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Error-Bounded and Feature Preserving Surface
Remeshing with Minimal Angle Improvement

Kaimo Hu, Dong-Ming Yan, David Bommes, Pierre Alliez and Bedrich Benes

Abstract—The typical goal of surface remeshing consists in finding a mesh that is (1) geometrically faithful to the original geometry, (2)
as coarse as possible to obtain a low-complexity representation and (3) free of bad elements that would hamper the desired
application. In this paper, we design an algorithm to address all three optimization goals simultaneously. The user specifies desired
bounds on approximation error δ, minimal interior angle θ and maximum mesh complexity N (number of vertices). Since such a
desired mesh might not even exist, our optimization framework treats only the approximation error bound δ as a hard constraint and the
other two criteria as optimization goals. More specifically, we iteratively perform carefully prioritized local operators, whenever they do
not violate the approximation error bound and improve the mesh otherwise. Our optimization framework greedily searches for the
coarsest mesh with minimal interior angle above θ and approximation error bounded by δ. Fast runtime is enabled by a local
approximation error estimation, while implicit feature preservation is obtained by specifically designed vertex relocation operators.
Experiments show that our approach delivers high-quality meshes with implicitly preserved features and better balances between
geometric fidelity, mesh complexity and element quality than the state-of-the-art.

Index Terms—surface remeshing, error-bounded, feature preserving, minimal angle improvement, feature intensity.

F

1 INTRODUCTION

SUrface remeshing is a key component in many geom-
etry processing applications such as simulation, de-

formation, or parametrization [1]. While many remeshing
techniques are goal-specified, a common goal is to find a
satisfactory balance between the following three criteria:

• The output mesh should be a good approximation
of the input, making the geometric fidelity, usually
measured as the approximation error, a key require-
ment for most applications.

• The quality of mesh elements is crucial for robust
geometry processing and numerical stability of simu-
lations, which requires fairly regular meshes in terms
of both geometry and connectivity. Particularly, a
lower bound on the minimal angle is vital for many
simulation applications [2].

• Mesh complexity, measured as the number of mesh
elements, is important for an efficient representation
of complex shapes. Since mesh complexity usually
conflicts with geometric fidelity and element quality,
a “just enough” resolution for the required element
quality and geometric fidelity should be the goal.

However, to the best of our knowledge, only a few
approaches fulfill all of the above criteria. Most existing
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methods that generate meshes with high element quality
often require high mesh complexity or introduce high
approximation error [3], [4]. The error-driven methods,
while preserving the results in controllable geometric
fidelity and low mesh complexity, do not deal with the
element quality [5], [6]. In addition, many approaches
require the sharp features to be specified or detected in
advance [7]–[9], which is usually difficult and error-prone.

We propose an approach that controls both the ap-
proximation error and element quality simultaneously. Our
approach only requires the user to specify the error-bound
threshold δ, the desired minimal angle θ and an upper
bound on the mesh complexity N , measured as the number
of vertices. In an initial phase our algorithm coarsens the
mesh as much as possible while respecting the error-bound
δ. It then iteratively improves the minimal angle of the
mesh until the desired bound for θ or N is met. Since all
atomic operations respect the error-bound δ, the result is
guaranteed to satisfy geometric fidelity. In contrast, low
mesh complexity and high quality of mesh elements are
optimization goals, which depending on the model and
the desired bounds might or might not be met. However,
experiments show that given a reasonable vertex budget N
and an angle bound θ ≤ 35◦ our algorithm is usually able to
reach all three goals simultaneously. Moreover, our method
preserves geometric features like sharp creases and ridges
without explicitly specifying or detecting them.

Our method is inspired by the remeshing methods that
proceed by applying a series of local operators such as edge
split, edge collapse, edge flip, and vertex relocate [10], [11].
Contrary to the existing methods that iteratively apply these
operations sequentially and globally, our core algorithm
employs a dynamic priority queue to maintain all angles
which are smaller than the user specified threshold, and
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(a) Input model. (b) θ = 0◦. (c) θ = 10◦. (d) θ = 20◦. (e) θ = 30◦. (f) θ = 35◦. (g) θ = 40◦.

Fig. 1. Examples of surface meshes generated with our approach. The input model (a) has 7.2k vertices. From (b) to (g) are the results with different
minimal angle threshold θ. The angle distributions and their corresponding approximation error are shown below each result, in blue bars and red
curves respectively. The error-bound threshold δ is set to 0.2% of the diagonal length of the input’s bounding box (%bb).

then greedily applies local operators whenever an improve-
ment of the mesh is possible. After the initial coarsening our
method only improves the mesh in local regions where the
element quality is poor, and thus modifies the model as little
as necessary with respect to the minimal angle threshold θ
and the error-bound constraint δ.

Since we apply local operators directly on the mesh,
without using any surface parameterizations or density
functions, our algorithm is naturally suitable for high genus,
irregular, and multi-component inputs, as well as meshes
with very high/low resolutions. In summary, we claim the
following contributions:

• A surface remeshing algorithm with minimal an-
gle improvement based on applying local operators,
which bounds the “worst element quality” (Sec. 3).

• A reliable and efficient local error update scheme
based on approximated symmetric Hausdorff dis-
tance, which bounds the geometric fidelity (Sec. 4).

• Two feature intensity functions designed for vertex
position relocation, which enable implicit feature
preservation and support geometric fidelity (Sec. 5).

2 RELATED WORK

The variety of applications leads to a large number of
different remeshing techniques. We restrict the discussion to
the most relevant aspects of our algorithm, i.e. high-quality
remeshing, error-driven remeshing and feature-preserving
remeshing. For a more complete discussion we refer the
reader to the survey [12].
High quality remeshing is typically based on sampling and
Centroidal Voronoi Tessellation (CVT) optimization [13].
Early approaches apply 2D CVT in a parametric domain [3],
[7], [14]–[17]. Instead of CVT optimization, Vorsatz et al. [18]
utilize a partial system approach in the parametric domain.
In general, parametrization-based methods suffer from the
additional distortion of the map and the need to stitch
parameterized charts for high genus surfaces. Valette et
al. [4] perform a discrete version of CVT directly on the
input surface. However, the resulting mesh quality can
be poor due to the inexact computation. Yan et al. [8],
[19], [20] avoid the parameterization by computing the 3D
CVT restricted to the surface. Additionally, they proposed
blue-noise remeshing techniques using adaptive maximal

Poisson-disk sampling [9], [21], farthest point optimiza-
tion [22], and push-pull operations [23], which improve the
element quality as well as introducing blue-noise properties.
However, these approaches still suffer from common limita-
tions, e.g., geometric fidelity and the minimal angle cannot
be explicitly bounded. Moreover, sharp features must be
specified in advance.

Another way to avoid the stitching problem is to op-
erate directly on the surface mesh [24], [25]. An efficient
isotropic approach proposed by Botsch and Kobbelt [11]
takes an edge length as input and repeatedly splits long
edges, collapses short edges, equalizes vertex valences and
relocates vertex positions until all edges are approximately
of the specified target edge length. To extend this work to
an adaptive version, Dunyach et al. [26] replace the constant
target edge length with an adaptive sizing field that is sensi-
tive to local curvatures. Since this kind of methods requires
neither surface parameterization nor density functions, they
are easy to implement, robust for high genus inputs, and
efficient for real-time applications. Our method falls into
this category. However, we enrich the local operators and
apply them in a more selective manner in order to obtain
guarantees on the geometric fidelity as well as higher-
quality results and implicit feature preservation.
Error-driven remeshing amounts to generating a mesh that
optimizes the tradeoff between geometric fidelity and mesh
complexity. Cohen-Steiner et al. [5] propose an error-driven
clustering method to coarsen the input mesh. They formu-
late the approximation problem as a variational geometric
partitioning problem, and optimize a set of planes itera-
tively using Lloyd’s iteration [27] to minimize a predefined
approximation error.

The mesh simplification techniques are similar to error-
driven remeshing in some way. Garland and Heckbert [28]
use iterative contractions of vertex pairs to simplify models
and maintain surface approximation error based on quadric
error metrics. Borouchaki and Frey [29] define a fidelity
metric named Hausdorff envelope, and simplify and op-
timize the reference mesh that stays inside the tolerance
volume. While they consider the geometric fidelity and
element quality simultaneously, nothing is done to improve
the worst element quality. Our method guarantees the worst
element quality by improving the minimal angle and keep-
ing the mesh complexity as low as possible, with respect to
a given error-bound. Based on the concept of tolerance vol-
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ume, Mandad et al. [6] propose an isotopic approximation
method. Their algorithm generates a surface triangle mesh
guaranteed to be within a given tolerance volume. However,
they generate the mesh from scratch, and mainly focuse
on mesh complexity rather than element quality. Instead,
we strive for good balances between mesh complexity and
element quality with a given input.
Feature preservation is crucial in remeshing. However,
automatically identifying sharp features on a surface mesh
is a difficult problem that depends both on the local shape
and on the global context and semantic information of the
model. This makes feature detection a strongly ill-posed
problem. A wide range of approaches address this prob-
lem [30]–[32]. However, none of them works reliably for
all kinds of meshes. Most remeshing algorithms avoid this
problem by assuming that the features have been specified
in advance [8], [9], [19], [21], [22], [33]. Some remeshing tech-
niques try to preserve features implicitly [34], [35]. Vorsatz
et al. [36] first apply a relaxation in the parameter domain,
and then snap the vertices to feature edges and corners.
Since they separate remeshing and feature-snapping, the
resulting mesh quality near sharp features might be poor.
Valette [4] alleviates this issue by embedding the Quadric
Error Metric approximation (QEM) criterion inside the CVT
optimization. However, the performance of their cluster-
based method is highly dependent on the quality of the
input, and the sharp features might not be well preserved
when users specify a small vertex budget. Jakob et al. [37]
propose a general framework for isotropic triangular/quad-
dominant remeshing using a unified local smoothing oper-
ator, in which the edges naturally align to sharp features.
However, little attention is paid on the approximation error
and element quality. We address this problem by optimizing
the element quality explicitly in combination with implicit
feature preservation based on the new defined feature in-
tensity functions.

3 ALGORITHM OVERVIEW

Given a 2-manifold triangular mesh MI , the goal of our
algorithm consists in finding an improved surface mesh MR

with approximation error below δ, minimal interior angle
above θ and mesh complexity below N . The main idea is to
transform the mesh by a series of discrete local operators as
illustrated below:

Fig. 2. Common local operators [1].

In our algorithm, only edge collapse, edge split and
vertex relocation operators are employed. Edge flips are
implicitly performed as a combination of an edge split
followed by an edge collapse (cf. Fig. 2). This convention not
only lowers the combinatorial complexity of all operators
but is also advantageous for our implicit feature preserva-
tion since edge flips tend to destroy sharp creases and would
require additional nontrivial checks.

The remeshing algorithm is designed to perform local
operators in a conservative manner. More specifically, a local
operator is only executed if it respects the approximation
error bound δ, does not introduce new interior angles
below current minimal angle θmin and maintains the 2-
manifoldness of the mesh. This behavior can be interpreted
as a conservative greedy algorithm, which in each step iden-
tifies the most promising operation that improves the result
(either coarsens or improves angles), while never leaving
the feasible set of meshes with approximation error below
δ. Note that since pure topological edge collapses and edge
splits improve the mesh quality very rarely, these operations
are always combined with vertex position optimization.

The most crucial design choices of the algorithm are the
scheduling of different operators and the efficient modeling
and handling of approximation error queries (cf. Sec.4). The
algorithm passes through three different stages:

The initial phase concentrates on coarsening and runs a
mesh simplification, which solely performs edge collapses.

The second phase then tries to lift the minimal interior
angle above the user-provided bound θ. For this task we
devised three different processes, which are tried subse-
quently, as illustrated in Fig. 3. Since an edge collapse
reduces the complexity, it would be the best way to improve
the minimal angle. If edge collapse is not possible, we try
to improve the minimal angle by relocating one of the
triangle’s vertices. If vertex relocation also fails, edge splits
are considered as the last option as they increase the mesh
complexity. While edge splits do not directly improve the
minimal angle, they are crucial to enrich the local mesh
connectivity in order to enable improvements in subsequent
steps. We apply an approach similar to the longest-side
propagation path [38], described in more detail in Sec. 3.2.

The third stage of our algorithm freezes the mesh con-
nectivity and concentrates on global vertex relocation. This
stage is designed to improve the average quality of the mesh
elements, while not violating the user-specified bounds. The
pseudocode of our remeshing algorithm is shown in Alg. 1.

Alg. 1 Remeshing(MI ,MR, δ, θ,N)

Input: MI {Input mesh}
δ > 0 {Error-bound threshold}
θ ≥ 0 {Minimal angle threshold}
N > 0 {Desired mesh complexity}

Output: MR {Remeshing result}
1: MR ←MI ;
2: InitialMeshSimplification(MI ,MR, δ);
3: fill Q with angles of MR smaller than θ; {Q is a

dynamic priority queue}
4: #V ← the number of vertices in MR;
5: while Q 6= ∅ and #V < N do
6: θmin ← Pop(Q);
7: GreedyImproveAngle(θmin,MI ,MR, δ, θ);
8: update Q and #V ;
9: end while

10: FinalV ertexRelocation(MI ,MR, δ, θ);

In the following we provide more details on the three
phases of initial mesh simplification, greedy angle improve-
ment and vertex relocation.
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(a) Edge collapse. (b) Vertex relocation. (c) Edge split.

Fig. 3. Local operators. The local patches before/after applying the operators are shown in the first/second rows, respectively. The inner patch
(green) contains the facets that will be directly affected by the local operators, and the outer patch (gray) includes the facets who share vertices with
facets of the inner patch. In each sub figure, the left shows the inner case while the right shows the boundary case, in which the boundary edges
and vertices are depicted in blue. We depict the current minimal angle θmin in yellow.

3.1 Initial Mesh Simplification
The input mesh is often densely sampled such that the mesh
complexity can be significantly reduced without violating
the approximation error bound. While such a mesh simplifi-
cation could potentially also be done on the fly, a specialized
pre-process turns out to be more efficient. The goal of
this step consists in finding a mesh, which is significantly
coarser and offers a good starting point for the second
phase of element quality improvement. Simplification is
achieved through iteratively collapsing edges and relocating
related vertices as long as the approximation error does not
exceed δ. Short edges, or those opposite to small angles
are likely to lower the mesh quality and are consequently
collapsed first. This is achieved through using a priority
queue sorted by increasing values of the following function:
l(h) · (θ1(h) + θ2(h))/2, where l(h) denotes the length of
halfedge h and θi(h) denote the two angles opposite to h
and h’s opposite halfedge. The pseudocode of the corre-
sponding function is in Alg. 2.

Alg. 2 InitialMeshSimplification(MI ,MR, δ)

1: fill Q with all halfedges;{Q is a dynamic priority queue}
2: while Q 6= ∅ do
3: h← Pop(Q);
4: if CollapseAndRelocateImproves(h, δ,MI ,MR)

then
5: CollapseAndRelocate(h, δ,MI ,MR);
6: end if
7: update Q;
8: end while

3.2 Greedy Improvement of Angles
The second phase is designed to improve the mesh quality
by iteratively increasing the smallest angle in the mesh,
until the desired angle bound θ is satisfied or the complexity
limit N is reached. Our approach repeats the following
process: We simulate a potential operation, test whether
the resulting mesh improves and only in this case perform
the candidate operation. The mesh improvement test
additionally contains several important validity checks.

Mesh Improvement Test: we simulate each potential oper-
ation and measure if the following constraints are satisfied:

• Topology. For edge collapses topology changes are
prevented by checking the link condition [39].

• Geometry. The operator should not create fold-overs
by flipping the orientation facets (cf. Fig. 4).

• Fidelity. The approximation error between MR and
MI should remain below δ (cf. Fig. 6).

(a) Edge collapse. (b) Vertex relocate.

Fig. 4. Creation of fold-overs in 2D. (a) Edge PQ will be collapsed into
Q.4STQ creates fold-overs if P and Q lie on the two sides of line ST ;
(b) Vertex P will be relocated.4STP creates fold-overs if P before and
P after relocation are located on the two sides of line ST . In 3D, we say
that a triangle creates fold-overs if its normals before and after applying
a local operator have opposite orientations.

In order to improve the minimal angle, we greedily
apply operators that pass the mesh improvement test. The
operators are tested in the following order: edge collapses,
vertex relocations and edge splits. The pseudocode of the
greedy improvement is shown in Alg. 3.

Alg. 3 GreedyImproveAngle(θmin,MI ,MR, δ, θ)

Input: θmin {Angle requiring improvement}
MI {Input mesh}
δ > 0 {Error-bound threshold}
θ ≥ 0 {Minimal angle threshold}

Output: MR {Locally improved mesh}
1: h← halfedge opposite to θmin;
2: ifCollapseAndRelocateImproves(h, θmin, θ, δ,MI ,MR)

then
3: CollapseAndRelocate(h, θmin, θ, δ,MI ,MR);
4: return;
5: end if
6: let vo, vs and ve be h’s opposite, start and end vertex;
7: for v ∈ {vo, vs, ve} do
8: if RelocateImproves(v, θmin, θ, δ,MI ,MR) then
9: Relocate(v, θmin, θ, δ,MI ,MR);

10: return;
11: end if
12: end for
13: hl ← LongestSidePropagation(h);
14: if SplitAndRelocateIsV alid(hl, θ, δ,MI ,MR) then
15: SplitAndRelocate(hl, θ, δ,MI ,MR);
16: end if
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Longest-Side Propagation Path: If neither edge collapse nor
vertex relocation is possible, we search the longest edge hl
in the neighborhood [38] and then split it. Starting from
an edge e, we iteratively move on to the longest edge of
the neighboring two triangles until no further enlargement
is possible or we hit the boundary. Though the edge split
operator does not increase θmin directly, it modifies the
local connections such that θmin can be improved in later
iterations (cf. Fig. 3(c)). While there might exist other ways
for local connectivity modification, experiments show that
this strategy works well in our algorithm.

3.3 Final vertex relocation
To achieve a better overall element quality, in the third phase
we perform a series of vertex relocations until the angles
can no longer be significantly improved. In contrast to the
second phase which only focuses on specific regions where
angle improvement is required, the third stage optimizes all
vertex locations. We maintain the relocation candidate set in
a queue, which is initialized with all vertices. Whenever a
vertex is relocated, all its neighbors are added to the queue,
since a change in the neighborhood might enable further im-
provements. The pseudocode of the corresponding function
is shown in Alg. 4.

Alg. 4 FinalV ertexRelocation(MI ,MR, δ, θ)

1: fill Q with all vertices of MR;{Q is a FIFO queue}
2: while Q 6= ∅ do
3: v ← Pop(Q);
4: if RelocateImproves(v, θmin, θ, δ,MI ,MR) ≥ ∆θ

then
5: Relocate(v, θmin, θ, δ,MI ,MR);
6: add neighbors of v to Q
7: end if
8: end while

Optimal vertex positions would be found if no vertex
could be relocated to a better position anymore. How-
ever, we empirically restrict the angle improvement ∆θ =
0.1◦(cf. Sec. 6.4), since afterward there are usually no signif-
icant improvements anymore.

4 ERROR METRIC

4.1 Hausdorff Distance
We use the Hausdorff distance to measure the approxi-
mation error between MR and MI . Let d(p, q) denote the
Euclidean distance between two points p and q in 3D space.
The distance of a point p to a surface M is defined as the
shortest distance between p and any point of M

d(p,M) = min
q∈M

d(p, q). (1)

The one-sided Hausdorff distance from a source surface M
to a target surface T is defined as the maximum of all such
point to surface distances :

dh(M,T ) = max
p∈M

d(p, T ). (2)

The one-sided Hausdorff distance is in general not
symmetric, i.e. dh(M,T ) 6= dh(T,M). It is easily possible

to construct counter-intuitive cases where dh(M,T ) = 0
but dh(T,M) is arbitrarily large1.

The two-sided Hausdorff distance [40] between M and T
resolves this issue by symmetrization

dH(M,T ) = max{dh(M,T ), dh(T,M)}. (3)

4.2 Approximating dH with Stratified Sampling
The exact evaluation of the two-sided Hausdorff distance
is computationally very expensive [41]. However, by
careful surface sampling in combination with local updates
of shortest point-to-surface links it is possible to obtain
an efficient yet sufficiently accurate approximation, as
discussed next.

Assume that M is sampled by a point set SM ⊂ M . Then
the one-sided Hausdorff distance can be approximated by

dh(M,T ) ≈ max
a∈SM

d(a, T ). (4)

By additionally sampling T we obtain an approximation of
the two-sided Hausdorff distance

dH(M,T ) ≈ max

(
max
a∈SM

d(a, T ),max
b∈ST

d(b,M)

)
, (5)

with ST being a set of point samples on T . Note that our
approximation still measures the exact distance from sample
points to the complete surface, which provides significantly
higher accuracy than a point cloud distance dH(SM , ST ).
Moreover, it ensures that we strictly underestimate
the real distance. Following the triangle inequality, the
approximation error of our sampled Hausdorff distance
is bounded by max{dh(M,SM ), dh(T, ST )}, i.e. the
maximum gap between sample points. Consequently, in
order to guarantee a good approximation, we target a
uniform sampling of the surfaces. However, for piecewise
linear triangle meshes the maximal distance often occurs
at creases or corners, i.e. at mesh edges or vertices. This
two observations motivate our stratified sampling approach,
which is uniform on faces but additionally adds samples
on edges and vertices, as a kind of greedy importance
sampling.

Sampling the facets. Instead of uniformly sampling the
complete surface, we empirically found that better results
can be obtained by uniformly sampling per triangle. In this
way we obtain an automatic adaptivity, since more samples
are available in structurally complex and highly curved
areas, where also more triangles are necessary to describe
such shape. Since our meshes are often highly non-uniform,
we add a slight local smoothing of the sampling density by

n(fi) = nf ·
1 + |Nfi |

1 +
∑

fj∈Nfi

Aj

Ai

, (6)

where nf is the average number of samples per facet speci-
fied by the user, Nfi are the neighbor facets that share ver-
tices with fi, and Ai is the area of facet fi. Choosing a large

1. Choose T as a sphere of radius r and M as a hemisphere subset.
Then with r →∞ also dh(T,M)→∞.
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nf offers a tighter approximation of the Hausdorff distance,
however, resulting in high computational complexity. In our
experiments, we found that nf = 10 gives a good tradeoff
between efficiency and effectiveness (cf. Fig. 12).

To distribute the samples evenly on a triangle fi, we
first generate n(fi) samples randomly, and then perform a
Lloyd relaxation process onto a bounded Voronoi Diagram
(BVD) [42] (Fig. 5(b)). Usually, five iterations are sufficient
to generate quasi-uniformly distributed samples on facets.

(a) (b) (c)

Fig. 5. Stratified sampling process. (a) Initial facet samples; (b) Opti-
mized facet samples with BVD; (c) Edge samples. The facet, edge, and
vertex samples are rendered in green, yellow and red, respectively.

Sampling the edges. By counting the number of incident
Voronoi cells to an edge we first estimate the local sampling
density. The resulting number of samples is then evenly
distributed along the edge (Fig 5(c)).
Sampling the vertices. The position of a vertex is simply
regarded as its own vertex sample.

(a) Stratified samples on MR

and their shortest links to MI .
(b) Stratified samples on MI

and their shortest links to MR.

Fig. 6. Hausdorff distance approximation with stratified samples. Sam-
ples on vertices, edges, and faces are rendered in red, yellow, and green
respectively. We use the circles centered with crosses to indicate the
samples on one mesh, and the circles centered with dots to indicate their
closest points on the other mesh. The approximated one-side Hausdorff
distances are shown as the blue links, and the overall approximated
Hausdorff distance is simply the length of the longer one.

By setting SI and SR as the stratified samples on MI

and MR, the Hausdorff distance between MI and MR is
approximated using Eq. (5), as illustrated by Fig. 6.

4.3 Local Update Scheme

Each operator of our remeshing algorithm only changes
a local area L ⊂ MR of the target mesh MR (cf. Fig. 3
green area). Hence, it is possible to rapidly compute the
Hausdorff distance for the updated mesh. In general both
directions of the Hausdorff distance change and require an
update.

Updating dh(MR,MI): First of all notice that the one-sided
Hausdorff distance can be decomposed w.r.t. to a modified
local area L ⊂MR into

dh(MR,MI) = max{dh(L,MI), dh(L̄,MI)}

with MR = L ∪ L̄ being a partition of MR. Since L̄ is
unchanged, checking dh(L,MI) ≤ δ is sufficient to verify
that the modification does not violate the approximation
error bound δ. Thus, we first re-sample the modified local
area L with stratified samples SL, and then efficiently
evaluate the approximated Hausdorff distance dh(SL,MI)
with a pre-computed axis aligned bounding box tree [43]
for the static mesh MI .

Updating dh(MI,MR): Checking the opposite direction is
more difficult for two reasons. Firstly, since MR changes, we
cannot simply pre-compute a static search tree. Secondly,
decomposing the Hausdorff distance in the second argu-
ment is more intricate. In addition to MR, MI must also be
decomposed correctly. More specifically, we have

dh(MI ,MR) ≈ dh(SI ,MR) = max{dh(SL
I , L), dh(SL̄

I , L̄)}

where SI = SL
I ∪ SL̄

I is a partitioning of samples on MI

into those closer to L and L̄ (the rest of MR) respectively.

Identifying the correct partitioning of samples SI would
in general require global tests and is thus time consum-
ing. Therefore, in order to enable a rapid update we only
approximate this decomposition by tracking the history of
samples in SI . The key idea is to store for each sample
sj ∈ SI a link to its closest triangle tj ∈ MR (Fig. 6).
After a local modification of MR these links will typically
change in the vicinity of the modified area L. Thus, in
order to avoid global checks, we only update the links of
samples connecting to a region L+, which enlarges L by an
additional ring of neighboring triangles (cf. Fig. 3 gray area).
These new links can be efficiently found by constructing and
querying an the axis aligned bounding box tree of the local
area L+. Note that the resulting approximated Hausdorff
distance is a strict overestimator because shorter links to L̄+

might exist that are not investigated by our approximation.
A positive side effect of our localized update scheme is that
links cannot jump between geodesically far away regions,
which could cause topologically inconsistent links.

5 IMPLICIT FEATURE PRESERVATION

A clean representation of geometric features as for instance
sharp creases is important in many applications ranging
from visualization to simulation. In a polygonal mesh,
we distinguish between vertex and edge features. Vertex
features include tips, darts, cusps and corners, while edge
features are either creases or boundaries. Typical examples
are depicted in Fig. 7.

Instead of requiring an explicit tagging of features as
most remeshing approaches, e.g. [8], [9], [19], [22], [33], our
goal is to implicitly preserve features. This not only releases
users from the time-consuming burden of manual tagging
but moreover often enables the recovery of features that
were lost, e.g. through inappropriate sampling by a 3D laser
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(a) tip. (b) dart. (c) cusp. (d) corner.

Fig. 7. Vertex features: (a) Tips, (b) Darts, (c) Cusps and (d) Corners
are feature vertices who are adjacent to zero, one, two and three sharp
creases respectively.

scanner.

In principle feature preservation could be simply a
byproduct of approximation error minimization since incor-
rectly meshing features usually induces a large approxima-
tion error. Nevertheless, there are several reasons why spe-
cial care is still required. First of all, the minimization of the
approximation error is a non-convex problem such that bad
initializations might lead to low-quality local minima, not
well representing features. Moreover, anticipating feature
locations and placing vertices accordingly will speed up the
overall method. In our method special feature handling is
done whenever vertices are either newly placed or relocated,
i.e. during (i) edge collapse, (ii) edge split and (iii) vertex
relocation. Since robust and automatic feature detection
is a difficult yet unsolved problem, we rely on a softer
identification of features by means of a feature intensity
function defined at vertices of the mesh.

5.1 Feature Intensity

Feature vertices can be characterized by large Gaussian cur-
vature K(v), which in the discrete setting is identical to the
angle defect, i.e.

K(v) =

{
π − θsum(v) v is on a boundary,
2π − θsum(v) otherwise, (7)

where θsum(v) is the sum of interior angles adjacent to v.

Feature edges are characterized by large dihedral angles.
Accordingly, for a vertex we define the feature edge intensity
E(v) to be the maximal unsigned dihedral angle of an edge
adjacent to v

E(v) = max
e∈Ne(v)

|D(e)| (8)

where Ne(v) are the edges adjacent to v and D(e) is the
dihedral angle at e.

Finally, the feature intensity F(v) is defined as the combi-
nation

F(v) = (τ(|K(v)|) + 1) · (τ(E(v)) + 1)− 1

with the transfer function τ(x) = min{π, 2 · x}, which
rescales values by a factor of 2 and clamps them at π. Thus,
the feature intensity is a value between 0 and ((π+ 1)2− 1)
and corresponds to a logical or whenever one of the indi-
vidual intensities vanishes. Fig. 8 shows an examples of the
three fields |K|, E and F .

|K(v)| E(v) F(v)

Fig. 8. From left to right Gaussian curvature |K|, feature edge intensity
E and combined feature intensity F , with higher intensities in red.

5.2 Feature-Sensitive Vertex Relocation

In our remeshing algorithm each local operation is
combined with a subsequent relocation of the modified
vertex in order to minimize the approximation error. This
relocation of a single vertex is done in two stages. First a
feature-sensitive initialization, specifically adapted to the
local operation, and then a nonlinear minimization of the
two-sided Hausdorff distance. A careful initialization of
vertex positions is important to avoid poor local minima
of the non-convex Hausdorff energy and additionally
increases performance.

Edge Collapse Initialization: During an edge collapse of
edge eij the two vertices vi and vj merge into a new vertex
vm and a new position for vm must be specified. One
feature-sensitive standard technique uses error quadrics [4],
[28]. However, since we anyway perform a more accurate
approximation error-driven relocation subsequently, a sim-
pler and faster position initialization based on our feature
intensity is sufficient. We distinguish two cases. If the edge
is incident to a single strong feature we want that vm
snaps onto this feature, meaning that the default behavior
is to snap to the vertex vk with higher feature intensity,
i.e. vk = arg maxv∈{vi,vj} F(v). An unclear situation arises,
when both feature intensities are similar, i.e. F(vi) ≈ F(vj).
This happens either in regions without features or for edges
along a crease, where it is reasonable to initialize vm to the
edge midpoint. We decide for the midpoint initialization
based on a parameter ω, whenever

|F(vi)−F(vj)| < ω ·max(F(vi),F(vj))

with ω = 0.15 in all our examples.

Edge Split Initialization: Since an edge split does not
change the geometry we simply always initialize the
new point as the edge midpoint. Further improvement is
achieved through a nonlinear minimization of the two-
sided Hausdorff distance, as discussed next.

Vertex Relocation Initialization: Without topological mesh
modifications (edge collapse or split), a vertex relocation is
initialized in the following way. The goal is to anticipate
a good relocation position for v while preserving feature
corners and creases. Therefore, we first classify the vertex
v as either being (i) a feature vertex, (ii) a crease vertex
or (iii) a smooth vertex. If v is a feature vertex it simply
remains at its position. If it is on a crease, we relocate v to
the CVT barycenter of its two neighboring crease vertices.
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And only if it is a smooth vertex we relocate it to the CVT
barycenter of all one-ring neighbors. The classification is
done by counting how many neighbors vi are of similar
or higher importance as v, i.e. if F(vi) ≥ ζ · F(v) for a
tolerance parameter ζ ∈ (0, 1). In this way v is classified
as (feature vertex/crease vertex/smooth vertex), depending
on whether (none/two/all) of its neighbors are of similar
feature intensity. Unclear cases where k out of n neighbors
are of similar importance are classified towards the closer
possibility, meaning as a crease vertex if k is closer to 2
or as a smooth vertex if k is closer to n. Wrong classifica-
tions where two crease vertices are connected by a non-
crease edge can be avoided by only counting important
neighbors that are connected by an important edge with
|D(ev,vi |+ 1 ≥ ζ · (E(v) + 1), as illustrated in Fig. 9.

(a) (b) (c)

Fig. 9. Visualization of F(v) in (a). The color of v’s Voronoi cell repre-
sents the number of important neighbors, with red=0, blue=2, purple=3
and gray=degree(v) is shown in (b) and (c). A wrong classification based
on solely feature intensity in (b) is corrected by additionally checking
importance of edges in (c).

The parameter ζ controls the feature classification. For
higher values of ζ more vertices are implicitly treated as
features and thus prevented from free movement. Fig. 10
shows an example classification for ζ varying between 0.3
and 0.7. In our experiments the default is ζ = 0.5

ζ = 0.3. ζ = 0.5. ζ = 0.7.

Fig. 10. Influence of the classification tolerance ζ. The Voronoi
cells of vertices color code the classification with red=feature vertex,
blue=crease vertex and white=smooth vertex. We show the Anchor
model with obvious features (top) and the Hand model without obvious
features (bottom).

Nonlinear Hausdorff Distance Minimization: After one
of the former initializations is done, we further optimize
the position of a vertex v by directly minimizing the

approximate two-sided Hausdorff distance of Sec. 4.2.
This optimization is highly nonlinear, since changing the
position of v changes the samples SR of the modified mesh
MR as well as the links from the input mesh samples SI to
MR. We perform an optimization similar to the Hausdorff
distance minimization technique proposed by Winkler et
al. [44]. However, we improve the feature-sensitivity by
adjusting the weighting scheme with our feature intensity
function F , as detailed next.

We want to relocate v in order to minimize the two-
sided Hausdorff distance between the local area L ⊂ MR

consisting of all one-ring triangles of v and the subregion of
MI with links into L, referred to as MI→L. Assume that
the corresponding subsets of samples for our Hausdorff
distance approximation are SL ⊂ SR and SI→L ⊂ SI . Then
according to Motzkin and Walsh’s theorem [45] there exist
weights wi and ŵi such that minimizing Eq. (5) w.r.t. the
center vertex v is equivalent to minimizing∑

ai∈SL

wi|ai(v)− âi|2 +
∑

bi∈SI→L

ŵi|b̂i(v)− bi|2 (9)

where âi ∈ MI→L and b̂i(v) ∈ L are the closest points to
ai and bi respectively. Freezing the closest point pairs and
assuming a linear barycentric relation

ai(v)− â = αiv + βidi + γiei − â = αiv − pi
with constant pi = â − βidi − γiei and similarly expressed
b̂i(v) − bi = α̂iv − p̂i, the optimal position v∗ can be
computed analytically

v∗ =

∑
ai
wiαipi +

∑
bi
ŵiα̂ip̂i∑

ai
wiα2

i +
∑

bi
ŵiα̂2

i

(10)

To find optimal weights wi and ŵi, Winkler et al. [44] use
Lawson’s algorithm [46] with iterative updates of the form

w
(k+1)
i = w

(k)
i · d(a

(k)
i , â

(k)
i ), (11)

where d(a
(k)
i , â

(k)
i ) is the Euclidean distance of the closest-

point pair (ai, âi) after the k-th iteration, and initialization
w

(0)
i = 1. The idea behind this scheme is that samples with

larger distances get a higher weight in the next iteration.
Based on our feature intensity function and a sample density
estimation, the weight update can be improved to

w
(k+1)
i = w

(k)
i · d(a

(k)
i , â

(k)
i ) · V(a

(k)
i ) · F(a

(k)
i ) (12)

where V(ai) is the Voronoi cell area of sample ai,
and F(ai) is the linearly interpolated feature intensity
value of ai. Fig. 11 illustrates the additional weighting
factors. Advantages are a better feature preservation,
improved robustness w.r.t. non-uniform sampling and
faster convergence.

Each time when a local operator is applied, we iteratively
optimize the new position of the effected vertex by mini-
mizing Eq. (9) using the new weighting defined in Eq. (12).
The optimization procedure is similar to the Expectation-
maximization (EM) algorithm: in each iteration, we first
calculate the optimal position v∗ of vertex v using Eq. (10),
and then move v to v + λ(v∗ − v), λ ∈ (0, 1] with default
λ = 0.9 and update the closest point pairs. In practice, a few
iterations usually suffice to get very close to the optimum.
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V(ai) F(ai) V(ai) · F(ai)

Fig. 11. Sample weights of a cube corner, with the integration of V(ai)
and F(ai). Higher intensity of red highlights larger weight values.

6 EXPERIMENT RESULTS AND DISCUSSIONS

We implemented our approach in C++ and tested on a 64-
bit Windows 8.1 operating system. The CGAL library [47]
provided most of the basic data structures and operations.
Timings for all the examples were conducted on a single
3.40GHz Intel(R) Core(TM) i7-2600K CPU with a 16GB
RAM. We provide next a complete evaluation of our algo-
rithm and comparisons with state-of-the-art approaches.

6.1 Evaluation of the Local Error Update Scheme

For efficient local error update we use the axis aligned
bounding box tree of CGAL. As global error update is too
compute-intensive we only verify how the inner patch sizes
and sampling densities affect the effectiveness and efficiency
of the local error update scheme (Fig. 12). We find that even
when the inner patch size is set to one-ring (cf. Fig. 3), our
local error update approach catches more than 99.9% of
the global nearest points. The accuracy increases little with
higher sampling density and larger inner patch size. We
set the inner patch sizes as one-ring facets and the average
sampling number per facet as ten in all experiments.

Fig. 12. The nearest point searching accuracy and execution time of
our local error scheme, with respect to different sampling densities and
inner patch sizes. In this experiment, δ = 0.2% of the bounding box’s
diagonal length(%bb) and θ = 30◦. The above data are the averages of
10 consecutive executions with the Rockerarm model (Table 2) as input.

6.2 Evaluation of Vertex Position Optimization

Solely applying the vertex position initialization makes most
vertices of MR stay near or on the surface of MI . Though
this quasi-interpolation preserves sharp features, the opti-
mal geometric fidelity is usually achieved when MR is an
approximation of MI . We visually demonstrate the differ-
ence between interpolation and approximation in Fig. 13. In
the interpolation case, the Hausdorff distance (Hdist) [48]
between the sphere and the icosahedron is 6.48(%bb), and
the root mean square (RMS) distance is 4.84(%bb); while
in the approximation case, the Hdist and RMS distances
between them are 5.00(%bb) and 1.09(%bb), respectively.

(a) Icosahedron (b) Interpolation (c) Approximation

Fig. 13. Demonstration of interpolation and approximation. We use an
icosahedron (a) to interpolate and approximate a sphere ((b) and (c)). In
interpolation, the vertices of MR are guaranteed to be on the surface
of MR, while in approximation, the error is minimized, regardless of
whether the vertices of MR are on the surface of MI .

However, the approximation might destroy features
when minimizing the local sample pair distances [44].
Fig. 14 compares the average distance and RMS distance
based on Lawson’s weighting scheme (Eq. (11)) and our im-
proved weighting scheme (Eq. (12)). Generally, our weight-
ing scheme reduces the average distance and RMS distance
about 2.3% and 3.1% respectively. However, it reduces the
approximation error of vertices on sharp features about
11.8% and 12.8%, respectively. Therefore, applying the im-
proved weighting scheme does not only reduce the approx-
imation error, but also better preserves sharp features.

Fig. 14. Comparison of geometric fidelity between Lawson’s weighing
scheme [44] and ours(Eq. 12). We sort the vertices in MI according
to their saliency function values in ascending order, and compute their
average distance and RMS distance in each bin. In this experiment,
δ = 0.2(%bb), and θ = 30◦. The above data are the averages of 10
consecutive executions with the Hand model (Fig. 10) as input.

We extensively tested how the iteration count and re-
locate ratio (λ) affect the approximation error and execu-
tion time in the vertex position optimization procedure (in
Fig. 15). We found that setting the iteration count to two
and the relocate ratio to 0.9 achieved the best compromise
between effectiveness and efficiency. This configuration is
used in all our later experiments.

6.3 Evaluation of Initial Mesh Simplification

In general, applying Alg. 2 further reduces 20% vertices on
average. However, the execution time would be 2-3 times
slower than not applying it. Fig. 16 shows the remeshing
results of the Egea model with and without applying initial
mesh simplification, and Tab. 2 further compares the dif-
ferences (OUR vs. OUR*). Usually, if users care more about
the execution time than the mesh complexity, Alg. 2 can be
disabled. However, we enable Alg. 2 by default for a better
compromise among mesh complexity, element quality and
approximation error.
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Fig. 15. Effectiveness of the iteration count and relocate ratio. For
separability, RMS and Hdist bars are plotted in different scales. We set
δ = 0.2(%bb), and θ = 30◦. The above data are the averages of 10
consecutive executions with the Homer model (Table. 2) as input.

(a) (b) (c)

Fig. 16. Egea models with/without executing Alg. 2. we set θ = 40◦ and
δ = 0.20(%bb). The input (a) has 8.3k vertices. The result with Alg. 2
enabled has 4.2k vertices (b), and spends 330 seconds; the result with
Alg. 2 disabled has 7.6k vertices (c), and spends 133 seconds.

6.4 Evaluation of Final Vertex Relocation

To measure how the overall element quality is improved by
applying Alg. 4, we introduce two new measurements: the
first is the average minimal angles of all triangles inMR and
the second is the average value of triangle qualities defined
asQt = 2

√
3St/(ptht) [49], where St is the area of triangle t,

pt the in-radius of t and ht the length of the longest edge in
t. We tested the statistic element quality and the execution
time with varying ∆θ in Alg. 4 (Fig. 17), and found when
∆θ < 0.1◦, the quality improvement is not significant. In
our experiments, we set the default ∆θ as 0.1◦ in Alg. 4.

Fig. 17. The effectiveness of ∆θ in Alg. 4. In each sub figure, the first
bar indicates the value when no final vertex relocation is applied. In
this experiment, δ = 0.2(%bb) and θ = 30◦. The above data are the
averages of 10 consecutive executions with the Helmet model (Table. 2)
as input.

6.5 Influence of the Minimal Angle Threshold and the
Mesh Complexity

Our algorithm produces results with either desired minimal
angle threshold or desired mesh complexity, depending on
the user specified parameters. In order to get the desired

minimal angle, N in Alg. 1 should be set very large; other-
wise, θ should be set very large (e.g. 60◦). Usually, the larger
the value θ or N is specified, the better element quality is
achieved. We tested the remeshing results of the Fandisk
model with θ varying from 0◦ to 40◦ and N varying from
0.15k to 2.8k, and show the results in Fig. 1. The complete
attributes are listed in Tab. 1. Note that in Fig. 1(g), one
vertex has been relocated a little away from the crease after
refinement, such that the minimal angle is improved. This
happens when optimizing a mesh with sharp features up to
a high minimal angle threshold.

TABLE 1
Influence of θ and σ. V567 is the percent of vertices with valences 5, 6
and 7. We set δ = 0.2(%bb), and the Fandisk (Fig. 1(a)) is the input.

θ #V Qmin θmax RMS(%bb) V567(%) Time
0 0.15k 0.040 174.4 0.043 76.5 1:42*
10 0.20k 0.188 155.1 0.038 71.3 2:18
20 0.26k 0.340 135.5 0.036 78.6 2:41
30 0.40k 0.482 117.7 0.031 81.7 3:01
35 0.73k 0.552 109.3 0.029 85.5 3:44
40 2.8k 0.640 98.8 0.022 98.5 6:14
* This indicates the execution time of Alg. 2.

We compare our results with the state-of-the-art meth-
ods, and find only in a small portion of results presented
in [19] and [9], the minimal angles exceed 35◦ (with highest
record 38◦). For most other methods, the minimal angles
vary between [25◦, 35◦]. Contrary to the previous work,
our method is able to generate results with minimal angles
higher than 35◦ in all test cases. The complete comparison
with the state-of-the-art methods is shown in Sec. 6.8.

6.6 Influence of the Approximation Error Threshold
We demonstrate the influence of δ in Fig. 18. The results
indicate that δ does not influence the mesh complexity
and the execution time significantly with a fixed θ value.
However, two interesting phenomena are observed: 1) when
θ ≤ 35◦, the larger the θ value is, the lower the mesh
complexity we achieve; however, when θ is set to 40◦, both
mesh complexity and execution time increase dramatically.
This is because when θ is small, the edge collapse operator is
preferentially applied, which increases the minimal angles
while reduces the mesh complexity. However, when θ is
large, more edge split operators are applied to modify local
connections. 2) Within a fixed θ, when δ increases, the mesh
complexity decreases slightly and smoothly, since the higher
δ is set, the more edge collapse operators are triggered.

Fig. 18. Influence of the error-bound threshold δ. The above data are
the averages of 10 consecutive executions with the Elephant model
(Table 2) as input.

We compare our results with those provided by Yan
et al. [9], [19], [22]. The best record of the approximation
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error is 0.10(%bb), which is generated by [8] with the
Homer model as input. However, it can not be explicitly
controlled. For other methods, the approximation error is
between 0.3−0.5(%bb), and still cannot be strictly bounded.
In striking contrast, our algorithm is able to explicitly and
strictly control the approximation error, and achieve the
approximation error as low as 0.07(%bb) with the same
input. More complete comparisons are in Sec. 6.8.

6.7 Robustness
Since in our local error update scheme, the closest point
pairs of stratified samples are reliably initialized and locally
updated, our method is robust to models with complex
topology, holes, and intersections of surfaces. For example,
the Close spheres model (Fig. 19(c)) is composed of two
rounded half spheres that are positioned very close to each
other, and the Klein bottle model (Fig. 19(h)) exhibits non-
orientable surfaces that are self-intersecting. Our method
generates the right results for both of them.

(a) Helmet (b) Fertility (c) Close spheres

(d) Disk (e) U-part (f) Smooth crease

(g) Bones (h) Klein’s bottle (i) Lion head

Fig. 19. Selected results. In this experiment, δ is set to 0.2%(bb) and θ
is set to 35◦. In (h) and (i), the boundaries are rendered in red. The dark
part of (h) means the triangle normals are inside.

By integrating the feature intensity function, our method
successfully handles models with and without clear sharp
features. The Helmet (Fig. 19(a)), Fertility (Fig. 19(b)) and
Close spheres models are smooth, whereas the U-part
(Fig. 19(e)) and the Smooth crease models (Fig. 19(f)) have
sharp features. In addition, since the feature intensity also
captures boundaries, our method is capable of remeshing
models with boundaries (Fig. 19(i)) and smooth features
(Fig. 19(f)).

Our method requires no surface parameterization, mak-
ing it naturally suitable for high-genus models (Fig. 19 (a)
and Fig. 19(b)) as well as models with multiple components

(Fig. 19(g)). Note that adaptivity is created automatically by
the approximation error parameter δ if reasonable without
requiring an a priori estimation of a density function. The
Helmet, Fertility, U-part and Lion head models in Fig. 19
clearly illustrate this advantage.

Our method is suitable to process models with very
high/low resolutions and/or badly shaped triangles. To
tackle dense models, typically the initial mesh simplifica-
tion strongly reduces the mesh complexity. For very coarse
models, users can optionally increase the sampling density
for better error control. We present two typical examples:
the input Fertility model has 13k vertices, whereas our
remeshing result (Fig. 19(b)) has only 2.9k vertices, thanks
to the effectiveness of Alg. 2. The input U-part model
possesses only 86 vertices. By sampling 50 points in each
facet averagely, we get the result with 347 vertices, and the
geometric fidelity is well-controlled.

6.8 Comparisons

We compare our approach to the state-of-the-art techniques
in terms of efficiency, geometric fidelity, element quality
and mesh complexity. For simplicity, only the most effi-
cient methods (RAR [26] and MMGS, an improvement of
YAMS [24]) and the methods that produce the best results
in Yan and Wonka’s conduction [9] (CVT [8] (100 iterations
in our experiments), CVD [4] and MPS [9]) are compared
with identical inputs. Among all the compared methods,
CVT and CVD require the number of vertices to be specified,
and the Hdist is required in RAR and MMGS. To make the
results comparable, we set the Hdist of RAR to the same
value as that of our method, and carefully adjusted the Hdist
parameter for MMGS, such that it generates results with the
same complexity as CVT, MPS and CVD. In our method,
OUR* means Alg. 2 is disabled while OUR means it is en-
abled. A detailed comparison is listed in Tab. 2, and Fig. 20
shows a close-up comparison. More visual comparisons are
provided in the supplemental materials, available online.

From all compared methods, RAR performs most effi-
ciently and introduces the lowest mesh complexity. How-
ever, the geometric fidelity cannot be guaranteed. MMGS is
also efficient, yet it introduces much higher Hdist distances.
Our method is almost at the same level of efficiency as CVT
when θ = 35◦, but is much slower when θ = 40◦.

According to [9], CVT performs best in keeping high ge-
ometric fidelity, but cannot explicitly bound the approxima-
tion error. By setting δ comparable to CVT’s best results, our
method consistently produces results with strictly bounded
Hdist, and produces lower Hdist and RMS distances in most
cases. We also find that our method consistently generates
results with higher minimal angle and triangle quality than
MPS, due to the fact that our method provides a better
improvement of “worst element quality” measured by the
minimal angle. However, since our method does not opti-
mize the global connectivity of the input, our results have
lower regularity (measured as V567) than MPS.

From Tab. 2, we see that by setting the desired resolution
lower than MMGS, CVT, MPS and CVD, we still get results
with higher geometric fidelity and better bounds of minimal
angle. For the very dense Bunny model, when Alg. 2 is
enabled, our method even reduces the complexity of the
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TABLE 2
Comparison with the state-of-the-art methods. For all the method, the input parameters are highlighted with italic fonts, and the best results are

highlighted in bold. In column Hdist(%bb), the values before “/” are the input, and the values after “/” are the real HDist measured by Metro [48].

Input Methods #V Qmin θmin(◦) θmax(◦) Hdist (%bb) RMS (%bb) θ < 30◦(%) V567(%) Time
Rockerarm [RAR] 2.1k 0.556 27.9 107.2 0.20/0.94 0.120 0.02 100 < 0 : 01

(3.4k) [MMGS] 5.8k 0.056 3.4 172.5 0.47 0.103 1.73 93.4 0 : 01
[CVT] 5.8k 0.588 28.3 104.6 0.21 0.030 0.02 99.9 0 : 48
[MPS] 5.8k 0.516 32.0 113.6 0.48 0.033 0 100 0 : 05

[OUR*] 2.8k 0.559 35.0 108.5 0.20/0.20 0.025 0 89.0 0 : 29
[OUR*] 3.0k 0.612 38.6 102.2 0.20/0.17 0.024 0 95.4 0 : 38
[OUR*] 3.8k 0.646 40.0 98.1 0.20/0.14 0.020 0 98.5 0 : 51
[OUR] 3.6k 0.639 40.0 99.0 0.20/0.20 0.025 0 97.9 2 : 58

Homer [RAR] 2.6k 0.569 29.2 106.5 0.20/0.55 0.070 0.02 99.9 < 0 : 01
(6.0k) [MMGS] 7.2k 0.210 13.1 152.2 0.43 0.028 1.07 95.8 0 : 01

[CVT] 7.2k 0.568 25.3 102.3 0.10 0.021 0.02 99.9 1 : 14
[MPS] 7.2k 0.513 32.0 115.0 0.31 0.023 0 100 0 : 05

[OUR*] 4.8k 0.553 35.0 109.2 0.20/0.09 0.010 0 91.8 0 : 46
[OUR*] 5.0k 0.600 37.8 103.6 0.20/0.09 0.010 0 95.2 0 : 59
[OUR*] 6.9k 0.643 40.0 98.5 0.20/0.07 0.009 0 98.7 1 : 29
[OUR] 4.3k 0.635 40.0 99.5 0.20/0.17 0.018 0 97.8 4 : 48

Triceratops [RAR] 1.6k 0.607 30.0 98.4 0.20/2.61 0.570 0.03 99.8 < 0 : 01
(2.8k) [MMGS] 9.0k 0.270 13.5 143.3 0.41 0.080 1.11 93.6 0 : 01

[CVT] 9.0k 0.543 31.7 110.3 0.12 0.018 0 99.9 1 : 23
[MPS] 9.0k 0.506 32.0 114.8 0.46 0.062 0 100 0 : 29

[OUR*] 2.1k 0.552 35.0 109.3 0.20/0.16 0.028 0 87.0 0 : 28
[OUR*] 3.0k 0.605 38.4 103.0 0.20/0.18 0.024 0 93.8 0 : 41
[OUR*] 4.8k 0.634 40.0 99.6 0.20/0.19 0.036 0 97.7 1 : 39
[OUR] 3.5k 0.644 40.0 98.4 0.20/0.19 0.040 0 97.1 2 : 36

Elephant [RAR] 2.9k 0.480 24.9 115.5 0.20/5.0 0.112 0.12 100 < 0 : 01
(6.9k) [MMGS] 11k 0.187 10.9 155.1 0.29 0.034 1.24 93.5 0 : 02

[CVT] 11k 0.560 26.8 107.7 0.11 0.018 0.01 99.8 1 : 43
[MPS] 11k 0.505 32.0 114.9 0.38 0.061 0 100 0 : 31

[OUR*] 4.4k 0.553 35.0 109.2 0.20/0.11 0.014 0 90.4 0 : 49
[OUR*] 5.0k 0.617 39.1 101.5 0.20/0.13 0.013 0 96.6 1 : 05
[OUR*] 6.8k 0.638 40.0 99.1 0.20/0.11 0.010 0 98.7 1 : 45
[OUR] 2.7k 0.633 40.0 99.7 0.20/0.14 0.021 0 98.4 4 : 25

Bunny [RAR] 4.1k 0.545 27.5 109.4 0.20/0.69 0.072 0.02 100 < 0 : 01
(34k) [MMGS] 12k 0.260 13.1 142.4 0.41 0.041 0.59 93.8 0 : 03

[CVD] 12k 0.150 9.6 160.1 0.34 0.028 0.71 96 0 : 05
[CVT] 12k 0.603 30.6 103.1 0.20 0.018 0 99.9 3 : 57
[MPS] 12k 0.510 32.0 114.6 0.37 0.035 0 100 0 : 24

[OUR*] 37k 0.550 35.0 109.6 0.20/0.07 0.003 0 95.8 3 : 23
[OUR] 1.5k 0.637 39.8 99.2 0.20/0.19 0.033 0 97.2 10 : 41
[OUR] 1.7k 0.646 40.0 98.2 0.20/0.19 0.031 0 97.7 12 : 28

(a) Input Triceratops model (b) RAR (c) MMGS (d) CVT (e) MPS (f) OUR

Fig. 20. A close-up comparison of results with state-of-the-art approaches. In our method, δ is set to 0.20(%bb) and θ is set to 40◦.

Bunny model to 5% of the input without violating the error-
bound constraint. When it is disabled, the resolutions are
still lower than the inputs in most cases, since the edge
collapse operator has high priority in Alg. 1.

To the best of our knowledge, RAR, MMGS, CVT and
MPS require sharp features to be specified or detected in

advance, which may be time-consuming or error-prone.
Though CVD is able to preserve features implicitly, it leads
to results with lower geometric fidelity and element quality
than our method.

Since our method does not optimize the element quality
globally, the average element quality is not superior to
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remeshing based on farthest point optimization [22] (FPO).
However, we consistently produce results with better geo-
metric fidelity and larger minimal angle than FPO.

6.9 Limitations

Although practically the minimal angles can be improved
to values above 35◦ in all our test cases, we do not have any
theoretical guarantee for the convergence with a specified
θ. To challenge our algorithm, we set θ to its theoretical
upper bound and show the best results that our algorithm
achieved in Tab. 3. We found the approximation error can
still be bounded. However, the algorithm runs into infinite
loops or generates degenerated edges while refining.

Another limitation is that we can only tackle 2-manifold
meshes, for the reason that our local operators highly rely
on the topology information of local regions. Finally, our
method cannot remesh noisy models robustly, since the
feature intensity function will interpret the noise as some
kind of features and thus tries to preserve it.

TABLE 3
Cases when too high θ is specified. We set θ = 60◦, run Alg. 1 until it
fails, and record the best results it achieved. Alg. 2 is enabled here.

Input #V θmin Hdist(%bb) Fail Types
Rockerarm 4.2k 41.22 0.20/0.19 Degenerated edges

Homer 6.1k 41.13 0.20/0.14 Infinite loops
Triceratops 4.8k 40.02 0.20/0.19 Degenerated edges
Elephant 4.8k 41.23 0.20/0.13 Infinite loops

Bunny 2.4k 41.42 0.20/0.19 Infinite loops

7 CONCLUSION

We presented a novel surface remeshing algorithm based
on minimal angle improvement. In this framework, the
minimal angle of the input model is sequentially improved
by applying local operators. Furthermore, an efficient and
reliable local error update scheme was designed and em-
bedded for explicitly bounding the approximation error, and
two novel feature intensity functions were defined and inte-
grated in the vertex relocation, in order to preserve features
implicitly. Compared to the state-of-the-art, our method
consistently generates results with higher element quality
and lower mesh complexity but satisfied error-bounds. The
resulting meshes are well suited for robust numerical sim-
ulations, since they offer bounded approximation error and
large minimal angles.

However, there are still some limitations (Sec. 6.9), which
motivate future work in the following aspects: 1) provid-
ing a theoretical convergence guarantee with a specified
θ; 2) extending the current implementation such that this
framework can be applied to triangle soups or even point
clouds, for error-bounded and feature preserving mesh re-
construction; and 3) exploring more robust feature intensity
functions for measuring sharp features on noisy models.
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