] that a barrier of a closed graph G is a set X C V(G) for which the
maximum is reached in Berge's formula. We extend this definition to open graphs
in the following natural way.

Defini t ion 5.1. A barrier of graph G is a set X C Int(G) for which |X| =
C(G,J>0 - idef (G) .

Let X be a barrier in graph G (open or closed). It is evident that, for every
x £ X, X — {x} is a barrier in G — x. Moreover, the (internal) deficiency of G — x
is one greater than that of G. Consequently, X C C(G) U A(G), according to the
Gallai-Edmonds decomposition of G. As it was proved in [14, Theorem 3.3.15],
A(G) is the intersection of all (inclusionwise) maximal barriers in a closed graph
G. For the reader's convenience we repeat the leading argument of this proof here,
without assuming that G is closed.

T h e o r e m 5.1. The set A(G) is contained in every maximal barrier of G.

Proof. Let X be any maximal barrier. We claim that A(G — X) = 0. For, if
A(G—X) were not empty, then XUA(G-X) would be a barrier properly containing
X. It is also easy to see that, for any vertex u £ A(G), A(G — u) = A(G) — {u}, and
for any u £ C(G), A(G — u) 2 A(G). (See [14, Lemma 3.2.2] for these statements
in closed graphs.) Thus, A{G) C A(G - X) U X, so that A(G - X) = 0 implies
A(G) CX. •

Corol lary 5.1. For every maximal barrier X of G, X — A(G) U Y, where Y is a
maximal barrier of C(G).

Proof. Evident by Theorem 5.1, since A(G) separates C(G) from D(G). •

Our concern in this paper is with maximal barriers of graphs. Therefore, on
the basis of Corollary 5.1, we can restrict our attention to graphs having a perfect
internal matching. Let G be a graph (open or closed) having a perfect internal
matching, fixed for the rest of this paper. For two internal vertices u and v of G,
we say that u and v attract (repel) each other if an extra edge e = (u, v) becomes
allowed (respectively, forbidden) in the graph G + e. The binary relation of two
vertices repelling each other is denoted by The following simple statement was
proved in [4].

L e m m a 5.1. Two internal vertices u and v of G attract each other i f f u and v
can be connected by a positive alternating path or fork with respect to every perfect
internal matching of G.

A vertex v £ Int(G) is called accessible with respect to a perfect internal match-
ing M if there exists a positive external M-alternating path leading to v. It was
proved in [4] that a vertex v is accessible with respect to some perfect internal

708 Miklós Bastha and Miklós Krész

matching of G iff v is accessible with respect to all perfect internal matchings of G.
It is therefore meaningful to say that vertex v is accessible in G without specifying
the matching M. Vertex v is inaccessible if it is not accessible. An edge e € E(G)
is called viable if at least one endpoint of e is accessible. Otherwise e is said to be
impervious. See also [11] for an equivalent definition of impervious edges.

Definition 5.2. A set X C Int(G) is a splitter if every two vertices of X repel
each other in G. Splitter X is inaccessible if all of its vertices are such.

The concept maximal splitter (maximal inaccessible splitter) is meant inclusion-
wise. Notice that, in this way, a maximal inaccessible splitter is not necessarily a
maximal splitter.

For any set X C Int(G), let Gx be the graph obtained from G by connecting,
with an extra edge, each vertex in X with all internal vertices of G, provided that
this edge does not already exist in G. If G = Gx, then we say that G is X-complete.

Lemma 5.2. For every X C Int(G), X is a splitter in G i f f X is a splitter in Gx-

Proof. Let Ge be the graph obtained from G by adding just one edge e towards
constructing Gx- In order to prove the lemma it is sufficient to show that.if X is
a splitter in G, then it is one in Ge as well. Assume, to the contrary, that X is a
splitter in G, yet, two vertices x,y £ X attract each other in Ge. Let M be any
perfect internal matching of Ge that is also a perfect internal matching of G, i.e.,
one by which the edge e is negative. By Lemma 5.1, x and y can be connected
by a positive M-alternating path or fork ¡3. Leaving out the edge e, (3 splits into
several subpaths. Since one endpoint of e is in X, it is inevitable that one of these
subpaths becomes a positive M-alternating path connecting two vertices in X, or
two of them constitute a positive M-alternating fork connecting two such vertices.
Either way, this contradicts X being a splitter in G. •

We claim that any two distinct vertices u, v in a barrier X of G repel each other.
Indeed, assume that the edge e = (u, v) is part of some perfect internal matching
M of G + e. Since = cj,n(G, X) = c^(Ge,X), at least two odd components of in
Ge — X could not take a vertex from X with respect to M; a contradiction. Thus,
every barrier is a splitter. The converse of this statement is not true, however, as
shown by the graph of Fig. 2. It is also clear by Corollary 3.1 that a set X C Int(G)
is a splitter in G iff X is a splitter in G*. As we shall see, splitters are in close
relationship with extreme sets of vertices. Recall from [14] that a set of vertices X
in a closed graph G is extreme if def(G — X) = def(G) + |X|.

Proposition 5.1. A set X C V(G) of a closed graph G having a perfect matching
is a splitter i f f X is extreme.

Proof. By Lemma 5.2 we can assume, without loss of generality, that G is X-
complete. If X is extreme, then G cannot have a perfect matching containing an
edge in X x X. Indeed, if M was such a matching, then the restriction of M to
G — X would cover more than |V(G)| — vertices. Thus, X is a splitter.

Splitters and Barriers in Open Graphs ... 709

/
\

\

maximal splitter

Figure 2: A maximal splitter that is not a barrier

Now let X be a splitter. Obviously, def(G — X) < |X|. Assume, by way of
contradiction, that def(G — X) = — k for some k > 0, and let M be any
maximum matching of G — X. Couple up each vertex in G — X not covered by M
with an arbitrary vertex in X, and extend M by these edges to form a matching M
in G. (Remember that G is X-cornplete.) Observe that k must be odd, otherwise
M could further be extended to a perfect matching of G containing k/2 edges from
X x X, contradicting the fact that X is a splitter. On the other hand, k cannot be
odd, for |V(G)| is even. •

Proposition 5.2. A set X C Int(G) is a barrier in G* i f f \X\ = c£(G,X) or
\X\ = g(G,X) + l.

Proof. Using the trick of duplicating an external edge e of G when |^(G) | is odd, as
seen under the proof of Tutte's Theorem, we can assume, without loss of generality,
that |y(G) | is even. The reason is that X is a barrier in G* iff X is one in the
closure of the augmented graph Ge • Consider the components in G — X and those
in G* — X. The only difference between these two groups is that the external
componets in G — X are joined to form one component Jx in G* —X. Assume that
Jx is even. Then, clearly, X is a barrier in G* iff |X| = cJ"(G, X). On the other
hand, if Jx is odd, then X is a barrier in G* iff = cJ,n(G,X) + 1. Moreover, if
}X\ = c'"(G,X), then Jx must be even, and if \X\ = c£{G,X) + 1, then Jx must
be odd. •

Corollary 5.2. Every barrier of G is also a barrier in G*.

• Theorem 5.2. Every maximal splitter of G is a barrier inG*.

Proof. We can again assume, without loss of generality, that |V(G)| is even. Let
Y be a maximal splitter of G. By Proposition 5.2 it is enough to prove that
\Y| = 4 n (G, Y) or |Y| = cj,n(G, Y) +1 . Since Y is also a splitter in G*, it is extreme
in that graph according to Proposition 5.1. Thus, by [14, Lemma 3.3.8], Y can be
extended to a maximal barrier X of G*. Clearly, X — Y = {x i , . . . ,xk} C Ext(G),
because Y is maximal. Concentrate on the odd components of G* —X, and observe

710 Miklós Bastha and Miklós Krész

that the situation is analogous to the one analyzed in the proof of Tutte's Theorem.
Each of these components falls in one of the three groups specified there. Note that
the number of odd components in G* — X can reach the barrier level |X| = + k
only if the size of group g\ is at least |V| - 1, that is, cJ,n(G, Y) > |Y| - 1. On the
other hand, c'"(G, Y) < |Y| is guaranteed by Tutte's Theorem. The proof is now
complete. •

Proposition 5.3. No barrier exists in an elementary soliton graph G, other than
the empty set.

Proof. The empty set is trivially a barrier in all soliton graphs. By way of con-
tradiction, assume that X C V(G) is a non-empty barrier. Since c'"(G,X) =
each vertex in X must be taken by an appropriate odd internal component of G — X
with respect to any perfect internal matching M of G. Consequently, all edges con-
necting X to other components of G — X are forbidden. This implies that either
the allowed edges of G do not form a connected subgraph, or, when they do, none
of the external vertices of G are covered by them; a contradiction. •

Corollary 5.3. For every maximal splitter X of an elementary soliton graph G
having at least one internal vertex, d"(G,X) = — 1.

Proof. By Proposition 5.2 and Theorem 5.2 we know that either c'o(G, X) = — 1
or CQ"(G,X) = The latter equation is ruled out, however, due to Proposi-
tion 5.3. •

The proof of the following statement uses the exact same argument that was
introduced under Proposition 5.3.

Proposition 5.4. Every barrier X of G is an inaccessible splitter.

Proof. As it has been noticed earlier, every barrier is a splitter. It is therefore
sufficient to prove that every vertex of X is inaccessible. Let M be an arbitrary
perfect internal matching of G. Since X is a barrier, every vertex v 6 X is taken
by some odd internal component of G — X with respect to M. Consequently, any
alternating path starting out from v on an M-positive edge is locked forever inside
the subgraph of G determined by the odd internal components of G — X plus X.
In other words, v is inaccessible. •

It is well-known (cf. [14]) that the collection of maximal barriers in a closed
elementary graph G forms a partition of V(G), called the canonical partition of G.
Canonical partition is established in open graphs in the same way, using maximal
splitters rather than barriers.

Theorem 5.3. The collection of maximal splitters in an elementary graph G forms
a partition of Int(G).

Splitters and Barriers in Open Graphs ... 711

Proof. Let V = {Xi,... ,Xn} be the collection of maximal splitters in G. By
Theorem 5.2, each Xi (1 < i < n) can be extended to a maximal .barrier X* of
G*. Since X* \ Xi may only contain external vertices of G for every 1 < i < n, it
follows that V is the restriction of the canonical partition of G* to Int(G). Thus,
V is a partition itself. •

Theorem 5.3 above states that the relation ~ of two internal vertices repelling
each other is an equivalence of Int(G), provided that G is elementary. This fact
was first observed in [1]. If G is not elementary, then ~ fails to be transitive in
general. It is an important question, however, if the restriction of ~ to a concrete
non-degenerate elementary component C of G, denoted ~ | c , is still an equivalence,
and if so, does it coincide with canonical equivalence in C alone? As it was pointed
out in [4], ~ | c can be specified as canonical equivalence in the elementary graph
Ch, which is obtained from C by adding the so called "hidden edges". A hidden edge
(u, v) in C between two distinct internal vertices arises from a negative alternating
path or fork a connecting u and v with respect to any perfect internal matching
M of G, such that no vertex of a, other than its two endpoints u and v, lies in C.
Following [14], if a is a path, then it is called a negative (M-)ear to C. Clearly, all
hidden edges are forbidden both in G and Ch, but their presence affects canonical
equivalence in Ch in such a way that it will eventually coincide with ~ |c- See
Fig. 3 for two hidden edges, one in elementary component C\, and the other in
C4. Notice that the two vertices in C\ not connected by the hidden edge fall in the
same canonical class in C\, but different canonical classes according to (Ci)h- This
holds for the elementary component C4 as well. Let us agree that, in the future,
by a canonical class of C we shall in fact mean one of Ch-

6 Finer structure of maximal splitters and barri-
ers

Recall that a closed graph G is factor-critical if G — v has a perfect matching for
every v € V(G). We shall adopt this definition word by word for open graphs,
assuming of course that v € Int(G), and requiring that G — v has a perfect internal
matching. We also require that G be connected, because, unlike for closed graphs,
this property does not come as a consequence. The following simple result is quoted
from [5].

Proposition 6.1. A connected open graph G is factor-critical i f f G has a perfect
internal matching and every internal vertex in G is accessible.

Corollary 6.1. No barrier exists in factor-critical open graphs, other than the
empty set.

Proof. Immediate by Propositions 5.4 and 6.1. Notice that the statement trivially
holds for closed graphs as well, even though such graphs do not have a perfect
(internal) matching. The reason is that a factor-critical closed graph G is the

712 Miklós Bastha and Miklós Krész

single component of D(G) by itself, and all barriers lie completely in A(G) U C(G).
(See the Gallai-Edmonds decomposition of graphs.) •

Using factor-critical graphs, the following characterization of maximal splitters
was obtained in [5J. Recall that a component K is degenerate if K consists of a
single external vertex of G.

Theorem 6.1. For a set X of internal vertices of a soliton graph G, the following
two statements are equivalent.

(i) The set X is a maximal splitter.
(ii) Each non-degenerate component of G — X is factor-critical such that

(Ha) \X\ =c™(G,X) + l, or
(iib) = CQ"(G, X) with every external component of G — X being

degenerate.
Furthermore, condition (iib) holds in (ii) above i f f X is inaccessible.

The structure of elementary components in a soliton graph G has been analysed
in [4]. To summarize the main results of this analysis, we first need to review
some of the key concepts introduced in that paper. The reader can obtain a good
understanding of these concepts by following the definitions to come on Fig. 3.

An elementary component of G is viable if it does not contain impervious allowed
edges. (Recall that an edge e is impervious if both endpoints of e are inaccessible.)
In Fig. 3, all elementary components, with the exception of Cy, are viable. A viable
internal elementary component C is one-way if all external alternating paths (with
respect to any perfect internal matching M) enter C in vertices belonging to the
same canonical class of C. This unique class, as well as the vertices belonging to this
class, are called principal. Furthermore, every non-degenerate external elementary
component is considered a priori one-way (with no principal canonical class, of
course). In Fig. 3, elementary components Ci,C4, and Ce are one-way internal,
with their principal vertices encircled. A viable elementary component is two-way
if it is not one-way. An impervious elementary component is one that is not viable.

We say that elementary component C' is two-way accessible from component
C with respect to any (or all) perfect internal matching(s) M, in notation CpC', if
C' is covered by a negative (M-)ear to C. The ear itself might be closed, meaning
that its two endpoints are the same. It is required, though, that if C is one-way
and internal, then the endpoints of this ear are not in the principal canonical
class of C. As it was shown in [4], the two-way accessible relationship is matching
invariant. In Fig. 3, Ci is two-way accessible from C\, C3 from C2, and C5 from
C4. (But C3 is not two-way accessible from G\, and C2, C3, C4, C5 are not two-
way accessible from C§, even though there exists a negative closed ear originating
from the principal vertex of Cq that covers all four of these components.) It was
also proved in [4] that the transitive closure of the two-way accessible relationship
between elementary components is asymmetric.

A family of elementary components in G is a block of the partition induced
by the smallest equivalence relation containing p. A family T is called external if
it contains an external elementary component, otherwise T is internal. Family T

Splitters and Barriers in Open Graphs ... 161

Figure 3: The structure of elementary components in a soliton graph

714 Miklós Bastha and Miklós Krész

is viable if every elementary component in T is such. Otherwise the family T is
impervious. A soliton graph G is viable if all of its families are such. The graph
of Fig. 3 has five families, four of which are viable. The only external family is a
stand-alone degenerate external elementary component.

The first group of results obtained in [4] on the structure of elementary compo-
nents of G can now be stated as follows.

Theorem 6.2. Each viable family of G contains a unique one-way elementary
component, called the root of the family. Each internal vertex in every member of
the family, except for the principal vertices of the root, is accessible. The principal
vertices themselves are inaccessible, but all other vertices are only accessible through
them.

For two distinct viable families T\ and J-2 is said to follow T\, in notation
T\ i—> if there exists an edge in G connecting any non-principal vertex in T\
with a principal vertex of the root of T2 . The reflexive and transitive closure of > is
denoted by >—>. The second group of results in [4] characterizes the edge-connections
between members inside one viable family, and those between two different families.

Theorem 6.3. The following three statements hold for the families of any soliton
graph G.

1. An edge e inside a viable family T is impervious i f f both endpoints of e are
in the principal canonical class of the root. Every forbidden edge e connecting
two different elementary components in T is part of a negative ear to some
member C G T.

2. For every edge e connecting a viable family to any other family (viable
or not) J~2; at least one endpoint of e is principal in T\ or Ti- If the endpoint
of e in T\ is not principal, then F2 is viable and it follows T\.

3 The relation ^ is a partial order between viable families, by which the exter-
nal families, are maximal elements. This relation reflects the order in which
families are reachable by alternating paths starting from external vertices.

In the light of Theorem 6.2 and Proposition 6.1 it is immediate that a soliton
graph G is factor-critical iff G consists of a single non-degenerate external family.
Thus, Corollary 6.1 is in fact a generalization of Proposition 5.3. The following
theorem is a further generalization along this line.

Theorem 6.4. Every viable soliton graph has a unique maximal barrier, which is
the collection of its inaccessible vertices.

Proof. By Theorem 6.2 and Proposition 5.4 it is sufficient to show that the set P of
all principal vertices of a viable soliton graph G is a barrier. Let T be an arbitrary
internal family of G with root C, and let XQ be the the set of principal vertices
in C. By Theorem 6.3, the principal vertices of the families that follow T separate
T from all the families that are below T in the Hasse diagram of the partial order
•—• . Similarly, the vertices Xq separate all other families from T. Thus, we can

Splitters and Barriers in Open Graphs ... 715

concentrate on the family T alone as a closed graph, and prove that Xq is a barrier
in that graph. Doing this for all internal families will then prove that P is a barrier
in G.

As we have already seen, X c is a canonical class of Ch (remember the extra
hidden edges being present in Ch), therefore a maximal barrier in that graph. Let K
be an odd component of T — X c , and consider an arbitrary elementary component
D of G present as a subgraph in K — C. As D is a two-way member of family T, it
can be reached by a cascade of negative ears originating from the root C. Since all
hidden edges are present in Ch, and the graph K — C — being essentially a group
of interconnected two-way elementary components of T — has an even number of
vertices, the restriction of K to C defines an odd component of Ch~Xc• Moreover,
this correspondence between the odd components of T — X c and those of Ch — X c
is one-to-one. Consequently, since Xc is a barrier in Ch, it must be one in T as
well. •

Corollary 6.2. Every maximal inaccessible splitter of G is a barrier.

Proof. Let v(G) be the subgraph of G determined by its viable families. We first
prove that each principal vertex u of G repels each internal vertex w lying in
G — v(G). Let M be a perfect internal matching of G and suppose, by way of
contradiction, that there exists a positive M-alternating path p connecting u and
w. Furthermore, starting from u let 2 denote the last vertex of p which belongs
to v(G). It is clear that the subpath of p from u to z is positive at its both ends.
However, by Theorem 6.3, z is also a principal vertex, consequently Theorem 6.4
implies that u ~ z, which is a contradiction.

By the previous paragraph, every maximal inaccessible splitter X of G is the
union of the set S of principal vertices in G and a maximal splitter Y in G — v(G).
Since G — v(G) is a closed graph, Y is a barrier in that graph by Theorem 5.2. Also,
5 is a barrier in v(G). By Theorem 6.3, all edges connecting v(G) to G — v(G)
originate from vertices in S, which implies that X = S U Y is a barrier in G. •

Corollary 6.3. A set X C Int(G) is a maximal barrier in G i f f X is a maximal
inaccessible splitter.

Proof. Immediate by Proposition 5.4 and Corollary 6.2. •

If G is closed, then Corollary 6.3 says that maximal splitters coincide with
maximal barriers in G. This result follows already from Theorem 5.3, considering
that G* = G for closed graphs.

On the basis of Corollaries 6.2 and 6.3 we can outline a simple procedure to find
one random maximal barrier in a soliton graph G. The procedure uses a global set
variable B, the contents of which is initially empty.

Step 1. Isolate the subgraph v(G) consisting of the viable families of G, and
add the principal (inaccessible) vertices of v(G) to B.

716 Miklós Bastha and Miklós Krész

Step 2. If G = v(G), then terminate. Otherwise, in the remainder graph
G — v(G) - wich is now closed - attach an external edge to an arbitrary vertex u
to obtain a soliton graph Gu. Set G := Gu, and goto Step 1.

Clearly, the maximal barriers of Gu coincide with the ones of G—v(G) containing
vertex u. (Note that u is trivially inaccessible in Gu.) Therefore the procedure
above is capable of finding any maximal barrier of G by chosing the vertex u
in Step 2 in an appropriate way. It was proved in [6] that Step 1 of the above
procedure takes linear time in terms of the number of edges in v(G), provided that
a perfect internal matching M has previously been found for G. Also notice that,
if G is closed, then choosing a vertex u £ V(G) to be part of a maximal barrier
is equivalent to turning G into a soliton graph by attaching an external edge to u
before applying the above procedure. Thus, we have proved the following result.

Theorem 6.5. A random maximal barrier of G (open or closed) can be found
in linear time, provided that a perfect internal matching has previously been con-
structed for G.

We wish to emphasize that the above procedure can only be used to find a
random maximal barrier of G in linear time. Finding e.g. a maximum size barrier
X is a much more complicated issue, which would have to be addressed in a different
way. See [7, 8]. Our contribution in this regard concerns only the implications of
adding one particular vertex to X.

Let G be a viable soliton graph and X be its maximal barrier. The question
arises how X can be extended to a maximal splitter Y of G. By Theorem 6.1
we know that a proper extension exists iff G has non-degenerate external families.
Then an obvious way to construct Y is to add an arbitrary maximal splitter of
any (one) non-degenerate external family to X. Observe that this is the only way
to achieve the goal, since any two internal vertices belonging to different external
families attract each other.

Another interesting issue is to relate the maximal barriers of G* to the maximal
splitters of G. Notice that the restriction X of. a maximal barrier X* in G* to
Int(G) need not be maximal as a splitter in G. For example, if G has a single
external family T with the root of this family being a mandatory edge, then X*
might contain the external endpoint v of this edge (as the only external vertex in
G). Since T is a factor-critical graph, v must be the only vertex from T present
in X". Vertex v, however, could be replaced by any other maximal splitter of T in
X*, so that the result would be a maximal splitter of G as well as a maximal barrier
of G*. Clearly, the restriction X of the original X* is a maximal barrier of G in
this case. Another example of this nature manifests itself when all vertices in X*
belonging to the amalgamated elementary component A of G* are from Ext(G),
but A does contain vertices in Int(G). Despite these examples, we still have the
following positive result.

Theorem 6.6. Let X be a maximal splitter in soliton graph G. Then X is either
a maximal barrier in G, or it can be extended in a unique way to a maximal barrier
X* ofG*.

Splitters and Barriers in Open Graphs ... 717

The proof is preceded by a preliminary observation.

Lemma 6.1. Let u and v be distinct vertices of a closed graph G such that u ~ v.
Assume, furthermore, that there exists a perfect matching M in G and an M-
alternating path p connecting u with v in such a way that p is M-positive at its v
end. Then, for an arbitrary vertex z, z ~ v only if z ~ u.

Proof. Suppose, on the contrary, that for some vertex 2 e V(G) with 2 ~ v there
exists a positive M-alternating path p' connecting 2 and u. Starting from v, let
w denote the first vertex of p which is also on p'. The prefix of p' from z to iu,
joined with the section of p from w to v then becomes a path, which cannot be
M-alternating, for the positivity of this path would contradict z ~ v. But then the
section of p from v to w, continued with the suffix of p' from w to u does form a
positive M-alternating path, which contradicts v ~ u. •

Proof, (of Theorem 6.6) By Theorem 6.1 we can assume that X contains an ac-
cesible vertex v. Indeed, if this is not the case, then X is inaccessible, so that
|X| = Co"(G,X), meaning that X is a barrier in G. We show that X can be ex-
tended in a unique way to a barrier of G*. Clearly, X* — X C Ext(G). Consider the
graph G* as the underlying graph in Lemma 6.1, and notice that for any manda-
tory external vertex u £ Ext(G), either u / v, or u and v satisfy the conditions of
Lemma 6.1 with a suitable alternating path p that starts out from v on a negative
marginal edge. In either case, Lemma 6.1 implies that u € X* iff u is present in all
maximal barriers of G* containing v.

Now let u S Ext(G)(U{c}) be in the amalgamated elementary component of
G*. It is again true that there exists an alternating path p with respect to some
perfect matching of G* connecting u and v in such a way that p is positive at its
v end. This is trivial if v is accessible from u in G, but even if v is accessible from
some other external vertex u' in G through path p', this path p' can be augmented
by one or two marginal edges to obtain a suitable path p in G* starting already
from u. If u v, then u cannot be present in any maximal barrier containing v.
On the other hand, if u ~ v, then Lemma 6.1 applies and u € X* iff u is present
in all maximal barriers containing v. •

7 Conclusion
We have proved a counterpart of Tutte's Theorem and Berge's Formula for open
graphs with perfect (maximum) internal matchings. We have also provided a com-
parison between barriers in open and closed graphs, and studied the finer structure
of maximal splitters and barriers on the basis of earlier results.

An algorithm has been given to find the maximal barriers of an open or closed
graph. This algorithm isolates a random maximal barrier in linear time, provided
that a perfect internal matching has previously been found for the graph. Maximal
splitters of open graphs have been extended to maximal barriers of their closures,
and it was proved that this extension is unique, unless the maximal splitter in hand
is already a maximal barrier of the original graph.

718 Miklós Bastha and Miklós Krész

References
[1] M. Bartha, E. Gombás, On graphs with perfect internal matchings, Acta Cy-

bernetica 12 (1995), 111-124.

[2] M. Bartha, E. Gombás, A structure theorem for maximum internal matchings
in graphs, Information Processing Letters 40 (1991), 289-294.

[3] M. Bartha, The Gallai-Edmonds algebra of graphs, Congressus Numerantium
123 (1997), 205-219.

[4] M. Bartha, M. Krész, Structuring the elementary components of graphs having
a perfect internal matching, Theoretical Computer Science 299 (2003), 179-210.

[5] M. Bartha, M. Krész, Tutte type theorems in graphs having a perfect internal
matching, Information Processing Letters 91 (2004), 277-284.

[6] M. Bartha, M. Krész, Isolating the families of soliton graphs, Pure Mathematics
and Applications 13 (2002), 49-62.

[7] D. Bauer, H. J. Broersma, A. Morgana, E. Schmeichel, Tutte sets in graphs I:
Maximal tutte sets and D-graphs, Journal of Graph Theory 55 (2007), 343-358.

[8] D. Bauer, H.J. Broersma, N. Kahl, A. Morgana, E. Schmeichel and T. Surowiec,
Tutte sets in graphs II: The complexity of finding maximum Tutte sets, Discrete
Applied Mathematics 155 (2007), 1336-1343

[9] C. Berge, Sur le couplage maximum d'un graphe, C. R. Acad, Sei. Paris Sér. I
Math. 247 (1958), 258-259.

[10] F. L. Carter, Comformational switching at the molecular level, in Molecular
Electronic Devices (F. L. Carter ed.), Marcel Dekker, Inc., New York, 1982, pp.
51-72.

[11] J. Dassow, H. Jürgensen, Soliton automata, J. Comput. System Sei. 40 (1990),
154-181.

[12] J. Edmonds, Paths, trees and flowers, Canad. J. Math. 17 (1965), 449-467.

[13] T. Gallai, Maximale Systeme unabhängiger Kanten, Magyar Tud. Akad. Mat.
Kutató Int. Közi. 9 (1964), 401-413.

[14] L. Lovász, M. D. Plummer, Matching Theory, North Holland, Amsterdam,
1986.

[15] W. T. Tutte, The factorization of linear graphs, J. London Math. Soc. 22
(1947), 107-111.

Received 10th October 2006

Acta Cybernetica 18 (2008) 719-693.

M-Solid Varieties of Languages

Pedro Baltazar*

Abstract
In th is paper , a character izat ion of the language varieties and congru-

ence varieties corresponding to M-solid pseudovarieties is presented. Taking
into account t he isomorphisms of t he Eilenberg-type correspondences, each
complete sublat t ice of pseudovarieties corresponds to a complete sublat t ice
of language varieties, as well as another one of congruence varieties. For t he
varieties of t ree language, we present t he complete sublat t ices of varieties of
languages and the complete sublat t ice of varieties of congruences isomorphic
to the complete sublat t ice of all M-solid pseudovarieties.

K e y w o r d s : t ree languages, Eilenberg-type correspondences, M-solid pseu-
dovarieties, M-solid varieties of languages

1 Introduction
Motivated by the connection between star-free languages and aperiodic monoids,

and other important similar results, Eilenberg [6] establishes an isomorphism be-
tween the lattice of all monoid pseudovarieties and the lattice of all varieties of
regular languages. At the beginning of the eighties, Therien [14] proved that these
two lattices are also isomorphic to the lattice of all varieties of congruences of the
free monoids. These connections were independently extended to tree languages
by Almeida [1] and Steinby [12]. Due to the original result achieved by Eilenberg
these kind of connections have come to be known as Eilenberg-type correspon-
dences. Some of the complete sublattices of the complete lattice CPS(R) of all
pseudovarieties of type r were described by Denecke and Pibaljommee in [4]. They
showed that for each monoid M of hypersubstitutions, the set S^(t) of all M-solid
pseudovarieties of type r is a complete sublattice of £ p s (r) . So, it is a natural
problem to find a characterization of the complete sublattices corresponding to
iS^(r), under the Eilenberg-type correspondences. This work is based on the final
remarks of Esik's in [7], where he points out a more wide framework to characterize
varieties of tree languages. Following Esik suggestions we show how monoids of
hypersubstitutions and solid pseudovarieties can be used in the characterization of
varieties of languages.

'Security and Quantum Information Group, Institute for Telecommunications, Av. Rovisco
Pais, 1049-001 Lisboa, Portugal, E-mail: pb tz®math . i s t . u t l . p t

720 Pedro Baltazar

We assume the reader is familiar with the basic notions and results of Universal
Algebra [2]. Throughout this article we fix an algebraic type r consisting of finitary
operations. For technical reasons we will consider a type of algebras without nullary
operations. Let {/* : i S 1} be a set of operational symbols of type r , were fi is
an operational symbol of arity > 1. We will denote by Algf(r) the class of all
finite algebras of type r . Let Xw = {x\,... ,xn,...} be a countable infinite set of
variables disjoint from the set of operational symbols, and Xn = {x\,... ,xn} be
the set of the first n variables. We will use X to represent any of the previous sets
of variables. The set of all n-ary terms of type r , or terms of type r over Xn, is
denoted by TT(Xn), and by TT(XU) = TT{Xn) we denote the set of all terms
of type r . For any term t 6 TT(X) we denote by hg(t) the height of the term t.
A pseudovariety V of type T is a class of finite algebras of type r closed under
formation of homomorphic images, subalgebras and finitary direct products. It is
well-known that pseudovarieties are defined by filters of equations [2], and that the
set Cps(T) of all pseudovarieties of type r forms a complete lattice. A pseudovariety
defined by equations is called an equational pseudovariety. In the sequel, we will
consider a non-trivial pseudovariety V of type r . Let CPS(V) denote the complete
lattice of all subpseudovarieties of V. Given two algebras A and B, we say that A
divides B, and we write A -< B, if A is a homomorphic image of a subalgebra of
B. By PolnA we denote the set of all n-ary polynomial operations of the algebra
A. In the next two sections we give the necessary definitions and results which will
be used to achieve the main results.

2 Eilenberg-type correspondences
The Eilenberg and Therien results were generalized by Almeida and Steinby us-

ing a more general framework that included both cases: varieties of string languages
and varieties of tree languages. They considered sets of the finitely generated V-
free algebras F„V 1 . When V is the pseudovariety of all monoids, the subsets of
FNV are string languages, and when V is the pseudovariety of all finite algebras of
type r we have the tree languages case.

Let A be an algebra and L C A any subset of A. The syntactic congruence of
L on A is the relation given by

a ~r b iff p(a) G p(b) € L,

to every unary polynomial operation p £ Pol\(A), with a,6 £ A.
The relation is the greatest congruence of A for which L is the union of

classes.
The syntactic algebra A/L of the subset L of A is the quotient algebra A /

and the homomorphism tpi, : A —> A/L is called the syntactic homomorphism of
L. We say that an algebra is syntactic if it is isomorphic to the syntactic algebra
of some subset of some algebra.

'We follow the somewhat nonstandard definition of V-free algebras from [1] which does not
require that a V-free algebra be itself in V.

M-Solid Varieties of Languages 721

An operation on subsets of an algebra A of the form L p~l L := {a £
A : p(a) £ Lj, where p £ Pol\A is an unary polynomial operation of A, and
L C A is a subset of A, will be called cancellation. Another operation on subsets is
L i—> ip~lL :— y _ 1 (L) where ip : A —> B is a homomorphism, and will be referred
to as inverse homomorphism.

Let A be an algebra of type r . A subset L C A of A is called V-recognizable if
there exists an algebra B £ V, a homomorphism (p : A —» B, and a subset K C B
such that L — ip~l(K). In this case, we say that the triple (B, ip, K) recognizes L,
or simply that L is recognized by A.

We are only interested in the V-recognizable subsets of the finitely generated V-
free algebras FnV. For any n ^ 1, let RecnV denote the set of all V-recognizable
subsets of F n V. We will refer to the elements of RecnV as V-languages. By a
field of subsets we mean a Boolean subalgebra of the power set, with the usual set
operations.

A variety of V-languages is a sequence Y = such that

L.l) y n is a field of subsets of Recn;
L.2) y n is closed under cancellation;

L.3) Y is closed under inverse homomorphisms F n V —> F m V .

The lattice of all varieties of V-languages is represented by VL(V).
We represent by ConnV the set of all congruences 6 on F n V such that F n V / 6 £

V which we will call V-congruences. Let tp : A —> B be a homomorphism and 6 a
congruence on B. Then we have the homomorphism <px<p : Ax A —>BxB defined
by (f x ip)(a,b) = ((p(a),(p(b)), for all (a, 6) £ Ax A. Because 6 is a subalgebra of
B x B, then (tp x tp)-16 is a subalgebra of A x A, and it is easy to prove that it is
a congruence on A.

A variety of V-congruence filters is a sequence T = (T n) n^i such that

C.l) r n is a filter of V-congruences on ConFnV contained in ConnV;
C.2) If (p : FmV —> F n V is a homomorphism and 8 £ Tn, then (</? x

f)-19£Tm.

To simplify the terminology, we will call a variety of V-congruence filters just
a variety of V-congruences, and will represent the lattice of all varieties of In-
congruence filters by VC(V).

Proposition 1. [1] The correspondences

(Y : C?S(V) -> VC(V) W~We = ({L C FnV : F n V / L £ W}n)n>1

and

()Q : VC(V) Cps(V) i n r = Vf{A/L £ V : L £ r n , n ^ 1}

are mutually inverse lattice isomorphisms.

722 Pedro Baltazar

Proposition 2. [1] The correspondences

()c : Cp3(V) -» VC{V) W H-> Wc = ({9 £ Con n V : FnV/9 £ W}n)n^

and
()a : VC(V) -» £ p s (K) r .-» Ta = Vf{FnV/9 : 0 £ T n , n ^ 1}

are mutually inverse lattice isomorphisms.

Where V/{K} denotes the pseudovariety generated by the class of finite algebras
K. From the above two isomorphisms we get the next result.

Theorem 1. [1] The lattices Cps(V), VC(V) and VC(V) are all complete and
isomorphic to each other.

3 Hypersubstitutions and M-solid pseudovarieties
A mapping a : { f i : i £ 1} —> TT(XW), which assigns to every n^-ary operation

symbol fi an r^-ary term a(fi), will be called a hypersubstitution of type r . If a
is a hypersubstitution, then we can think of cr as mapping each term of the form
fi(xi,... , i n J to the ni-ary term cr(fi). This means that any hypersubstitution a
induces a unique map a on the set TT(X) of all terms of type r over X, as follows:

(1) &[x] := x, for all x £ X\

(2) a[fi(ti,...,tni)] = <r(fi)(a[ti],... ,<7 [tni]), for the term /»(¿i , . . . ,tUi).

We denote by Hyp(r) the set of all hypersubstitutions of type r . We can de-
fine a composition operation oh on hypersubstitutions by a\ oh a2 '•= ° for
CTI,(72 £ Hyp(r). Considering the identity hypersubstitution a id, the set of all
hypersubstitutions form a monoid Hyp(-r) = (Hyp(r); ok, aici). In the sequel, let
M C Hyp(r) be a submonoid of hypersubstitutions.

Hypersubstitutions can be applied to an equation t « s £ Eq(r) to produce a
new equation a[t] ~ <J[S]. From an algebra A = (A, (fz)iei) OF type r and a hyper-
substitution a £ M it is possible to construct a new algebra cr[A] = (A; (o~(/i)A)ie/)
called the M- derived algebra of A by a.

It is easy to see that, if a map ip is a homomorphism <p : A —> B, then it is also
a homomorphism tp : <r[A] —> ct[B], for all a £ Hyp(r). Related to congruences,
if 9 £ ConA is a congruence on A, then 9 is also a congruence on er[A], and
a[A ¡9) = a[A)/9.

Definition 1. A pseudovariety V of algebras of type r is called M-solid if it is
closed under M-derived algebras.

Clearly, the pseudovarieties Algjij) of all finite algebras and J(r) of all trivial
algebras are, respectively, the greatest and smallest M-solid pseudovarieties of type
r . We will represent the set of all M-solid pseudovarieties of type r by S^f (r).

M-Solid Varieties of Languages 723

Theorem 2. [4] For every monoid M C Hyp(r) of hypersubstitutions the set
SpsiT) is a complete sublattice of the lattice Cps(r) of all pseudovarieties of type r .

At this point, using Eilenberg-type correspondences we just know that the com-
plete sublattice S^(V) := Sp

1
3 fl Cps(V) of all M-solid subpseudovarieties of V

corresponds to a complete sublattice of VC(V) and another complete sublattice of
VC(V). In the next section we give a characterization of this sublattices.

4 M-solid varieties of languages and congruences
We start with the definition of a special kind of hypersubstitution introduced

by Plonka in [10].

Definition 2. Let K be a class of algebras of type r . A hypersubstitution a £
Hyp(r) is called /C-proper if for all t « s £ Id(K) we have a[t] « <r[s] £ Id(K).
Let P(K) be the set of all K-proper hypersubstitutions.

We have that, for any class K of algebras, P (K) = (P(K)\Oh,ai(i) is a sub-
monoid of Hyp (r) . When K is an equational pseudovariety, P(K) is the greatest
submonoid of hypersubstitutions such that K is P{K)-solid.

The notion of semi-weak homomorphism of an algebra is introduced by Kolibiar
in [9].

Definition 3. Let A and B be algebras of type r . A mapping h : A —> B is called
a semi-weak homomorphism if there exists a hypersubstitution cr £ Hyp(r) such
that h is a homomorphism of A into <J[B]. In this case, we write h : A B. A
semi-weak homomorphism h.: A A is called a semi-weak endomorphism of A.
We say that h : A —»cr[B] is an M-semi-weak homomorphism, if a £ M.

Clearly, the extension of a hypersubstitution a is a semi-weak endomorphism
of TT(X), and also, any usual homomorphism is a semi-weak homomorphism. We
have the following fact.

Proposition 3. Let a £ P{V) be a V-proper hypersubstitution. Then
a : F n V —» F„V is a semi-weak endomorphism, for any n ^ 1.

Proof. Let TT(Xn) be the algebra of n-ary terms of type r. We have the homo-
morphism <7 : T T (X n) -> a[TT(Xn)}. The V-free algebra F n V is given by F„V ^
TT(Xn)/9v{Xn), where the congruence 6v(Xn) := {(i,s) £ TT{Xn) x TT(Xn) :
t « s £ Id(V)} is given by all the equations over Xn satisfied by V. We have
that 9v(Xn) is also a congruence on a[TT(Xn)} and that < r [T T (X n)] / 0 v (X n) =
a[TT(Xn)/dy(Xn)}. Since the equations satisfied by V are preserved by V-proper
hypersubstitutions, we have the homomorphism a : F n V —> cr[F„V], Hence,
a : F„V F n V is an P(V)-semi-weak endomorphism. •

Now we give the definition of an M-solid variety of languages.

724 Pedro Baltazar

Definition 4. Let V = 1 be a variety of V-languages. The variety V is
called an M-solid variety of V-languages if for all n,m ^ 1, and all M-semi-weak
homomorphism h : FmV —> FnV and all L £ Yn we have h~l(L) £ ym.

It is easy to see that the trivial variety of V-languages LtriV = ({0, FnV})n is
M-solid, for any M. Using the Eilenberg-type correspondences between pseudova-
rieties and varieties of languages we have the following result.

Proposition 4. Let W be an M-solid subpseudovariety of V. Then, We is an
M-solid variety of V-languages.

Proof. Let W be an M-solid subpseudovariety of V. From Proposition 1 we have
that Wl is a variety of V-languages. For n , m > 1, let h : FmV —> Fn V be an
M-semi-weak homomorphism, and L £ W^. We want to show that h~1(L) £ W^.
Since L £ then FnV/L £ W. So, L is W-recognizable, and there exists a
finite algebra A £ W, a homomorphism <p : FnV —> A, and a set K C A such
that ip~l(K) = L. We have the homomorphism h : FmV —> a[FnV] and as well
the homomorphism (p : c[Fn V] —» ct[A], for a hypersubstitution a £ M. Then,
h~l{L) = h~l(ip~l(K)) = (i poh) - 1 (X) . So, h~l{L) is recognized by (<T[A],V»°
h,K). As a consequence YmV/h~l(L) •< <r[A], Since W is M-solid, we have that
a[A] € W and then F m V / h - l (L) £ W. Hence h~l(L) £ W^. This proves that
We is an M-solid variety of V-languages. •

From the last proposition we conclude the following results.

Corollary 1. Let L £ ReCnV be a V-recognizable language and h : FmV —> FnV
an M-semi-weak homomorphism. Then h~l(L) is recognized by <7[A] for some
hypersubstitution a £ M.

Corollary 2. Let V be a variety of V-languages. If the pseudovariety ya is M-
solid then "V is an M-solid variety of V-languages.

As claimed in [12] every subdirectly irreducible algebra is a syntactic algebra.
Hence, each finite algebra of V can be represented as a subdirect product of a finite
number of syntactic algebras of some subsets, that are V-recognized by the algebra.
So, as remarked in [11], for any variety V of V-languages and any finite algebra A,
if for all n, all V-languages in TT(Xn) recognized by A are in Yn, then A £ ~Va.

Proposition 5. Let V be an equational pseudovariety. If "¥ is an M-solid variety
of V-languages, then the pseudovariety ya is M(\P{V)-solid.

Proof. Let A £ ya be any finite algebra and a £ M f | P(V) a hypersubstitution.
We will prove that 0-[A] £ "Va. From the previous remark, we have only to prove
that all V-languages recognized by <r[A] are in y . For any n ^ 1, let L £ RecnV
be a V-language recognized by <r[A]. Hence, there exists a homomorphism <p :
FnV <7[A] and a subset K C A such that <p~l(K) = L. Since a £ P(V),
then cr[A] £ V and a : FnV —> FnV is an M-semi-weak endomorphism of FnV.

M-Solid Varieties of Languages 725

Let : F^V —> A be the unique homomorphism such that tp o <7 = ip. Thus,
L = tp-\K) = (^oa)-1(K) =
= (i)-1 {K)). Since A recognizes the language L' = i j j ' 1 ^) , then F n V / L ' ^ A,
and as consequence L' G Yn. Since Y is M-solid, this implies that L = <j~l(L') €
Yn. We have proved that all V-languages recognized by <r[A] are in Y, and so
cr[A] G Ya. Hence, Ya is an Mf]P(V)-solid pseudovariety. •

The condition imposed on V, that V be an equational pseudovariety, isn't very
restrictive because in both cases, string languages and tree languages, we are dealing
with equational pseudovarieties.

The analogous definition of M-solidity for varieties of congruences is presented.

Definition 5. Let T = (rn)„^i be a variety of V-congruences. The variety T is said
to be M-solid if for all n,m ^ 1, M-semi-weak homomorphism h : FmV —» FnV
and 9 G r n , then (h x h)~l9 G Tm .

Clearly, the trivial variety of congruences CtriV = ({Vf„k})ti is M-solid.
We need these technical results to prove the next proposition.

L e m m a 1. [2] Let (p : A —> B be a homomorphism, L C B a subset and 9 G ConA
a congruence.

i) If ~£ has a finite number of classes, then there is only a finite number of
subsets that may be obtained from L by cancellation;

ii) (up x ip)~x ~ l = n L ' i s obtained from L by cancellation};

Hi) 9 = OlI^l'- L is a class of 9}.

L e m m a 2. [12] Let Y be a variety of V-languages. For any n ^ 1 and L G Yn all
the ~L-classes are in Yn.

To connect varieties of languages and varieties of congruences we have this
interesting result.

Proposition 6. Let V be a variety of V-languages. Then, Y is M-solid i f f Yc is
M-solid.

Proof. (=>) For ti, tu, ̂ 1, let h : FmV^ —> F n V be an Ai-semi-weak homomorphism
and 8 € Using Lemma 1 it follows that

~/i-1(p-1(z,)): P G Poli(FnV) L is a 0-class}
L v

is a finitary intersection. From Lemma 2 we conclude that all classes of 9 are in Yn.
Since Y is a variety of V-languages we have p~l{L) £ Yn for all p G Po/ i (F n V).
Moreover, Y is M-solid so h~l(p"l(L)) G Ym for all p G Poli(FnV) and for all
0-classes L. Hence, (h x h)~l9 G Y^, which proves that Yc is M-solid.

726 Pedro Baltazar

(<=) Suppose y is a variety of V-languages such that f ° is an M-solid variety
of V-congruences. For n, m ^ 1, let L £ fn and h : F m V —» F n V be an M-semi-
weak homomorphism. We have the homomorphism h : F m V —> a[FnV] for some
hypersubstitution a € M. It is easy to prove that (h x / i) - 1 Since,
~ l £ VZ and r c is M-solid, then (h x h)_1 ~ L £ Now, because is a filter
of congruences, we conclude that ~/i-i(z,)£ Hence, / i - 1 (L) £ = f m . So
we have proved that "V is M-solid. •

Corollary 3. A variety T of V-congruence filters is M-solid i f f r* is an M-solid
variety of V-languages.

When V is the pseudovariety of all finite algebras of type r , the ^-languages
are precisely the recognizable tree languages of type r . In this case we can prove
the next result.

Theorem 3. Let V = Algj(r) be the pseudovariety of all finite algebras of type r.
If W is any pseudovariety of type T the following conditions are equivalent:

i) W is an M-solid pseudovariety;

ii) We is an M-solid variety of tree languages;

Hi) W° is an M-solid variety of congruences.

Proof. This proof is straightforward. We only need to use the previous results and
the fact that Hyp(r) is the set of all Aig/(r)-proper hypersubstitutions. •

The next result shows how to obtain complete sublattices of the lattice of all
varieties of tree languages V £ (r) and the lattice of all varieties of congruences
VC(T). Let VCm(t) denote the set of all M-solid varieties of tree languages and by
VCM(I~) we will represent the set of all M-solid varieties of congruences.

Corollary 4. The sets VCM(T) and VCM(T) are complete sublattices of the com-
plete lattices V£(T) and VC(R), respectively, and both are isomorphic to the complete
lattice Sm(t) of all M-solid pseudovarieties of type r .

We know that any semi-weak homomorphism h : TT(Xm) —» TT(Xn) is a ho-
momorphism h : TT(Xm) —> a[TT(Xn)] for some hypersubstitution a £ Hyp(r).
Hence, there exists an endomorphism ip : TT{Xn) —> T r (X n) such that h = <p o
Using this fact, in the case of tree languages, M-solid varieties of tree languages
and M-solid varieties of congruences have an alternative and more simple charac-
terization given by hypersubstitutions.

Proposition 7. A variety "V of tree languages is M-solid i f f it is closed under
inverse hypersubstitution with respect to M, i.e. i f f for all n ^ I, and any hyper-
substitution a £ M and any L £ yn, we have a~l(L) £ yn.

A similar result holds for varieties of congruences.

M-Solid Varieties of Languages 727

Proposition 8. Let T G VC(T) be a variety of congruences. Then, T is M-solid
i f f for all n ^ l , all 6 £ r n and all a £ M, we have (a x a)~16 £ r n .

An important notion in the theory of tree language is the tree homomorphism
[13]. Semi-weak homomorphisms and the extensions of hypersubstitutions are par-
ticular cases of tree homomorphisms, and each monoid of hypersubstitutions can
define a special set of tree homomorphisms. So, the M-solid varieties of tree lan-
guages can be characterized using tree homomorphisms.

5 Examples
Now we will see two well known cases of tree languages that are M-solid, for

some monoids M C Hyp(r) of hypersubstitutions.

5.1 Nilpotent algebras
An algebra A of type T is called nilpotent, if there exists an absorbing element

do and an integer k > 1 such that tA(a\,..., a„) = ao for all terms t in n variables
with hg(t) > k and for all n-tuples of elements (a i , . . . ,an), where hg is the usual
height function on terms. The smallest k for which this holds is called the degree
of nilpotency of A. Let Nil(r) be the class of all nilpotent algebras of type r .

For each n ^ 1, let J\filn(T) consist of all finite and all cofinite tree languages
in TT(Xn). For string languages it is well-know that finite and cofinite language
axe recognizable, and that they form a variety of languages. In the case of tree
languages we have the following result.

Proposition 9. [12] The sequence J\fil{j) = (A/"i/n(r))n^i is a variety of tree
languages and Afil(R)A = NU(T).

A hypersubstitution a is called regular if for each /¿, all the variables x\,..., xni
occur in cr(fi). The set Reg(r) of all regular hypersubstitutions is a submonoid of
Hyp(r), and applying induction over a term t we prove that if a is a regular
hypersubstitution then hg(a[t]) ^ hg(t).

Using this lemma we can easily prove the next result about the pseudovariety
Nil(r).
Proposition 10. The pseudovariety Nil(r) is Reg{r)-solid.
Proof. By proposition 9 we know already that NU(T) is a pseudovariety. So, we only
have to show that it is closed under /?e5(r)-derived algebras. Let A £ Nil(r) be a
nilpotent algebra of degree k and cr £ Reg(r) a regular hypersubstitution. For any
t £ TT(XU) and by induction on the height of t it is easy to prove that iCT'A' = a[i]A.
Using this fact, for any t £ TT(XU) of hg(t) ^ k then hg(a\t]) ^ hg(t) ^ k, and we
have iCT!A' = <r[£]A = a0- Hence, <r[A] is a nilpotent algebra of degree k, and thus
o[A] G Nil{r). •

By proposition 3 we can conclude the following result.
Corollary 5. The variety of tree languages Mil(r) is Reg(r)-solid.

728 Pedro Baltazar

5.2 Definite tree languages
A string language L is called fc-definite, if a word of length greater then k is in

L iff it suffix of length k is in L. The extension to tree languages of this notion is
made using roots. For any term t, root[t) = t if t is a variable, and root(t) = / , if
t = / ¿ (t i , . . . , i n ;) , for some i e I.

The fc-root Rk{t) of a term t S TT(XW) is defined as follows:

i) Ro{t) = £, where e is a special symbol which represents an empty root and
Ri(t) = root(t)\

ii) let k^ 2, if hg(t) < k and t = / ¿ (t i , . . . , tnt) for some i e 7, then Rk{t) = t.
If hg(t) > k then Rk(t) = fi{Rk-i(ti),Rk-i(tni)).

Let k ^ 0 and L C TT(Xn). The language L is called fc-definite, if for all
t,s eTT(Xn) such that Rk{t) = Rk{s), t € L iff s e L. For each n ^ 0, we define
the relations ~fe,n in TT(Xn) as follows:

t ~fc,n s iff Rk(t) = Rk(s),

for all i, s S TT(Xn). We will simply denote t ~fc s, if Rk(t) = Rk{s).
Let T>k(r) = (£>£(T))n^i be a sequence, where is the set of all fc-definite

tree languages of TT(Xn). The sequence of all definite tree languages is V(r) =
(Pn(T))n>l, where T>n(r) = | J (T) : k > 0} is the set of all definite tree
languages of TT(Xn). Clearly, we can conclude the inclusions

V ° (t) C V \ T) C . . . C V k (r) C • • • C 2?(T) .

Thus, we have the following result.

P ropos i t ion 11. [12] For all n ^ 1 and k ^ 0 the relation is a congruence
on the algebra TT(Xn), and it has a finite number of classes.

Let r f c ,n = [~fc,n) be the principal filter generated by ~k,n on the lattice
FConTT(Xn) of all finite index congruence relations of T T (X„) .

P ropos i t ion 12. [12] For each k > 0 the sequence = {rk,n)n^i is a variety of
congruences. Moreover, r£ = D fc(r).

From this last proposition we conclude that for any k ^ 0 the sequences T>k(r)
and T>(T) are varieties of tree languages.

A hypersubstitution a is called a pre-hypersubstitution if for every i G I the term
a(fi) is not a variable. The set of all pre-hypersubstitutions P r e (r) is a submonoid
of Hyp(r). The next result shows an important behavior of pre-hypersubstitutions
related to preservations of k-roots.

M-Solid Varieties of Languages 729

Lemma 3. Let t,s £ TT(X) and a £ Pre(r). If t s then a[t] <5"[s], for all
k^O.

Proof This proof is made by induction on k. The first case k = 0 is obvious.
Let k ^ 1 and suppose it is true for k — 1. Let a £ Pre(r) and t,s £ TT(Xn),
such that t s. If t or s are variables then they must be the same variable and
clearly a[i] <r[s]. If not, we must have t = fi{t\,... ,tni) and s = fi{s\,...,sni)
for some i £ I such that t\ s\,...,tni ~jt_i sni. Hence, we have a\t] —
a(fi)(a\ti],... ,a\tni}) and CT[S] = cr(/i)(<5"[si],... ,CT[snJ). By induction hypothesis
cr[t\] a [s i] , . . . ,<5-[inJ ~fe_i <T[snJ. Because cr(fi) is not a variable, and is
a congruence we can conclude that <r[i] tr[s]. •

Proposition 13. For each k ^ 0 the sequence r^ = (PfciTl)n^1 is a pre-solid variety
of congruences.

Proof. Let fc > 0. By proposition 8, we need to prove that for every pre-hypersubsti-
tution a £ Pre(r) and 9 £ we have (a x a)~16 £ for each n ^ 1. So, it
is sufficient to show that (a x cr)~l9. Let t,s £ TT(Xn) such that t s.
By the previous lemma we have a\t\ ~k,n ^[s], and so (t ,s) £ (y x ~k,nQ
(cp x <p)~19. Hence, = (Tktn)n^i is a pre-solid variety of congruence filters. •

Now, we are able to state the next result.

Corollary 6. For any k ^ 0, the varieties of tree languages T>k(r) and T>(T) are
pre-solid varieties of tree languages.

This Corollary follows from Corollary 11.13 of [7].

6 Conclusion
The approaches of Esik [7] and Steinby [13] generalize the Eilenberg-type cor-

respondence to tree languages; they are not restricted to a fixed algebraic type. In
particular, Esik uses algebraic theories, and Steinby adds some constructions to the
usual Universal Algebra. It is easy to see that the ^-varieties and -(--varieties of Esik
correspond to solid and pre-solid varieties of languages, respectively, as presented
here. Steinby's general varieties correspond to hypersubstitutions which map the
n-ary operational symbols to primitive terms fl(x\,..., xn) (with a change in the
algebraic type). We believe that hypersubstitutions and M-solid pseudovarieties
are an adequate generalization of the aforementioned approaches and that they
are suitable for characterizing varieties of tree languages. In order to see this, one
needs to work with hypersubstitutions between different algebraic types which form
a small category. Then it is easy to generalize all the other notions presented here.
But, to go even further and generalize these results to positive and many-sorted
varieties [11], it is necessary to work within the framework of Institutions [8].

730 Pedro Baltazar

7 Acknowledgments
The author wishes to express his special gratitude to Margarita Ramalho whose

support and supervision made this work possible. Thanks also to S. Wismath and
M. Branco by reading an earlier version of the paper, and by their valuable sugges-
tions and remarks. This work was developed within the Project POCTI-ISFL-1-143
"Fundamental and Applied Algebra" of Centro de Algebra da Universidade de Lis-
boa, financed by FCT and FEDER. The author is supported by FCT and EU
FEDER PhD fellowship SFRH/BD/22698/2005.

References
[1] Almeida, J. On pseudovarieties, varieties of languages, filters of congruences,

pseudoidentities and related topics, Algebra Universalis, 27:333-350, 1990.

[2] Almeida, J. Finite Semigroups and Universal Algebra, Word Scientific, 1994.

[3] Baltazar, P. Variedades M-solidas de linguagens. Master thesis, 2005.

[4] Denecke, K. and Pibaljommee, B. M-solid pseudovarieties and galois connec-
tions, Advances in Algebra. Proceedings of the ICM satellite Conference in
Algebra and related topics, World Scientific, Hong Kong, pages 325-342, 2003.

[5] Denecke, K. and Reichel, M. Monoids of hypersubstitutions and M-solid vari-
eties, Contributions to General Algebra, Verlag Holder-Pichler-Tempsky, Wien,
9:117-126, 1995.

[6] Eilenberg, S. Automata, Languages and Machines, Vol. B Pure and Applied
Mathematics, Vol. 59, Academic Press, New York - London, 1976.

[7] Esik, Z. A variety theorem for trees and theories, Publ. Math., 54(1-2): 711-
762, 1999.

[8] Goguen, J. and Burstall, R. Institutions: Abstract model theory for specifica-
tion and programming, Journal of the ACM, 39(1): 95-146, 1992.

[9] Kolibiar, M. Weak homomorphism in some classes of algebras, Studia Sci.
Math. Hung., 19:413-420, 1984.

[10] Plonka, J. Proper and inner hypersubstitutions of varieties, Proceedings of
the International Conference Summer School on General Algebra and Ordered
Sets, Olomouc, pages 106-116, 1994.

[11] Saheli, S. Varieties of Tree Languages, PhD Dissertation, Department of Math-
ematics, University of Turku, TUCS Dissertations 64, 2005.

[12] Steinby, M. A theory of tree language varieties, in: Nivat M. & Podelski A.(ed.)
Tree automata and languages, Elsevier-Amsterdam, pages 57-81, 1992.

M-Solid Varieties of Languages 731

[13] Steinby, M. General varieties of tree languages, Theor. Comput. Sci., 205(1-2):
1-43, 1998.

[14] Therien, D. Recognizable languages and congruences, Semigroup Forum,
23:371-373, 1981.

Received 27th October 2006

Acta Cybernetica 18 (2008) 733-693.

Effect Preservation in Transaction Processing in
Rule Triggering Systems*"'"

Mira Balaban* and Steffen Jurk§

Abstract

Rules provide an expressive means for implementing da tabase behavior:
They cope with changes and their ramifications. Rules are commonly used
for integrity enforcement, i.e., for repairing database actions in a way t h a t
integrity constraints are kept. Yet, Rule Triggering Systems fall short in
enforcing effect preservation, i.e., guaranteeing tha t repairing events do not
undo each other, and in particular, do not undo the original triggering event.

A method for enforcement of effect preservation on updates in general rule
triggering systems is suggested. T h e method derives transactions from rules,
and then splits the work between compile t ime and run time. At compile
t ime, a d a t a s t ruc ture is constructed, t ha t analyzes the execution sequences
of a transaction and computes minimal conditions for effect preservation. T h e
transaction code is augmented with instructions t ha t navigate along the d a t a
s t ructure and test the computed minimal conditions.

This method produces minimal effect preserving transactions, and under
certain conditions, provides meaningful improvement over the quadrat ic over-
head of pure run t ime procedures. For transactions without loops, the run
t ime overhead is linear in the size of the transaction, and for general transac-
tions, the run t ime overhead depends linearly on the length of the execution
sequence and the number of loop repetitions. The method is currently being
implemented within a tradit ional database system.

K e y w o r d s : rule triggering systems, effect preservation, minimal conditions,
consistency, s tat ic analysis, t ransaction processing

"This work was supported in part by the Paul Ivanir Center for Robotics and Production
Management at Ben-Gurion University of the Negev. Contact: POB 653, Beer Sheva 84105,
ISRAEL, Phone: +972-8-6472222, FAX: +972-8-6477527.

tThis research was supported by the DFG, Berlin-Brandenburg Graduate School in Distributed
Information Systems (DFG grant no. GRK 316). Contact: POB 101433, 03013 Cottbus, Ger-
many, Phone: +49-355-692711, FAX: +49-355-692766

'Ben-Gurion Univerity, Beer-Sheva, Israel, E-mail: miraf lcs .bgu.ac. i l
§ Brandenburg University of Technology, Cottbus, Germany, E-mail:

s jOinformat ik . tu-cot tbus .de

734 Mira Balaban and Steffen Jurk

1 Introduction

Rules provide an expressive means for implementing database behavior: They
cope with changes and their ramifications. Rule mechanisms are used in almost
every commercial database system, using features such as CREATE TRIGGER or
CREATE RULE. Rules are commonly used for Integrity enforcement, i.e., for repairing
database actions in away that integrity constraints are kept ([37, 16, 38]). Yet, Rule
Triggering Systems (RTSs), also termed Active Databases, fall short in enforcing
effect preservation, i.e., guaranteeing that repairing events do not undo each other,
and in particular, do not undo the original triggering event.

A natural expectation in database maintenance is that a fact that was success-
fully added is retrievable, as long as it was not intentionally removed. Reliability
in question answering, and faithfulness to the intended semantics of operations,
require no contradictory operations. Such behavior is achievable if rule application
that can cause contradictory updates is avoided. Active databases do not meet this
expectation since it is possible that a rule application undoes the actions of previous
rule applications in a single repair transaction. Moreover, in a distributed active
database a user might not be aware of rules that trigger contradicting actions, since
the rules might reside in independently developed sites.

Example 1. Consider a database with a table T\ with two attributes A, B, a
table with an attribute C, and two integrity constraints: an inclusion constraint
(A C C) and an exclusion constraint (B fl C = 0)1. The inclusion constraint is
enforced by the rules:

Ri : ON insert(T\, (x,_)) : IF (x) <£ T2 THEN insert(T2, (x))
R2 : ON delete(T2, (x)) : IF (x) £ TX.A THEN delete^, (x,.))

The exclusion constraint is enforced with the rules:

R3 : ON insert(Tj, (. , a;)) : IF (1) € T2 THEN delete(T2, (1))
R4 : ON insert(T2, (x)) : IF (x) £ Tx .B THEN delete(Tj, (. , x))

An insertion update insert(Ti,(a,b)) triggers rules R\ and R3, in order to
preserve the integrity constraints. The value a is inserted into T2 (if not exists)
to preserve the inclusion constraint, which in turn causes a deletion of tuples (_, a)
from T\ in order to preserve the exclusion constraint. Analogously the value b
is removed from T2 (if exists) to preserve the exclusion constraint which causes
deletion of tuples (b, _) from T\. If the event-repair policy is that a rule is fired
immediately AFTER its event (triggering update) is executed, and the repairing
rules R\ and R3 are triggered in that ordering, the order of rule application for
this insertion event is -Rj, R4, R3, R2. A database design tool would result the
following repair update:

' these constraints are simplified versions of possibly more natural constraints like f(A) C C
and g(B) fl C = 0, where / and g Eire some functions.

Effect Preservation in Transaction Processing in Rule Triggering Systems 735

INSERT INTO Ti VALUES (a,b);

IF NOT EXISTS (SELECT * FROM T2 WHERE C=a) THEN

INSERT INTO T 2 VALUES (a);

DELETE FROM Ti WHERE B=a;

END IF;

IF EXISTS (SELECT * FROM T 2 WHERE C=b) THEN

DELETE FROM T 2 VALUES (b);

DELETE FROM Ti WHERE A=b;

END IF;

If a = b, then the repairing update might undo its own actions, since tuples inserted
to the tables might be deleted:

Rule Triggering Primitive Update Ti To
- - (a, a) 0

Ri insert(T\, (a, a)) (a, a) (a)
Ri insert(T2, (a)) 0 (a)
R3 insert(Ti,(a,a)) 0 0
R2 delete(T2,{a)) 0 0

If the rule application ordering is R$, Rj, R4, the result is that the inserted tuple
is deleted from T\, while a new tuple is still inserted to T2 as a repair for the deleted
insertion to Ti:

Rule Triggering Primitive Update Ti T2
- - (a, a) 0

R3 insert(T\, (a,a)) (a, a) 0
Ri insert(T\, (a, a)) (a, a) (a)
R4 insert(T2, (a)) 0 (a)

This example demonstrates the problem of effect preservation. A seemingly
successful insertion update ends up in a state where the insertion is not performed.
Moreover, although the insertion actually failed, its repairing updates have taken
place. The problem is caused by allowing contradictory updates, i.e., updates that
undo the expected effects of each other, within the context of a successful repairing
transaction. Rather, the insertion insert(T\,(a,a)) must fail (be rejected) since
there is no way to achieve consistency together with effect preservation.

The problem of effect preservation goes back to the early days of Planning in
Artificial Intelligence, when planners tried to cope with the problem of interacting
goals, where one action undoes something accomplished by another (e.g., Strips
[15], Noah [31]). In the field of databases, [32, 35] provide a general framework for
consistency enforcement under an effect preservation constraint. Static composition
of refactoring ([20, 19]) also needs to cope with possibly contradicting effects of
successive refactorings.

In the field of active databases the problem of effect violation occurs when a rule
fires other rules that perform updates that contradict an update of a previous rule.
Nevertheless, automated generation and static analysis of active database rules

736 Mira Balaban and Steffen Jurk

[37, 6, 12] do neither handle, nor provide a solution for that problem. Updates
triggered within the scope of a single repair can contradict each other.

In this paper we suggest a combined, compile time - run time, method for
enforcing effect preservation on updates. The method is applied in two steps:

1. Static derivation of transactions from rules: For each primitive (atomic)
update, e.g., insertion or deletion of a tuple, obtain a transaction, based on
a given rule application policy.

2. Effect Preservation Transformation: Enforce effect preservation using
"minimal" modifications.

Our method assumes that primitive (atomic) updates are associated with in-
tended effects (postconditions). At compile time, we construct a data structure that
analyzes all execution sequences of an update and computes minimal conditions
necessary for effect preservation. The update code is augmented with instructions
that navigate along the data structure and test the computed minimal conditions.
This method produces minimal effect preserving transactions, and under certain
conditions, provides meaningful improvement over the quadratic overhead of pure
run . time procedures. For transactions without loops, the run time overhead is
linear in the size of the transaction, and for general transactions, the run time
overhead depends linearly on the length of the execution sequence and the number
of loop repetitions (while for pure run time methods it is necessarily quadratic in
the length of the execution sequence).

Our method is domain independent, but in this paper we demonstrate it on
the relational domain with element insertion and deletion operations, alone. The
method is currently being implemented within a traditional database system.

Section 2 introduces a small imperative update language While that we use in
the rest of this paper, and describes the algorithm for static derivation of trans-
actions from rules. Section 3 introduces the major notions of effect preservation.
In Section 4 algorithms for effect preservation of While updates are described and
proved to enforce only minimal effect preservation, i.e., do not cause unnecessary
failures. The algorithms are introduced gradually, first for While updates without
loops, and then for general While updates. Section 5 describes related work, and
section 6 concludes the paper. Proofs are postponed to the Appendix.

2 Static Rule Repair
Rule repair in active databases is performed at run time. The database tool is
usually equipped with an event-repair policy (e.g., an AFTER policy), while the
order of firing the applicable rules, henceforth rule-ordering policy, is determined
at run time. The event-repair policy determines when an event that is applied
by a rule is repaired. For example, using a DELAYED event-repair policy in Ex-
ample 1, and SEQUENTIAL rule-ordering policy, the order of rule application for
the insert(Ti, (a, b)) insertion event is Ri, -R3, R4, R2. The rule-ordering policy is

Effect Preservation in Transaction Processing in Rule Triggering Systems 737

responsible for sequencing the set of rules that should repair for an event. For exam-
ple, using a DELAYED event-repair policy and a REVERSED SEQUENTIAL rule-
ordering policy in Example 1, the order of rule application for the insert(T\, (a, 6))
insertion event is R3, R\, R4.

If the rule-ordering policy is determined statically, the overall task of repairing
for an event can be determined statically, by associating every database event with
a transaction. The advantage is that an update transaction that is constructed at
compile time can be also optimized at compile time, thereby saving some run time
load.

Subsection 2.1 describes the small theoretical imperative update language While
[26], that is used in the rest of the paper. Subsection 2.2 introduces a compile time
algorithm for derivation of updates from rules. The rest of the paper deals with
enforcing effect preservation on statically derived updates.

2.1 The Repair Language While — An Imperative Language
of Updates (Transactions)

The While language [26] is a small theoretical imperative language that includes
the three major control structures in sequential imperative languages: sequencing,
conditionals and loops. We adapt it for database update usage by adding a fail
atomic statement that stands for rollback, and by having state variables that stand
for relations. In the experimental evaluation the language is replaced by a real
database maintenance language. Likewise, all the examples in the paper deal with
a relational database and the atomic updates insert and delete of a tuple to a
relation. However, our method applies to any atomic updates for which effects can
be provided (see subsection 3.1).

Syntax: Updates are built over a finite set of typed state variables For exam-
ple, in a relational database with relations Ri,...,Rn, the state variables are
{ i ? i , . . . , Rn}, and any assignment of concrete relations to the relation variables
results a database state. The symbols of the While language include, besides the
state variables, parameter variables, local variables, and constant symbols like nu-
merals, arithmetic operations and comparisons, boolean constants and boolean con-
nectives, and set operations (language constants). We use the letters r, s, t for state
variables, u, v, w,... for parameter or local variables, and e,f,g,... for expressions.

The primitive update statements of While are skip, fail, and well-typed assign-
ments. The skip update is a no-op update statement: Its execution does not affect
the state of the update. The fail update denotes a failure of the update: Updates
following fail are not executed. In transactional databases without choice, fail cor-
responds to the rollback operation, which undoes the failed update by restoring the
old state. Assignment updates have the form x := e, where a: is a variable and e is
an expression.

Compound updates (transactions) in the While language are formed by three
constructors: sequence, condition, and while. If P is a condition, and S, Si, S2

738 Mira Balaban and Steffen Jurk

are updates, then "Si; 52" is the sequential composition of Si and S2, "if P then
Si e l s e S2" is a P conditioned update, and "while P do S" is a P conditioned
S loop, with S as the body of the loop. The statement "if P then S" is an
abbreviation for "if P then S e l s e skip". The empty update e is the neutral
(unit) element of update sequencing. That is, for every update S, e; S = S; e = S,
where = stands for "is the same as" or "can be replaced by" (e is needed for
the definition of the terminal configurations below). A compound update S with
parameter variables ~x is sometimes denoted S(~x).

Semant ics : A state is a well-typed value assignment to all variables. A database
state is a restriction of a state to the state variables. An non-ground expression
(that includes variables) can be evaluated only with respect to a state. The value
of an expression e in a state s is denoted es. A state s that satisfies a condition P
is denoted as s f= P. Variable substitution on a state s is denoted s[a; 1—> es], which
is a state that differs from s only in the value of x which is es.

The semantics of While updates is defined operationally, using the structural
operational semantics described in [26]. This semantical approach emphasizes indi-
vidual steps of the execution, that are captured by a transition relation denoted =>
between update configurations. An update configuration (configuration for short)
is a pair (S, s) of an update S and a state s. A configuration (e, s) is called a
terminal configuration and abbreviated as s. All non-terminal configurations are
intermediate. A configuration (fail, s) is called a failing configuration. A configu-
ration (A; S, s) where A is an assignment update and S is any update (possibly the
empty update), is called an assignment configuration.

The transition relation between configurations (S, s) =>• 7, expresses the first
step in the execution of S from state s. If the execution of S from s is not com-
pleted by the transition, 7 is an intermediate configuration (S', s'), where S' is the
remaining computation to be executed from state s'. If the execution of S from s
is completed by the transition, 7 is a terminal configuration (e,s ') = s'. A non-
terminal configuration 7 is a dead-end if there is no 7 ' such that 7 => 7'. Failing
configurations are dead-end configurations. The transition relation => is defined by
the axioms and rules in Figure 1.

An execution sequence (denoted as "i, i> or seq(S, s)) of a statement S starting
in state s, is either a finite or an infinite sequence of configurations. In a finite
execution sequence, seq(S, s) = 70, • • •, 7fc, where 70 = (S, s), 7, 7 i + i (0 < i < k)
and 7^ is either a terminal or a dead-end configuration. In an infinite execution
sequence, seq(S,s) = 70,•••, where 70 = (S,s) , and 7* => 7,+i, 0 < i. A finite
sequence is successful if it ends in a terminal configuration, and failing if it ends in
a dead-end configuration. The states of the first and last (if exists) configurations
of an execution sequence i ' are denoted start (xl>) and end(i '), respectively, and the
z-th configuration (0 < i) is denoted vlv

E x t e n d e d While: While is extended with calls to external procedures that do
not affect the state of a While computation. Such external procedures can operate

Effect Preservation in Transaction Processing in Rule Triggering Systems 739

[ass] {x := e, s) s[a; i—> es]

[skip] (skip, s) s

[fail] {fail,s)

[comp] if {Si, s) (S'i,s') t h e n (5 i ; 5 2 , s) =4- (S'1-,S2,s ')

if S'i is t t h e n t h e conclusion is (Si',S2,s) (S2,s')

[ifT] (if P then Si e l s e S2,s)=> (Si, s) if s |= P

\ifF] (if P then Si e l s e S2,s) => (S2,s) if s ^ P

[while] (while P do 5, s) =¡> (if P then (5; while P do S) e l s e skip, s)

Figure 1: Axioms and rules defining the semantics of the transition relation =>

on elements of an external environment, e.g., print or draw. Formally, the extended
While includes an additional primitive update proc, where proc is a procedure that
can be applied in the environment where While is run. The semantics of proc is
like that of skip:

{proc, s) => s

The transformations introduced in Section 4 map a While update without external
calls into a While update with external calls to procedures that read and evaluate
data from a data structure built as part of the transformation.

2.2 Static Derivation of Transactions from Rules
Event-Condition-Action (EC A) rules consist of event, condition, and action (also
termed body), with the intuitive semantics that an execution of the event update
implies an execution of the action update, provided that the condition holds. For
simplicity, we embed the condition part into the action part, since an ECA rule
(E, C) —* A can be captured by the rule E —> i f C then A.

Compile time rule application requires careful management of parameter and
local variables. Prior to rule application, all such variables must be consistently
renamed by fresh variables. Then, the expression in the triggering event must unify
with the expression in the rule event, and the resulting substitution applied to the
rule body. For example, if the update under construction includes the primitive
update insert(r, x + 3), and the event in an applicable rule is insert(r, x), then the
variable x must be renamed in the rule by a new name, say y, yielding the event
insert(r,y). The two events insert(r,x + 3) and insert(r,y) should be unified,

740 Mira Balaban and Steffen Jurk

yielding the matching substitution y i—> x + 3, which should be applied to the rule
body, replacing all occurrences of y by x + 3.

Compile time rule processing builds for each primitive event a complex update,
that exhausts all necessary rule applications. It requires static event-repair pol-
icy, rule-ordering policy, and static termination policy. A termination policy is
necessary since rule triggering can be cyclic. Much research have been devoted to
termination analysis ([36, 5]). In this work we take the approach of full propagation,
that is controlled by a static termination condition.

Algorithm 1 below, performs static derivation of transactions from rules. It is
designed for the AFTER event-repair semantics, which characterizes commercial
databases. The AFTER semantics is implemented by sequencing immediately after
every occurrence of an assignment to a state variable event, the bodies of all rules
that are applicable to that event. Rule application handles variable renaming, rule
event matching and substitution application.

Algor i thm 1. [DTA - Der ive TransAct ion]
inpu t : a primitive update U, a set of rules H, a rule-ordering policy RO, and a
termination condition TC.
o u t p u t : A While program S.
m e t h o d :

1. S:=U

2. While there is an unmarked assignment E in S do:

a) Mark E.
/ / The marking is used to avoid multiple replacements of the same prim-
itive update.

b) For every rule in 7Z, consistently rename all parameter and local vari-
ables, by fresh variables.

c) Let E\ —> B\,..., Ek —> Bk be all rules whose event can be unified with
E, and are such ordered by RO. Let 4>i be the matching substitution for
E and Ei, i.e., Efa = Ei(j)i, 1 < i < k.

d) Ifk^O and -TC: Replace E in S by E; Bifa ...; Bkipk

e) Ifk^O and TC: Replace E in S by E; fail

3. Return S

The following example presents the rules from Example 1 as event-action rules
in the While language, and the update constructed by the DTA algorithm, for the
triggering event insert(T\, (x,y)), using a sequential rule-ordering policy.

Effect Preservation in Transaction Processing in Rule Triggering Systems 741

E x a m p l e 2 (Static transaction derivation with the DTA algorithm.).

Ri
R2

Rs
R4

The While program derived for the update insert(Ti, (x,y)):

insert(T\, (x, y));
i f (x) $ T2 then

insert(T2, (a:));
while aB=x(Ti) ± 0 do

delete(Tu&Tst(aB=x{Ti)));
i f (y) G T2 then

delete{T2,{y))\
while (TA=y{Ti) do

delete(T\, first(erA=y(Ti)));

Ass ignment Preprocess ing: Prior to the transaction derivation a preprocessing
of rule actions is needed. Our effect characterization methods require that every
assignment to a state variable r := e(r, xj,... ,xn) is rewritten such that the vari-
ables j • • • j ¿Cn are not assigned after the assignment is executed. The rationale
behind this requirement is that each such assignment has effects which are a set of
constraints, expressed by the variables in the assignment. If the variables x\,... ,xn
are reassigned after the assignment is executed, then the effects of the assignment
must be reassigned as well. In order to avoid this hard procedure, we rewrite the
assignment, using new variables, as follows:
The assignment r := e(r, X\ ,..., xn), is replaced by the sequence update

x-[:= X\; . . . , xn := xn\ r := 6(r, x^,..., £n);

where x\,...,x'n are new variables. The new sequence command has the same se-
mantics as the original assignment, when restricted to the original update variables.

3 Effect Preservation — Goals and Associated Ter-
minology

In this section we introduce the main concepts of effect preservation and analyze
their basic properties. We deal with three main issues: (1) Define what are effects

insert(T\,(x,y)) —> if (x) T2 then insert(T2,(x))\
delete(T2, (x)) -> while Ga=X{TI) ^ 0 do

deZeie(Ti,first(<7A=I(ri)));
insert(Ti, {x,y)) -> i f (y) G T2 then delete(T2, (?/));
insert{T2, (x)) while crB=x(T1) / 0 do

deZeie(Ti,first(<7j3=:i:(:ri)));

742 Mira Balaban and Steffen Jurk

and where do they come from; (2) Define when an update is effect preserving; (3)
Define criteria for effect preserving transformations. The section ends with the
definition of a minimal effect preserving transformation.

3.1 Characterization of Effects
The effects of a primitive update are constraints (postconditions) that characterize
the intended impact of the update:

Def in i t ion 1 (Effects of Primitive Updates). The effects of a primitive update U
is a collection of First Order Logic formulae effects(U) that always hold following
the update. That is, for every state s, if (U,s) => s', then s' f= effects(U)2.

Effects are used as a criterion for acceptance or rejection of execution sequences.
Therefore, if they are too restrictive, they lead to needless rejections, while if they
are too permissive, they lead to unwanted acceptance that possibly violates some
data integrity constraints. For example, taking {false} as the effects of an update
causes constant rejection, while taking {true} causes constant acceptance.

For the primitive skip the effects are {} since (sk ip ,s) => s. For the primitive
fail the effects can be anything since, (f a i l , s) is a dead-end configuration. For
assignments to regular variables the effects are also {} since such updates have no
impact on database states. For assignments to state variables, the effects are do-
main specific and developer provided. In the relational domain with the operations
of element insertion and deletion we assume the following effects:

• effects(r := insert(r,e)) is {e £ r} and

• effects(r := delete(r,e)) is {e ^ r}.

Clearly, different effects can be considered. For example, the effects of element
insertion and deletion can be the dynamic constraints: If {e ^ r} ({e £ r}) before
the assignment, then {e £ r} ({e ^ r}) after the assignment, respectively. Yet, these
effects are still questionable, and in the current work we do not handle dynamic
effects.

3.2 Definition of Effect Preservation
Consider the update:

insert(r,e\)\
if P then insert(r, e2) else skip\
delete(r,e 3)

Starting from any state, there are two possible execution sequences, based on
whether P holds after the first insertion. Effect preservation requires that both se-
quences preserve the {ej £ r} condition, but only one should preserve the {e2 £ r}

2For a set of formulae <J> and a state s, s J= $ holds iff for every formula <j> in s |= <f>.

Effect Preservation in Transaction Processing in Rule Triggering Systems 743

condition. Therefore, effect preservation requires distinction between execution se-
quences. That is, the definition of effect preservation should be execution sequence
sensitive. This observation leads us to the following definition:

Def ini t ion 2 (The effect preservation property of updates). An update S is Effect
Preserving if all of its execution sequences are effect preserving.

Now we need to define effect preservation for execution sequences. For that
purpose, we need first to assign to a configuration within an execution sequence,
the effects of previous assignments along the sequence, so to maintain the history
of the sequence.

Def ini t ion 3 (Effects of Configurations within Execution Sequences). Let VI' =
70,71,. . . be an execution sequence. The effects of the i-th configuration in VI',
denoted effects¿(i'), are:
effects0(\l>) = {}, and for i> 0:

For a successful (finite length k) execution sequence, the effects are those of its
last configuration: effects(i') = effectsfc(vI/). For a failing (finite) execution sequence
the effects are {false}. Note that the effects set of an assignment configuration
does not include the effects of its assignment update.

P r o p e r t y 1. For a successful execution sequence the size of effects("I') is pro-
portional to the length of i'.

E x a m p l e 3 (Effects-of-configurat ions) . The effects for the execution sequence

i ' = (r := insert(r,x)\r := delete(r,y), s) => (r := delete(r,y), s') => (e, s")

are: effects0(<&) = {}, effects^i') = {x e r}, effects2(vP) = {x € r,y £ r} =
effects(<!').

Note : Due to the rewriting preprocessing of assignments to state variables (see
Subsection 2.2), the effects of configurations indeed maintain the intended history
of effects. Consider an assignment A = r := e(r, yi,..., yn) to a state variable r .
effects(A) imposes a constraint on r in terms of the values of y\,... ,yn in the state
that follows the update execution. If the variables y\,..., yn are later on assigned,
then effects(A) should be modified to reflect this change. Since the assignment
preprocessing guarantees that these variables are not assigned along the sequence,
effects(A) can be taken as the final effect of the assignment.

The effect preservation property is concerned with maintaining the effects of
primitive updates along a sequence:

' effects^) U effects(A) i f j i is an assignment
configuration (A\ S, s,)
to a state variable
otherwise

effectsi+1(yI/) =

effects¿V)

744 Mira Balaban and Steffen Jurk

Defini t ion 4 (The Effect Preservation Property of Execution Sequences). An exe-
cution sequence = 70 ,71,. . . , where fi = (Sj,Sj) i > 0 is Effect Preserving (EP)
if it is either failing or Sj \= effects^) for all i > 0.

E x a m p l e 4 (Effect preserva t ion) .

1. Consider the execution sequence from Example 3. The sequence is effect
preserving for s = [r 1—> {3,4,5},a; H-> 3, y 1—> 4] but is not effect preserving
for s = [r 1—> {3,4,5}, x 1—> 3,y h-> 3].

Therefore, the update r := insert(r,x)\r := delete(r,y) is not effect preserv-
ing.

2. Consider the execution sequence

(r := insert(r,x)\r := insert(r,y), s) => (r := insert(r,y), s') (e, s")

and states s, s', s" where s' = s[r 1—> insert(r, a;)s] and

s" = s'[r 1—> insert(r, y)s]. The sequence is effect preserving for every state s.

Therefore, the update r := insert(r,x)\r := insert(r,y) is effect preserving.

Note that a failing execution sequence is effect preserving, and an infinite exe-
cution sequence can be effect preserving as well.

P ropos i t ion 1. An execution sequence $ = (So, so), (Si, s i) , . . . in which Sj+i |=
effects¿(SI/) for all i > 0, is effect preserving.

3.3 Criteria for Effect Preserving Transformations
The first question that we need to answer when coming to define effect preserving
transformation concerns the kind of transformations we wish to produce. One op-
tion is semantics based code transformation, e.g., the replacement of r := insert(r, e);
r := delete(r, e) by skip3. However, in this case, we need to set criteria for the de-
sired transformation. For example, Schewe and Thalheim in [32, 35], require that
all post conditions of the input update are preserved by the transformed code. But
in that case, even a simple update such as r := insert(r, e); r := delete(r, e) cannot
be replaced by skip since, for example, in the state s = [r 1—> {3,4,5}, e h-> 3], the
input update has the postcondition {e ^ 7'} which is not satisfied by skip.

Therefore, we adopt a more modest approach where non preservation of effects
causes rejection. We term it "repair by rejection". We still need to characterize
desirable repairs since otherwise, the simplest transformation can repair every non
effect preserving update by replacing it with fail. We set two criteria for good effect
preserving transformations:

3This is the approach taken in the Generalized Consistent Specialization theory of [32, 35].
This approach is discussed in Section 5.

Effect Preservation in Transaction Processing in Rule Triggering Systems 745

1. Minimize rejections inserted for enforcing effect preservation.

2. Minimize run time overhead, i.e., minimize tests overhead.

The first criterion is handled by introducing a minimal restriction relation be-
tween updates. The restriction relation reflects the desired criterion for minimizing
the enforced rejections. An effect preserving transformation is required to produce
an update which is a minimal restriction of the input update. The second criterion
is handled by replacing update effects by delta-conditions, which are minimal condi-
tions that guard against effect violation. A desired effect preserving transformation
should produce a minimal restriction using delta-conditions.

3.3.1 U p d a t e Res t r i c t ion — Minimiz ing Enforced Re jec t ions

We already noted that effect preservation should be execution sequence sensitive.
That is, it should take into consideration the different effects of different execution
sequences. Therefore, the restriction relation on updates is defined on the basis of
a restriction relation on execution sequences.

Res t r i c t ion Rela t ions on Execu t ion Sequences

We introduce three increasingly tighter relations, termed restriction, EP-restriction
and minimal-EP-restriction. The restriction relation on execution sequences relates
sequences that are either both infinite or terminate in the same state, or one is fail-
ing. The EP-restriction relation further requires that the restricting sequence is EP.
The minimal-EP-restriction relation is an EP-restriction with minimal rejections
(no needless rejections).

Def ini t ion 5 (Restriction relations between execution sequences).

1. An execution sequence is a restriction of an execution sequence Nt, denoted
< V, if

a) start(ty') = start(
b) If is infinite then i> is also infinite,
c) If i'' is successful with e n d (= s' then also i' is successful with

end{= s'.

That is, might be failing while <3/ is successful and terminates properly, or
is infinite.

2. An execution sequence VI'' is an EP-restriction of an execution sequence \I',
denoted V' <Ep if W < and i'' is EP.

3. An execution sequence is a minimal-EP-restriction of an execution se-
quence i ' , denoted W <MIN.EP i ' , if 3f/ <EP and if i> is EP then
V <BP 1'' (i.e., W = V).

746 Mira Balaban and Steffen Jurk

The relations <, <EP, <MIN-EP have proper versions, denoted <, <EP-, <mm.BP-
respectively. < $ means that i*' is failing while is successful or infinite. Also,
<3/ and W are equivalent, denoted <3>' = if <i' < and <J> < V. <i>' = <I>
means that and i ' ' are both either failing or successful or infinite, and if they
are successful they end in the same state. "I* and are EP-equivalent, denoted
f =Ep if < E P and $ <Ep That is, =Ep $ if ^ = ^ are both
effect preserving. Note that a failing execution sequence is a restriction of any other
sequence.

P ropos i t i on 2. The relations = and =EP are equivalence relations on execution
sequences with a common start state, and the <, <EP o.nd <MIN-EP relations are
partial orders with respect to =.

Proof. Immediate. •

E x a m p l e 5 (Min imal -EP- res t r i c t ion of execu t ion sequences) .

1. Consider the execution sequence i ' from Example 3. Assume: s = [r >
{3,4,5},x h-> 3,?/>—» 4]. The following execution sequence is a minimal-EP-
restriction of 'f:

(r := insert(r,x)\ r := delete(r,y); if x r then fail else skip, s)
(r : = delete(r,y)\ if x then fail else skip, s') =>
{if x 0 r then fail else skip, s") =>
(skip, s")
{*, *">

2. Consider the execution sequence

i/ = (r •= insert(r,e)\ r := delete(r,e), s) => (r := delete(r,e), s') => (e, s).

Assume: s = [r >-> {3,4,5}, e 4]. Two minimal-EP-restrictions of i/> are:

(skip, s) =>• (e, s) <min.EP V and
(fail, s) -zmin .EP

However, while (fail,s) <EP (skip,s) => (e,s),
we have (f a i l , s) ¿tmin-EP (skip,s) (e, s).

Res t r i c t ion Re la t ions on U p d a t e s

Defini t ion 6 (Restriction relations between updates).

1. An update U' is a restriction of an update U, denoted U' < U, if for all states
s, seq(U',s) < seq(U,s).

2. An update U' is an EP-rest.riction of an update U, denoted U' <EP U, if for
all states s, seq(U',s) <EP seq(U,s).

Effect Preservation in Transaction Processing in Rule Triggering Systems 747

3. An update U' is a minimal-EP-restriction of an update U, denoted
U' <min.EP U, if for all states s, seq(U',s) <min.EP seq(U,s).

In analogy to the restriction relations of execution sequences, the update re-
striction relations also induce proper versions and equivalence relations. U' < U
means that U' has failures which are successful in U. Updates U and U' are seman-
tically equivalent (or just equivalent, for short), denoted U' = U, if for all states
s, seq(U',s) = seq(U,s). Update U and U' are termination equivalent, denoted
U' =t U, if for all states s, the successful sequences are equivalent. That is, there
might be states for which one update fails while the other loops.

P ropos i t ion 3. The semantical equivalence is an equivalence relation on the set
of updates, and the update relation restriction <, <EP and <min.EP are partial
orders on the set of updates, partitioned by the semantical equivalence relation.

E x a m p l e 6 (Min imal -EP-res t r i c t ion of upda te s) .
Consider the update S = r := inserter, e); r := delete(r,e). Since for the state
s = [r H {3,4,5}, e h-> 3] seq(skip,s) jtmin.EP seq(S,s), we have skip min.EP S.

P r o p e r t i e s of t h e u p d a t e res t r ic t ion relations:

1. For every update U, fail < U and fail <EP U. That is, the set of updates
has a single least element with respect to the relations < and <EP-

2. U' <Ep U, if U' < U, and U' is EP.

3. The restriction relations on updates are increasingly tighter. That is: If
U' <Ep U then also U' < U. If U' <min.EP U then also U' <Ep U.

4. If U' <min.EP u and U is EP, then U <EP U' (i.e., U' = U). However, the
converse is not true since it is possible that all execution sequences of U' are
minimal-EP restrictions of the corresponding execution sequences of U, while
still U is not effect preserving (some sequences of U are not EP).

The restriction relations between updates are used for characterizing the desir-
able update transformations as minimal effect preserving:

Defini t ion 7. An update transformation 0 is minimal effect preserving if for every
Update U, Q{U) <min-EP U.

3.3.2 De l t a Condi t ions — Minimiz ing R u n T i m e Overhead

Effect preservation can be obtained by inserting a test for past effects following every
assignment in the sequence. However, the tests for past effects are costly, since the
size of the effects of a configuration effects¿(VI') in a sequence VI' is proportional to
i. Therefore, the tests overhead in the worst case.is O(length^)2), assuming that
testing the effects of primitive updates takes constant time.

748 Mira Balaban and Steffen Jurk

The tests overhead can be improved by replacing the tests of past effects by
delta-conditions, which are minimal formulae that serve as guards against effect vi-
olation. Our experience shows that delta-conditions tend to be small and indepen-
dent of the length of the execution sequence. Therefore, based on this experience,
their test overhead for the whole sequence is linear in the length of the execution
sequence.

Delta-conditions extract the possible interaction between aggregated past effects
and a forthcoming assignment. Consider, for example, the execution sequence
from Example 3, where s = [r H {3,4,5}, x i-> 3, y i—» 4]. The first item in Example
5 presents a minimal-EP-restriction for *]/. Static analysis of the effects of VI' reveals
that there is a single delta-condition x ^ y to be tested prior to the application of
the second assignment in Therefore, a more efficient minimal-EP-restriction of
^ is:

(r := insert(r,x\, if x ^ y then r := delete(r,y) else fail, s) =>
(if x ^ y then r :— delete(r,y) else fail, s') =>
(r := delete(r,y), s') =>

First we define delta-conditions in general, and then specialize to the simple
relational domain with element insertion and deletion alone.

Def ini t ion 8 (Delta-Conditions of Assignments). A delta-condition of an assign-
ment update A with respect to a set of formulae P is a minimal collection of First
Order Logic formulae- 5(A, P) that guarantees that A does not violate P. That is,
for every state s, such that s j= P and s |= 5(A, P), if (A, s) => s', then s' |= P.

A delta-condition can be viewed, alternatively, as a first order formula, by taking
the conjunction of the formulae in the set. The empty set corresponds to the formula
true. Henceforth, the exact view of delta-conditions can be understood from the
context: A delta-condition in a test is treated as a formula while a delta-condition
in a set operation is treated as a set.
C o m p u t a t i o n of Del ta -Condi t ions : 5(A,P) is not necessarily unique. The
worst (useless) delta-condition for every assignment A and a formula P is {false}.
If A is x := e then {Px/e} is another example of a useless delta-condition. The
best delta-condition is the empty set, which indicates that the update A does not
interfere with P.

Delta-conditions can be computed in a domain specific manner, by considering
the assignments and their effects. For the relational domain with element insertions
and deletions, and effects formulae, of the form {e £ r} and {e £ r}, 5(A,P) is
computed by the following rules:

1. If A — r := delete(r,ei) and P includes e2 £ r, then 5(A,P) includes the
formula ei

2. If A = ?• := insert(r,ei) and P includes e2 0 r, then 6(A,P) includes the
formula e\ ^ e2.

Effect Preservation in Transaction Processing in Rule Triggering Systems 749

Note that if the assigned state variable in A does not occur in P, then <5(̂ 4, P) is {}.
The delta-conditions computed for the examples below are based on these rules.

Defini t ion 9. [Del ta-condi t ions of Conf igura t ions wi th in Execu t ion Se-
quences]

Let = 70,71, ••• be an execution sequence. The delta-conditions of an assign-
ment configuration is the delta-conditions between its effects and the assignment
updates. For non assignment configuration the delta-condition is empty. Fori > 0:

S(A, effects^)) if ji is an assignment
configuration (A\ S, s,)
to a state variable

{} otherwise

E x a m p l e 7 (Del ta-condi t ions-of-configurat ions) . Consider the execution se-
quence VI' from Example 3. While the effects of its configurations are:
effects^) = {}, effects^i) = { i £ r}, effects^') = r},
the delta-conditions of its configurations are meaningfully smaller:
s0m = {},*! m = {x ± y } , = {>.

Size of de l ta -Condi t ions of a Conf igura t ion in t h e re la t ional Doma in wi th
E lemen t inser t ion and Delet ion: Consider an assignment configuration j , =
{A;S,Si) in an execution sequence 5' = 70,71, The size of ¿^ i ') depends on
the number of opposite assignments in 70,71, . . . , j i - i - If A = r := op(r, e,) where
op = insert (delete), then the size of depends on the number of deletions
(insertions) to r, respectively. In the worst case, if all configurations before 7* are
opposite operations on r: r : —inverse-op(r, ej), then ¿¿(vP) = {ej ^ e, \ 0 < j < ¿},
which is proportional to the length of the execution sequence. Nevertheless, as al-
ready commented above, our experience is that multiple contradictory assignments
to the same relation in a single execution sequence are rare. Therefore, based on
this experience, we assume that the size of delta-conditions is small (bounded), and
their tests take constant time.

4 Algorithms for Enforcing Effect Preservation on
Updates

In this section we introduce a minimal effect preserving transformation for While
updates. That is, an input update S is transformed into an update S' such that
5 <min.EP S'. The transformation combines compile time analysis with run time
evaluation of delta-conditions. This approach was selected since we already know
that:

i

750 Mira Balaban and Steffen Jurk

• Effect preservation requires run time information, as it is execution sequence
sensitive. Otherwise, the minimize rejections criterion is not met.

• Naive run time effect preservation has a worst case overhead of 0(size(S)2)
for an update S (assuming that testing the effects of primitive updates takes
constant time), since at every modification all past effects must be checked.
The delta-conditions optimization does not apply since their computation
depends on the full effects of configurations in the actual execution sequence.

Our method includes three steps:

1. Construct a computation tree (graph) that spans all execution sequences of
the update.

2. Annotate the computation tree (graph) with delta-conditions.

3. Augment the update with instructions that navigate along the computa-
tion tree (graph) and test the computed delta-conditions. The output is
an extended-While update: A While update augmented with external calls.

The transformation is introduced gradually: First, for a restricted subset of While
without loops, and then it is extended to any While update.

4.1 Minimal Effect Preservation for While updates without
Loops

The effect preserving transformation EP\ applies two algorithms: build-CT for
computation tree construction, and reviseUpdatei for code transformation. build-CT
constructs a tree, associates it with an iterator (a pointer), and returns a static en-
coding of the resulting iterator. reviseUpdatei interleaves within the input code
tree navigation (using the iterator) and tests for delta-conditions that are read from
the tree. The EP\ algorithm returns code in the extended While - extended with
calls to these external procedures,

A lgor i thm 2. [EP\ — Min ima l Ef fec t -Prese rva t ion for While w i t h o u t loops]

i npu t : A While update S without loops.
o u t p u t : A pair: (computation tree for S, minimal-EP restriction of S).
m e t h o d :

EP1(S)= T := build-CT(S)\ S' := reviseUpdatei(S);
r e t u r n (T, S')

4.1.1 C o m p u t a t i o n Tree Cons t ruc t ion

The computation tree is a syntax tree whose nodes are associated with delta-
conditions. Paths in the tree correspond to execution sequences of the update,

Effect Preservation in Transaction Processing in Rule Triggering Systems 751

starting from a given state. Nodes correspond to configurations, and are associ-
ated with their delta-conditions (note that delta-conditions of configurations are
independent from their states).

E x a m p l e 8 (A computation tree of an update). The update

S("A", "B") = if P then Car := insert(Car, "A");
if Q then Car: = insert(Car,aW)

has the following computation tree:

if p o n

insert | 2 | | 3] skip

1 1
if Q [3 if Q cm

X \
insert | 6 | skip | 7 | insert

> / \
S skip d]

For this update, the tree captures the four possible execution sequences. Each
sequence corresponds to a path of the tree. The effects of the paths are (from left
to right): {"A" € Car, "B" € Car), {"A" € Car}, {"B" e Car}, {}.

The tree construction consists of the actual tree construction, annotation of
the tree nodes with effects and delta-conditions, and finally, removal of the ef-
fects annotation. The effects annotation is necessary only for the delta-conditions
computation. This is important since effects grow linearly with the length of the
execution sequence (path in the tree), while delta-conditions tend to be small and
independent of path length.

The algorithm uses a node constructor n = Node(S) that returns a node n
labeled by S (denoted label(n)), and methods addLeft(n,m) (addRight(n,m))
that add a left (right) node m to n. The left (right) branch of n are retrieved by
getLeft(n) (getRight(n)), respectively, and the conjunction of its delta-conditions
is retrieved by getDelta(n). The algorithm returns an iterator to the tree. The
iterator function node() returns the currently pointed node, and the functions
rightQ, leftQ advance the iterator to the right or left child node of the current
node, respectively (if the current node is a leaf node they do nothing). The iterator
is necessary for interleaving tree navigation in the transformed update.

A lgor i thm 3. [buildjCT — Build a c o m p u t a t i o n t r ee for While w i t h o u t
loops]
i n p u t : A While statement S without loops.
o u t p u t : An iterator for a computation tree for S, initialized to the root node.
m e t h o d : build.CT(S) = iterator(annotateT(CT(S)),

where CT and annotateT are the following procedures:

752 Mira Balaban and Steffen Jurk

I. CT(S) - the actual tree construction. CT is defined inductively on the structure
of While statements, following the semantics of the transition relation =>. There-
fore, the sequence operator ; is taken as left associative. That is, in S\; S2, Si can
be either primitive or an if statement, since it cannot include the sequence operator.

1. For a primitive update U, CT(U) — Node(U).

2. CT(Si; S2) = root, where root = C r (S i) .
For all leaves I of root, such that label(l) ^ fail do: addLeft(l,CT(S2)) •

3. CT(i f P then Si e l s e S2) = root,
where root = Node(ii P then Si e l se S2),
addLeft(root,CT(Si)) and addRight(root,CT(S2)).

II. a n n o t a t e T (T) - the annotation procedure. It annotates a computation tree T
built by CT with effects and with delta-conditions with respect to these effects. The
effects annotation is only intermediate, and is removed once all the delta conditions
are computed.
annotateT(T) = remove-ef fects(annotateTJielper(T,{})), where,

annotateT-helper (T, e f f) =
effects(root(T)) = e f f ,

label(root(T)),eff) if label(root(T)) is a state variable

annotateT-helper (getLe ft(T), e f f)
annotateT-helper (getRight(T), e f f)

4.1.2 C o d e Trans fo rma t ion

The transformation interleaves within the update code commands for navigating the
computation tree and for testing delta-conditions. Tree navigation is done using
the iterator operations node(), leftQ, rightQ. The statically computed delta-
conditions are read from the tree and checked at run time. The transformation is
inductively defined on the structure of While statements. A syntactic piece of code
is denoted [. .] , and code concatenation is expressed by [. .] • [. .] . Evaluable
constructs within the syntactic brackets are understood from context.

A lgo r i t hm 4. [reviseUpdate 1 — Code t r a n s f o r m a t i o n for While w i t h o u t
loops]
i n p u t : A While update S without loops.
o u t p u t : An extended While update which is a minimal-EP restriction of S, when
combined with the computation tree of S .
m e t h o d :

— < assignment
[{} otherwise

e f f U effects(label(root(T))) if label(root(T)) is a state variable
assignment

e f f otherwise

Effect Preservation in Transaction Processing in Rule Triggering Systems 753

1. S is a primitive update:

a) S is an assignment to a state variable:
Replace S by [if getDelta(node()) then S;left() else fail];

b) Otherwise, S is a regular assignment or skip or fail:
Replace S by: [S\left()J

2. S = [Si;S2]•' Replace S by reviseUpdate\(S\) • reviseUpdate\(S\)

3. S = [if P then Si else S2]: Replace S by
[if P then left()\] • reviseUpdatei(Si)-

[else right();] • reviseUpdate\(S2)

E x a m p l e 9. (The EP\ T rans fo rma t ion of a non effect p reserv ing u p d a t e
into an effect p reserv ing one.) Consider the following artifical, but compre-
hensive, update S(x,y, z), where P is and arbitrary condition:

S(x,y,z) =
1 r := insert(r,x);
2 i f P then r := insert(r,y)~,
3 r := delete(r,z)

Clearly, r := delete(r,z) might violate the effects of both insertions, i n s e r t (r , x)
and i n s e r t (r,y), depending on P and the values of x, y, z. The effects and
delta-conditions of nodes are as follows:

node effects delta-condition
• 1 {} {}
2 {x € r} {}
3 {x G ?-} {}
4 {x G r} {}
5 {x G r,y G r} {x^z,y^z}
6 {x G r} { x ^ z j

Recall that the effects of a node do not include the effects of the node itself. The
delta-conditions of nodes 1, 2, 3 and 4 are empty since there is no previous update
whose effects could be violated. The delta-conditions of nodes 5 and 6 are inequal-
ities of the inserted and deleted elements. Applying Algorithm 4 to S returns the
following update where the lines are labeled according the original code:
S'(x,y,z) =
1 if getDelta(node()) then r := insert(r,x)\left() e l s e fail;
2a if P then
2b leftQ;

insert m
I

ifP LU
/ S

/
insert IT]

\
m skip
1

delete |_5j 1 6 I delete

754 Mira Balaban and Steffen Jurk

2c i f getDelta(node()) then r := insert(r,y)\leftQ e l s e fail;
2d e l s e
2e rightQ; skip; leftQ;
3 if getDelta(nodeQ) then r := delete(r, z)\leftQ e l s e fail

Where the external calls getDelta(node()), leftQ and rightQ refer to the compu-
tation tree build-CT(S).

Algorithm 4 can be further statically optimized by removing redundant tests of
empty delta-conditions. For this purpose, the reviseUpdatei procedure should
accept also the' computation tree as a parameter, and use a tree service
nodesr(occur(i,U),S) that maps the i-th occurrence of a primitive update U in S
to the set of tree nodes that correspond to configurations of this occurrence of U.
In Example 9, node St (occur (l , r := insert(r,x)),S) = {1}, and
nodesx(occur(l,r := insert(r, z)), S) = {5,6}. Such an optimization simplfies the
output update and saves redundant run time tests of delta-conditions. The op-
timization is obtained by revising the primitive update entry in Algorithm 4, as
follows:

If S is the i-th occurrence of a primitive update:

1. S is an assignment to a state variable, and for some n G nodesr(i, S), 5(n) ^
0:
Replace S by [if getDelta(node()) then S;left() else fail]-,

2. Otherwise:
Replace S by: [S; leftQ]

4.2 Minimal Effect Preservation for While updates with
Loops

The presence of loops introduces difficulties in detecting past effects since the actual
assignments being applied are not made explicit by the syntactic structure, but are
determined at run time by loop repetitions. Therefore, we need to strengthen the
complie time created structure with information that can capture the dynamics
of loops, and extend the update so that it can track the actually visited loops.
The nodes of the computation tree, which is extended into a computation graph,
are annotated with additional delta-conditions with respect to all possibly visited
nodes, and the code transformation prepares structures for storing and testing the
values of variables at run time.

As before, the effect preserving transformation EP 2 applies two algorithms:
buildJCG for computation graph construction, and reviseUpdate2 for code trans-
formation. The EP2 algorithm returns code in While, extended with external calls
for navigating the computation graph, testing the delta-conditions, and recording
values of variables in loops.

Effect Preservation in Transaction Processing in Rule Triggering Systems 755

Algor i thm 5. [EP2 - Min ima l Ef fec t -Prese rva t ion for While]
i n p u t : A While statement S.
o u t p u t : A pair: (computation graph for S, minimal-EP restriction of S).
m e t h o d :

EP2{S) = G := build.CG(S)\ S' := reviseUpdate2{S,G)\
r e t u r n (G, S')

4.2.1 C o m p u t a t i o n G r a p h Cons t ruc t i on

As in Algorithm 3, the graph construction consists of the actual graph construc-
tion, annotation of the graph nodes with delta-conditions, and finally, removal of
redundant annotation that is necessary only for the delta-condition computation.

Algor i thm 6. [buildJJG - Bui ld a compu ta t i on g r a p h for While]
i n p u t : A While statement S.
o u t p u t : An iterator for a computation graph for S, initialized to the root node.
m e t h o d : buildJ3G(S) — iterator(annotateG(CG(S))),

where CG and annotateG are the following procedures:

I. CG(S) - the actual graph construction. CG extends the inductive tree con-
struction of procedure CT with a fourth entry for a while update:

4. CG(while P do S) = root, where root = Node(while P do S),
addLeft(root,CG(ii P then S e i s e skip)).
For all leaves I of left(left(root)), such that label(l) / fail do: addLeft(l,root)

The while entry follows the while semantics:

(while P do S,s) => (if P then (S; while P do S) e l s e skip,s)

Loop repetitions in a while statement are captured by graph cycles. Note that the
graphs are finite and have leaf nodes - the leaf in a while statement graph is the
right child node of the added i f - t h e n - e l s e statement. Therefore, the construction
algorithm is well-defined.

II. a n n o t a t e G (G) - the annotation procedure. It annotates a computation graph
G built by CG with delta-conditions with respect to its effects. During the annota-
tion phase each node n is associated, in addition to its effects and delta-conditions,
with:

1. possible(n) - All assignment (to state variable) nodes on cycles through n.

2. 5Possible(n) - Delta-conditions with respect to the effects of the assignments
in these nodes. For each node m in possible(n), a delta-condition between
label(n) and effects(label(m)) is computed. SPossible(n) is a set of all pairs
(m,5m) where m £ possible(n) and Sm = 5(label(n), effects(label(m))).

À

756 Mira Balaban and Steffen Jurk

Like the effects annotation, the possible(n) annotation, which grows linearly with
the length of the execution sequence (path in the graph), is only intermediate, and
is removed when the annotation is completed. The only annotations left in the
final graph are the S(n) and 5Possible(n) annotations, which tend to be small and
independent of path length.

The set possible(n), for a node n, can be computed using any cycle detection
algorithm. However, it is not sufficient to consider only simple cycles since cycles
through nested loops are not simple (the while node in the cycle must be visited
several times). Below we provide separate annotation procedures for the possible
and 6Possible sets. The effects and the delta-conditions annotations are essentially
the ones from the tree construction version (Algorithm 3).

annotateG(G) =
remove(annotate-8Possible(annotatejpossible(

annotate-ef fectsS(G)))) .

where,

1. annotate-ef feet s-8(G): Same as annotateT from the tree construction algo-
rithm. The only difference is the escape from looping. For that purpose, the
recursive application of annotate-helper on getLeft(G) should be preceded by
a test that the child node was not previously visited. For example, test that
effects(getLeft(G)) is not defined already.

2. Set for all nodes n of the computation graph: possible(n) = 0.
annotatejpossible(G) =

a) Mark root(G) as visited.

b) For n = getLeft(root(G)) or getRight(root(G)):

• If n is marked as visited:
If possible(n) = possible(root(G)): S top .
else possible(n) = possible(n) U {root(G)}

• possible(n) = possible(n) Upossible(root(G))

c) annotate-possible(getLeft(root(G)))
annotate jpossible(getRight(root(G)))

3. annotates Possible =
For every node n in G, which is an assignment to a state variable node:

For every node m £ possible(n), which is an assignment to a state variable
node:
Add to 5Possible(n): (m, 5(label(n), effects(label(m)))).

The remove procedure removes the effects and the possible annotations from
the graph.

Effect Preservation in Transaction Processing in Rule Triggering Systems 757

Example 10 (Annotated computation graph with loops.). A While statement and
its computation graph.

S{x,y,z) =
1 X\ := x\
2 r := insert(r,Xi);
3 while y > 0 do
4 while z > 0 do
5 y\ := y;
6 zi := z;
7 r := delete(r,j/i + zi);
8 z := z — 1;
9 2/2 := y\
10 z2 := z;
1 1 r := insert(r,i/2 + 22);
12 y:=y- 1;
13 y3 := y;
14 z3 := z;
15 r := insert(r,y3 + z3);

The graph annotations for the assignment to a state variable nodes.

while m
I

if »0 |T]
/ \

yl:=y|T| Qo] skip
I t

zl:=z GH [711 y2:"r
- I

delete (TJ] [HO z2m
I I

7.:-/.-lfn1 fisl insert
1' •

Hi] y:=y-l
I

node effects delta-condition possible 6Possible
2 {} {} {} {}
15 {xi € r} {zi ^ yi + Zi} {18} {(18, y!+zi ¿IJ2 + Z2)}
18 {x-i € r) {} {15} {(15, yi +Z! ^ y 2 + Z2)}
14 {zi e r} {} {15} {(15, yi + zi ± 1/3 + z3)}

•

4.2.2 C o d e Trans fo rma t ion

The full transformation for While updates extends the previous one for While up-
dates without loops. As before, it interleaves within the update code commands for
navigation of the computation graph (using the iterator functions node(), rightQ,
leftQ) and run time testing of effect preservation (using getDelta(node()) and a
procedure test.8Possible(node())). In addition, the transformation adds manipula-
tion of run time value recording, using a procedure
updateValues(node(), (x\,..., xm)), that records in the given node the current val-
ues of the variables x\,..., xm .

The updateValues procedure handles the run time recording of variable values
within repeated loop rounds. For that purpose, a node n in the graph that rep-
resents an assignment r := e(r,x 1,..., xm) to a state variable r (e.g., e = insert
or delete), is associated at run time with a collection values(n) of tuples of values
of x-i,... ,xm used in the expression e. Whenever the assignment is executed, the

758 Mira Balaban and Steffen Jurk

procedure updateValues(n, x\,..., xm) is applied, and adds the current values of
the variables xi,... ,xm to the collection.

The testSPossible procedure applies a run time test for the SPossible condi-
tions that annotate the node n (the delta conditions are a compile time product).
Recall that

6Possible(n) = {{m, Sm) | ¿m = 5(label(n),effects(label(m))),
m is an assignment to a state variable node,
residing on a cycle through n}.

For each pair (m, 6m) in SPossible(n), testSPossible(n) applies the associated
delta-condition Sm, when instantiated by values(m). This way the delta-conditions
between the assignment of n and the effects of all previous executions of the as-
signment in m are tested. Assume that values{m) records the values of variables
X\,..., xm.

test-5Possible(n) =
For every (m,Sm) € 5Possible(n) such that 6m ^ {}:

For every entry i>i,... ,vm in values(m):
Substitute in Sm: x\/v\,... , x m / t ; m , and apply 5m.

test.5Possible(n) = true if all tests are true and false otherwise.

The reviseUpdate2 algorithm extends the previous reviseUpdate\ by modifying
the assignment to state variable transformation and adding a fourth transformation
for a while statement. We list only these extensions:

Algor i thm 7. [reviseUpdate2 — Code t r a n s f o r m a t i o n for While]
i npu t : A While update S.
o u t p u t : An extended While update which is a minimal-EP restriction of S, when
combined with the computation graph of S .
m e t h o d :

l.a. S = [r := e (r , x \ , . . . , xm)), an assignment to a state variable r,
where expression e is over variables xi,..., xm:
Replace S by
[if getDelta(node()) and test.SPossible(node())

then updateValues(node(), (x\,... ,xm)); S; leftQ
else fail];

4. S —[while P do S']: Replace S by:
[while P do { left();left();J • reviseUpdate2(S')- [}; right()]

Brackets { and } serve to enclose a block of statements. The double l e f t O ; l e f t ()
for loops is required to jump over the added i f - t h e n - e l s e node. •

E x a m p l e 11. (The EP 2 T rans fo rmat ion of a non effect p rese rv ing u p d a t e
into an effect p reserv ing one.) For the update S in Example 10, algorithm 5
returns the following update where lines are labelled accodring the orginal line of
code:

Effect Preservation in Transaction Processing in Rule Triggering Systems 759

1 x\ := x;
2a if getDelta(node()) and test-5Possible(nod.e()) then
2b updateValues(node(),(xi));
2c r := insertfr, x\); left()
2d else fail ;
3a while y > 0 do
3b left(); leftQ
4a while z > 0 do
4b leftQ;
5 ?/i := y; leftQ;
6 Zi := z; leftQ;
la if getDelta(node()) and testSPossible(node()) then
7b updateValues(nodeQ,(yi,zi));
7c r := delete(r, y\ Z\);leftQ
7d else fail;
8 z:=z- 1; leftQ;
4c right Q;
9 j/2 := y; leftQ;
10 z2 := z; leftQ;
11a if getDelta(node()) and test.5Possible(node()) then
lib updateValues(nodeQ,(y2, z2));
11c r := insert(r, y2 + z2); leftQ
lid else fail;
12 y := y - 1; leftQ;
3c rightQ;
13 2/3 := y; leftQ;
14 z3 := z; leftQ;
15a if getDelta(node{)) and test-5Possible(node()) then
15b updateValues(nodeQ,{y3, z3));
15c r := insert(r, 2/3 + Z3); leftQ
15d else fail •

4.3 Correctness and Complexity of the Update Transforma-
tions

4.3.1 Enforc ing Effect P re se rva t ion on Execu t ion Sequences

In this subsection we concentrate on effect preservation in the semantic domain of
While programs, i.e., the set of all execution sequences over a given set of variables.
This "pre-processing" study is essential since effect preservation properties of While
updates are defined in terms of effect preservation of their execution sequences,
and correctness of While transformations is proved by refering to their impact on
their execution sequences. We introduce an execution sequence transformation that
enforces minimal effect preservation. The transformation is further optimized by
using delta-conditions. These transformations are used later on to prove the effect

760 Mira Balaban and Steffen Jurk

preservation properties of the update transformations.

T h e Condi t iona l Ass ignment T rans fo rma t ion

The following transform maps an execution sequence to an execution sequence
denoted CA(i ') , which is a minimal effect preserving restriction of

Def in i t ion 10. [Condit ional ass ignment t r ans fo rma t ion]
Let VI' = (SQ, SQ), (So, so), ..., be an execution sequence. CA($>) is the execution
sequence resulting from the replacement of every assignment to a state variable
configuration (A;S,Si) in >1' by the configuration sequence 71,72,73, where:
71 = (A; if -leffects^) then fail else skip;S, s,),
72 = (if -1 effects^) then fail else skip;S, Sj+i),

= i (faii> si+1) ifsi+i)j= effects^)
\ (skip;V, Sj+i) otherwise

If the resulting sequence includes a failing configuration cut the sequence after the
first failing configuration.

E x a m p l e 12 (The CA Trans fo rmat ion) . Consider the execution sequence from
Example 3

(r := insert(r,x);r := delete(r,y), s) => (r := delete(r,y), s') =>• (e, s")

and states s,s',s" where s' = s[r 1—> insert(r,x)s] and s" = s'[r i-> delete(r,y)s'\.
The effects of the configurations in the sequence are effects0(sP) = {}, effects {(i') =
{x € r} and effects2{}&) = {x €r,y ^ r}.

1. Assume: s = [r t-> {3,4,5}, 2 h 3 , i / h 4]. Then, CA(<I>) is4

(r := insert(r, x); if true then fail else skip-, r := delete(r,y), s) =>
(if true then fail else skip-, r := delete(r,y), s')
(skip-, r := delete(r,y), s') =4>
(r := delete(r, y); if x £ r then fail else skip, s') =>
(if x $ r then fail else skip, s")
(skip, s") =>
(e, 5")

2. Assume: s = [r 1-» {3,4,5}, x 3, y 3]. Then, CA(ty) is

(r := insert(r,x)\ if true then fail else skip; r := delete(r,y), s) =>
(if true then fail else skip; r := delete(r,y), s') =>
(skip; r := delete(r,y), s') =>•
(r := delete(r,y); if x $ r then fail else skip, s') =>•
(if x $ r then fail else skip, s") =>
(fail, s")

4 A n empty effects set is the formula true.

Effect Preservation in Transaction Processing in Rule Triggering Systems 761

That is, for the state s = [r h-> {3,4,5},a; h 3,y h 4], in which <]> is effect
preserving (see Example 4), CA(i') is also effect preserving, successful and ends in
the same state, while for the state s = [r i-» {3,4,5},x i—» 3 ,y >-* 3], in which i ' is
not effect preserving, CA(fy) is failing. In any case, for both states, CA(<I') <EP

The following claim shows that the CA transformation does not needlessly re-
strict execution sequences that are already effect preserving:

Claim 1. [Correctness and Minimal i ty of t h e CA t r ans fo rmat ion]
For every execution sequence VP, CA(*L') <min.EP

Therefore, we conclude that the CA transformation does not needlessly restrict
execution sequences that are already effect preserving. Such transformations are
termed minimal effect preserving transformations.

Conclusion 1. The CA transformation is a minimal effect preserving transfor-
mation. That is, CA(^) <EP lI;, and if i ' is already effect preserving, then
CA(S') = 1/.

T h e De l t a -Cond i t ions Based Trans fo rma t ion

Delta-conditions were introduced as minimal conditions for guaranteeing that the
effects of an intermediate configuration in an execution sequence are preserved by
its successor configuration. Therefore, the CA transformation can be revised into
a delta-conditions based transformation CAs that replaces tests of full effects by
tests of delta-conditions. Of course, the revised transformation CAg must preserve
the properties of the former CA transformation.

Defini t ion 11. [Delta-condit ions based t r ans fo rmat ion]
Let lI' = (So, so), • • •, (Sk, s/c) be an execution sequence. CAs(\is the execution
sequence resulting from the replacement of every assignment to a state variable
configuration (A;S,SI) in by the configuration sequence 71,72, where:
7! = (if ¿¿(v]/) then A else fail\S, Sj),

If the resulting sequence includes a failing configuration cut the sequence after the
first failing configuration.

E x a m p l e 13 (The de l ta -condi t ions based Trans fo rma t ion) . Consider the ex-
ecution sequence from Example 3, and states s, s1, s", where s' = s[r t-> insert(r, x)s]
and s" = s'[r i—y delete(r,y)s]. The delta-conditions of the configurations in the
sequence are 5o(i') = {}, ¿>i(i;) = {x ^ y) and <S2W = {}•

1. Assume: s = | r H {3,4,5}, x >-» 3, y t-> 4]. Then, CA5(<5>) is

(A;S, Si) if Si |= ¿¿(VP)
(fail, Si) otherwise

762 Mira Balaban and Steffen Jurk

2. Assume: s = [r i-> {3,4, 5},x >-> 3, y i-> 3]. Then, CAg(<£) is

(if true then r := insert(r,x) else fail\ r := delete(r,y), s) =>
(r := insert(r,x)\ r := delete(r,y), s) =>
(if x ^ y then r := delete(r,y) else fail, s') =>
(fail, s')

Compared with the execution sequence that results from the C A-transformation in
Example 12, the execution sequence CAg(ty) is shorter, and there is a single equality
test which precedes the assignment. As before, for both states, CA,IE[TA(*P) <EP

Claim 2. [Correctness a n d Minimal i ty of t h e CAg t r ans fo rma t ion] For
every execution sequence <min.EP i'-

Conclusion 2. The CAg transformation is a minimal effect preserving transfor-
mation. That is, CAs(^) <EP vI'. and if i ' is already effect preserving, then
CA&.I') =

4.3.2 Min imal Effect P rese rv ing U p d a t e T r a n s f o r m a t i o n

In this subsection we prove that the update transformations introduced above
are minimal effect preserving. Recall that a transformation 0 is minimal effect
preserving, if it produces minimal-EP-restrictions of its input updates (Defini-
tion 7). Observing the definition of this relation, it means that for all states s,
seq(Q(U),s) <min.EP seq(U,s) (Definition 6). Our proof uses the results about
the CAS transformation of execution sequences. For each of the two update trans-
formations 0 introduced in Subsections 4.1 and 4.2, we show that

for every update U, for all states s, seq(Q(U),s) =Ep CAs(seq(U,s)).

Since by Proposition 2:

for every update U, for all states s, CAg(seq(U, s)) <min_EP seq(U,s),

it follows that

for every update U, for all states s, seq(Q(U),s) <min-EP seq(U,s).

Therefore, by Definition 6,

for every update U, Q(U) <min.EP U,

and by Definition 7, 0 is minimal effect preserving.

Cor rec tness of t h e t r a n s f o r m a t i o n of While u p d a t e s w i t h o u t loops

The main problem is to show

for every update U, for all states s, seq(reviseUpdate\(U), s) =EP CAg(seq(U,s)).

Once this is proved, the minimal effect preservation property of EPi is obtained as
outlined above.

Effect Preservation in Transaction Processing in Rule Triggering Systems 763

L e m m a 1. Let U be a While update without loops, and s a state. The execution
sequence seq(U,s) corresponds to a full path in the computation tree ofU, CT(U).
such that:

1. seq(U,s)o corresponds to root(CT(U)), and if seq(U,s)i corresponds to node
ni in the tree, then seq(U, s)*+i corresponds to a child node n1+1 of ni. If
seq(U,s) is a successful sequence, the last terminal configuration does not
correspond to any node, and its previous configuration corresponds to a leaf
node. If the sequence is failing, its last configuration corresponds to a leaf
node.
This correspondence defines a 1 : 1 mapping between the configurations in
seq(U,s) (excluding the terminal configuration, if exists) and the nodes of the
path.

2. If seq(U,s)i corresponds to node ni, then effects^seqfâ, s)) = effects(ni) and
Si(seq(U,s)) = S(ni).

Propos i t ion 4. Let U be an extended While update, such that all external calls are
to terminating procedures. Let removeEC(U) be the While update that is obtained
from U by removing all external calls (if there is a syntactic problem, an external call
is replaced by skip). Then, for every state s: seq(removeEC(U), s) =EP seq(U, s).

Proof. The external calls do not affect termination and any variable assignment.
Therefore, for every state s, seq(removeEC(U), s) agrees with seq(U,s) with re-
spect to termination and failures, and if seq(U, s) is effect preserving so is
seq(removeEC(U),s). •

L e m m a 2. Let U be a While update without loops, and s a state. Then,

removeEC(seq(reviseUpdatei(U),s)) — CAs(seq(U,s)).

T h e o r e m 1. [Correctness a n d Min imal i ty of Algor i thm 4] For every update
S in While without loops, reviseUpdate\(S) is a minimal EP restriction of S.

Proof. By Lemma 2, (seq(rem.oveEC(reviseUpdatei(U)), s)) = CAs(seq(U,s)).
By Proposition 4, for every update U that does not include non-terminating ex-
ternal calls, for every state s: seq(removeEC(U),s) =EP seq(U,s). Therefore,
seq(reviseUpdate\(U), s) =EP CAs(seq(U, s)). The rest of the proof is as outlined
above. •

The following claim holds under the experimental observation that the size of
delta-conditions is small, and is independent from the length of the execution se-
quence. The reason is that multiple contradictory assignments to the same relation
in a single execution sequence do not happen frequently.

764 Mira Balaban and Steffen Jurk

Claim 3. The run time overhead of reviseUpdate\(S) is 0(size(S)).

Proof. By the last theorem, reviseUpdate\(S) <min.EP S. Therefore, for ev-
ery state s, seq(reviseUpdatei(S),s) is finite. For every state s, the overhead
of seq(reviseUpdate\(S),s) over seq(S,s) is

length(seq(S, s)) x (Time(getDelta(node())) + Timeinavigation procedures))

Since there are no loops, the length of seq(S, s) is bounded by the size(S).

Time(getDelta(node())) — size(delta-condition) x Time(condition test).

Under the above assumption, the size of the delta-conditions is bounded. Each
condition in a delta-condition is a variable inequality, and therefore, its test takes
constant time, since it does not depend on the size of a relation. Therefore,
Time(getDelta(node())) = 0(oo). Navigation procedures are calO(l), since they
only advance the iterator. Therefore, the overall overhead is 0(size(S)). •

Correc tness of t h e t r ans fo rma t ion of While u p d a t e s

The correctness of the reviseUpdate2 transformation is proved, essentially, similarly
to the proof for reviseUpdate 1. However, there are two tricky points:

1. While allows for infinite execution sequences.

2. A node in the computation graph of a While update is annotated with delta-
conditions with respect to all possible assignments that might precede its
statement when executed. Therefore, its set of delta-condition is a superset of
the actual delta-conditions of its corresponding configuration in an execution
sequence.

Therefore, the two Lemmas on which the correctness Theorem is based are slightly
different.

L e m m a 3. Let U be a While update, and s a state. Every finite prefix of seq(U, s)
corresponds to a path from the root in the computation graph of U, CG(U), such
that:

1. seq(U,s)0 corresponds to root(CG(U)), and if seq(U, s)i corresponds to node
ni in the tree, then seq(U,s)i+\ corresponds to a child node n,+ i of ni. If
seq(U,s) is a finite successful sequence, the last terminal configuration does
not correspond to any node, and its previous configuration corresponds to a
leaf node. If the sequence is finite failing, its last configuration corresponds
to a leaf node.
This correspondence defines a partial mapping from configurations in seq(U, s)
(excluding the terminal configuration, if exists) to the nodes on the path.

Effect Preservation in Transaction Processing in Rule Triggering Systems 765

2. Ifseq(U,s)i corresponds to node ni, then effectSi(seq(U, s)) = effects(ni) and
5i(seq(U,s)) Ç ¿(n,) U 6Possible^)5.

L e m m a 4. Let U be a While update, and s a state. Then,

removeEC(seq(reviseUpdate2(U),s)) =EP CA$(seq(U,s)).

T h e o r e m 2. [C o r r e c t n e s s a n d M i n i m a l i t y of A l g o r i t h m 7] For every update
S in While, reviseUpdate2(S) is a minimal EP restriction of S.

Proof. B y L e m m a 4 , (seq (removeEC(rev i seUpda te \ (U)) , s)) =EP CAg(seq(U,s)).
By Proposition 4, for every update U that does not include non-terminating ex-
ternal calls, for every state s: seq(removeEC(U),s) =EP seq(U,s). Therefore,
seq(reviseUpdate\(U),s) =EP CAs(seq(U, s)). The rest of the proof is as outlined
above. •

As before, the complexity claim holds under the experimental observation that
the size of delta-conditions is small, and is independent from the length of the
execution sequence.

C l a i m 4. If for a state s seq(S, s) is terminating, then the run time overhead of
seq(reviseUpdate2(S),s) is proportional to the multiplication of the length of the
execution sequence seq(S, s) by the number of loop repetitions.

Proof. By the last theorem, reviseUpdate2(S) <min.EP S. Therefore, if seq(S, s)
is finite, then also seq(reviseUpdate2(S), s) is finite. For every state s, the overhead
of seq(reviseUpdate2(S),s) over seq(S,s) is

length(seq(S,s)) x (Time(getDelta(node())) + Time(test.5Possible(node()))+
Time(updateValues(node())) •+- Time(navigation procedures))

As in the no-loops case, Time(getDelta(node())) = 0(1), and navigation proce-
dures are 0 (1), since they only advance the iterator. The procedure
updateValues(node(), x-i,..., xm) is also 0(1), since it adds a new value to a
collection. The only additional complexity overhead results from the procedure
testJPossible(node()) that tests multiple tuples that record variable values re-
sulting from loop repetitions. A call to test-5Possible(node()) takes time pro-
portional to the number of loop repetitions. Therefore, the run time overhead is
0(length(seq(S, s)) x #(loop repetitions)). The number of loop repetitions depends
on the update arguments, and usually is much smaller than the the length of the
execution sequence. Therefore, the run time overhead of seq(reviseUpdate2(S),s)
is much smaller than 0((length(seq(S, s))2)), which is the overhead of a purely run
time effect preservation procedure. •

5 The notation is used imprecisly here, since SPossible(ni) is a set of pairs, and only the second
element in each pair is a delta-condition.

766 Mira Balaban and Steffen Jurk

5 Related Works
Effect preservation is traditionally related to the paradigm of integrity constraint
management. This direction is relevant in dynamic situations, where operations
can violate necessary properties. The role of integrity constraint maintenance is
to guard the consistency of the information base. There are, basically, two major
approaches to maintain consistency: Integrity checking, where operations are tested,
either at run time or at compile time, for being integrity preserving [10, 9, 8, 11,
21, 7], and integrity enforcement, where operations are repaired, so to guarantee
consistency [37, 28, 12, 29, 23, 14, 24, 3, 4]. The problem of effect violation arises
in the latter approach, where transactions are automatically constructed. It can
also arise in situations where transactions are deductively synthesized ([27]). The
Greatest Consistent Specialization theory of [35] is a compile time enforcement
theory with effect preservation. It generates a fully repaired transaction, which
is consistent with respect to a given set of constraints, and preserves the effects
of the original transaction. A relaxed version, that allows for stronger repairs, is
suggested in [30, 22]. A classification of Research efforts in consistency enforcement
appears in [25].

The most common approach in integrity enforcement is that of the run time Rule
Triggering Systems (RTS) (active databases), which are implemented in almost ev-
ery commercial database product [38, 37, 16, 38]. RTSs have to cope with problems
of termination, uniqueness (confluence) and effect preservation [12, 13, 36, 39].
Since a rule might be repeatedly applied, an application of a set of rules does not
necessarily terminate. Practically, the problem is solved by timing-out or count-
ing the level of nested rule activations. Sophisticated methods [12, 13] deal with
static cycle analysis of rules. Furthermore, different orders of rule execution do not
guarantee a unique database state. This is the confluence problem of RTSs. Static
analysis of confluence in RTSs is studied in [36, 39].

The problem of effect violation in active databases occurs when a rule fires
other rules that perform an update that is contradictory to an update performed
by a previous rule. Automated generation and static analysis of active database
rules [37, 6, 12] do neither handle, nor provide a solution to that problem. In
fact, contradicting updates are allowed, since the case of inserting and deleting
the same tuple is considered as a skip operation. The problem lies in the locality
of rule actions. Since an action is intended to repair a single event, it does not
account for the history of the repair, and therefore might not preserve the original
intention of the transaction being repaired. The limitations of RTSs in handling
effect preservation are studied in [33, 34].

In earlier versions of this work [17, 1, 2, 18], effect preservation was syntacti-
cally defined, based on the data structure that is constructed for a transaction.
[17] presents an early investigation of the usage of dependency graphs for order-
ing constraint enforcement. [1, 2] present our first effect preservation efforts for
While statements without loops: First, sequence transactions were annotated with
two kinds of effects (desired and executed), and a sequence was said to be effect
preserving if its desired effects logically followed from its executed effects. Then,

Effect Preservation in Transaction Processing in Rule Triggering Systems 767

a loop-less transaction was said to be effect preserving if all sequence transactions
on its computation tree are effect preserving. However, in [18] we tried to extend
this approach for handling effect preservation in general While transactions, but
encountered major problems, since the meaning of the desired and executed ef-
fects in the presence of loops is not straightforward. Consequently, we changed
our overall approach to effect preservation, looking for a unified framework that
can account for all While transactions. The result is a new approach, were effect
preservation is semantically defined (rather than syntactically). The move from
syntax based effect preservation to semantics based one is dramatic, since the lat-
ter provides a uniform framework for While, on which general criteria for effect
preserving transformations can be developed. The effect preservation terminology
developed in Section 3, and the algorithms introduced in section 4 could not have
been developed on the basis of syntax based effect preservation alone.

6 Conclusion

In this work we introduced a combined, compile time - run time method for en-
forcing effect preservation in rule triggering systems. Our method enforces effect
preservation on updates written in an imperative language with loops. It is based
on t h e a s sumpt ion t h a t effects of primitive database updates are provided by t h e
developer. The transformation is proved to be minimal effect preserving, and under
certain conditions provides meaningful improvement over the quadratic overhead
of pure run time procedures.

Our goal is to produce a database tool in which effect preservation is a correct-
ness condition for transactions. For that purpose, we are currently implementing
our effect preservation algorithm by embedding it within a real database plat-
form. We intend to use an open source database, such as postgres, and apply effect
preservation to stored procedures (procedural database application code maintained
within the database). Moreover, we plan to extend the effect preservation process
so that it will be applicable to general transactions (and not only to isolated prim-
itive updates). In addition, we plan to experimentally test the assumption about
the independence of the size of delta-conditions from the length of the execution
sequence.

Further research is needed in order to extend the set of primitive updates
such that it includes, for example, attribute modification. Study of dynamic con-
straints requires further research as well. Another future application domain is
semi-structured databases. The theory applies to any domain, provided that the
developer associates effects with primitive assignments, and provides an algorithm
for deriving delta-conditions.

Acknowledgments : We would like to thank B. Thalheim, K.D. Schewe, F. Bry,
E. Mayol, A. Cali and M. Kifer for providing constructive comments on our work.

768 Mira Balaban and Steffen Jurk

References
[1] Balaban, M. and Jurk, S. Intentions of Operations - Characterization and

Preservation. In Proc. International ER'02 workshop on Evolution and Change
in Data Management (ECDM'02), pages 100-111, 2002.

[2] Balaban, M. and Jurk, S. Update-Consistent Query Results by Means of Effect
Preservation. In Proc. Fifth International Conf. on Flexible Query Abswering
Systems (FQAS'02), pages 28-43, 2002.

[3] Balaban, M. and Shoval, P. Enhancing the ER model with structure methods.
Journal of Database Management, 10(4), 1999.

[4] Balaban, M. and Shoval, P. MEER - an EER model enhanced with structure
methods. Information Systems Journal, pages 245 - 275, 2001.

[5] Baralis, E. and Widom, J. An algebraic approach to rule analysis in expert
database systems. Proceedings of the 20. International Conference on Very
Large Data Bases, 1990.

[6] Baralis, E. and Widom, J. An algebraic approach to static analysis of active
database rules. In ACM Transactions on Database Systems, volume 25(3),
pages 269-332, September 2000.

[7] Benzaken, V. and Schaefer, X. Static Integrity Constraint Management in
Object-Oriented Databases Programming Languages via Predicate Transform-
ers. In European Conference on Object-Oriented Programming, ECOOP'97,
Lecture Notes in Computer Science, 1997.

[8] Benzaken, V. and Themis, D. A database programming language handling
integrity constraints. VLDB Journal, pages 493 - 518, 1995.

[9] Bry, F. Intensional updates: Abduction via deduction. In Proc. 7th Conf. on
. Logi Programming, 1990.

[10] Bry, F. and Manthey, R. Checking consistency of database constraints: A
logical basis. In Proc. of the VLDB int. Conf, pages 13-20, 1986.

[11] Celma, M. and Decker, H. Integrity checking in deductive databases, the ul-
timate method? Proceedings of 5th Australiasian Database Conference, pages
136-146, 1995.

[12] Ceri, S., P.Fraternali, Paraboschia, S., and Tanca, L. Automatic gerneration of
production rules for integrity maintenance. In ACM Transactions on Database
Systems, volume 19(3), pages 367-422, 1994.

[13] Ceri, S. and Widom, J. Deriving production rules for constraint maintenance.
Proceedings of the 16. International Conference on Very Large Data Bases,
pages 566-577, 1990.

Effect Preservation in Transaction Processing in Rule Triggering Systems 769

[14] Etzion, 0 . and Dahav, B. Patterns of self-stabilization in database consistency
maintenance. Data and Knowledge Engineering, 28(3):299-319, 1998.

[15] Fikes, R.E. and Nilsson, N.J. Strips: A new approach to the application of
theorem proving to problem solving. Artificial Intelligence, 2:189-208, 1971.

[16] Fraternali, P., Paraboschi, S., and Tanca, L. Automatic rule generation for
constraints enforcement in active databases. In Lipeck, U. and Thalheim, B.,
editors, Modeling Database Dynamics, pages 153-173. springer WICS, 1993.

[17] Jurk, S. and Balaban, M. Improving Integrity Constraint Enforcement by
Extended Rules and Dependency Graphs. In Proc. 22th Conf. on DEXA,
2001.

[18] Jurk, S. and Balaban, M. Towards Effect Preservation of Updates with Loops.
In Proc. Fifth IFIP TC-11 WG 11.5 Working Conf. on Integrity and Internal
Control in Information Systems (IICIS'02), pages 59-75, 2002.

[19] Kniesel, G. ConTraCT - A Refactoring Editor Based on Composable Condi-
tional Program Transformations. Technical Report, Computer Science Dept.,
University of Bonn, 2005.

[20] Kniesel, G. and Koch, H. Static composition of refactorings. Science of Com-
puter Programming, Special Issue on "Program Transformation", Lammel, R.
(ed.), 52:9-51, 2004.

[21] Lee, S.Y. and Ling, T.W. Further improvement on integrity constraint checking
for stratisfiable deductive databases. In Proc. 22th Conf. on VLDB, pages 495-
505, 1996.

[22] Link, S. Consistency enforcment in databases. In Bertossi, L., Katona, G.O.H.,
Schewe, K.-D., and Thalheim, B., editors, Semantics in Databases, Second
International Workshop, Dagstuhl Castle, Germany, 2003.

[23] Mayol, E. and Teniente, E. Structuring the process of integrity maintenance. In
Proc. 8th Conf. on Database and Expert Systems Applications, pages 262-275,
1997.

[24] Mayol, E. and Teniente, E. Addressing efficiency issues during the process of
integrity maintenance. In Proc. 10th Conf. on Database and Expert Systems
Applications, pages 270-281, 1999.

[25] Mayol, E. and Teniete, Ernest. A survey of current meth-
ods for integrity constraint maintenance and view updating. In
Chen, Embley, Kouloumdjian, Liddle, Roddick, editor, Intl. Conf. on
Entity-Relationship Approach, volume 1727 of Lecture Notes in Computer
Science, pages 62-73, 1999.

[26] Nielson, H.R. and Nielson, F. Semantics with Applications - A Formal Intro-
duction. John Wiley & Sons, 1992.

770 Mira Balaban and Steffen Jurk

[27] Qian, X. The deductive synthesis of database transactions. ACM Transactions
on Database Systems, pages 626 - 677, 1993.

[28] Qian, X., Jullig, R., and Daum, M. Consistency Management in a Project
Management Assisteant. In ACM-SIGSOFT'90, 15(6), 1990.

[29] Ross, K.A. and Srivastava, D. Materialized View Maintenance and Integrity
Constraint Cheking: Trading Space for Time. In ACS-SIGMODF'96, 1996.

[30] S. Link, K.D. Schewe. Towards an arithmetic theory of consistency enforcement
based on preservation of S constraints. In Electronic Notes in Theoretical
Computer Science, volume 61, pages 1-20, 2002.

[31] Sacerdoti, E. The nonlinear nature of plans. In ijcai-75, pages 206-214, 1975.

[32] Schewe, K.D. Consistency enforcement in entity-relationship and object-
oriented models. Data and Knowledge Eng., 28(1):121-140, 1998.

[33] Schewe, K.D. and Thalheim, B. Consistency enforcement in active databases.
In Chakravarty, S. and Widom, J., editors, Research Issues in Data Engineer-
ing - Active Databases, pages 71-76. IEEE Computer Society Press, 1994.

[34] Schewe, K.D. and Thalheim, B. Limitations of rule triggering systems for
integrity maintenance in the context of transition specifications. Acta Cyber-
netica, 13:277-304, 1998.

[35] Schewe, K.D. and Thalheim, B. Towards a theory of consistency enforcement.
Acta Informatics, 36:97-141, 1999.

[36] van der Voort and Siebes, A. Termination and confluence of rule execution.
In In Proceedings of the Second International Conference on Information and
Knowledge Management,. November 1993.

[37] Widom, J. and Ceri, S. Deriving production rules for constraint maintenance.
In Proc. 16th Conf. on VLDB, pages 566-577, 1990.

[38] Widom, J. and Ceri, S. Active Database Systems. Morgan-Kaufmann, 1996.

[39] Zhou, C. and Hsu, M. A theory for rule triggering systems. In Advances in
Database Technology-EDBT' 90, volume 416 of Lecture Notes in Computer
Science, pages 407-421, 1999.

7 Appendix — Proofs

Proof of Proposition 1:
Propos i t ion : An execution sequence *I> = {SQ,SQ), (S\,s\),... in which Sj+i [=
effects¿(3*) for all i > 0, is effect preserving.
Proof : This property derives from the necessary property of effects of assignments

Effect Preservation in Transaction Processing in Rule Triggering Systems 771

A\ For every state s, if {A, s) s' then s' |= effects(A). By the definition of the
effects of configurations in an execution sequence i>, if the statement that is exe-
cuted in the i-th transition is not an assignment, then effectsi+1(yJ>) = effects
and if it is an assignment A, then effects(i') = e f f e c t s U effects(A). There-
fore, in the first case we have |= effects¿(i') = effectsl+1('i') and in the sec-
ond case we have |= effects¿(ty) and Sj+i (= effects(A) which implies Sj+i f=
effectsii^') U effects(A) = effectsi+1(ir). Since for i = 0, s0 \= {true} = effects0(V),
we have the effect preservation property for all configurations in the sequence.

•

Proof of Claim 1:
Claim: For every execution sequence VI', CA(i ') <min.EP

 VI'.
P roof : We have to show that CA(ty) is EP and a minimal restriction of "I'.

1. CA{9) < vP: If CA(^) is failing then it is a restriction of i ' . Otherwise,
the sequence of states in CA{^!) is the same as in i ' (apart from possible
intermediate repetitions). Therefore, if CA(\&) is infinite, then also i ' is
infinite. If C^4(i') is finite and successful then end(CA(^)) = end(*I>).

2. CA(ty) is EP: We show by induction on the sequence of states in CA(<3/)
so , s i , . . . that if the sequence is not failing, then for every state Si, ŝ (=
effectsz(CA(xI')). First, we note that not only the states in CA^) are states
that occur in i ' and in the same ordering, but also the effects associated with
configurations in CA(ty) are the same since CA('i) has no additional assign-
ments. Therefore, for every C^4(i') configuration there is a corresponding
earlier i ' configuration with the same effects.
Basis: s0 (= {true} = effects0(C A(<i>)).
Induc t ive s tep: Assume that the claim holds for all states Sj, for 0 < i < k,
for some k > 0. Consider the transition (W, sk) => (W', s^+i) in the sequence.

a) If (W,Sk) is not an assignment configuration, then sk = sk+1 and
effectsk(C A(^)) = effectsk+1 (CA(lI')), and by the inductive hypothesis:
s/fc+i N effectsk+1(CA{*)).

b) If (W, Sk) is an assignment configuration, then

W = A; if -ieffects^') then fail else skip\V,

where the i configuration in corresponds to the k configuration in
CA(<1'). That is, effects^) = effects k(CA^l')). The following configu-
rations in the CA(i ')) sequence are
(if ->effectsj(\l/) then fail else skip\V, Sfc+i) =>
either (fail, sk+1) if Sfc+i V= effects¿(<3/),
or (skip\ V, sk+i) if Sfc+i)= effects¿V).
In the first case the sequence is failing, and hence EP. In the sec-
ond case, s,t+i |= effects^) = effects k(C A(^)) and by Proposition
1, sk+1 \= effectsk+l(CA(V)).

772 Mira Balaban and Steffen Jurk

Therefore, in either case, CA(i ') is EP.

3. CA(i ') <min.EP It c a n he shown, by induction on the sequence configu-
rations, that if ^ is an EP execution sequence then ^ <EP CA(\P).

•

Proof of Claim 2:
Claim: For every execution sequence VI', C A ^ P) <min.EP
Proof : The proof is similar to that of Proposition 1. It is based on the correspon-
dence between configurations of CAs(^) to those of VI': 'I' configurations that are
not changed correspond to themselves, and assignment configurations in ^ corre-
spond to the pair of configurations in CAgfô) that replaces them.

1. CA^ty) < since it is either failing or follows the same configurations (with
some additional intermediate ones).

2. In order to show that CAi(\I/) is EP we show (by induction on the sequence
of states in CAj(\I/) so , s i , . . .) that if the sequence is not failing, then for
every state Sk,
sk |= effectsk(CAs(\l/)) = effects¿(»P) (where the fc-th configuration i n C A 5 (^)
corresponds to the i-th configuration in i ') .
Basis: s0 t= {true} = effects0(CAs(^)) = effects0(^).
Induc t ive s tep: Assume that the claim holds for the first k configurations
of CAa(i'), for some k>0. Consider the transition (W, sk) => (W',sk+I) in
CM*)-

a) If (W, Sk) is an original VI' configuration, it is not an assignment configu-
ration. Therefore sk = Sfe+i and effectsk{CA(^)) = effects k+1(CA(ty)),
and by the inductive hypothesis sk+1 f= effectsk+l(CA(^)).

b) If (W, Sk) is the first of a new pair of configurations that replaces the
i-th assignment configuration in \I', then it is of the form
(if then A else faii,V, Sk),
where the following CAs(ty) configurations are
either (A; V, sk+ I) => ('V., s fc+2) (where sk+1 = sk)
or (fail, Sk) (where sk+1 = sk).
In the latter case the overall CAÎ(Î') sequence is failing, and hence EP.
In the first case, sjt+i = sk |= ¿¿(i*) = ¿(effects^), A). Since by the
inductive hypothesis sk+i = sk |= effects¿(VP), we have by the definition
of delta-conditions: sk+2 |= effects¿('I'). By the inductive.hypothesis we
also have effects^) = effectsk(CAs($>)) = effectsk+ï(CA5(^l')), since
the.fc-th configuration is an if configuration. Altogether, from
Sfcj-2 H effectsk+1 (CA5 (̂X*)), and by Proposition 1, we get

• sk+2 1= effectsk+2(CAs(^)).

Effect Preservation in Transaction Processing in Rule Triggering Systems 773

The second equality in the hypothesis is obtained directly from the def-
inition of effects in execution sequence:

effectsk+a(CAi(*)) = effectsk+1(CAs(*)) U effects(A) =
effects¿(I-) U effects(A) = effectsi+1(V).

3. If is an EP execution sequence then \I> <Ep CAsfë). Can be shown by
induction on the sequence configurations.

•

Proof of Lemma 1:
L e m m a : Let U be a While update without loops, and s a state. The execution
sequence seq(U, s) corresponds to a full path in the computation tree of U, CT(U),
such that:

1. seq(U,s)o corresponds to root(CT(U)), and if seq(U,s)i corresponds to node
ri* in the tree, then seq(U, s) I + i corresponds to a child node ni+i of n^. If
seq(U, s) is a successful sequence, the last terminal configuration does not
correspond to any node, and its previous configuration corresponds to a leaf
node. If the sequence is failing, its last configuration corresponds to a leaf
node.
This correspondence defines a 1 : 1 mapping between the configurations in
seq(U, s) (excluding the terminal configuration, if exists) and the nodes of the
path.

2. If seq(U,s)i corresponds to node rii, then effectst(seq(U, s)) = effects(jii) and
Si(seq{U,s)) = 6(ni).

Proof : The proof is by induction on the structure of U (nesting level of its opera-
tors).

1. If U is primitive, then seq(U,s) is either (fail, s) or (U, s) s', and CT(U)
is a single node. So, the correspondence is established.

2. If U is an if statement if P then Si e l s e S2, then seq(U,s) —
7o,---i7n, where 7o = (if P then S\ e l s e S2,s) and 7 i , . . - , 7 n is ei-
ther seq(S\,s) or seq(S\, s). The root node of CT(U) has two subtrees for
CT(Si) and CT(S2)- The inductive hypothesis holds for Si and S2. There-
fore, the tree path that corresponds to seq(U,s) consists of root(CT(U)) and
the path that corresponds to either Si or S2, according to seq(U,s).

3. If U is a sequence statement Sj; S2, then seq(U, s) is the concatenation of two
sequences for Si and S2, respectively. The inductive hypothesis holds for Si
and S2. CT(U) is CT(Si) where all non fail leaves have left subtrees for
CT(S2). Therefore, the tree path that corresponds to seq(U,s) consists of
the path that corresponds to seq(S\,s) in CT(Si), concatenated to the path
that corresponds to the S2 sequence in CT(S2).

774 Mira Balaban and Steffen Jurk

The second part of the Lemma holds since the definitions of effects and of delta-
conditions for execution sequences are exactly the tree annotations.

•

Proof of Lemma 2:
L e m m a : Let U be a While update without loops, and s a state. Then,

removeEC(seq(reviseUpdatei(U), s)) = CAs(seq(U,s)).

Proof : The proof is obtained from the following three immediate claims:

1. There is an order preserving correspondence (mapping) between the configu-
rations of seq(U, s) and the those of CAs(seq(U, s)), such that:

a) If seq(U, s)j is an assignment to a state variable configuration, then it
corresponds to two successive configurations in CAs(seq(U, s)) - an if
configuration and either the assignment or a fail configuration - , fol-
lowing the definition of the CAg transformation.

b) All other configurations correspond to themselves.

2. There is an order preserving correspondence (mapping) between the config-
urations of seq(U, s) and the those of removeEC(seq(reviseUpdate\(U), s)),
such that:

a) If seq(U, s), is an assignment to a state variable configuration, then it
corresponds to two successive configurations in
removeEC(seq(reviseUpdatei(U),s)) - an i f configuration and either
the assignment or a fail configuration - , following the definition of the
reviseUpdatei transformation.

b) All other configurations correspond to themselves.

3. When the sequence removeEC(seq(reviseUpdate\(U),s)) reaches an if
configuration that corresponds to an assignment to a state variable config-
uration seq(U, s)i, the node() iterator procedure points to the tree node n t

that corresponds to seq(U,s)i.

Based on the first two claims, the two execution sequences
removeEC(seq(reviseUpdate\(U),s)) and CAs(seq(U,s)) differ only in the condi-
tions in the added i f statements. In CAs(seq(U, s)) the condition is ôi(seq(U, s))
- for the corresponding seq(U,s)i configuration, while in
removeEC(seq(reviseUpdate\(U),s)) the condition is ¿(n*) - for the tree node n*
pointed by the iterator. However, based on the third claim, the conditions are the
same since effects^seqiJJ^s)) = effects(rii), by Lemma 1. Therefore,
rkmoveEC(seq(reviseUpdate\(U),s)) = CAs(seq(U,s)).

•

Effect Preservation in Transaction Processing in Rule Triggering Systems 775

Proof of Lemma 3:

L e m m a : Let U be a While update, and s a state. Every finite prefix of seq(U, s)
corresponds to a path from the root in the computation graph of U, CG(U), such
that:

1. seq(U, s)o corresponds to root(CG(U)), and if seq(U, s)i corresponds to node
rij in the tree, then seq(U, s)i+i corresponds to a child node n,+i of rii. If
seq(U: s) is a finite successful sequence, the last terminal configuration does
not correspond to any node, and its previous configuration corresponds to a
leaf node. If the sequence is finite failing, its last configuration corresponds
to a leaf node.
This correspondence defines a mapping from configurations in the finite prefix
of seq(U, s) (excluding the terminal configuration, if exists) to the nodes on
the path.

2. If seq(U,s)i corresponds to node n*, then effects^seqfâ, s)) — effects(rii) and
6i{seq(U,s)) C ¿(n,) U SPossible{ni)6.

Proof : We extend the proof of Lemma 1 by adding the additional entry for a while
statement:

4. If U is a while statement while P do 5, then a finite prefix of seq(U, s) is
a concatenation of repeating sequences for S:
(while P do S, s) => (if P then (5; while P do S) e l s e skip, s) -seq(S,s),
where • stands for sequence concatenation. The root node of CG(U) (a while
labeled node) has a left child for the if statement, which has a left subtree
for CG(S). The inductive hypothesis holds for S. Therefore, the graph
path that corresponds to a single round in the loop consists of root(CG(U)),
its left child, and the path that corresponds to S in CG(S). For the next
round: The non failure leaves of CG(S) have root(seq(U, s) as their left child.
Therefore, a path that corresponds to a finite prefix of seq(U,s) consists of
cyclic repetition on the graph path for a single loop round.

In the second part of the Lemma, the equality of effects holds since their definition
for execution sequences is exactly the graph annotations. The delta-conditions and
delta-Possible annotations of a graph node is a superset of the delta-conditions of
the corresponding configuration since delta-Possible includes delta-conditions with
respect to all possible assignments that might precede its statement when executed.
Therefore, its set of delta-conditions is a superset of the actual delta-conditions of
its corresponding configuration in an execution sequence.

•
6 The notation is used imprecisely here, since SPossible(ni) is a set of pairs, and only the second

element in each pair is a delta-condition.

776 Mira Balaban and Steffen Jurk

Proof of Lemma 4:
L e m m a : Let U be a While update, and s a state. Then,

removeEC(seq(reviseUpdate2(U),s)) =EP CAg(seq(U, s)).

Proof : The proof is the same as that of Lemma 2. The only difference is that the
two sequences are not equal due to the difference in the delta-conditions in the added
if statements. The conditions in the removeEC(seq(reviseUpdate2{U), s)) se-
quence are taken from the graph-nodes - include the delta-conditions and delta-
Possible annotations of a graph node, which form a superset of the delta-conditions
of the corresponding configuration in CAs(seq(U, s)). However, the tests of the
conditions in both sequences give the same results since the extra delta-conditions
in a configuration of removeEC(seq(reviseUpdate2(U),s)) are evaluated on an
empty set of variable values (they are applied on non-visited graph nodes, whose
values collection is empty). Therefore, the two sequences, although not syntac-
tically equal, have the same behavior with respect to failure, termination, and
effect-preservation.

•

Received 13th April 2007

Acta Cybernetica 18 (2008) 777-782.

On Monogenic Nondeterministic Automata*

Csanád Imreh* and Masami Ito*

Abstract

A finite a u t o m a t o n is said to be directable if it has an input word, a
directing word, which takes it from every s tate into the s a m e state . For
nondeterminist ic (n.d.) au tomata , directability can be generalized in several
ways, three such notions, D1- , D2- , and D3-directability, are used. In this
paper, we consider monogenic n.d. automata , and for each i = 1 , 2 , 3 , we
present sharp bounds for the maximal lengths of the shortest Di -direct ing
words.

1 Introduction
An input word w is called a directing (or synchronizing) word of an automaton
A if it takes A from every state to the same state. Directable automata have
been studied extensively. In the famous paper of Cerny [4] it was conjectured that
the shortest directing word of an n-state directable automaton has length at most
(n — l)2 . The best known upper bound on the length of the shortest directing
words is (n3 — n)/6 (see [5] and [7]). The same problem was investigated for several
subclasses of automata. We do not list here these results but we just mention the
most recent paper on the subclass of monotonic automata [1]. Further results on
subclasses are mentioned in that paper, and in the papers listed in its references.

Directable n.d. automata have been obtained a fewer interest. Directability to
n.d. automata can be extended in several meaningful ways. The following three
nonequivalent definitions are introduced and studied in [11]. An input word w of
an n.d. automaton A is said to be

(1) Dl- directing if it takes A from every state to the same singleton set,

(2) T)2-directing if it takes A from every state to the same fixed set A', where
0 C A' C A,

(3) D3-directing if there is a state c such that c S aw, for every a € A.

*This work has been supported by a collaboration between the Hungarian Academy of Science
and the Japan Society for the Promotion of Science.

^Department of Informatics, University of Szeged, Árpád tér 2, H-6720 Szeged, Hungary
'Dept. of Mathematics, Faculty of Science, Kyoto Sangyo University, Kyoto 603-8555, Japan

778 Csanad Imreh and Masami I to

The Dl-directability of complete n.d. automata was investigated by Burkhard
[2]. He gave a sharp exponential bound for the lengths of minimum-length Dl-
directing words of complete n.d. automata. Goralcik et al. [6] studied Dl- and
D3-directability and they proved that neither for Dl- nor for D3-directing words,
the bound can be polynomial for n.d. automata. These bounds are improved in
[13], one can find an overview of the the results on directing words of n.d. automata
in the book [12].

Carpi [3] considered a particular class of n.d. automata, the class of unambigous
n.d. automata, and presented 0(n3) bounds for the lengths of their shortest Dl-
directing words. Trapped n.d. automata are investigated in [8], monotonic n.d.
automata are investigated in [9], and commutative n.d. automata are investigated
in [10].

In this work, we study the class of monogenic n.d. automata, the subclass where
the alphabet contains only one symbol. This class is a subclass of the commuta-
tive n.d. automata. Shortest directing words of the monogenic and commutative
automata are investigated in [14] and [15]. We prove tight bounds for monogenic
n.d. automata on the lengths of shortest directing words of each type.

2 Notions and notations
Let X denote a finite nonempty alphabet. The set of all finite words over X is
denoted by X* and A denotes the empty word. The length of a word w £ X* is
denoted by |w[.

By a nondeterministic (n.d.) automaton we mean a system A = (A,X), where
A is a nonempty finite set of states, X is the input alphabet, and each input symbol
i S X i s realized as a binary relation A x A). For any a £ A and x £ X, let

axA = {b: b £ A and (a, b) £ xA}.

Moreover, for every B C A, we denote by BxA the set U { a x A : a £ B}. Now, for
any word w £ X" and B C A, BwA can be defined inductively as follows:

(1) B\A = B,

(2) BwA = (BpA)xA for w = px, where p £ X* and x £ X.

If w = x\... xm and a £ A, then let awA = { a } ^ . This yields that wA =
xA ... xA. If there is no danger of confusion, then we write simply aw and Bw for
awA and BwA, respectively.

Following [11], we define the directability of n.d. automata as follows. Let
A — (A,X) be an n.d. automaton. For any word w £ X*, let us consider the
following conditions:

(Dl) (3c £ A)(ya £ A)(aw = {c}),
(D2) (Va,6 G A)(aw = bw),

On Monogenic Nondeterministic Automata 779

(D3) (3c £ A)(Va £ A)(c £ aw).

For any i = 1,2,3, if w satisfies Di, then w is called a Di-directing word of A
and in this case A is said to be Di-directable. Let us denote by the set of
Di-directing words of A. Moreover, let Dir(i) denote the classes of Dz-directable
n.d. automata. Now, we can define the following functions. For any i = 1,2,3 and
A=(A,X) eDir(i) , let

dj(A) = m i n { H : w 6 D*(.A)},

dj(n) = max{di(A) : A £ Dir(i) & = n}.

The functions dj(n), i = 1,2,3, are studied in [11] and [13], where lower and upper
bounds depending on n are presented for them. Similar functions can be defined
for any class of n.d. automata. For a class K of n.d. automata, let

d*(n) = maxId^A) : A € Dir(t) n K & \A\ = n}.

3 Monogenic n.d. automata
In what follows, we study the case when the considered class is M G , the class of
monogenic n.d. automata. For the class C of commutative automata it is shown in
[10] that d f (n) = (n — 1). Since every monogenic n.d. automaton is commutative
we obtain that dj / I G(n) < (n — 1). Moreover, the n.d. automaton which proves in
[10] that d f (n) > (n - 1) is a monogenic one and thus we obtain immediately the
following corollary.

Corol lary 1. For any n > 1, d ^ G (n) = (n — 1).

For the 132-directable monogenic n.d. automaton we have the following result.

T h e o r e m 1. For any n> 2, d ^ G (n) = (n - l) 2 + 1.

Proof. To prove that d^ 1 6 (n) > (n—1)2 + 1 we can use the same n.d. automaton
which was used in [10]. For the sake of completeness we recall the definition of the
automaton here. The set of states is S = { l , . . . , n } , there is one letter in the
alphabet denoted by x, and it is defined as follows: Ix = {1,2}, ix = {i + 1} for
1 < i < n, and nx = {1}. It is easy to see that the shortest D2-directing word of
this n.d. automaton has length (n — l)2 + 1.

Now we prove that d ^ ^ n) < (n — l) 2 + 1. We prove it by induction on n.
If n = 2 then the statement is obviously valid. Let n > 2 and suppose that the
inequality is valid for each i < n. Consider an arbitrary monogenic _D2-directable
n.d. automaton with n states. Let denote the set of states by S = {1 , . . . , n} and
the letter in the alphabet by x. Let m be the length of the shortest D2-directing
word. This means that ixm = jxm for each i,j 6 S.

Suppose first that Sx C S. Then consider the n.d. automaton (Sx,x). This is a
£>2-directable monogenic n.d. automaton with less than n states. Thus its shortest
£>2-directing word has length at most (n — 2)2 + 1. Therefore, the original n.d.

780 Csanad Imreh and Masami I to

automaton has a D2-directing word with length at most (n — 2)2 + 2 < (n — l) 2 + 1
and this proves the statement in this case.

Therefore, we can suppose that Sx = S. This yields that Sxk = S for each
k. Thus ixm = Sxm = S for each i G S. Let i € S be arbitrary and consider
the sequence of sets {i},ix,ix2 If ixk = S, then ixl = S for each I > k. Now
suppose that ixk = ixl, k < I. Then the sequence of the sets becomes a periodic
sequence from ixk with the period k - I, and thus this case is only possible if
ixk = ixl — S.

Let p be the smallest positive value with the property i G ixp. Since i G ixm

is valid, such p exists. Then we have i G ixp. Furthermore, {i} ^ ixp therefore,
|'ia;p| > 2. On the other hand by i G ixp it also holds that ixqp C ix{qJrl)p and this
yields that if ixqp ^ S then \ix^+Vp\ > ¡ixqp|. Thus we obtain that ix(n~^p = S.

Now consider the following sets. Let Hj = ixk. Then Hj C HJ+i for each
j. Furthermore, if H j = H j + \ for some j then H j = for each k > j , therefore,
this is only possible in the case when H j = S.

Let r be the smallest positive value with the property \ixr\ > 2. Consider the
following two cases.

Case I. Suppose that ixr fl HTL\ = 0. In this case \Hr\ > | i i r - i | + 2, thus we
obtain that Hn-1 = S. This yields that p < n — 1 and it follows that (n — 1)p <
(n - l) 2 + l.

Case II. Suppose that there exists j such that j G ixrnHr-\. Then there exists
s < r such that ixs = {j}. Then for each t > 0 we have ¿ z s + t (r - s) C i x s + (t + 1) (r _ s) .
Since these sets can be equal only in the case when they are equal to S we obtain
that ixsHn-i){r-s) =

On the other hand r < n and s > 1 thus we obtain that
5 + (n - 1)(r - s) < (n - l) 2 + 1.

For the D3-directable monogenic n.d. automaton we have the following result. T h e o r e m 2. For any n> 1, d ^ G (n) = n2 - 3n + 3.

To prove that d3 i G (n) > n 2 - 3n + 3 we can use the same n.d. automaton
which was used in the D2-directable case. In [12] it is shown that the shortest
JD3-directing word of this n.d. automaton has length n2 — 3n + 3.

Now we prove that d ^ ^ n) < n 2 — 3n + 3. Consider an arbitrary monogenic
£)3-directable n.d. automaton with n states. Let denote the set of states by S =
{1, . . . ,n} and the letter in the alphabet by x. Let m be the length of the shortest
D3-directing word. Then there exists a state i with the property i G jxm for each
j€S.

Define the following n.d. automaton. Let B = (S,y) , where the transition y is
defined by the rule jy — {k & S : j € kx}. Then we obtain by induction that
jyp = {keS | j G kxp} Therefore, iym = S. Moreover, it holds that jyp ± S for
all'p < m and j G S since otherwise we would obtain a shorter D3-directing word
than am.

Now we can use a similar technique to finish the proof as we did in the case of
D2-directability. Consider the sequence of sets {i},iy,iy2 ... :iym. This sequence
contains different sets and iym = S. Let us observe that \iy\ > 2, otherwise by
{iy}ym~1 — S we would obtain a contradiction.

On Monogenic Nondeterministic Automata 781

Let p be the smallest positive value with the property i £ iyp. Then we have
iy Q iyp+1 • Furthermore, {iy} / iyp+1 and therefore, \iyp+1 \ > 3. On the other
hand by iy C iyp+l it also holds that iyqp+1 C iy^+x)p+l and this yields that if
iyqp+1 ^ 5 t h e n |iy(g-(-i)p+i| > \iyQP+^l Thus we obtain that ¿2/ (n -2)p+1 = S.

If i £ iy then p = 1. Otherwise consider the sets Hj = UJ
k=iiyk- Then Hj C

Hj + 1 for each j, if Hj ^ S. Since \H\ \ > 2 we obtain that = S. This yields
that p < n — 1.

Therefore, we obtained that = S which proves that m < (n —
2)(n — 1) + 1 = n2 — 3n + 3.

References
D. S. Ananichev, M. V. Volkov, Synchronizing generalized monotonic au-
tomata. Theoret. Comput. Sei. 330 (2005), no. 1, 3-13.

H. V. Burkhard, Zum Längenproblem homogener Experimente an determien-
ten und nicht-deterministischen Automata, Electronische Informationsver-
arbbeitung und Kybernetik, EIK 12 (1976), 301-306.

A. Carpi, On synchronizing unambigous automata, Theoretical Computer Sci-
ence 60 (1988), 285-296.

J. Cerny, Poznáamka k homogénym experimentom ss konecinymi automatami,
Mat.-fiz. cas. SAV14 (1964), 208-215.

P. Frankl, An extremal problem for two families of sets. European J. Combin.
3 (1982), no. 2, 125-127.

P. Goralcik, Z. Hedrlin, V. Koubek, J. Ryslinková, A game of composing binary
relations, R.A.I.O. Informatique theorique/Theoretical Informatics 16 (1982),
365-369.

J.-E. Pin, On two combinatorial problems arising from automata theory, An-
nals of Discrete Mathematics 17 (1983), 535-548.

B. Imreh, Cs. Imreh, M. Ito, On directable nondeterministic trapped automata
Acta Cybernetica, 16, 2003, 37-45.

B. Imreh, Cs. Imreh, M. Ito, On Monotonic Directable Nondeterministic Au-
tomata, Journal of Automata, Languages and Combinatorics, 8, 2003, 539-
547.

B. Imreh, M. Ito, M. Steinby, On Commutative Directable Nondeterministic
Automata. Grammars and Automata for String Processing 2003: 141-150

B. Imreh, M. Steinby, Directable nondeterministic automata, Acta Cybernetica
14 (1999), 105-115.

782 Csanad Imreh and Masami I to

[12] M. Ito, Algebraic theory of automata and languages. World Scientific Publish-
ing Co., Inc., River Edge, NJ, 2004.

[13] M. Ito, K. Shikishima-Tsuji, Some results on directable automata. Theory is
forever, LNCS 3113, Springer, Berlin, 2004, 125-133.

[14] I. Rystsov, Exact linear bound for the length of reset words in commutative
automata. Publ. Math. Debrecen 48 (1996), no. 3-4, 405-409.

[15] I. Rystsov, Reset words for commutative and solvable automata, Theoretical
Computer Science 172 (1997), 273-279.

Received 28th March 2007

Acta Cybernetica 18 (2008) 783-782.

Two Power-Decreasing Derivation Restrictions in
Generalized Scattered Context Grammars*

Tomás Masopustf Alexander MedunaJ and Jirí Simácek^

A b s t r a c t

T h e present paper introduces and discusses generalized scattered context
grammars that are based upon sequences of product ions whose left-hand sides
are formed by nonterminal strings, not just single nonterminals. It places two
restrictions on the derivations in these grammars. More specifically, let k be
a posi t ive integer. T h e first restriction requires that all rewritten symbol s
occur within the first k symbols of the first cont inuous block of nonterminals
in the sentential form during every derivation step. T h e other restriction de-
fines derivations over sentential forms containing no more than k occurrences
of nonterminals . As its main result, the paper demonstrates that b o t h re-
strict ions decrease the generative power of these grammars to the power of
context-free grammars.

K e y w o r d s : scattered context grammar; grammatical generalization; deriva-
t ion restriction; generative power.

1 Introduction
Scattered context grammars are based upon finite sets of sequences of context-free
productions having a single nonterminal on the left-hand side of every production
(see [5]). According to a sequence of n context-free productions, these grammars
simultaneously rewrites n nonterminals in the current sentential form according to
the n productions in the order corresponding to the appearance of these productions
in the sequence. It is well-known that they characterize the family of recursively
enumerable languages (see [8]).

In this paper, we generalize these grammars so that the left-hand side of ev-
ery production may consist of a string of several nonterminals rather than a single
nonterminal. Specifically, we discuss two derivation restrictions in scattered con-
text grammars generalized in this way. To explain these restrictions, let A; be a
constant. The first restriction requires that all simultaneously rewritten symbols

'This work was supported by the Czech Ministry of Education under the Research Plan No.
MSM 0021630528 and the Czech Grant Agency project No. 201/07/0005.

t Faculty oflnformation Technology, Brno University of Technology, Bozetëchova 2, Brno 61266,
Czech Republic, E-mail: {masopust ,meduna}0fi t .vutbr.cz , xs imac00l5s tud. f i t .vutbr .cz

784 Tomás Masopust, Alexander Med una, aiid Jifí Simácek

occur within the first k symbols of the first continuous block of nonterminals in
the current sentential form during every derivation step. The other restriction de-
fines the grammatical derivations over sentential forms containing no more than
k occurrences of nonterminals. As the main result, this paper demonstrates that
both restrictions decrease the generative power of generalized scattered context
grammars to the generative power of context-free grammars. As ordinary scattered
context grammars represent special cases of their generalized versions, they also
characterize only the family of context-free languages if they are restricted in this
way.

This result concerning the derivation restrictions is of some interest when com-
pared to analogical restrictions in terms of other grammars working in a context-
sensitive way. Over its history, formal language theory has studied many restrictions
placed on the way grammars derive sentential forms and on the forms of produc-
tions. In [6], Matthews studied derivations of grammars in the strictly leftmost
(rightmost) way—that is, rewritten symbols are preceded (succeeded) only by ter-
minals in the sentential form during the derivation. Later, in [7], he combined
both approaches—leftmost and rightmost derivations—so that any sentential form
during the derivation is of the form xWy, where x and y are terminal strings, W
is a nonterminal string, and a production is applicable only to a leftmost or right-
most substring of W. In both cases, these restrictions result into decreasing the
generative power of type-0 grammars to the power of context-free grammars.

Whereas Matthews studied restrictions placed on the forms of derivations, other
authors studied the forms of productions. In [2], Book proved that if the left-hand
side of any non-context-free production contains besides exactly one nonterminal
only terminals, then the generative power of type-0 grammars decreases to the
power of context-free grammars. He also proved that if the left-hand side of any
non-context-free production has as its left context a terminal string and the left
context is at least as long as the right context, then the generative power of type-0
grammars decreases to the power of context-free grammars, too. In [4], Ginsburg
and Greibach proved that if the left-hand side of any production is a nonterminal
string and the right-hand side contains at least one terminal, then the generated
language is context-free. Finally, in [1], Baker proved a stronger result. This result
says that if any left-hand side of a production either has, besides terminals, only
one nonterminal, or there is a terminal substring, ¡3, on the right-hand side of
the production such that the length of /3 is greater than the length of any terminal
substring of the left-hand side of the production, then the generative power of type-
0 grammars decreases to the power of context-free grammars. For more details, see
page 198 in [9] and the literature cited there.

2 Preliminaries
In this paper, we assume that the reader is familiar with formal language theory
(see [10]). For a set Q, |Q| denotes the cardinality of Q. For an alphabet (finite
nonempty set) V, V* represents the free monoid generated by V. The identity of

Two Power-Decreasing Derivation Restrictions in Generalized SCGs 785

V* is denoted by e. Set V+ = V* — {e}. For w £ V*, |u>| and wR denote the
length and the mirror image of w, respectively, and sub(w) denotes the set of all
substrings of w. For W C V, occur(w, W) denotes the number of occurrences of
symbols from W in w.

A pushdown automaton is a septuple M = (Q, E, T, go, ZQ, F), where Q is
a finite set of states, E is an input alphabet, go € Q is the initial state, T is a
pushdown alphabet, 5 is a finite set of rules of the form Zqa —> 7p, where p,q £ Q,
Z £ T U {e}, a £ E U {e}, 7 £ T*, F is a set of final states, and Zo is the initial
pushdown symbol. Let 1¡J denote a bijection from 5 to i ' (i ' is an alphabet of rule
labels). We write r.Zqa —> 7p instead of ip(Zqa —> 7p) = r.

A configuration of M is any word from r*QE*. For any configuration xAqay,
where x £ T*, y £ E*, q £ Q, and any r.Aqa —> jp £ 5, M makes a move
from xAqay to xjpy according to r, written as xAqay => xjpy\r], or, simply,
xAqay =» xjpy. lix,y £ T*QE* and m > 0, then x =>m y if and only if there exists
a sequence xo => x\ => • • • xm, where xo = x and xm = y. Then, we say x =>+ y
if and only if there exists m > 0 such that x =>m y, and x =>•* y if and only if x — y or
x y. The language of M is defined as C(M) = {w £ E* : Z0qow =>* f , f £ F}.

A phrase-structure grammar or a grammar is a quadruple G = (V, T, P, S),
where V is a total alphabet, T C V is an alphabet of terminals, S £ V — T is
the start symbol, and P is a finite relation over V*. Set N = V — T. Instead
of (u, v) £ P , we write u —> v £ P throughout. We call u —> v a production;
accordingly, P is G's set of productions. If u —> v £ P, x, y £ V*, then G makes a
derivation step from xuy to xvy, symbolically written as xuy xvy. If x,y £ V*
and m > 0, then x =>m y if and only if there exists a sequence xo =>• x\ xm,
where x0 = x and xm = y. We write x =4-+ y if and only if there exists m > 0 such
that x =$>m y, and x =>* y if and only if x = y or x =>+ y. The language of G is
defined as C(G) = {w £T* : S =>* w}.

3 Definitions
This section defines a new notion of generalized scattered context grammars. In
addition, it formalizes two derivation restrictions studied in this paper.

A generalized scattered context grammar, a S C G for short, is a quadruple G =
(V, T, P, S), where V is a total alphabet, T C V is an alphabet of terminals, S £ N
(N — V — T) is the start symbol, and P is a finite set of productions such that
each production p has the form (a\,..., an) —> , . . . , 0n), for some n > 1, where
di £ N+, Pi £ V*, for all 1 < i < n. If each production p of the above form satisfies
|a j | = 1, for all 1 < i < n, then G is an ordinary scattered context grammar. Set
7r(p) = n. If 7r(p) > 2, then p is said to be a context-sensitive production. If
7r(p) = 1, then p is said to be context-free. If (a\,...,an) —> (/?i,.. . ,/?„) £ P,
u = xoa\X\.. .anxn, and v = xofaxi.. ,pnxn, where Xi £ V*, 1 < i < n, then
u => v \(a\,... ,an) —> (Pi, • • •, fin)] in G or, simply, u => v. Let and =•*
denote the transitive and the reflexive and transitive closure of =>, respectively.
The language of G is defined as C(G) = {w £ T* : S =>* w}.

786 Tomás Masopust, Alexander Med una, aiid Jifí Simácek

For an alphabet T = { a i , . . . , a n } , there is an extended Post correspondence
problem, E, defined as

E = ({(ki,^), ..., (Kr,ur)}. (z0 l , • • • ,zaJ),

where Ui,Vi,zaj £ {0,1}*, for each l<i<r,l<j<n. The language represented
by E is the set

C(E) = {&!... bk £ T* : exists s i , . . . , s ¡ £ { l , . . . , r } , / > 1,
vSl • •• vSl =uSl ... u3lzbl .. ,zbk for some k > 0}.

It is well known that for each recursively enumerable language, L, there is an
extended Post correspondence problem, E, such that C(E) = L (see Theorem 1
in [3]).

Next, we define two derivation restrictions discussed in this paper.
Let k > 1. If there is (a i , . . . ,an) —> (/3i,... ,/3n) £ P, u = xoa i^ i • • • oinxn,

and v = XQP\X\ ... ¡3nxn, where

1. x0eT*N*,
2. Xi€ N*, for all 0 < i < n,
3. xn £ V*, and
4. occur(xoo;ia;1... an, N) < k,

then u fco=> v [r] in G or, simply, u fco=> v. Let feo=>n denote the n-fold product
of k<>=>, where n > 0. Furthermore, let £<>=>* denote the reflexive and transitive
closure of fco=*. Set fe_ie/t£(G) = {w € T* : 5 fco=>* w}.

Let m,h. > 1. W(m) denotes the set of all strings x £ V* satisfying 1 given
next. W(m, h) denotes the set of all strings x £ V* satisfying 1 and 2 given next.

1. z £ (T*N*)mT*\
2. (y £ sub(x) and |j/| > h) implies alph(y) n T / 0.

If there is (a j , . . . , a n) —» (Pi,... ,(3n) £ P, u = XQa\Xi.. .anxn, and v =
x0PiXi..-. f3nxn, where

1. ®o e V*,
2. Xi £ N*, for all 0 < i < n, and
3. xn £ V*,

then u o=> v [r] in G or, simply, u o=> v. Let o=>n denote n-fold product of 0=4-,
where n > 0. Furthermore, let o=>* denote the reflexive and transitive closure of
o=x

Let u,v £ V*, and u 0=4- v.

if and only if u, v £ W(m,h), and v

if and only if u,v £ W(m). Set nonterC(G,m,h) = {w £ T* : S w} and
nonterC(G,m) = {w eT* : S mo=>*

Two Power-Decreasing Derivation Restrictions in Generalized SCGs 787

3.1 Language Families
Let S C G s denote the family of generalized scattered context grammars. Define
these language families:

nonterSG(m,h) = {L
nonterSC(m) = {L

k-leftSC — {L

L = nouter£(G, m, h), G S S C G s } for all m,h> 1
L = nonter£(G, m), G 6 S C G s } for all m > 1
L = k-ieft£(G),G e S C G s } for all jfc > 0

Let C F , CS , and R E denote the families of context-free, context-sensitive, and
recursively enumerable languages, respectively. For all k > 0, k C F denote the
family of languages generated by context-free grammars of index k.

4 Results
This section presents the main results of this paper. First, it demonstrates that ,
for every k > 1, CF = k-ieftSC, then tha t RE = nonterSC(l), and, finally, tha t
for every m, h > 1, mCF = nonterSC(m, h).

T h e o r e m 1. Let k be a positive integer. Then, CF = k-leftSC.

Proof. Let G = (V, T, P, S) be a generalized scattered context grammar. Consider
the following pushdown automaton

M = ({q, r, / } U {[7,s] : 7 £ N*, |7| < k, s € {q, r } } , T, V U {Z}, 5, [5, q], Z, { / }) ,

where Z £ V, and <5 contains rules of the following forms:

1. [PoAifii... Anpn, g] - (f a a1pl...anpn)R[e,r]
if (A i , : . . , An) -> (au ... ,<*„) G P ; ft € N*, 0 < i < n;

2. A[Ai ...An,r\ \Ai...AnA,r] ifn<k,AeN;
3. [Ai...Ak,r] [Ai ...Ak,q};
4. a[Aj... An, r] -> a[Ai... An, q) if n < k, a € T\
5. Z[Ai ...An,r] -> Z\Ax...An,q] i f n < f c ;
6. a[e,r]a —> [e,r] if a £ T;
7 . Z [e , r] - / .

We prove that C(M) = k-ieftC(G).

(C:) By induction on the number of rules constructed in 1 used in a sequence of
moves, we prove the following claim.

C l a i m 1. If ZaR[/3oAi0i... Anf3n, q]w =>* / , then • • • Anf3na w.

Proof. Basis: Only one rule constructed in 1 is used. Then,

Zafi[/Mi/?i • • • An0n,q}uw => Z((3QaiPi • • • anpna)R[e, r}uw =>* / ,

788 Tomás Masopust, Alexander Med una, aiid Jifí Simácek

where (A i , . . . ,A n) —> (a i , . . . , a n) G P, n < k, and P0a\P\ ...an0na G T*.
Therefore, Pq = • • • = Pn• = £, and ... ana = uw. Then,

A\ ... Anw fco4- uw.

Induction hypothesis: Suppose that the claim holds for all sequences of moves
containing no more than i rules constructed in 1.

Induction step: Consider a sequence of moves containing i + 1 rules constructed
in 1. Then,

ZaR[poAïp1...Al0l,q)w
=4> ZaR(f3oa\Pi • • •Oiif3i)R[e,r]w (by a rule constructed in 1)
=>* Za'[e,r]w' (by rule constructed in 6)
=>* Za"[p'0B\p[... BmP'm,r]w' (by rule constructed in 2)
=>• Za'^lP^BiP^... Bmf3'm, q]w' (by a rule constructed in 3, 4, or 5)

/

where a' G V*N U {e}, v G T*, a'vR = aR{P0alp-i... aiPi)R, and vw' = w. Then,
by the production (A\,..., A{) —> (« i , . . . , a;),

PQAXPX ... AiPia fco=> PoaiPi... an foot,

where \p0Aift ... < k,

poaipx... atpia = v(a')R = v p W , . . . BmP'm(a")R,

and, by the induction hypothesis,

Q :) First, we prove the following claim.

Cla im 2. If P ko=>* w, where P G NV*, then ZPR[e,r}w =>* f .

Proof. By induction on the length of derivations.

Basis: Let At... Anw a\... anw (c*i... an = a), where aw G k-ieft£(G),
and (A i , . . . , An) —» (a i , . . . , a„) G P, 1 < n < k. M simulates this derivation step
as follows.

vp'0Blp'l...Bmp,
rn{a")R vw'.

Hence, the inclusion holds. A

ZwRAn... A\ le, r\oew
=>n ZwR[A l • • • r\aw

ZwR[Ai... An,q]aw
=> ZwRaR[e, r]aw

(by rule constructed in 2)
(by a rule constructed in 4 or 5)
(by a rule constructed in 1)
(by rule constructed in 6)
(by the rule constructed in 7) =» /

Two Power-Decreasing Derivation Restrictions in Generalized SCGs 789

Induction hypothesis: Suppose that the claim holds for all derivations of length i
or less.

Induction step: Consider a derivation of length i + 1. Let

ß0B1ß1... Bißa ßoaißt... aißa k

where <pw £ k-ujtC(G), ßoBiß^... Btßi £ N+, and either |/?0Pi/?i • • • Btßi\ = k,
or \ß0Bi... Bißi| < k, ßoaißi • • • aißa = <pil>, where tp € T*, V € NV* U {e}, and
7 e TV* U{e}. Then,

Z(ß0B1ß1...Blßn)R\£,r]<pw
=>* ZjR[ß0Bißx... Bißi,r]ipw (by rule constructed in 2)
=> Z^R{ßoB\ßi ... Bißi, q]tpw (by a rule constructed in 3 or 4)
=> Z(filj-f)R[£,r}ipw (by a rule constructed in 1)
=>* Z(i/jj)R[e, r]w (by a rule constructed in 6)
=>* / (by the induction hypothesis)

Hence, the claim holds. A

Now, if S => ua =4-* uw, where u £ T* and a £ NV*, then Z[S,q]uui =>•
Z(ua)R[e,r]uw =>* ZaR[e,r]w =>* / , by rules constructed in 1 and 6 and the
previous claim. For a = e, Z[S,q\u => ZuR[e,r]u =>* / . Hence, the other inclusion
holds. •

T h e o r e m 2. RE = nonterSC(l).

Proof. Let L C {a i , . . . ,an}* be a recursively enumerable language. There is an
extended Post correspondence problem,

E=({(ui,v1),...,(ur,vr)},(zai,:..,zaJ),

where Uj, Vi, zaj £ {0,1}*, for each 1 < i < r, 1 < j < n, such that C(E) = L\ that
is, w = bi... bk £ L if and only if w £ C(E). Set V = {S, A, 0,1, $} U T. Define
the S C G G = {V, T, P, S) with P constructed as follows:

1. For every a £T, add

a) (S) -» ((z a) R Sa) , and
b) (5) ((z a) R A a) to P ;

2. a) For every (Ui,Vi) £ E, 1 < i < r, add (̂ 4) —> ((Ui)RAvi) to P;
b) Add (A) ($$) to P ;

3. Add

. a) (0,$,$,0) ($,£,£, $),
b) (1, $, $, 1) —> ($,£,£, $), and
c) ($) -» (e) to P .

790 Tomás Masopust, Alexander Med una, aiid Jifí Simácek

Claim 3. Let w\,w2 € {0,1}*. Then, wi%$w2 =>*G e if and. only if wi = (w2)R.

Proof. If : Let w\ — (w2)R = bi . . . bk, for some k > 0. By productions (3a) and
(3b) followed by two applications of (3c), we obtain

bk • • • b2b\$$bib2... bk => bk...b2m2...bk
=>* bkUbk $$ =>. $ => e.

Therefore the if-part of the claim holds.

Only if: Suppose that |wi| < |ui2|. We demonstrate that

wi$$w2 =>q e implies w\ = (ui2)R

by induction on fc = |.

Basis: Let k = 0. Then, vj\ = e and the only possible derivation is

s $ u : 2 => %W2 [(3c)j => w2 f(3c)|.

Hence, we can derive e only if wi = (w2)R = e.

Induction Hypothesis: Suppose that the claim holds for all w\ satisfying |u;i| < k
for some k > 0.

Induction Step: Consider wia$$bw2 with a ^ b, a,b £ {0,1}. If w\ = wubwi2,
wii ,w i 2 £ {0,1}*, then either (3a) or (3b) can be used. In either case, we obtain

wia$$bw2 u;ii$ii;i2CMU2i$W22,

where bw2 = w2\bw22, w2\,ui22 £ {0,1}*, and w\2aw2\ £ N+ cannot be removed
by any production from the sentential form. The same is true when w2 = w21 aw22,
w21,u)'22 £ {0,1}*. Therefore, the derivation proceeds successfully only if a = b.
Thus,

u;ia$$6u;2 => wi$$KJ2 =>* £,

and from the induction hypothesis,

w\ = (W2)r.

Analogously, the same result can be proved for |u;i| > 1, which implies that the
only-if part of the claim holds.

Therefore, the claim holds. A

Two Power-Decreasing Derivation Restrictions in Generalized SCGs 791

Examine the introduced productions to see that G always generates b\.. ,bk £
C(E) by a derivation of this form:

S => MRSbk

=> (zbk)R(zbk-1)RSbk-ibk

(zhk)R...(zb2)RSb2...bk
=» (zbk)R ...(zb2)R{zbl)RAb1b2...bk
=> (zbk)R...{zbl)R(uSl)RAvSlb1...bk

* (zbk)R...(zbl)R(uSl)R...(uSl)RAvSl...vSlb1...bk
(z 6 J R . . . (2 : b l) f i (u s ,) i i . . . (u S l) i i $ $ i ; S l . . . t > a i h i . . . 6 f c

= (ttSl ...uSlzbl ... zbk)R$$vSl ...vSlbi ...bk
=>* 61 ...b

f c
.

Productions introduced in steps 1 and 2 of the construction find nondeterminis-
tically the solution of the extended Post correspondence problem which is sub-
sequently verified by productions from step 3. Therefore, w £ L if and only if
w £ C(G) and the theorem holds. •

T h e o r e m 3. Let m and h be positive integers. Then, mCF = nonterSC(m, h).

Proof. Obviously, m CF C nonterSC(m,h).
We prove that nonterSC(m,h) C mCF. Let a = x0y\xi.. ,ynxn, where Xi £

T*, yi £ N+, for 0 < i < n, and for all 0 < i < n, Xi ^ e. Define f(a) =
xo(y\)x\... {yn)xn, where (y¿) is a new nonterminal, for all 0 < i < n. Let Gsc —
(V,T,P,S) be a generalized scattered context grammar. Introduce a context-free
grammar GCF = (V',T,P', (5)), where V = {(7) : 7 € N*,l < \f\ < h} U T and
P' is constructed as follows:

1. for each 7 = xo^ixi .. .a„xn, where x^ £ N*, a* £ N+, 1 < J-yJ < h, and
(qi, . . . ,an) —> (/3i,.. . ,Pn) £ P, add (7) f(xo0ix1... j3nxn) to P'.

Claim 4. Let S w in GSc, where w £V*, k>0. Then, (S) m=t>k f(u) in
GCF•

Proof. By induction on k = 0 , 1 ,

Basis: Let k = 0, thus S S in GSC• Then, (S) m=>° {S) in GCF• As
f(S) = {S), the basis holds.

Induction hypothesis: Suppose that the claim holds for all 0 < m < k, where k is
a non-negative integer.

Induction step: Let S (pyip tpy'tp in Gsc, and the last production
applied during the derivation is (a i , . . . , a„) —» (Pi,..., 0n), where <f> £ V*TU {e},
7 = xootixi... anxn, ip £ TV* U {e}, 7' = x0PiXi... pnxn, aitXi £ N*, and
Pi £ V*. By the induction hypothesis,

(5) ro^fe f (W) .

792 Tomás Masopust, Alexander Med una, aiid Jifí Simácek

By the definition of / , <j>, and tp, f{<H'4)) = /(0)(7)/WO- Hence, we can use the
production (7) —» /(7') G P' introduced in 1 in the construction to obtain

№h)fbl>) m=> f W M f M -

By the definition o f / , 0, and -0, f{4>)f(l')f{i>) = f(<tH'il))- As a result,

(5) №b)m hm)

and, therefore, (S) TO=>fc+1 /(07'VO and the claim holds for k + 1. A

Cla im 5. Let (S) ro=>fe u in GCF, where u> G V", k > 0. Then, S /-J(u)
inGsc-

Proof. By induction on k = 0 , 1 ,

Basis: Le t k = 0, t h u s (S) M=>° (S) in GCF• T h e n . 5 S in GSC• A s
/ - i ((5)) = S, the basis holds.

Induction hypothesis: Suppose that the claim holds for all 0 < m < k, where k is
a non-negative integer.

Induction step: Let {S) m=>k 0(7)1/' m=> 4>"('il> in GCF> and the last production ap-
plied during the derivation is (7) —> 7', where <J> G V*T\J {e}, 7 — XQQ\X\ ... anxn,

G TV* U {¡r}, 7' = f[x0pixi ...Pnxn), ai,Xi G N*, and ft G V"*. By the
induction hypothesis,

s r H ^) *) -
By the definition of f , <j>, and xjj, / _ 1 (<f>{j)il>) = f~l(4>)lf~l{"4>)- There exists
(an,. ' . . , a n) -» (f t , . ..,/?„) € P by 1, thus

r\<t>)if-'«0 ^ r 1 w r l h ') r * WO-

By the definition o f f , <f>, and ip, / _ 1 (0) / _ 1 (7 ') / _ 1 (' 0) = f~H<t>l'^)- As a result

s ^ r H t f b / ^ W O ^ r W t f O
and, therefore, S f~1(<t)l'ip) and the claim holds for k+ 1. A

Hence, the theorem holds. •

References

[1] Baker, B. S. Context-sesitive grammars generating context-free languages. In
Nivat, M., editor, Automata, Languages and Programming, pages 501-506.
North-Holland, Amsterdam, 1972.

[2] Book, R. V. Terminal context in context-sensitive grammars. SI AM Journal
of Computing, 1:20-30, 1972.

Two Power-Decreasing Derivation Restrictions in Generalized SCGs 793

[3] Geffert, V. Context-free-like forms for the phrase-structure grammars. In
Chytil, M., Janiga, L., and Koubek, V., editors, Mathematical Foundations of
Computer Science, volume 324 of Lecture Notes in Computer Science, pages
309-317. Springer-Verlag, 1988.

[4] Ginsburg, S. and Greibach, S. Mappings which preserve context-sensitive lan-
guages. Information and Control, 9:563-582, 1966.

[5] Greibach, S. and Hopcroft, J. Scattered context grammars. Journal of Com-
puter and System Sciences, 3:233-247, 1969.

[6] Matthews, G. A note on symmetry in phrase structure grammars. Information
and Control, 7:360-365,1964.

[7] Matthews, G. Two-way languages. Information and Control, 10:111-119, 1967.

[8] Meduna, A. A trivial method of characterizing the family of recursively enu-
merable languages by scattered context grammars. EATCS Bulletin, pages
104-106, 1995.

[9] Rozenberg, G. and Salomaa, A., editors. Handbook of Formal Languages,
volume 1. Springer-Verlag, Berlin, 1997.

[10] Salomaa, A. Formal languages. Academic Press, New York, 1973.

Received 18th July 2007

Acta Cybernetica 18 (2008) 795-782.

Partially Ordered Pattern Algebras

Endre Varmonostory*

Abstract

A partial order ^ on a set A induces a partition of each power An into
"patterns" in a natural way. An operation on A is called a ^-pattern opera-
tion if its restriction to each pattern is a projection. We examine functional
completeness of algebras with ^-pattern fundamental operations.

Keywords: majority function, semiprojection, ternary discriminator, dual
discriminator, functionally completeness

1 Preliminaries
A finite algebra A = (A; F) is called functionally complete if every (finitary) opera-
tion on A is a polinomial operation of A . An n-ary operation / on A is conservative
if f(xi,... ,xn) G {x\,... ,xn} for all x\,... ,xn G A. An algebra is conservative if
all of its fundamental operations are conservative.

A possible approach to the study of conservative operations is to consider them
as relational pattern functions or p-pattern functions. Given a k-ary relation p C
Ak, two n-tuples (xi,... ,xn), (y\,..., yn) G An are said to be of the same pattern
with respect to p if for all ..., G {1 , . . . , n} the conditions (x ^ , . . . ,Xik) G p
and (yij,..., yik) G p mutually imply each other. An operation / : >1™ —» A is a
p-pattern function if f(xi,... ,xn) always equals some Xi, i G { 1 , . . . , n } where i
depends only on the p-pattern of (x\,... ,xn). In fact, any conservative operation
is a p-pattern function for some p — see [11]. An algebra A is called a p-pattern
algebra if its fundamental operations (or equivalently its term operations) are p-
pattern functions for the same relation p on A. Several facts about functional
completeness were proved, for the cases where p is an equivalence [9], a central
relation [10, 14], a graph of a permutation [13], a bounded partial order [12], or a
regular relation [8] on A. These relations appear in Rosenberg's primality criterion
[6].

In particular if is a partial order or a linear order on A, then a ^-pattern
algebra is called a partially ordered pattern algebra or a linearly ordered pattern
algebra. Throughout the paper such algebras will be called pattern algebras.

'University of Szeged, Gyula Juh&sz Faculty of Education, Hattyas sor 10., H-6725 Szeged,
Hungary. E-mail: varmonoSjgypk.u-szeged.hu

796 Endre Vásmonostory

The aim of this article is to continue research on functional completeness of
finite partially ordered pattern algebras.

In case when the relation p on A is the identity the p-pattern algebra is called
pattern algebra. The basic operations of pattern algebras are called pattern func-
tions. Pattern functions were first introduced by Quackenbush [5]. B. Csákány [1]
proved that every finite pattern algebra (A ; f) with \A\ > 3 is functionally com-
plete if / is an arbitrary nontrivial pattern function. The most known examples
of pattern algebras are (A; f) and (A; g) where / is the ternary discriminator [4]
(f(x,y,z) = z if x = y and f(x,y,z) = x if x ^ y) and g is the dual discriminator
[2] (g(x, y,z)=xiix = y and g(x, y, z) = z if x ± y).
We need the following definitions and results.

An n-ary relation p on A is called central iff p ^ A" and

(a) there exists c £ A such that (a i , . . . , a„) £ p whenever at least one a1 = c
(the set of all such c's is called the center of p);

(b) (a i , . . . , an) £ p implies that . . . , ann) £ p for every permutation 7r of
{ 1 , . . . , n} (p is totally symmetric)-,

(c) (a i , . . . , an) £ p whenever ai = a j for some i ^ j (p is totally reflexive).

Let A be a finite and nonempty set, k,n > 1, / a k-ary function on A and
p C An an arbitrary n-ary relation. The operation / is said to preserve p if p is a
subalgebra of the nth direct power of the algebra (A; /) ; in other words, / preserves
p if for any k x n matrix M with entries in A, whose rows belong to p, the row
obtained by applying / to the columns of M also belongs to p. Adding this extra
row to M we get a so-called /-matrix [3].

A ternary operation / on A is a majority function if f(x,x,y) = f(x,y,x) =
f(y, x, x) = x holds for all x, y £ A. An n-ary ¿-th semiprojection on A (n > 3,
1 < i < n) is an operation / with the property that f(x\,x2,. • •, xn) = Xi when-
ever at least two of the elements equal. The following proposition
was obtained in [13] from Rosenberg's fundamental theorem on minimal clones [7].

P ropos i t ion 1. The clone of the term operations of every nontrivial finite p-
pattern algebra A with at least three elements contains a nontrivial binary p-pattern
function, or a ternary majority p-pattern function, or a nontrivial p-pattern func-
tion, which is a semiprojection.

Now we formulate the following theorem (which was got from Proposition 4 in [13]).

T h e o r e m 2. Let A = (A; /) be a finite p-pattern algebra with |A| > 3. The algebra
(A; /) is functionally complete i f f

(a) f is monotonic with respect to no bounded partial order on A,

(b) f preserves no binary central relations on A,

(c) f preserves no nontrivial equivalences on A.

Partially Ordered Pattern Algebras 797

2 Results
T h e o r e m 3. Let (A; be a finite poset with at least three elements that has a
least or a greatest element. If f is an arbitrary binary pattern function on A,
then the algebra (A\ f) is not functionally complete.

Proof. Let a be the least or the greatest element of (A\ ;<). Let p be the nontrivial
equivalence on A with blocks {a}, A\{a}. Now f preserves p and apply Theorem 2.

•
R e m a r k . Let n = {0 ,1 , . . . , n — 1} be an at least three-element set, and let be
a linear order on n such that 0 X i ^ n — 1 holds for each i G n. If a, b € n and
a ^ b but а ф b then we write a -< b. Now the following statement is true.

If 7г and a are two different permutations of the set {1 ,2 , . . . , /с} then the /c-tuples
(gitt, а2тг, • • • > актг), (а\а ,й2а, • • •, ako) are not in the same pattern with respect to

where a j , a 2 , • • • ,a k 6 n with ai -< a2 • • • -< a k .

Now we can formulate the following theorem.

T h e o r e m 4. Let (A\ •<) be a finite linearly ordered set with \A\ = n > 4, and let f
be a pattern function that is a majority function on A. Then the algebra (A \ f)
is functionally complete i f f for arbitrary elements a\, «2, аз G A with a\ ^ а2 -< a 3

exactly one of the following statements holds:

(a) there exist permutations n,a of the set {1,2,3} for which the values
/(ai,a2,a3), /(а^,а27Г,a37r), /(а1ст,а2ст,a3a) are pairwise distinct,

(b) /(а17г,а27г,аз7г) G {ах,аз} for every permutation тг of {1,2,3}, and there
exists a permutation tt' of{l, 2,3} for which f(a\„>, а2Л',азл>) ф /(аг,а2,аз)-

Proof. We will use Theorem 2. We may suppose, without loss of generality, that
A = n. First, we prove that if one of the conditions (a) or (b) hold for the algebra
(n; /) then / preserves neither the bounded partial orders nor the binary central
relations on n. We need the following claims.

Claim. Let < be an arbitrary bounded partial order on n with the least element m
and the greatest element M, then f does not preserve <.

Proof of Claim. If a G n, а ф m, M, then f(m, a, M) = m or / (m , а, M) = M or
/ (m , a , M) = a. Consider the following /-matrices

m m m a
a a a a
a M M M

f(m,a,a) f(m,a,M) f(m,a,M) f(a,a,M) „

where / (m , a, a) = f(a, а, M) = a. If / (m, a, M) = m, then the first /-matrix
shows that / does not preserve <. If f(m, a, M) = M, then by the second /-matrix
/ does not preserve <. If f(m,a,M) = a, then by (a) or (b) we get that at least

798 Endre Vásmonostory

one of the elements f(m,M,a), f(M,m,a), f(M,a,m), f(a,m,M), f(a,M,m) is
equal to m or M. In this case we can get the suitable /-matrix by permuting the
first three rows of one of the two /-matrices above. Now from this /-matrix we get
that / does not preserve <. The proof of the claim is complete.

Claim. If T is an arbitrary binary central relation on n, then f does not preserve
T.

Proof of Claim. If c £ n is a central element of r and a, b £ n so that (a, b) # r ,
then consider the following matrices

a a a a
b b b b
c b c a

f(a,b,c) f(a,b,b) f(a,b,c) f(a,b,a)

where f(a,b,b) = b and f(a,b,a) = a. If / (a ,6 ,c) = a, then the first / -matrix
shows that / does not preserve r . If / (a , 6, c) = b, then the second /-matrix will be
used. If / (a , b, c) = c, then by (a) or (b) we see that f(a,c,b), f(b,a,c), f(b,c,a),
f(c, a, b) or f(c, b, a) is equal to a or b. Now we can also get the suitable /-matrix
by permuting the first three rows of one of the two /-matrices above. In this case
from this /-matrix we get that / does not preserve r . The proof of the claim is
complete.

Now we will prove that if one of the conditions (a) or (6) holds for the algebra
(n; /) , then / does not preserve the nontrivial equivalences on n.

Claim. If p is an arbitrary nontrivial equivalence on n, then f does not preserve
P•

Proof of Claim. Now there exist elements a, b, c £ n with a ^ b, (a,b) £ p,
(a, c) 0 p.
First, suppose that (a) holds. If f (a , b, c) = c, then we can use the following
/-matrix to show that / does not preserve p

a a
a b
c c
a c

where / (a , a, c) = a. If / (a , b,c) = a or / (a , 6, c) = b, then by (a) / (a , c, 6), f(b, a, c),
/(6,c, a), f(c,a,b) or / (c ,a , b) equals c. In this case we get the suitable /-matrix
by permuting the first three rows of the /-matrix above. From this /-matrix we
get that / does not preserve p.

Partially Ordered Pattern Algebras 799

Now we suppose that (b) is true.

(i) First, we suppose that a -< b -< c. If / (a , 6, c) = c, then the /-matrix above
does the job. If f(a,b,c) = a, then by (b) / (a ,c , 6), /(6, a, c), /(6, c,a),
/ (c , a, 6) or / (c , 6, a) equals c. We get the suitable /-matrix by permuting the
first three rows of the /-matrix above.

(ii) Secondly, we suppose that c -< a -< b. If f(c,a,b) = c then we get the
suitable /-matrix by permuting the first three rows of the /-matrix above.
If / (c , a, b) = b, t hen by (6) f(c,b,a), f(a,b,c), f(a,c,b), f(b,a,c), f(b,c,a)
equals c. For example, if / (c , b, a) = c, then the following /-matrix shows
that / does not preserve p

c c
b a
a a
c a .

In the remaining cases we get the suitable /-matrices by permuting the first
three rows of the /-matrix above.

(iii) If there do not exist elements a,b,c £ n with a ^ b, (a, b) £ p, (a, c) £ p for
which a ^ b - < c o r c < a ^ b hold, then it is easy to see that p has a unique
nonsingleton block, namely {0, n — 1}. Now > 4 and we can suppose that
a = 0, b = n — 1 and {c\,..., c„_2} = n \ {a, b}.

First, assume f(a,c 1,02) = a. If f(b, 01,02) = cj, then the following /-matrix

a b
Ci Ci
£2 C2_
a c\

will be used. If f(b,c 1,02) = b, then f(c2,a,ci) = C2 since the patterns
(6, c\, C2) and (02, a, ci) are the same with respect to We need the following
/-matrices

C2 c2
a b
£1 C_
C2 Ci

C2 c2
a b
Cl Cj_

c2 b

If /(c2,i>,ci)
If f{c2,b, a)

= Ci, then the first /-matrix shows that / does not preserve p.
= b, then the second /-matrix does the job.

800 Endre Vásmonostory

Secondly, assume / (a , C\, c2) = c2. Now we will use the following /-matrices

a b a b
C\ Cl Cl Cl
c2 c2 C2 c2

c2 Cl C2 b

If f(b,c\,c2) = ci, then the first /-matrix shows that / does not preserve p.
If f(b,ci,c2) = b, then the second /-matrix will be used.

The proof of the claim is complete.

From now we show that the algebra (n; /) is not functionally complete if (a)
and (b) are not satisfied. Further also suppose that ai , a2, a 3 £ n and ai < a2 •<
We have the following three cases:

If a; = f (a i i a 2 , a 3) = f (a i n , a 2 v , a 3 7 r) equalities hold for every permutation 7r
of { 1 , 2 , 3 } , then / preserves one of the three binary central relations T\, T2, T3 on
A defined below:

For 2 = 1, let the center of r i be C = {0 ,1 , . . . , n — 3} and (n - 2, n - 1) ^ T\,
for i — 2, let the center of T2 be C — {1 ,2 , . . . , n — 2} and (0, n — 1) ^ T2,
for i = 3, let the center of T3 be C = {2 ,3 , . . . , n - 1} and (0,1) ^ r3 .
Now let / (a i T , i ^ , a37r) € {«1,112} be for every permutation ir of {1,2,3} (or let

f(a\v,a2li,azn) £ {a2, a 3 } be for every permutation n of {1,2,3}), and suppose that
there exists a permutation n ' of {1,2,3} for which /(aiw', a2Tr', a-3-n') ^ /(ffli, a3)-
Then it is easy to show that / preserves the nontrivial equivalence with a unique
nonsingleton block, namely {0 ,1 , . . . , n — 2} (or {1 ,2 , . . . , n — 1}).

•

Propos i t ion 5. Let A = {0,1,2} be a linearly ordered set with 0 -< 1 -< 2, and
let f be a ^-pattern function, which is a majority function on A. Then the algebra
(A; /) is functionally complete i f f there exist permutations w, a of A for which the
values / (0 ,1 ,2) , /(07r, l7r, 2ir), f(0a,la,2a) are pairwise distinct.

Proof. Suppose that there exist permutations n, a of A for which the values
/ (0 , 1 , 2) , /(07T, l7r, 27T), / (OCT, ICT, 2a) are pairwise distinct. Then the algebra (A; f)
is functionally complete. (Let us observe that the proof of this statement is included
in the proof of Theorem 4, since in the case (a) of Theorem 4 every /-matrix has
exactly three elements.)

If / (0 ,1 ,2) = /(07r, l7r, 27t) for every permutation ir of A, then we obtain that
/ preserves one of the three binary central relations Ti,T2,T3 on A defined below:

For / (0 ,1 ,2) = 0 let the center of n be {0}, and (1,2) £ n ,
for / (0 ,1,2) = 1 let the center of T2 be {1}, and (0,2) 0 T2,
for / (0 ,1 ,2) = 2 let the center of r3 be {2}, and (0,1) £ r3 .

Partially Ordered Pattern Algebras 801

Now let assume that at least one of the inclusions: /(On, l7r, 2ir) G {0,1},
•/(07r, l7r, 2n) G {1,2}, /(07T, l7r, 2ir) G {0,2} holds for every permutation n of A,
and suppose that there exists a permutation 7r' of A for which f(0n', l7r', 27T') ^
/ (0,1,2) . Then it is also easy to observe that / preserves the nontrivial equivalence
with unique nonsingleton block, namely {0,1}, {1,2} or {0,2}. Using Theorem 2,
the proof is complete. •

T h e o r e m 6. Let (A, <) be an arbitrary finite poset with 3 < |A|. Let f be a
^-pattern function, which is a majority function on A, and for which there exist
permutations ir, a of {1,2,3} such that the values f(a\,a2,0,3), f(a\7r,a27r, <23)̂,
f {a\a, a2a, a3a) are pairwise distinct, then the algebra (A;f) is functionally com-
plete.

Proof. Such an operation / always exists. (For example: f(x,x,y) = f(x,y,x) =
f(y, x, x) = x, and / (x , y,z) = x if x, y, z are pairwise different). Now it is easy to
prove that such operations do not preserve the bounded partial orders, the binary
central relations and the nontrivial equivalences on A. Applying Theorem 2, the
proof is complete. •

T h e o r e m 7. Let (A; be an arbitrary finite poset with 3 < |A|. Then for every k
with 3 < k < | A\ there exists a k-ary ~<-pattern function f , which is a semiprojection
and the algebra (A; /) is functionally complete.

Proof. If 3 < k < |A|, then the /c-ary ^-pattern function

x\ if the elements X\,X2,. • •, xk are pairwise distinct and
fk(xi,X2, . . . ,Xk) = { I t - l / l t i

^ xk otherwise

is a semiprojection on A. By Lemma 7 of [3] f k has no compatible bounded partial
order on A.

Let T be an arbitrary binary central relation on A, let c G A be a central element
of r , and let a, b G A be so that (a, b) 0 r . We will need the following matrices

a a a a
d d d. d

e e e e
c b b b
b b c b
a b a

where the entries above the line in the first column are pairwise distinct in both
/¿-matrices.

If c -ft b, then we will use the first /¿-matrix. If c -< b, then the second /¿-matrix
will work. In both cases we get that f k does not preserve the relation r .

802 Endre Vásmonostory

Let p be an arbitrary nontrivial equivalence, and let a,b,c € A with a yk b,
(a, b) £ p and (a, c) ^ p. Now we will use the following /¿-matrix to show that fk

does not preserve p

c c
d d

e e
a a
b a
c a

where the entries above the line in the first column of the /¿-matrix are pairwise
distinct. Using Theorem 2 we get that the algebra (A\ fk) is functionally complete.

•

R e m a r k . Let (A; ;<) be a finite linearly ordered set with 3 < and let / be a
nontrivial fc-ary ^-pattern function, which is a semiprojection on A. If for any ele-
ments d i , . . . ,ak € A with ai -<. . . -< a*, and for any permutations TT of {1, .. .,&}
one of the following conditions is satisfied:

(a) ^ = f{ain,..., akn), 3 < k < |J4|, or

(b) /(«itv,• • • ,akTr) £ { a i , a 2) . . . ,a fc_2}, 4 < k < |A|, or

(c) f(ai„,... ,ak-r) G {iz2, A3,...,ttfc—i}, 4 < k < or

(d) f(ai„,..., ak7r) £ {a3, a4, •. •, ak}, 4 < k < \A\

then the algebra (A\ /) is not functionally complete.

Proof of Remark. We may suppose, without loss of generality, that A = n. If
condition (a) holds, then / preserves one of the binary central relation n , r2 , on
A defined below:

(1) for i = 1, let the center of r j be C = {0 ,1 , . . . , n — 3} and (n — 2, n — 1) ^ T\ ,

(2) for 1 < i < k, let the center of r2 be C = {1 ,2 , . . . , n — 2} and (0,n — 1) ^ r2 ,

(3) for i = k, let the center of r3 be C — {2 ,3 , . . . , n — 1} and (0,1} ^ r3 .

It is also easy to see that if (b) holds, then / preserves the central relation n . If
(c) (or (d)) holds, then / preserves the central relation r2 (or T3). Using Theorem
2, the proof of the remark is complete.

•

Partially Ordered Pattern Algebras 803

Let (A; ;<) be an arbitrary finite bounded poset with at least three elements.
Define the following two operations on A:

\ iz if xd:V,
I x otherwise,

,, N \x if x l y ,
I z otherwise.

The operation t is the ternary order-discriminator, and d is the dual order-discrimi-
nator. The algebras (A\t) , (A; d) are called order-discriminator algebras. In [12]
we proved that the order-discriminator algebras (A; t) and (A; d) are functionally
complete. The following theorem is a generalization of this result.

Theorem 8. If (A\ X) is an arbitrary finite poset with at least three elements, then
the order-discriminator algebras (A\ t) and (A; d) are functionally complete.

Proof. It is sufficient to prove that t and d do not preserve the relations (a), (6),
and (c) in Theorem 2.

(a) Let < be an arbitrary bounded partial order on A with the least element m
and the greatest element M. Now we show that the operations t, d do not preserve
the bounded partial order < on A. Let a e A be an arbitrary element different
from m and M. The following two i-matrices and two (¿-matrices will be used

m m a M
m a m M
M M m m
M m a m

a M a a
a a a M
m m m m
a rn a m

If a ~< m then the first t-matrix, if a -fi m then the second i-matrix shows that t
does not preserve <. If a -< M then the first d-matrix, if a yk M then the second
d-matrix shows that d does not preserve

(b) Let T be an arbitrary central relation on A, and let a, b, c € A so that a ^ b,
(a, b) £ T and c is a central element of r . We may suppose that a -ft b. Consider
the following i-matrix and (¿-matrix

a c a a
b e a c
c b c b
a b a b .

The first i-matrix shows that the operation t does not preserve r . If a ^ c then
by the d-matrix we see that the operation d does not preserve r . If a ^ c, then by
permuting the first two rows of the (¿-matrix we get again that d does not preserve r .

804 Endre Vásmonostory

(c) Let e be an arbitrary nontrivial equivalence on A, and let a, b, c £ A so
that (a, b) £ £ and (a, c) e. We will need the following two ¿-matrices and two
d-matrices:

a b a a a b a a
a a a b a a a b
c c c c c c c c
c b c a a c a c

If a -< b, then by the first t-matrix, if a -fi b, then by the second i-matrix we get that
the operation t does not preserve the relation e. If a -< 6, then the first (¿-matrix, if
a 7i. b, then the second d-matrix does the job. In all cases we see that the operations
t and d do not preserve e. •

References
[1] Csákány, B. Homogeneous algebras are functionally complete. Algebra Uni-

versalis, 11:149-158, 1980.

[2] Fried, E. and Pixley, A.F. The dual discriminator function in universal algebra.
Acta Sei. Math., 41:83-100, 1979.

[3] Pálfy, P.P., Szabó, L., and Szendrei, A. Automorphism groups and functional
completeness. Algebra Universalis, 15:385-400, 1982.

[4] Pixley, A.F. The ternary discriminator function in universal algebra. Math.
Ann., 191:167-180, 1971.

[5] Quackenbush, R.W. Some classes of idempotent functions and their composi-
tions. Coll. Math. Soc. J. Bolyai, 29:71-81, 1974.

[6] Rosenberg, G. Uber die functionale Vollständigkeit in den mehrwertigen
Logiken (Structur der Functionen von mehreren Veränderlichen auf eudlichen
Mengen). Rozpravy Ceskoslovenské Akad. Ved. RadaMath. Pfirod. Véd., 80:3-
93, 1970.

[7] Rosenberg, G." Minimal clones I: The five types. Coll. Math. Soc. J. Bolyai,
43:635-652, 1981.

[8] Szabó, L. and Vármonostory, E. On characteristically simple conservative
algebras. Publicationes Mathematicae, 57:425-433, 2000.

[9] Vármonostory, E. Relational pattern functions. Finite Algebra and Multiple-
valued Logic (Proc. Conf. Szeged, 1979), Coll. Math. Soc. Bolyai, 28:753-758,
1981.

[10] Vármonostory, E. Central pattern functions. Acta Sei. Math., 56:223-227,
1992.

Partially Ordered Pattern Algebras 805

[11] Varmonostory, E. Generalized pattern functions. Algebra Universalis, 29:346-
353, 1992.

[12] Varmonostory, E. Order-discriminating operations. Order, 9:239-244, 1992.

[13] Varmonostory, E. Permutation-pattern algebras. Algebra Universalis, 45:435-
448, 2001.

[14] Varmonostory, E. Totally reflexive, totally symmetric pattern algebras. Math-
ematica, 47(72)(2):223-300, 2005.

Received 19th February 2007

CONTENTS

Intel l igent Sys tems 2007 — Second Sympos ium of Young Scient is ts 557
Preface - 559
Levente Hunyadi: Prosper: Developing Web Applications Strongly Integrated

with Prolog 561
Barna Kovács: Improving Content Management - A Semantic Approach . . 579
Róbert Pántya and László Zsakó: Computer-Based Intelligent Educational

Program for Teaching Chemistry 595
István Szita and András Lőrincz: Factored Value Iteration Converges 615
László A. Jeni, György Flórea, and András Lőrincz: InfoMax Bayesian Learn-

ing of the Furuta Pendulum 637
Viktor Gyenes, Ákos Bontovics, and András Lőrincz: Factored Temporal

Difference Learning in the New Ties Environment 651
Evgeny Lomonosov and Gábor Renner. An Evolutionary Algorithm for Sur-

face Modification 669
Péter Kárász: investigating the Behaviour of a Discrete Retrial System . . . 681

Regula r P a p e r s 695
Miklós Bartha and Miklós Krész: Splitters and Barriers in Open Graphs

Having a Perfect Internal Matching 697
Pedro Baltazar. M-Solid Varieties of Languages 719
Mira Balaban and Steffen Jurk: Effect Preservation in Transaction Processing

in Rule Triggering Systems 733
Csanád Imreh and Masami Ito: On Monogenic Nondeterministic Automata . 777
Tomás Mas opust, Alexander Meduna, and Jifi Simácek: Two Power-Decreas-

ing Derivation Restrictions in Generalized Scattered Context Grammars . 783
Endre Vármonostory: Partially Ordered Pattern Algebras 795

ISSN 0324—721 X

Felelős szerkesztő és kiadó: Csirik János

