1,672 research outputs found

    Design Methodology of Fuzzy Expert System for the Diagnosis and Control of Obesity

    Get PDF
    Both developed and developing nations of the world have overtime experienced enormous increase in food and other consumables production. This has led to a rise in calorie intake by people living in these nations of the world. As calorie intake increases in the human system, lack of early detection or control leads to obesity. The study of obesity is gaining utmost importance because of the major health issues associated with it. If an obese prone patient is detected early enough, then quite a number of diseases can be prevented. The ability of fuzzy logic to reason with uncertain and imprecise data in addressing the specific problem of diagnosis and monitoring of diseases in our society cannot be over emphasized. In this paper we design methodology of fuzzy expert system to diagnose and monitor obesity in persons at early stage. The study will help reduce to a great minimum the fast rise of obesity in our society and the world at large. The proposed study is validated with MatLab, and is used as a tracking system with accuracy and robustness. Keywords: Obesity, Fuzzy Inference System, Body Mass Index, Body fat, Waist circumference

    On Modeling the Quality of Nutrition for Healthy Ageing Using Fuzzy Cognitive Maps

    Get PDF
    Modelling dietary intake of older adults can prevent nutritional deficiencies and diet-related diseases, improving their quality of life. Towards such direction, a Fuzzy Cognitive Map (FCM)-based modelling approach that models the interdependencies between the factors that affect the Quality of Nutrition (QoN) is presented here. The proposed FCM-QoN model uses a FCM with seven input-one output concepts, i.e., five food groups of the UK Eatwell Plate, Water (H2O), and older adult’s Emotional State (EmoS), outputting the QoN. The weights incorporated in the FCM structure were drawn from an experts’ panel, via a Fuzzy Logic-based knowledge representation process. Using various levels of analysis (causalities, static/feedback cycles), the role of EmoS and H2O in the QoN was identified, along with the one of Fruits/Vegetables and Protein affecting the sustainability of effective food combinations. In general, the FCM-QoN approach has the potential to explore different dietary scenarios, helping health professionals to promote healthy ageing and providing prognostic simulations for diseases effect (such as Parkinson’s) on dietary habits, as used in the H2020 i-Prognosis project (www.i-prognosis.eu)

    Deep neuro‐fuzzy approach for risk and severity prediction using recommendation systems in connected health care

    Get PDF
    Internet of Things (IoT) and Data science have revolutionized the entire technological landscape across the globe. Because of it, the health care ecosystems are adopting the cutting‐edge technologies to provide assistive and personalized care to the patients. But, this vision is incomplete without the adoption of data‐focused mechanisms (like machine learning, big data analytics) that can act as enablers to provide early detection and treatment of patients even without admission in the hospitals. Recently, there has been an increasing trend of providing assistive recommendation and timely alerts regarding the severity of the disease to the patients. Even, remote monitoring of the present day health situation of the patient is possible these days though the analysis of the data generated using IoT devices by doctors. Motivated from these facts, we design a health care recommendation system that provides a multilevel decision‐making related to the risk and severity of the patient diseases. The proposed systems use an all‐disease classification mechanism based on convolutional neural networks to segregate different diseases on the basis of the vital parameters of a patient. After classification, a fuzzy inference system is used to compute the risk levels for the patients. In the last step, based on the information provided by the risk analysis, the patients are provided with the potential recommendation about the severity staging of the associated diseases for timely and suitable treatment. The proposed work has been evaluated using different datasets related to the diseases and the outcomes seem to be promising

    An Ontology-Based Framework for a Telehealthcare System to Foster Healthy Nutrition and Active Lifestyle in Older Adults

    Get PDF
    In recent years, telehealthcare systems (TSs) have become more and more widespread, as they can contribute to promoting the continuity of care and managing chronic conditions efficiently. Most TSs and nutrition recommendation systems require much information to return appropriate suggestions. This work proposes an ontology-based TS, namely HeNuALs, aimed at fostering a healthy diet and an active lifestyle in older adults with chronic pathologies. The system is built on the formalization of users' health conditions, which can be obtained by leveraging existing standards. This allows for modeling different pathologies via reusable knowledge, thus limiting the amount of information needed to retrieve nutritional indications from the system. HeNuALs is composed of (1) an ontological layer that stores patients and their data, food and its characteristics, and physical activity-related data, enabling the inference a series of suggestions based on the effects of foods and exercises on specific health conditions; (2) two applications that allow both the patient and the clinicians to access the data (with different permissions) stored in the ontological layer; and (3) a series of wearable sensors that can be used to monitor physical exercise (provided by the patient application) and to ensure patients' safety. HeNuALs inferences have been validated considering two different use cases. The system revealed the ability to determine suggestions for healthy, adequate, or unhealthy dishes for a patient with respiratory disease and for a patient with diabetes mellitus. Future work foresees the extension of the HeNuALs knowledge base by exploiting automatic knowledge retrieval approaches and validation of the whole system with target users

    Living Innovation Laboratory Model Design and Implementation

    Full text link
    Living Innovation Laboratory (LIL) is an open and recyclable way for multidisciplinary researchers to remote control resources and co-develop user centered projects. In the past few years, there were several papers about LIL published and trying to discuss and define the model and architecture of LIL. People all acknowledge about the three characteristics of LIL: user centered, co-creation, and context aware, which make it distinguished from test platform and other innovation approaches. Its existing model consists of five phases: initialization, preparation, formation, development, and evaluation. Goal Net is a goal-oriented methodology to formularize a progress. In this thesis, Goal Net is adopted to subtract a detailed and systemic methodology for LIL. LIL Goal Net Model breaks the five phases of LIL into more detailed steps. Big data, crowd sourcing, crowd funding and crowd testing take place in suitable steps to realize UUI, MCC and PCA throughout the innovation process in LIL 2.0. It would become a guideline for any company or organization to develop a project in the form of an LIL 2.0 project. To prove the feasibility of LIL Goal Net Model, it was applied to two real cases. One project is a Kinect game and the other one is an Internet product. They were both transformed to LIL 2.0 successfully, based on LIL goal net based methodology. The two projects were evaluated by phenomenography, which was a qualitative research method to study human experiences and their relations in hope of finding the better way to improve human experiences. Through phenomenographic study, the positive evaluation results showed that the new generation of LIL had more advantages in terms of effectiveness and efficiency.Comment: This is a book draf

    Innovative Business Model for Smart Healthcare Insurance

    Get PDF
    Information revolution and technology growth have made a considerable contribution to restraining the cost expansion and empowering the customer. They disrupted most business models in different industries. The customer-centric business model has pervaded the different sectors. Smart healthcare has made an enormous shift in patient life and raised their expectations of healthcare services quality. Healthcare insurance is an essential business in the healthcare sector; patients expect a new business model to meet their needs and enhance their wellness. This research develops a holistic smart healthcare architecture based on the recent development of information and communications technology. Then develops a disruptive healthcare insurance business model that adapts to this architecture and classifies the patient according to their technology needs. Finally, and implementing a prototype of a system that matches and suits the healthcare recipient condition to the proper healthcare insurance policy by applying Web Ontology Language (OWL) and rule-based reasoning model using SWRL using Protég

    A mapping study on blood glucose recommender system for patients with gestational diabetes mellitus

    Get PDF
    Blood glucose (BG) prediction system can help gestational diabetes mellitus (GDM) patient to improve the BG control with managing their dietary intake based on healthy food. Many techniques have been developed to deal with blood glucose prediction, especially those for recommender system. In this study, we conduct a systematic mapping study to investigate recent research about BG prediction in recommender systems. This study describes an overview of research (2014-2018) about BG prediction techniques that has been used for BG recommender system. As results, 25 studies concerning BG prediction in recommender system were selected. We observed that although there is numerous studies published, only a few studies took serious discussion about techniques used to incorporate the BG algorithms. Our result highlighted that only one study discusses hybrid filtering technique in BG recommender system for GDM even though it has an ability to learn from experience and to improve prediction performance. We hope that this study will encourage researchers to consider not only machine learning and artificial intelligent techniques but also hybrid filtering technique for BG recommender system in the future research

    Automatic Generation of Personalized Recommendations in eCoaching

    Get PDF
    Denne avhandlingen omhandler eCoaching for personlig livsstilsstøtte i sanntid ved bruk av informasjons- og kommunikasjonsteknologi. Utfordringen er å designe, utvikle og teknisk evaluere en prototyp av en intelligent eCoach som automatisk genererer personlige og evidensbaserte anbefalinger til en bedre livsstil. Den utviklede løsningen er fokusert på forbedring av fysisk aktivitet. Prototypen bruker bærbare medisinske aktivitetssensorer. De innsamlede data blir semantisk representert og kunstig intelligente algoritmer genererer automatisk meningsfulle, personlige og kontekstbaserte anbefalinger for mindre stillesittende tid. Oppgaven bruker den veletablerte designvitenskapelige forskningsmetodikken for å utvikle teoretiske grunnlag og praktiske implementeringer. Samlet sett fokuserer denne forskningen på teknologisk verifisering snarere enn klinisk evaluering.publishedVersio
    corecore