
Automatic generation of simplified weakest

preconditions for integrity constraint verification

A. Ai T -Bouziad, Irene Guessarian, L. Vieille

To cite this version:

A. Ai T -Bouziad, Irene Guessarian, L. Vieille. Automatic generation of simplified weakest
preconditions for integrity constraint verification. 2006. <hal-00020682>

HAL Id: hal-00020682

https://hal.archives-ouvertes.fr/hal-00020682

Submitted on 14 Mar 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hal-Diderot

https://core.ac.uk/display/47125765?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00020682

cc
sd

-0
00

20
68

2,
 v

er
si

on
 1

 -
 1

4
M

ar
 2

00
6

Automatic Generation of Simplified Weakest Preconditions for Integrity

Constraint Verification

Ahmed Äıt-Bouziad ∗ Irène Guessarian ∗∗ Laurent Vieille ∗∗∗

March 14, 2006

Abstract

Given a constraint c assumed to hold on a database
B and an update u to be performed on B, we ad-
dress the following question: will c still hold after u
is performed? When B is a relational database, we
define a confluent terminating rewriting system which,
starting from c and u, automatically derives a simpli-
fied weakest precondition wp(c, u) such that, whenever
B satisfies wp(c, u), then the updated database u(B)
will satisfy c, and moreover wp(c, u) is simplified in
the sense that its computation depends only upon the
instances of c that may be modified by the update.
We then extend the definition of a simplified wp(c, u)
to the case of deductive databases; we prove it using
fixpoint induction.

Keywords: Database updates, integrity constraints,
weakest preconditions, program verification and sim-
plification.

1 Introduction

We assume a constraint c, given by a universal sen-
tence, on a database B and an update u to be per-
formed on B, and we address the following question:
will c still hold after u is performed? When B is a
relational database, we define a terminating rewriting
system which, starting from c and u, automatically
derives a simplified weakest precondition wp(c, u) such
that, 1. whenever B satisfies wp(c, u), then the up-
dated database u(B) will satisfy c, 2. wp(c, u) is the
weakest such precondition, and 3. the computation of
wp(c, u) depends only upon the instances of c that may
be modified by the update. The definition of a weak-

∗ Ahmed Aı̈t-Bouziad: LIAFA, Uni-
versité Paris 6, 4 Place Jussieu, 75252 Paris Cedex 5, France,
bouziad@liafa.jussieu.fr

∗∗ Irène Guessarian: LIAFA, Université Paris 6, 4 Place
Jussieu, 75252 Paris Cedex 5, France, address all correspondence

to ig@liafa.jussieu.fr
∗∗∗ Laurent Vieille: Next Century Media, Inc., 12

Av. des Prés, 78180 Montigny le Bretonneux, France
lvieille@computer.org

est precondition wp(c, u) ensuring the safety of update
u with respect to constraint c extends easily to deduc-
tive databases with recursive rules and constraints, and
even updates which can add (delete) recursive rules.
When the update is an insertion update, we give an
algorithm which defines a simplified weakest precon-
dition. We will abbreviate weakest precondition into
wp.

A large amount of research work has been devoted
to optimizing the verification of integrity constraints
at transaction commit. These optimizing efforts use
the fact that the constraints are verified when the
transaction starts, so that the evaluation can focus
on those constraints which can be violated by the up-
dates and on the data relevant to the updates and to
the constraints. Work in this area started for rela-
tional databases with techniques to simplify domain-
independent first-order formula [N82]. More recently,
techniques based on propagating updates through the
rules of deductive databases have been developed
[BDM88, SK88, LST87]. These methods are well-
understood by now; they have been tested in prototype
implementations and start appearing in commercial
products [V98]. [VBKL99] has shown that when gen-
eral formulae are properly rewritten into rules defining
intermediate predicates, and when update propagation
is adequately formalized, the simplification approach
can be seen as a special case of update propagation.

However, these methods still involve computation
at the end of the transaction. It is sometimes claimed
that, in practice, this negative effect on transaction
commit time explains why integrity constraints are
rarely used. While there are many applications where
this is not true, such a negative effect is probably not
acceptable in production systems where response time
is critical.

This is the reason why another line of research has
been proposed. The objective is now to take into ac-
count both the integrity constraints and the structure
of the transaction program , to try and determine at
compile-time whether executing the program can vi-
olate this constraint or not. Early work in this line of
research include [GM79, CB80, SS89]. For more recent

1

work, see [BS98, L95, L98, LTW93, M97].
To illustrate the differences between the two

approaches, consider the constraint: ‘forall x:
p(x) → q(x)’ and the transaction program (ex-
pressed here in a Prolog-like syntax): ‘prog(x) :
−insert p(x), insert q(x).’ Running this program with
x = a results in the insertion of both p(a) and q(a).
Optimizing methods will avoid checking the constraint
on the whole databases and will focus on the data rele-
vant to the updates. A transaction compiling approach
will determine at program or constraint compile-time
that, executing prog(x) with any parameter will never
violate this constraint whatever instance is provided
for x in prog(x), and no transaction-time activity will
occur.

Known theoretical results put a limit on what can
be expected from such an approach [AHV95, BGL96].
Further, not all transaction programs are such that
they can be proved compliant with the constraints at
compile-time. However, (1) it is natural programming
practice to write transaction programs as safe1 as pos-
sible, and, (2) if the compile-time check fails, it is al-
ways possible to resort to optimizing techniques. Fi-
nally, simple examples like the one above indicate that
it is worth attempting to design effective methods to
prove the compliance of transaction programs with in-
tegrity constraints.

While predicate calculus appears today as the lan-
guage of choice to express integrity constraints, the
choice of an update language is more open. For in-
stance, [GM79] or [BS98] focus on existing general-
purpose programming languages, for which proving
formal properties is notoriously difficult. In this pa-
per, we follow [L95, L98, LTW93] by choosing a ”pure”
(no cut!) logic-programming based language, more
easily amenable to proofs, in particular against con-
straints expressed in predicate calculus. This choice
remains practical for database systems, as they have
a tradition of providing specific procedural languages,
different from general-purpose programming languages
(e.g., stored procedures).

A second parameter is the degree of minimality of
the language. While pure theory would tend to pre-
fer a clean, mininal language, the design of effective
methods is often facilitated by the use of additional
programming contructs. This is in particular true of
theorem proving techniques as clearly outlined by W.
Bibel in [BLSB92]. In this paper, we add an if -

then - else operator to the language of [LTW93].
In this paper, following the approach of [LTW93,

L95, L98], we apply techniques coming from program
verification and program transformations, see for in-

1A transaction program is safe if it preserves the truth of the
constraints.

stance [D75, TS84, PP94, SS89]. Several approaches
have been taken along these lines. One can either
generate weakest preconditions, as in [LTW93, N82,
BDM88, M97] or one can generate postconditions, as
in [BS98]. Once the (pre or post)conditions are gener-
ated, usually the task of verifying them is left to the
user: hints to simplify the precondition are given in
[LTW93], the decidability of checking the weakest pre-
condition in relational databases is studied in [M97],
while [N82] suggests a method for checking the pre-
condition on only the relevant part of the database
(e.g. the ‘new’ facts produced by an insertion update).
[BS98] define post-conditions post(u, c) and they im-
plement a theorem prover based approach to check the
safety of updates at compile-time: it consists in prov-
ing that post(u, c) =⇒ c holds, as this is clearly a suffi-
cient condition for ensuring that the update is safe. A
different approach to the constraint preservation prob-
lem has been studied in [BDA98]: it consists in con-
structing generalized transaction schemes which ensure
that classes of dynamic constraints are preserved.

Contribution of the paper. It is twofold.
1. In the case of relational databases, we define

a terminating rewriting system which, starting from
constraint c and update u automatically derives a wp
ensuring the safety of the update; assuming that c
holds, this wp is simplified into a formula which de-
pends only upon those instances of subformulas of c
that might be modified by the update. We prove that
our simplified wp is simpler than the wp obtained in
[LTW93, L95, L98] in the following sense: our simpli-
fied wp is implied by the wp of [L98], but the converse
does not hold.

2. For deductive databases allowing for recursion, we
describe an algorithm computing an efficient simplified
wp in the case of insertion updates.

As soon as recursion is allowed, several problems
come up: 1. it is undecidable to check if a transac-
tion preserves a constraint[AHV95], 2. the wp is usu-
ally not expressible in first-order logic [BGL96], and
moreover, 3. if we want to ensure that both the wp
and the constraint are expressed in the same language
[BDM88, SK88, LST87, GSUW94, L98], we have to
assume a language allowing for both negation and re-
cursion, which severely limits efficient checking of the
truth of the wp. Thus, we can only hope for special
cases when the wp can be shown to hold and/or can
be simplified.

Our update language generalizes the language of
[LTW93] and of [L98] by allowing for conditional up-
dates; it is more expressive than SQL and the lan-
guages of [BDM88, LST87, N82]: e.g. in the rela-
tional case, in [BDM88], only elementary single fact
insert/delete updates are considered, whilst we can in-

2

sert/delete subsets defined by first-order formulas as
in [BD88, LTW93, L95, L98]. Our simplified wp are
simpler than the wp of [LTW93, L95, L98].

The paper is organized as follows: our update lan-
guage is defined in section 2, the terminating rewrit-
ing system deriving the simplified wp for relational
databases is described in section 3, heuristics for treat-
ing the deductive case are presented in section 4, and
finally section 5 consists of a short discussion.

2 Update language

In the present section, we define our update language,
which is a mild generalization of the update language
of [LTW93], and we define the corresponding weakest
preconditions.

2.1 Definitions

Let U be a countably infinite set of constants.
1. a database (DB) B is a tuple 〈R1, R2, ..., Rn〉

where Ri is a finite relation of arity ki over U . The
corresponding lower-case letters r1, r2, ..., rn denote
the predicate symbols naming relations R1, R2, ..., Rn;
they are called extensional predicates (or EDBs).

2. an update u is a mapping from B =
〈R1, R2, ..., Rn〉 to u(B) = 〈R′

1, R
′

2, ..., R
′

n〉 where Ri

and R′

i have the same arity.
3. a constraint c is a domain independent sentence

(a closed first-order formula which is domain indepen-
dent, see [ToS88, VGT87]).

4. formula f is a precondition for update u and con-
straint c if for every B, if B |= f then u(B) |= c.

5. formula f is a weaker than formula g iff for every
database B we have B |= g =⇒ B |= f . Formula f is
a weakest precondition for update u and constraint c,
if it is weaker than every precondition for (u, c).
Remark 1 In points 4 and 5 above, f is only a pre-
condition for c, i.e. B |= f =⇒ u(B) |= c regardless of
whether B |= c.
Let R be a relation in database B and let Φ(x)
be a first-order formula with free variables x =
x1, x2, ..., xn.
• B′ = B[R→ R′] denotes the result of substituting

relation R′ for relation R in B.
• c[r → r∪φ] (resp. c[r → r−φ]) denotes the result

of substituting r(s)∨φ(s) (resp. r(s)∧¬φ(s)) for
every occurrence of r(s) in c.
• c[+r → r ∪ φ] (resp. c[−r → ¬r ∪ φ]) de-

notes the result of substituting r(s) ∨ φ(s) (resp.
¬r(s) ∨ φ(s)) for every positive2 (resp. negative)
occurrence of r(s) in c.

2An occurrence of r(s) is positive if it is within the scope of
an even number of negations. It is negative otherwise.

2.2 The update language

Let Φ be a first-order formula with free variables x
and cond a first-order sentence which are domain in-
dependent [ToS88, VGT87]. The instructions of our
language are defined as follows.
Definition 1 I1. foreach x : Φ(x) do insertR(x)

I2. foreach x : Φ(x) do deleteR(x)
I3. If i1 and i2 are instructions then (i1; i2) is an

instruction;
I4. if cond then inst1 else inst2 is an instruc-

tion.The alternative else inst2 is optional.
For instance, adding tuple a in relation R, will be de-
noted by foreach x : x = a do insertR(x). In the
sequel, we will abbreviate it by: insertR(a). Formula
Φ is called the qualification of the update.

The update language of [LTW93] consists of instruc-
tions I1, I2 and I3. Our language is thus more user-
friendly, because of the possibility of conditional up-
dates defined in I4. Our language is equivalent to
the language considered in [L98]: complex instructions
such as

foreach x : Φ(x) do (i1; i2) (1)

where e.g. for j = 1, 2, ij = foreach xj : Φj(xj)
do insertRj

(xj) will be expressed in our language by
i0; i

′

1; i
′

2 , where TEMP is a suitable, initially empty,
temporary relation, and yj = x \ xj for j = 1, 2:

i0 = foreach x : Φ(x) do insertTEMP (x)

i′j = foreach xj :
(

∀yj temp(x) ∧ Φj(xj)
)

do

insertRj
(xj).

Our language can be extended to allow for complex in-
structions such as 1, as well as non sequential or par-
allel combinations of updates (such as exchanging the
values of two relations). On the other hand, I4 could
also be simulated by several instructions of [LTW93].

We briefly describe the semantics of our update lan-
guage. I1 (resp. I2) is executed by first evaluating Φ(x)
thus producing the set of instances of x satisfying Φ(x)
in B, and then inserting (resp. deleting) from R these
instances of x. I3 is performed by executing first I1

and then I2. I4 is performed by evaluating condition
cond on B, if cond is true inst1 is executed, otherwise
inst2 is executed. Complex instructions such as if

cond then (i1; i2) else i3 are performed by evaluat-
ing first cond and then, if e.g. cond is true, executing
i1 and then i2, regardless of whether cond holds after
executing i1.

Formally, the update ⌊i⌋(B) associated with instruc-
tion i is defined by:

1. ⌊I1⌋(B) = B[R→ R ∪ {x|B |= Φ(x)}]
2. ⌊I2⌋(B) = B[R→ R− {x|B |= Φ(x)}]

3

3. ⌊I3⌋(B) = ⌊i2⌋(⌊i1⌋(B))

4. ⌊I4⌋(B) =

{

⌊inst1⌋(B) if B |= cond
⌊inst2⌋(B) if B |= ¬cond

To simplify, ⌊i⌋(B) will be denoted by i(B).
We can easily generalize the transformation of

[LTW93] to obtain weakest preconditions for our lan-
guage.
Theorem 1 The formulas obtained by the weakest
precondition transformation of [LTW93] and defined
below in 1–4 are weakest preconditions for instructions
I1 − I4.

1. wp(foreach x : Φ(x) do insertR(x), c) = c[r →
r ∪ Φ],

2. wp(foreach x : Φ(x) do deleteR(x), c) = c[r →
r − Φ],

3. wp((i1; i2), c) = wp(i1, (wp(i2, c)),
4. wp(if cond then inst1 else inst2, c) =

(

cond∧

wp(inst1, c)
)

∨
(

¬cond ∧ wp(inst2, c)
)

.
Example 1 1. Let c = ∀x (r(x) → q(x)) and let
i = foreach x : p(x) do insertR(x), then

wp(i, c) = ∀x((r(x) ∨ p(x))→ q(x))

2. Let c = ∀x(r(x)→ q(x)) and let i = (i1; i2) where

i1 = foreach x : s(x) do deleteR(x)
i2 = foreach y : p(y) do insertR(y)

then

wp(i, c) = wp((i1; i2), c) = wp(i1, wp(i2, c))
= wp(i1, ∀x((r(x) ∨ p(x))→ q(x)))
= ∀x(

(

(r(x) ∧ ¬s(x)) ∨ p(x)
)

→ q(x))

Remark 2 It is noted in [LTW93] that, for con-
straints which are universal formulas in conjunc-
tive normal form, one can take advantage of the
fact that c holds in B to simplify wp into a wp′

such that for all B satisfying c: B |= wp′ ⇔
B |= wp. Consider for instance the update i =
foreach x : p(x) do insertR(x) of Example 1 1, with
c = ∀x (r(x)→ q(x)) then we can simplify wp(i, c) as
follows

wp(i, c) = ∀x((r(x) ∨ p(x))→ q(x))
≡ ∀x(r(x)→ q(x)) ∧ ∀x(p(x)→ q(x))
= c ∧ ∀x(p(x)→ q(x))

whence wp′ = ∀x(p(x) → q(x)). In the next sec-
tion, we will apply this simplification in a systematic
way, and implement it via a confluent and terminating
rewriting system for weakest preconditions.⊓⊔

3 Relational databases

In the present section, we define a confluent terminat-
ing rewriting system which, starting from c and u, au-
tomatically derives a simplified weakest precondition

wp(c, u). The idea underlying the simplification is the
same as in [LTW93, L98]: it consists in transforming
the wp into the form wp = c∧wp1, and to take advan-
tage of the truth of c in the initial database to replace
wp by wp1. However,

1. it is not clear in [LTW93, L98] how far this sim-
plification is carried on, and

2. this simplification is carried on by the user.
On the other hand, in our case, the simplification

1. is iteratively applied until no further simplifica-
tion is possible, and

2. is performed automatically.

It is noted in [LTW93] that constraints involving
existential quantifiers cannot be simplified: e.g. let
c be the constraint ∃xr(x) and let u be the update
deleteR(a); then wp(c, u) = ∃x

(

r(x)∧¬(x = a)
)

which
cannot be simplified. Hence, for the simplification to
be possible, we will assume the following restrictions
to our language:

1. constraint c and conditions cond are universal
sentences, and

2. the qualifications Φ(x) are formulas without
quantifications.
Recall that a clause is a sentence of the form c =
∀x (l1∨ l2 ∨ ...∨ lm) where the lis are literals. Without
loss of generality, we can restate our hypotheses as

1. constraint c is a single clause; indeed if c =
∀x (D1 ∧ D2 ∧ ... ∧ Dn) is in conjunctive normal
form, then we can replace c by the n constraints
∀xDi which are clauses and can be studied inde-
pendently.

2. the qualifications Φ(x) are conjunctions of literals;
we can write Φ(x) = Φ1(x) ∨ Φ2(x) ∨ ... ∨ Φn(x)
in disjunctive normal form, and we replace the
instruction qualified by Φ(x) by a sequence of
similar instructions qualified by Φ1(x), Φ2(x),. . . ,
Φn(x).

3. the conditions cond are single clauses: assum-
ing as above that cond = ∀x(D1 ∧ D2 ∧
... ∧ Dn) is in conjunctive normal form, we let
condi = ∀xDi and we replace e.g. if cond
then inst by if cond1 then (if cond2 then

(...(if condn then inst)...))

Note that in many practical cases, constraints are in-
deed given by clauses, even quite simple clauses involv-
ing just 2 or 3 disjuncts, and the restrictions on cond
and Φ(x) are also satisfied.

We will use the following notation: let S be a set of
clauses and r a predicate symbol; Resr(S) is the set
of simplified binary resolvents of pairs of clauses in S
such that

1. each resolvent is obtained by a unification involv-
ing r.

4

2. if the resolvent contains a literal of the form ¬(x =
a) (which we write as x 6= a), then the resolvent is
simplified by deleting that literal and substituting
a for x in the resolvent.

Example 2 1. Let S = {¬r(x, y) ∨ q(y, z) , r(x, y) ∨
¬q(x, y)}; then Resr(S) = {q(y, z) ∨ ¬q(x, y)}.

2. Let S = {¬r(x, y) ∨ ¬r(x, z) ∨ q(y, z) , r(x, y) ∨
(

(x, y) 6= (a, b)
)

}; then the binary resolvents obtained
by unifying over predicate r all pairs of clauses in S
are

{ ¬r(x, z) ∨ q(y, z) ∨
(

(x, y) 6= (a, b)
)

,

¬r(x, y′) ∨ q(y′, y) ∨
(

(x, y) 6= (a, b)
)

}

they are then simplified into

Resr(S) = {¬r(a, z) ∨ q(b, z) , ¬r(a, y′) ∨ q(y′, b)}.⊓⊔

The idea governing our simplification method is as
follows: we define a rewriting system with rules of the
form

wp(u, c) −→
∧

wp(u, ci)

wp(u, c) −→ c′

and with the property that all formulas in a deriva-
tion are logically equivalent. Rewriting steps consist
in computing the instances of the constraint which
could be modified by the update. Let us define the
following abbreviations: we write insertRΦ for up-
date I1 : foreach x : Φ(x) do insertR(x), and we
write r ∨ ¬φ instead of ∀x

(

R(x) ∨ ¬Φ(x)
)

. Similarly,
deleteRΦ, (resp. ¬r ∨ ¬φ) abbreviates I2 : foreach
x : Φ(x) do deleteR(x), (resp. ∀x

(

¬R(x) ∨ ¬Φ(x)
)

).
In updates insertRΦ or deleteRΦ, we may assume that
r does not occur in Φ: indeed any occurrence of r in Φ
is preventively renamed before applying our rewriting
rules.

Then our rewriting system consists of the nine rules
given in Figure 1, where I1–I4 are defined in Definition
1, c is a clause and c1, c2 are universal sentences:
Theorem 2 1. The rules given in Figure 1 define a
terminating and confluent rewriting system.

2. The weakest precondition generated by our system
is in the form wp = swp ∧ c′, with c′ such that c =⇒
c′; if c holds, wp can be simplified into the weakest
precondition swp which is weaker than wp, the weakest
precondition defined in Theorem 1.
Proof idea: Rules are repeatedly applied till saturation,
i.e. until an explicit form to which no rule applies is
obtained.

1. The termination is proved by structural induc-
tion: each subformula wp(i, cj) derived from wp(i, c)
either is in an explicit form, or has a cj which is strictly
smaller than c. Confluence follows from the fact that

R1 : wp(insertRΦ, c) −→ c[+r → r ∪ φ]
if Resr(c, r ∨ ¬φ) = ∅

R2 : wp(insertRΦ, c) −→ c[+r → r ∪ φ]∧
∧

cj∈Resr(c,r∨¬φ)

wp(insertRΦ, cj) otherwise

R3 : wp(deleteRΦ, c) −→ c[−r → ¬r ∪ φ]
if Resr(c,¬r ∨ ¬φ) = ∅

R4 : wp(deleteRΦ, c) −→ c[−r → ¬r ∪ φ]∧
∧

cj∈Resr(c,¬r∨¬φ)

wp(deleteRΦ, cj) otherwise

R5 : wp(I3, c) −→ wp(i1, (wp(i2, c))
R6 : wp(I4, c) −→

(

cond ∧ wp(inst1, c)
)

∨
(

¬cond ∧ wp(inst2, c)
)

R7 : wp(u,¬c) −→ ¬wp(u, c)
R8 : wp(u, c1 ∧ c2) −→ wp(u, c1) ∧ wp(u, c2)
R9 : wp(u, c1 ∨ c2) −→ wp(u, c1) ∨ wp(u, c2)

Figure 1: Simplification rules

each wp(u, c) has a unique derivation (up to the order
in which the rewritings are applied).

2. We prove by induction that our rewriting sys-
tem generates a wp in the form wp = swp ∧ c′, with
c′ such that c =⇒ c′ holds. Therefore, taking into ac-
count that c holds in B, we can simplify wp into swp,
and wp =⇒ swp holds. Because wp is equivalent to
the weakest precondition of Theorem 1, and because
the weakest preconditions of [LTW93, L95, L98] and
of Theorem 1 are equivalent, swp is simpler than the
weakest preconditions of [LTW93, L95, L98] and The-
orem 1. Example 3 1 shows that swp 6=⇒ wp, i.e. our
swp can be strictly simpler than wp.⊓⊔
Example 3 1. Let c = ∀x, y, z

(

(p(x, y)∧ q(y, z)) −→

(p(x, z) ∨ q(x, z))
)

and let i = foreach x, y : (x, y) =
(a, a) do insertP (x, y), i.e. Φ(x) is (x, y) = (a, a),
then the method of [LTW93] gives

wp(i, c) = ∀x, y, z
(

((p(x, y) ∨ (x, y) = (a, a)) ∧ q(y, z))

−→ ((p(x, z) ∨ (x, y) = (a, a)) ∨ q(x, z))
)

and our method gives the sequence of rewritings:

wp(i, c) −→R2
(¬q(a, z) ∨ p(a, z) ∨ q(a, z))
∧c[+p→ p ∪ (x, y) = (a, a)]

−→ (¬q(a, z) ∨ p(a, z) ∨ q(a, z)) (2)
−→ true (3)

The simplification of line 2 is obtained by taking into
account the fact that c holds in B, hence c[+p → p ∪
(x, y) = (a, a)] also holds. Because ¬q(a, z)∨ q(a, z) =

5

true, our simplified weakest precondition equivalent to
true and we obtain line 3.

2. Consider again Example 1 2. We have the se-
quence of rewritings, where we have underlined the
rewritten term whenever a choice was possible:

wp((i1; i2), c) −→R5
wp(i1, wp(i2, c))

−→R2
wp

(

i1, c ∧ wp(i2,¬p ∨ q)
)

−→R1
wp

(

i1, c ∧ (¬p ∨ q)
)

(4)

−→R8
wp(i1, c) ∧ wp

(

i1, (¬p ∨ q)
)

−→R3
wp(i1, c) ∧ (¬p ∨ q)

−→R3

(

c[−r→ ¬r ∪ s] ∧ (¬p ∨ q)
)

−→ (¬p ∨ q)

Note that line 4 gives us the simplified form of the
weakest precondition of Example 1 1, (see Remark 2).
The last simplification is obtained by taking into ac-
count the fact that c holds in B, hence c[−r→ ¬r ∪ s]
also holds.

3. Let c = ∀x, y, z
(

¬p(x, y)∨¬p(x, z)∨ q(y, z)
)

and
let i = foreach x, y : (x, y) = (a, b) do insertP (x, y),
then our method gives:

wp(i, c) −→R2
wp(i,¬p(a, z) ∨ q(b, z))
∧wp(i,¬p(a, y) ∨ q(y, b)) ∧ c

−→∗

R2
wp(i, q(b, b)) ∧

(

¬p(a, z) ∨ q(b, z)
)

∧
(

¬p(a, y) ∨ q(y, b)
)

∧ c

−→R1
q(b, b) ∧

(

¬p(a, z) ∨ q(b, z)
)

∧
(

¬p(a, y) ∨ q(y, b)
)

∧ c (5)

(where −→∗

R2
means that several−→R2

rewriting steps
are performed); assuming c holds in B, we can sim-
plify 5 into swp = ∀y, z q(b, b) ∧

(

¬p(a, z) ∨ q(b, z)
)

∧
(

¬p(a, y)∨q(y, b)
)

which is to be verified in B. Assum-
ing c holds in B, the methods of [N82, BDM88, BD88]
yield the postcondition ∀y, z

(

¬p(a, z) ∨ q(b, z)
)

∧
(

¬p(a, y) ∨ q(y, b)
)

which must be verified in the up-
dated database i(B). [BDM88, BD88] go one step fur-
ther: embedding B in a deductive framework, they
simulate the evaluation of the postcondition via pred-
icates delta and new which are evaluated in B before
update i is performed.

4 Deductive Databases

We now extend the definition and verification of
a weakest precondition wp(u, c) to the deductive
database setting, where both c and u can be defined by
DATALOG programs. We chose DATALOG because it
is the best understood, most usual and simplest setting
for deductive databases. We will first define our frame-
work, the weakest preconditions, and then we will give
heuristics for

1. proving that the weakest precondition holds with-
out actually evaluating it

2. computing simplified weakest preconditions.

Recall that on a language consisting of the EDBs
r1, . . . , rk and new predicate symbols q1, . . . , ql –called
intensional predicates (or IDBs)–, a DATALOG pro-
gram P is a finite set of function-free Horn clauses,
called rules, of the form:

q(y1, ..., yn)←− q1(y1,1, ..., y1,n1
) , . . . , qp(yp,1, ..., yp,np

)

where the yis and the yi,js are either variables or con-
stants, q is an intensional predicate in {q1, . . . , ql},
the qis are either intensional predicates or extensional
predicates.

In our framework, both updates and constraints range
over deductive queries, possibly involving recursion.
Formally, updates and constraints are defined as in
Section 2, but in addition:
• the qualifications Φ(x) in both insert and delete

statements are conjunctions of literals which may
contain atoms defined by recursive DATALOG
programs,
• similarly, constraints c and conditions cond in if

- then - else statements may contain atoms
defined by recursive DATALOG programs: con-
straints and conditions are general clauses, but
the atoms occurring in them are defined by Horn
clauses.

The definition of the weakest preconditions extends
easily: we follow here the approach of [L95].
Notation 1 1. Let Q and R be relations appearing
in a DATALOG program P , and respectively corre-
sponding to the predicate symbols q and r: q is said
to depend directly on r if q = r or if r appears in the
body of a rule defining q; q is said to depend on r if q
depends directly on r, or q depends directly on q′ and
q′ depends on r.

2. Let P ′

r be the program obtained by adding to P
new IDB symbols q′ for each predicate q depending on
r, and new rules; for each rule ρ of P defining an IDB q
depending on r, a new rule ρ′ defining q′ is added: ρ′ is
obtained from ρ by substituting s′ for each occurrence
of a symbol s depending on r (hence r′ is substituted
for each occurrence of r). If r is an EDB predicate, we
add a new IDB symbol r′, but there is no rule defining
r′ yet: the rules defining r′ depend on the update and
will be given later.

3. c[r → r′] denotes c where all the predicates de-
pending on r (including r when r is an EDB) are re-
placed by the corresponding primed predicates.⊓⊔

We will assume the following hypotheses:
H1: the qualifications Φ(x) are conjunctions of literals,

and all the rules defining the IDBs in constraint c,

6

qualifications Φ(x) and conditions cond are given
in program P .

H2: in statements of the form foreach x : Φ(x) do

insertR(x), or foreach x : Φ(x) do deleteR(x),
none of the literals in Φ(x) depends on r.

Theorem 3 Assume constraint c and instruction i
satisfy H1 and H2, then the formulas defined below are
weakest preconditions for c and i.

1. wp(foreach x : Φ(x) do insertR(x), c) = c[r →
r′] where the program defining the IDBs is P ′

insertRΦ =
P ′

r ∪ {r
′(x)←− r(x) , r′(x)←− Φ(x)},

2. wp(foreach x : Φ(x) do deleteR(x), c) = c[r →
r′] where the program defining the IDBs is P ′

deleteRΦ =
P ′

r ∪ {r
′(x)←− r(x)∧¬t(x) , t(x)←− Φ(x)}, with t a

new IDB predicate,
3. wp((i1; i2), c) = wp(i1, (wp(i2, c)),
4. wp(if cond then inst1 else inst2, c) =

(

cond∧

wp(inst1, c)
)

∨
(

¬cond ∧ wp(inst2, c)
)

.
Theorem 3 calls for some remarks.

1. When none of r, c or Φ is recursive, we obtain
again the weakest preconditions of Theorem 1.

2. Our definition of insertions is quite liberal, al-
lowing us to add new rules, which is not permitted in
[L95]. Similarly, deletions can suppress tuples, sets of
tuples or even rules.

3. Deletions and/or qualifications Φ containing
negations force us out of the DATALOG framework,
because the weakest precondition of foreach x :
Φ(x) do deleteR(x) and constraint c is defined by
the DATALOG¬ program P ′

r ∪ {r
′(x) ←− r(x) ∧

¬t(x) , t(x) ←− Φ(x)}; this was already noted in
[GSUW94]. In [L95, LST87] a stratified DATALOG¬

framework is assumed: this ensures that both the con-
straint and the wp are expressible in the same frame-
work.

4. In what follows, we will consider only inser-
tions and positive qualifications in order to be able
to express both constraints and their wps in DATA-
LOG. The wps defined in Theorem 3 are correct with-
out this restriction, but they are defined by stratified
DATALOG¬ programs, and not by Horn clauses.
Example 4 Let c be the constraint ∀x, y ¬tc(x, y) ∨
i(x, y), where i does not depend on tc, and consider the
update foreach x, y : path(x, y) do insertTC(x, y),
where all the predicates are defined by program P :

P

tc(x, y) ←− arc(x, y)
tc(x, y) ←− arc(x, z) , tc(z, y)
path(x, y) ←− edge(x, y)
path(x, y) ←− edge(x, z) , path(z, y)
i(x, y) ←− body(x, y)

Then P ′

tc is P together with a new predicate tc′ and

the rules 6 and 7.

tc′(x, y) ←− arc(x, y) (6)
tc′(x, y) ←− arc(x, z) , tc′(z, y) (7)

and P ′

insertT Cpath is P ′

tc together with the rules 8 and
9.

tc′(x, y) ←− tc(x, y) (8)
tc′(x, y) ←− path(x, y) (9)

Finally, wp(u, c) = ∀x, y ¬tc′(x, y)∨ i(x, y), where TC′

is defined by P ′

insertT Cpath = P ∪ {6, 7, 8, 9}.

We now turn our attention towards the goal of prov-
ing that the weakest precondition holds without actu-
ally evaluating it. One method is to show that

c =⇒ wp(u, c) (10)

The problem is that implication 10 is undecidable ex-
cept in some special cases: e.g., if both c and wp(u, c)
are unions of conjunctive queries, and at least one of
them is not recursive [C91, CV92]; some special classes
of formulas for which 10 is decidable are studied in
[M97]. So we can only hope for heuristics to find suffi-
cient conditions ensuring that implication 10 will hold.
The idea, coming from Dijkstra’s loop invariants [D76],
consists in proving 10 by recursion induction, without
actually computing wp(u, c). We illustrate this idea on
an example.
Example 5 Let c be the constraint ∀x, y ¬tc(x, y) ∨
i(x, y), where I and TC are defined by P :

tc(x, y) ←− arc(x, y) (11)
tc(x, y) ←− edge(x, y) (12)
tc(x, y) ←− arc(x, z) , tc(z, y) (13)
i(x, y) ←− i1(x, z1), edge(z1, z2), i1(z2, y) (14)

i1(x, y) ←− arc(x, z) , i1(z, y) (15)
i1(x, y) ←− edge(x, z) , i1(z, y) (16)
i1(x, x) ←− (17)

and consider the update u = foreach x, y :
edge(x, y) do insertArc(x, y). Then wp(u, c) =
∀x, y ¬tc′(x, y)∨i(x, y), where I and TC′ are defined by
P ′

insertArcedge, consisting of P together with the rules
(because I ′ = I here):

arc′(x, y) ←− arc(x, y)
arc′(x, y) ←− edge(x, y)
tc′(x, y) ←− arc′(x, y)
tc′(x, y) ←− arc′(x, z) , tc′(z, y)

We prove that c =⇒ wp(u, c) by induction. To this
end, let C[R] = (R ⊂ I); we note that c holds
iff C[TC] holds, and wp(u, c) holds iff C[TC′] holds.

7

Let ⊲⊳ denote the composition3 of binary relations.
It thus suffices to prove that, for any R, C[R] =⇒
C[Arc′ ∪Arc′ ⊲⊳R] to conclude, by fixpoint induction,
that C[TC′] holds.

We now show that, if c holds, then C[R] =⇒
C[Arc′ ∪ Arc′ ⊲⊳R] holds. Assume that C[R] holds.
Because c holds, C[TC] holds. Note that C[Arc′ ∪
Arc′ ⊲⊳R] reduces to the conjunction of C[Arc],
C[Arc ⊲⊳ R], C[Edge], C[Edge ⊲⊳R]; each of the con-
juncts is easy to verify: for instance C[Arc] holds
because Arc ⊂ TC by rule 11 and because C[TC]
holds; C[Arc ⊲⊳ R] holds because C[R] holds, and be-
cause of rules 14, 15, 14, and similarly for C[Edge] and
C[Edge ⊲⊳R]. ⊓⊔

We now study the computation of simplified weakest
preconditions, in the case of insertion updates. The ba-
sic idea is quite simple and comes from the semi-naive
query evaluation method in DATALOG (see [AHV95]).
We design a DATALOG program computing all new
facts deduced from the insertion update (and prefer-
ably only new facts) and we verify the constraint on
the new facts computed by that program. The method
of [BD88] is based on a similar idea. We will sketch this
method on an example, simple, but useful, where the
constraint is c = ¬∃x tc(x, x) where TC is a transi-
tive closure. Such a constraint is used, for instance,
to check that a set of DATALOG clauses defines a
non recursive program by verifying that the precedence
graph of the IDBs occurring in the program has no cy-
cle. We want to check that adding a new clause does
not create recursions, i.e. cycles. Adding a new clause
corresponds to an insertion update.
Example 6 Consider the update insertArc(d, b), and
let c be the constraint ¬∃x tc(x, x), where TC is de-
fined by program P :

P

{

tc(x, y) ←− arc(x, y)
tc(x, y) ←− arc(x, z) , tc(z, y)

We assume that constraint c is verified by database B.
Let ∆tc(x, y) be the potentially new facts which will
be inserted in TC as a consequence of the update. The
IDB predicate δtc corresponding to ∆tc is defined by
the DATALOG program:

P ′

tc(x, y) ←− arc(x, y)
tc(x, y) ←− arc(x, z) , tc(z, y)
δtc(d, b) ←−
δtc(d, y) ←− tc(b, y)
δtc(x, y) ←− arc(x, z) , δtc(z, y)

The weakest precondition wp(c, insertArc(d, b)) then is
¬∃x δtc(x, x), which can be evaluated by SLD-AL reso-

3
⊲⊳ performs an equijoin on the second attribute of the first

relation and the first attribute of the second relation, followed
by a projection on the first and third attributes.

lution [V89]. The weakest precondition of [L95] and of
Theorem 3 would be in the present case ¬∃x tc′(x, x)
where TC′ is defined by the program P ′

insertArc(d,b):

P ′

insertArc(d,b)

tc(x, y) ←− arc(x, y)
tc(x, y) ←− arc(x, z) , tc(z, y)
tc′(x, y) ←− arc′(x, y)
tc′(x, y) ←− arc′(x, z) , tc′(z, y)
arc′(x, y) ←− arc(x, y)
arc′(d, b) ←−

The program P ′ of Example 6 can be obtained by an
algorithm: the idea is to compute the rules defining
new facts by resolution with the inserted atoms (simi-
lar to the idea of ‘refutation with update as top clause’
of [SK88]). A saturation method [AHV95, BDM88,
SK88, LST87] is used to generate the new rules, i.e. we
add rules until nothing new can be added. To simplify
the notations, we give the algorithm in the case when
the update is of the form insertR(dj) for j = 1, . . . , k,
with r an EDB predicate, and the constraint is of the
form ¬∃x t(x) with t an IDB, possibly depending on
r, defined by a linear DATALOG program.

Algorithm. Inputs: update u = insertR(dj) for
j = 1, . . . , k, constraint c = ¬∃x t(x), and a linear
DATALOG program P defining relation T .
Outputs: A simplified wp(u, c), and a DATALOG
program P ′ defining wp(u, c).

Step 1: For each IDB q of P depending on r, let
δq be a new IDB; let Π be the set of rules defined as
follows: for each rule q ←− body of P whose head q
depends on r add in Π a rule δq ←− body. If Π is
empty, then update u is safe; STOP.

Step 2: Let P1 = {Res(ρ, r(dj)) / ρ ∈ Π, j =
1, . . . , k} be the set of resolvents of rules of Π with
updated atoms. If P1 is empty, then update u is safe;
STOP.
Otherwise, generate new rules as follows:

i := 1 WHILE Pi 6= ∅ DO Pi+1 =
{Res(ρ, r(dj)) / ρ ∈ Pi, j = 1, . . . , k} ; i := i + 1
ENDDO

Let P ′ = ∪Pi.
Step 3: Let Σ1 be the set of rules of Π which contain

an IDB q depending on r in their body. If Σ1 is empty,
then wp(u, c) = ¬∃x δt(x), and program P ∪P ′ defines
∆t; STOP.
Otherwise, generate new rules as follows: let P ′′

1 be
obtained from Σ1 by substituting δq for q in the bodies
of the rules of Σ1; only new predicates δq appear in
rules of P ′′

1 .
i := 1 WHILE P ′′

i 6= ∅ DO P ′′

i+1 =

{Res(ρ, r(dj)) / ρ ∈ P ′′

i , j = 1, . . . , k} ; i := i + 1
ENDDO

Let P ′′ = ∪P ′′

i .

8

wp(u, c) = ¬∃x δt(x), and program P ∪ P ′ ∪ P ′′

defines ∆t; STOP.⊓⊔

The WHILE loops in steps 2 and 3 terminate, be-
cause at each iteration step the number of atoms
involving r decreases in the rules. This algorithm
can generate rules which might be useless in some
cases: e.g., in Example 6, the useless rule δtc(d, y)←−
δtc(b, y) would be generated. This algorithm can be
generalized to non linear DATALOG programs, and to
more general insert instructions.

When the insertion is defined by a (possibly recur-
sive) qualification, we can similarly compute the po-
tentially new facts to be inserted as a consequence of
the update. Consider the program P and the update
u = foreach x, y : path(x, y) do insertTC(x, y) de-
fined in Example 4, and let c be constraint ¬∃x tc(x, x).
The potentially new4 facts ∆tc(x, y) which will be in-
serted in TC are defined by the DATALOG program
P ′:

P ′

P
δtc(x, y) ← edge(x, y)
δtc(x, y) ← edge(x, z) , tc(z, y)
δtc(x, y) ← edge(x, z) , δtc(z, y)
δtc(x, y) ← arc(x, z) , δtc(z, y)

The weakest precondition wp(c, insertArcpath) is
again ¬∃x δtc(x, x).

The method of [L95] and of Theorem 3 would now
give the weakest precondition ¬∃x tc′(x, x) where TC′

is defined by the program P ′

insertArcedge, namely:

P ′

P
tc′(x, y) ←− arc′(x, y)
tc′(x, y) ←− arc′(x, z) , tc′(z, y)
arc′(x, y) ←− arc(x, y)
arc′(x, y) ←− path(x, y)

5 Conclusion and discussion

In the relational case, we devised a systematic method
for computing a simplified weakest precondition for a
general database update transaction u and a constraint
c. This yields an efficient way of ensuring that the up-
date maintains the truth of the constraints. In the
deductive case, we studied two methods: the first one
consists in proving by fixpoint induction that c =⇒
wp(u, c) holds without evaluating wp(u, c); the second
one consists in defining, for insertion updates and con-
straints c of the form ¬∃x q(x), a constraint c′ simpler

4Some new facts could be already present in the old database
or could be generated twice; this is unavoidable, unless we are
willing to perform a semantical analysis of the program which
can be expensive.

than wp(u, c) and such that c =⇒
(

c′ ⇐⇒ wp(u, c)
)

;

this is a first step towards one of the goals stated in
the conclusion of [BGL96].

The idea of our method is to preventively check
only relevant parts of the precondition which are gen-
erated using saturation methods. We preventively
check a weakest precondition before performing the up-
date, and perform the update only when the weakest
precondition ensures us that it will be safe (see also
[BDM88, LTW93, L95, L98]); complex updates are
also considered a whole, rather than separately, thus
generating simpler weakest preconditions. Following
the method initiated in [N82], we check only the rele-
vant part of the weakest precondition (i.e. those facts
potentially affected by the update); to this end, we
preventively simplify the weakest precondition by us-
ing a resolution method: we separate in the weakest
precondition the facts which reduce to c (assumed to
hold) from the ‘new’ facts which have to be checked
(see also [BDM88, N82, SK88]).

Our update language is more expressive than the
ones considered in [BS98, BDM88, LST87, N82] in that
we allow for 1. more complex updates, inserting or
deleting sets defined by a qualification which is a uni-
versal formula, 2. conditional updates, 3. complex
transactions, and 4. recursively defined updates and
constraints. The language of [BS98] has an additional
statement forone x where cond do inst which can
be simulated in our language; in addition it is object-
oriented, as are the languages of [L95, L98]. Our up-
date language is in some respects more user-friendly
than the one considered in [L95, L98] (because we al-
low for conditional updates, and, in the deductive case,
we allow for insertions or deletions of rules); in some
respects it is less expressive (because our qualifications
are universal formulas instead of arbitrary first order
formulas in [L95, L98, M97]); our system has been
extended to allow for some existential quatifiers and
in practice, our qualifications suffice to model usual
update languages. This slight loss in expressivity en-
ables us to explicitly and effectively give an automatic
procedure for generating a simplified weakest precon-
dition, implemented via a terminating term rewriting
system. [LTW93, L98] give only sufficient conditions
under which simplifications are possible, and state the
existence of a simplified weakest precondition, without
giving an algorithm to compute it.

The parallel time complexity for computing wp(u, c)
is linear in the total size of the formulas involved
(constraint, qualification, etc.). The maximum size of
wp(u, c) is also linear in the size of the formulas in-
volved, except for the case of an update of the form
insertRΦ paired with a constraint c containing k > 1
occurrences of ¬r, when a blow-up exponential in k

9

may occur in the size of wp(u, c) (and similarly for
deleteRΦ with k > 1 occurrences of r in c).

Because our weakest precondition is defined inde-
pendently of whether c holds in B, and is then simpli-
fied by taking into account whether c holds in B, our
approach can be extended to handle changes in the
integrity constraints. Further steps would be:

1. to apply semantic query optimization techniques
for recursive programs [CGM90, M98] to simplify
even more our simplified weakest preconditions;

2. to incorporate in our language complex updates
(e.g. modifications, exchanges);

3. to generalize our algorithms to allow for con-
straints which are not given by clauses.

References

[AHV95] S. Abiteboul, R. Hull, V. Vianu, Foundations of
Databases, Addison-Wesley, 1995.

[BGL96] M. Benedikt, T. Griffin, L. Libkin, Verifiable
properties of database transactions, PODS’96,
1996, pp. 117–127.

[BLSB92] W. Bibel, R. Letz, J. Schumann, S. Bayerl,
SETHEO: A High-Performance Theorem Prover,
Journal of Symbolic Computation 15(5-6), 1992,
pp.183-212.

[BDA98] N. Bidoit, S. De Amo, A first step towards imple-
menting dynamic algebraic dependences, Theo-
retical Computer Science 190, 1998, pp. 115-149.

[BD88] F. Bry, H. Decker, Préserver l’Intégrité d’une
Base de Données Déductive : une Méthode et son
Implémentation. In Proc. 4èmes Journées Bases
de Données Avancées (BDA), May 1988.

[BS98] V. Benzaken, X. Schaeffer, Static management
of integrity in Object-Oriented databases: de-
sign and implementation, Proc. EDBT’98, LNCS
1377, Springer-Verlag, Berlin, 1998, pp. 311–325.

[BDM88] F. Bry, H. Decker, R. Manthey, A uniform
approach to constraint satisfaction and con-
straint satisfiability in deductive object-oriented
databases, Proc. 1st EDBT, 1988, pp. 488–505.

[CB80] M.A. Casanova, P.A. Bernstein, A formal System
for Reasoning about Programs accessing a Rela-
tional Database, ACM Transactions on Database
Systems 2 (3), 1980, pp. 386–414.

[CGM90] U. Chakravarthy, J. Grant, J. Minker, Logic-
based approach to semantic query optimization,
ACM Transactions on Database Systems 15 (2),
1990, pp. 162–207.

[CV92] S. Chaudhuri, M. Y. Vardi, On the equivalence of
datalog programs, In Proc. Eleventh ACM Sym-
posium on Principles of Database Systems, 1992,
pp. 55–66.

[C91] B. Courcelle, Recursive queries and context-free
graph grammars, Theor. Comput. Sc. 78, 1991,
pp. 217–244.

[D75] E. Dijkstra, Guarded commands, nondetermi-
nacy and formal derivations of programs, Comm.
of the ACM, 18(8), 1975, pp. 453–457.

[D76] E. Dijkstra, A discipline of programming,
Prentice-Hall, London, 1976.

[GM79] G. Gardarin, M. Melkanoff, Proving the Con-
sistency of Database Transactions, Proc. VLDB
1979, pp. 291–298.

[GSUW94] A. Gupta, Y. Sagiv, J. D. Ullman, J. Widom,
Constraint checking with partial information,
Proc. PODS’94, 1994, pp. 45–55.

[L98] M. Lawley, Program transformations for prov-
ing database transaction safety, PhD.Th., Grif-
fith University, 1998.

[L95] M. Lawley, Transaction safety in deductive
object-oriented databases, Proc. 4th Interna-
tional Conference on Deductive and Object-
Oriented Databases, LNCS 1013, Springer-
Verlag, Berlin 1995, pp. 395–410.

[LTW93] M. Lawley, R. Topor, M. Wallace, Using weak-
est preconditions to simplify integrity constraint
checking, Proc. 4th Australian database conf.,
Brisbane, 1993, pp. 161–170.

[LST87] J. Lloyd, E. Sonenberg, R. Topor, Integrity con-
straint checking in stratified databases, J. of
Logic Programming, 4(4), 1987, pp. 331–343.

[M97] N. Magnier, Validation des transactions dans
les bases de données: classes décidables et
vérification automatique, PhD Thesis, Bordeaux
University, 1997.

[M98] J. Minker, Logic and databases: a 20 year ret-
rospective, LNCS 1154, Springer-Verlag, Berlin
1996, pp. 3–57.

[N82] J.-M. Nicolas, Logic for improving integrity
checking in relational databases, Acta Informat-
ica, 18, 1982, pp. 227–253.

[PP94] A. Pettorossi, M. Proietti, Transformation of
Logic Programs: Foundations and Techniques,
Journal of Logic Programming, Vol. 20, 1994, pp.
261-320.

[SS89] T. Sheard, D. Stemple, Automatic verification
of database transaction safety, ACM Trans. on
Database Systems, 14(3), 1989, pp. 322–368.

[SK88] F. Sadri, R. Kowalski, A theorem-proving ap-
proach to database integrity, Foundations of
deductive databases and logic programming,
Morgan-Kauffmann, 1988, pp. 313-362.

[TS84] H. Tamaki, T. Sato, Unfold/Fold transformation
of logic programs, Proc. 2nd logic programming
conference, Uppsala, Sweden, 1984.

[ToS88] R. Topor, E. Sonenberg, On domain independent
databases, Foundations of deductive databases
and logic programming, Morgan-Kauffmann,
1988, pp. 217-240.

[VGT87] A. Van Gelder, R. Topor, Safety and correct
translation of relational calculus formulas, Proc.

10

PODS’87, 1987, pp. 313–327.
[V89] L. Vieille, Recursive Query Processing: the

Power of Logic, Theoretical Computer Science,
69(1) 1989, pp. 1-53.

[V98] L. Vieille, From Data Independence to Knowl-
edge Independence: an on-going Story, Proc.
VLDB’98.

[VBKL99] L. Vieille, P. Bayer, V. Kuechenhoff, A. Lefeb-
vre , Checking Integrity and Materializing Views
by Update Propagation in the EKS system, in
Materialized Views, A. Gupta and I. Mumick
(Eds) MIT Press, to appear.

11

